torch-mlir/lib/Conversion/TorchOnnxToTorch/DefaultDomainQtoZ.cpp

1398 lines
64 KiB
C++

//===------------------------------------------------------------*- C++ -*-===//
//
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "torch-mlir/Conversion/TorchOnnxToTorch/Patterns.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::onnx_c;
// Simple rewrites for the default domain.
// See: https://onnx.ai/onnx/operators/
// For operators that are effectively version invariant, we register with
// sinceVersion==1. We interpret this to include the following spec
// diffs that are irrelevant to this level of lowering:
// * Supported element types.
// * Limited broadcasting to full broadcasting support.
//
// There are a lot of spec revisions that basically generalized elementwise
// to be more normal and a direct translation vs a special case. This
// results in a lot of ONNX test cases that all reduce to the exact same
// thing here, so we simplify.
// utilities
// Templatized function to get an item op of a type
namespace {
template <typename T>
Value getItemOp(OpBinder binder, ConversionPatternRewriter &rewriter,
Value &ofItem) {
return rewriter.create<Torch::AtenItemOp>(binder.getLoc(),
rewriter.getType<T>(), ofItem);
}
} // namespace
void mlir::torch::onnx_c::populateDefaultDomainQtoZ(
OnnxCustomOpConversionPattern &patterns) {
patterns.onOp("Reciprocal", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value operand;
if (binder.tensorOperand(operand) ||
binder.tensorResultType(resultType))
return failure();
rewriter.replaceOpWithNewOp<Torch::AtenReciprocalOp>(
binder.op, resultType, operand);
return success();
});
patterns.onOp(
"Relu", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value x;
if (binder.tensorOperand(x) || binder.tensorResultType(resultType))
return failure();
rewriter.replaceOpWithNewOp<Torch::AtenReluOp>(binder.op, resultType,
x);
return success();
});
patterns.onOp("Round", 11,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value operand;
if (binder.tensorOperand(operand) ||
binder.tensorResultType(resultType))
return failure();
rewriter.replaceOpWithNewOp<Torch::AtenRoundOp>(
binder.op, resultType, operand);
return success();
});
patterns.onOp(
"ScatterElements", 18,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
SmallVector<Value> valList;
int64_t axis;
std::string reduction;
int64_t numOperands = binder.op->getNumOperands();
if (binder.tensorOperands(valList, numOperands) ||
binder.s64IntegerAttr(axis, "axis", 0) ||
binder.customOpNameStringAttr(reduction, "reduction", "none") ||
binder.tensorResultType(resultType))
return failure();
Value data = valList[0];
Value indices = valList[1];
Value updates = valList[2];
// ONNX allows negative axis.
if (axis < 0)
axis +=
cast<Torch::ValueTensorType>(data.getType()).getSizes().size();
Value constAxis = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), axis));
if (reduction == "none") {
rewriter.replaceOpWithNewOp<Torch::AtenScatterSrcOp>(
binder.op, resultType, data, constAxis, indices, updates);
return success();
}
// TODO: Implement max and min cases
if (reduction == "mul") {
reduction = "multiply";
} else if (reduction == "max" || reduction == "min") {
return rewriter.notifyMatchFailure(
binder.op, "max/min reduction unsupported for scatter elements");
}
Value cstStrReduction =
rewriter.create<Torch::ConstantStrOp>(binder.getLoc(), reduction);
rewriter.replaceOpWithNewOp<Torch::AtenScatterReduceOp>(
binder.op, resultType, data, constAxis, indices, updates,
cstStrReduction);
return success();
});
patterns.onOp(
"Sigmoid", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value x;
if (binder.tensorOperand(x) || binder.tensorResultType(resultType))
return failure();
rewriter.replaceOpWithNewOp<Torch::AtenSigmoidOp>(binder.op, resultType,
x);
return success();
});
patterns.onOp("Sin", 7,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value operand;
if (binder.tensorOperand(operand) ||
binder.tensorResultType(resultType))
return failure();
rewriter.replaceOpWithNewOp<Torch::AtenSinOp>(
binder.op, resultType, operand);
return success();
});
patterns.onOp("Tanh", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value operand;
if (binder.tensorOperand(operand) ||
binder.tensorResultType(resultType))
return failure();
rewriter.replaceOpWithNewOp<Torch::AtenTanhOp>(
binder.op, resultType, operand);
return success();
});
patterns.onOp("Sqrt", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value operand;
if (binder.tensorOperand(operand) ||
binder.tensorResultType(resultType))
return failure();
rewriter.replaceOpWithNewOp<Torch::AtenSqrtOp>(
binder.op, resultType, operand);
return success();
});
patterns.onOp(
"Sub", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value x;
Value y;
if (binder.tensorOperands(x, y) || binder.tensorResultType(resultType))
return failure();
Value const1 = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 1));
rewriter.replaceOpWithNewOp<Torch::AtenSubTensorOp>(
binder.op, resultType, x, y, const1);
return success();
});
patterns.onOp(
"Sum", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
if (binder.op->getNumOperands() == 1) {
Torch::ValueTensorType resultType;
Value x;
if (binder.tensorOperand(x) || binder.tensorResultType(resultType))
return failure();
rewriter.replaceOp(binder.op, x);
return success();
}
Torch::ValueTensorType resultType;
SmallVector<Value> valList;
int64_t numOperands = binder.op->getNumOperands();
if (binder.tensorOperands(valList, numOperands) ||
binder.tensorResultType(resultType))
return failure();
Value const1 = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 1));
// Short circuit to binary add
if (numOperands == 2) {
rewriter.replaceOpWithNewOp<Torch::AtenAddTensorOp>(
binder.op, resultType, valList[0], valList[1], const1);
return success();
}
// When binder.op->getNumOperands() > 2
auto baseType = Torch::ValueTensorType::getWithLeastStaticInformation(
binder.op->getContext());
Value curr = rewriter.create<Torch::AtenAddTensorOp>(
binder.getLoc(), resultType, valList[0], valList[1], const1);
for (int i = 2; i < numOperands; i++) {
if (i == numOperands - 1) {
curr = rewriter.create<Torch::AtenAddTensorOp>(
binder.getLoc(), resultType, curr, valList[i], const1);
} else {
curr = rewriter.create<Torch::AtenAddTensorOp>(
binder.getLoc(), baseType, curr, valList[i], const1);
}
}
rewriter.replaceOp(binder.op, curr);
return success();
});
patterns.onOp("Where", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
SmallVector<Value> valList;
int64_t numOperands = binder.op->getNumOperands();
if (binder.tensorOperands(valList, numOperands) ||
binder.tensorResultType(resultType))
return failure();
Value condition = valList[0];
Value x = valList[1];
Value y = valList[2];
rewriter.replaceOpWithNewOp<Torch::AtenWhereSelfOp>(
binder.op, resultType, condition, x, y);
return success();
});
patterns.onOp(
"Xor", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value x;
Value y;
if (binder.tensorOperands(x, y) || binder.tensorResultType(resultType))
return failure();
rewriter.replaceOpWithNewOp<Torch::AtenLogicalXorOp>(binder.op,
resultType, x, y);
return success();
});
patterns.onOp(
"Squeeze", 13, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value data;
Value axes;
if (binder.tensorOperands(data, axes) ||
binder.tensorResultType(resultType))
return failure();
Torch::BaseTensorType axesType =
axes.getType().cast<Torch::BaseTensorType>();
SmallVector<Value> dimList;
SmallVector<int64_t> selectSizes;
selectSizes.push_back(1);
Type selectResultType = axesType.getWithSizesAndDtype(
llvm::ArrayRef(selectSizes), axesType.getOptionalDtype());
auto sizes =
dyn_cast<Torch::ValueTensorType>(axes.getType()).getSizes();
if (sizes.size() == 0) {
rewriter.replaceOpWithNewOp<Torch::AtenSqueezeOp>(binder.op,
resultType, data);
return success();
}
Value zero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
int64_t adjustmentInt =
cast<Torch::ValueTensorType>(data.getType()).getSizes().size();
Value adjustment = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64),
adjustmentInt));
for (int i = 0; i < sizes[0]; i++) {
// Go through the axes list and get each dim in the list
Value selectIndex = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), i));
Value extract = rewriter.create<Torch::AtenSelectIntOp>(
binder.getLoc(), selectResultType, axes, zero, selectIndex);
Value dim = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), extract);
// deal with neg axis: if (axis < 0) axis += rank
Value isNegative =
rewriter.create<Torch::AtenLtIntOp>(binder.getLoc(), dim, zero);
isNegative = rewriter.create<Torch::AtenIntBoolOp>(binder.getLoc(),
isNegative);
Value finalOffset = rewriter.create<Torch::AtenMulIntOp>(
binder.getLoc(), isNegative, adjustment);
Value finalDim = rewriter.create<Torch::AtenAddIntOp>(
binder.getLoc(), dim, finalOffset);
dimList.push_back(finalDim);
}
Value dimValueList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
dimList);
rewriter.replaceOpWithNewOp<Torch::PrimsSqueezeOp>(
binder.op, resultType, data, dimValueList);
return success();
});
patterns.onOp(
"Unsqueeze", 13,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
// Unlike squeeze where we are able to lower to Torch::PrimsSqueezeOp,
// pytorch does not support torch.unsqueeze to insert multiple new dims.
// discussion can be found here:
// https://github.com/pytorch/pytorch/issues/9410
// So, for now, we unroll into multiple unsqueezes.
Torch::ValueTensorType resultType;
Value data;
Value axes;
if (binder.tensorOperands(data, axes) ||
binder.tensorResultType(resultType))
return failure();
Torch::BaseTensorType axesType =
axes.getType().cast<Torch::BaseTensorType>();
SmallVector<Value> dimList;
SmallVector<int64_t> selectSizes;
selectSizes.push_back(1);
Type selectResultType = axesType.getWithSizesAndDtype(
llvm::ArrayRef(selectSizes), axesType.getOptionalDtype());
auto sizes =
dyn_cast<Torch::ValueTensorType>(axes.getType()).getSizes();
if (sizes.size() == 0) {
rewriter.replaceOp(binder.op, data);
return success();
}
Value zero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
int64_t adjustmentInt =
cast<Torch::ValueTensorType>(data.getType()).getSizes().size();
Value adjustment = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64),
adjustmentInt));
for (int i = 0; i < sizes[0]; i++) {
// Go through the axes list and get each dim in the list
Value selectIndex = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), i));
Value extract = rewriter.create<Torch::AtenSelectIntOp>(
binder.getLoc(), selectResultType, axes, zero, selectIndex);
Value dim = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), extract);
// deal with neg axis: if (axis < 0) axis += rank
Value isNegative =
rewriter.create<Torch::AtenLtIntOp>(binder.getLoc(), dim, zero);
isNegative = rewriter.create<Torch::AtenIntBoolOp>(binder.getLoc(),
isNegative);
Value finalOffset = rewriter.create<Torch::AtenMulIntOp>(
binder.getLoc(), isNegative, adjustment);
Value finalDim = rewriter.create<Torch::AtenAddIntOp>(
binder.getLoc(), dim, finalOffset);
dimList.push_back(finalDim);
}
Value dimValueList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
dimList);
Value cstFalse =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
Value noneVal = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
Value updatedAxes = rewriter.create<Torch::AtenTensorOp>(
binder.getLoc(),
axesType.getWithSizesAndDtype(sizes, axesType.getOptionalDtype()),
dimValueList, /*dtype=*/noneVal, /*device=*/noneVal, cstFalse);
// Sort the list of dims, so we don't run into this situation:
// data.sizes = [2, 3, 4]
// dims = [4, 0]
// index 4 will be invalid to add a singleton dimension because
// data.sizes.size == 3 We have to work with sorted dims to avoid this
// situation.
auto sortIndicesType = axesType.getWithSizesAndDtype(
axesType.getOptionalSizes(),
IntegerType::get(binder.op->getContext(), 64, IntegerType::Signed));
auto sortOpResult = rewriter.create<Torch::AtenSortOp>(
binder.getLoc(), axes.getType(), sortIndicesType, updatedAxes, zero,
cstFalse);
Value result;
auto baseType = Torch::ValueTensorType::getWithLeastStaticInformation(
binder.op->getContext());
// Go through the updated, sorted axes. Do unsqueeze for each dim.
for (int i = 0; i < sizes[0]; i++) {
Value selectIndex = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), i));
Value extract = rewriter.create<Torch::AtenSelectIntOp>(
binder.getLoc(), selectResultType, sortOpResult->getResult(0),
zero, selectIndex);
Value dim = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), extract);
if (sizes[0] == 1) {
result = rewriter.create<Torch::AtenUnsqueezeOp>(
binder.getLoc(), resultType, data, dim);
} else if (i == 0) {
result = rewriter.create<Torch::AtenUnsqueezeOp>(
binder.getLoc(), baseType, data, dim);
} else if (i == sizes[0] - 1) {
result = rewriter.create<Torch::AtenUnsqueezeOp>(
binder.getLoc(), resultType, result, dim);
} else {
result = rewriter.create<Torch::AtenUnsqueezeOp>(
binder.getLoc(), baseType, result, dim);
}
}
rewriter.replaceOp(binder.op, result);
return success();
});
patterns.onOp(
"Softmax", 13, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value input;
int64_t axis;
if (binder.tensorOperand(input) ||
binder.s64IntegerAttr(axis, "axis", -1) ||
binder.tensorResultType(resultType))
return failure();
// ONNX allows negative axis.
if (axis < 0)
axis +=
cast<Torch::ValueTensorType>(input.getType()).getSizes().size();
Value constAxis = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), axis));
Value noneVal = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
rewriter.replaceOpWithNewOp<Torch::AtenSoftmaxIntOp>(
binder.op, resultType, input, constAxis, /*dtype=*/noneVal);
return success();
});
patterns.onOp(
"Selu", 6, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
float alpha, gamma;
Value operand;
if (binder.tensorOperand(operand) ||
binder.f32FloatAttr(alpha, "alpha") ||
binder.f32FloatAttr(gamma, "gamma") ||
binder.tensorResultType(resultType))
return failure();
Value vAlpha = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getFloatAttr(rewriter.getF64Type(), alpha));
Value vScale = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getFloatAttr(rewriter.getF64Type(), gamma));
Value vInputScale = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getFloatAttr(rewriter.getF64Type(), 1.0));
rewriter.replaceOpWithNewOp<Torch::AtenEluOp>(
binder.op, resultType, operand, vAlpha, vScale, vInputScale);
return success();
});
patterns.onOp(
"ReduceSum", 13,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value data;
Value axes;
int64_t keepDims;
int64_t noop_with_empty_axes;
if (binder.tensorOperands(data, axes) ||
binder.tensorResultType(resultType) ||
binder.s64IntegerAttr(keepDims, "keepdims", 1) ||
binder.s64IntegerAttr(noop_with_empty_axes, "noop_with_empty_axes",
0))
return failure();
Torch::BaseTensorType axesType =
axes.getType().cast<Torch::BaseTensorType>();
SmallVector<Value> dimList;
SmallVector<int64_t> selectSizes;
selectSizes.push_back(1);
Type selectResultType = axesType.getWithSizesAndDtype(
llvm::ArrayRef(selectSizes), axesType.getOptionalDtype());
auto sizes =
dyn_cast<Torch::ValueTensorType>(axes.getType()).getSizes();
Value noneVal = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
// Deal with case when axes is empty
if (sizes.size() == 1 && sizes[0] == 0) {
if (noop_with_empty_axes == 0) {
Value keepDimsConstInt = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), keepDims));
Value keepDimsBool = rewriter.create<Torch::AtenBoolIntOp>(
binder.getLoc(), keepDimsConstInt);
rewriter.replaceOpWithNewOp<Torch::AtenSumDimIntListOp>(
binder.op, resultType, data, /*dim=*/noneVal,
/*keepdim=*/keepDimsBool, /*dtype=*/noneVal);
} else {
rewriter.replaceOp(binder.op, data);
}
return success();
}
Value zero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
int64_t adjustmentInt =
cast<Torch::ValueTensorType>(data.getType()).getSizes().size();
Value adjustment = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64),
adjustmentInt));
// convert axes (tensor) into torch int list while dealing with neg axis
for (int i = 0; i < sizes[0]; i++) {
// Go through the axes list and get each dim in the list
Value selectIndex = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), i));
Value extract = rewriter.create<Torch::AtenSelectIntOp>(
binder.getLoc(), selectResultType, axes, zero, selectIndex);
Value dim = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), extract);
// deal with neg axis: if (axis < 0) axis += rank
Value isNegative =
rewriter.create<Torch::AtenLtIntOp>(binder.getLoc(), dim, zero);
isNegative = rewriter.create<Torch::AtenIntBoolOp>(binder.getLoc(),
isNegative);
Value finalOffset = rewriter.create<Torch::AtenMulIntOp>(
binder.getLoc(), isNegative, adjustment);
Value finalDim = rewriter.create<Torch::AtenAddIntOp>(
binder.getLoc(), dim, finalOffset);
dimList.push_back(finalDim);
}
Value dimValueList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
dimList);
Value keepDimBool;
if (keepDims == 1) {
keepDimBool =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), true);
} else {
keepDimBool =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
}
rewriter.replaceOpWithNewOp<Torch::AtenSumDimIntListOp>(
binder.op, resultType, data, dimValueList, keepDimBool,
/*dtype=*/noneVal);
return success();
});
// onnx.ReduceMean with axes provided as argument introduced in opset 18
patterns.onOp(
"ReduceMean", 18,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value data;
Value axes;
int64_t keepDims;
int64_t noop_with_empty_axes;
if (binder.tensorOperands(data, axes) ||
binder.tensorResultType(resultType) ||
binder.s64IntegerAttr(keepDims, "keepdims", 1) ||
binder.s64IntegerAttr(noop_with_empty_axes, "noop_with_empty_axes",
0))
return failure();
Torch::BaseTensorType axesType =
axes.getType().cast<Torch::BaseTensorType>();
SmallVector<Value> dimList;
SmallVector<int64_t> selectSizes;
selectSizes.push_back(1);
Type selectResultType = axesType.getWithSizesAndDtype(
llvm::ArrayRef(selectSizes), axesType.getOptionalDtype());
auto sizes =
dyn_cast<Torch::ValueTensorType>(axes.getType()).getSizes();
Value noneVal = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
// deal with case when axes is empty
if (sizes.size() == 1 && sizes[0] == 0) {
if (noop_with_empty_axes == 0) {
Value keepDimsConstInt = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), keepDims));
Value keepDimsBool = rewriter.create<Torch::AtenBoolIntOp>(
binder.getLoc(), keepDimsConstInt);
rewriter.replaceOpWithNewOp<Torch::AtenMeanDimOp>(
binder.op, resultType, data, /*dim=*/noneVal, keepDimsBool,
/*dtype=*/noneVal);
} else {
rewriter.replaceOp(binder.op, data);
}
return success();
}
Value zero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
int64_t adjustmentInt =
cast<Torch::ValueTensorType>(data.getType()).getSizes().size();
Value adjustment = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64),
adjustmentInt));
// convert axes (tensor) into torch int list while dealing with neg axis
for (int i = 0; i < sizes[0]; i++) {
// Go through the axes list and get each dim in the list
Value selectIndex = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), i));
Value extract = rewriter.create<Torch::AtenSelectIntOp>(
binder.getLoc(), selectResultType, axes, zero, selectIndex);
Value dim = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), extract);
// deal with neg axis: if (axis < 0) axis += rank
Value isNegative =
rewriter.create<Torch::AtenLtIntOp>(binder.getLoc(), dim, zero);
isNegative = rewriter.create<Torch::AtenIntBoolOp>(binder.getLoc(),
isNegative);
Value finalOffset = rewriter.create<Torch::AtenMulIntOp>(
binder.getLoc(), isNegative, adjustment);
Value finalDim = rewriter.create<Torch::AtenAddIntOp>(
binder.getLoc(), dim, finalOffset);
dimList.push_back(finalDim);
}
Value dimValueList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
dimList);
Value keepDimBool;
if (keepDims == 1) {
keepDimBool =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), true);
} else {
keepDimBool =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
}
rewriter.replaceOpWithNewOp<Torch::AtenMeanDimOp>(
binder.op, resultType, data, dimValueList, keepDimBool,
/*dtype=*/noneVal);
return success();
});
// onnx.ReduceMean with axes provided as attribute
patterns.onOp(
"ReduceMean", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value data;
llvm::SmallVector<int64_t> axes;
int64_t keepDims;
int64_t noop_with_empty_axes;
if (binder.tensorOperand(data) || binder.tensorResultType(resultType) ||
binder.s64IntegerArrayAttr(axes, "axes", 0) ||
binder.s64IntegerAttr(keepDims, "keepdims", 1) ||
binder.s64IntegerAttr(noop_with_empty_axes, "noop_with_empty_axes",
0))
return failure();
SmallVector<Value> dimList;
SmallVector<int64_t> selectSizes;
selectSizes.push_back(1);
Value noneVal = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
// deal with case when axes is empty
if (axes.size() == 0) {
if (noop_with_empty_axes == 0) {
Value keepDimsConstInt = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), keepDims));
Value keepDimsBool = rewriter.create<Torch::AtenBoolIntOp>(
binder.getLoc(), keepDimsConstInt);
rewriter.replaceOpWithNewOp<Torch::AtenMeanDimOp>(
binder.op, resultType, data, /*dim=*/noneVal, keepDimsBool,
/*dtype=*/noneVal);
} else {
rewriter.replaceOp(binder.op, data);
}
return success();
}
int64_t adjustmentInt =
cast<Torch::ValueTensorType>(data.getType()).getSizes().size();
// convert axes (tensor) into torch int list while dealing with neg axis
for (uint64_t i = 0; i < axes.size(); i++) {
// Go through the axes list and get each dim in the list
int64_t dim = axes[i];
if (dim < 0) {
dim += adjustmentInt;
}
// deal with neg axis: if (axis < 0) axis += rank
Value finalDim = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), dim));
dimList.push_back(finalDim);
}
Value dimValueList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
dimList);
Value keepDimBool;
if (keepDims == 1) {
keepDimBool =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), true);
} else {
keepDimBool =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
}
rewriter.replaceOpWithNewOp<Torch::AtenMeanDimOp>(
binder.op, resultType, data, dimValueList, keepDimBool,
/*dtype=*/noneVal);
return success();
});
patterns.onOp(
"ReduceMin", 13,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
// AtenAminOp allows us to pass a list of dims
Torch::ValueTensorType resultType;
Value data;
Value axes;
int64_t keepDims;
int64_t noop_with_empty_axes;
// Deal with case when no axes arg is passed
if (binder.op->getNumOperands() == 1) {
if (binder.tensorOperand(data) ||
binder.tensorResultType(resultType) ||
binder.s64IntegerAttr(keepDims, "keepdims", 1) ||
binder.s64IntegerAttr(noop_with_empty_axes,
"noop_with_empty_axes", 0))
return failure();
if (noop_with_empty_axes == 0) {
Value keepDimsConstInt = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), keepDims));
Value keepDimsBool = rewriter.create<Torch::AtenBoolIntOp>(
binder.getLoc(), keepDimsConstInt);
int64_t numDims = dyn_cast<Torch::ValueTensorType>(data.getType())
.getSizes()
.size();
SmallVector<Value> axesList;
for (int i = 0; i < numDims; i++) {
Value curr = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), i));
axesList.push_back(curr);
}
Value axesValueList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(
Torch::IntType::get(binder.op->getContext())),
axesList);
rewriter.replaceOpWithNewOp<Torch::AtenAminOp>(
binder.op, resultType, data, axesValueList, keepDimsBool);
} else {
rewriter.replaceOp(binder.op, data);
}
return success();
}
if (binder.tensorOperands(data, axes) ||
binder.tensorResultType(resultType) ||
binder.s64IntegerAttr(keepDims, "keepdims", 1) ||
binder.s64IntegerAttr(noop_with_empty_axes, "noop_with_empty_axes",
0))
return failure();
Torch::BaseTensorType axesType =
axes.getType().cast<Torch::BaseTensorType>();
SmallVector<Value> dimList;
SmallVector<int64_t> selectSizes;
selectSizes.push_back(1);
Type selectResultType = axesType.getWithSizesAndDtype(
llvm::ArrayRef(selectSizes), axesType.getOptionalDtype());
auto sizes =
dyn_cast<Torch::ValueTensorType>(axes.getType()).getSizes();
// deal with case when axes is empty
if (sizes.size() == 1 && sizes[0] == 0) {
if (noop_with_empty_axes == 0) {
// create dims list with all dims [0, data.getSizes().size())
Value keepDimsConstInt = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), keepDims));
Value keepDimsBool = rewriter.create<Torch::AtenBoolIntOp>(
binder.getLoc(), keepDimsConstInt);
int64_t numDims = dyn_cast<Torch::ValueTensorType>(data.getType())
.getSizes()
.size();
for (int i = 0; i < numDims; i++) {
Value curr = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), i));
dimList.push_back(curr);
}
Value dimValueList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(
Torch::IntType::get(binder.op->getContext())),
dimList);
rewriter.replaceOpWithNewOp<Torch::AtenAminOp>(
binder.op, resultType, data, dimValueList, keepDimsBool);
} else {
rewriter.replaceOp(binder.op, data);
}
return success();
}
Value zero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
int64_t adjustmentInt =
cast<Torch::ValueTensorType>(data.getType()).getSizes().size();
Value adjustment = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64),
adjustmentInt));
// convert axes (tensor) into torch int list while dealing with neg axis
for (int i = 0; i < sizes[0]; i++) {
// Go through the axes list and get each dim in the list
Value selectIndex = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), i));
Value extract = rewriter.create<Torch::AtenSelectIntOp>(
binder.getLoc(), selectResultType, axes, zero, selectIndex);
Value dim = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), extract);
// deal with neg axis: if (axis < 0) axis += rank
Value isNegative =
rewriter.create<Torch::AtenLtIntOp>(binder.getLoc(), dim, zero);
isNegative = rewriter.create<Torch::AtenIntBoolOp>(binder.getLoc(),
isNegative);
Value finalOffset = rewriter.create<Torch::AtenMulIntOp>(
binder.getLoc(), isNegative, adjustment);
Value finalDim = rewriter.create<Torch::AtenAddIntOp>(
binder.getLoc(), dim, finalOffset);
dimList.push_back(finalDim);
}
Value dimValueList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
dimList);
Value keepDimBool;
if (keepDims == 1) {
keepDimBool =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), true);
} else {
keepDimBool =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
}
rewriter.replaceOpWithNewOp<Torch::AtenAminOp>(
binder.op, resultType, data, dimValueList, keepDimBool);
return success();
});
patterns.onOp("Shape", 9,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value operand;
if (binder.tensorOperand(operand) ||
binder.tensorResultType(resultType))
return failure();
rewriter.replaceOpWithNewOp<Torch::Aten_ShapeAsTensorOp>(
binder.op, resultType, operand);
return success();
});
patterns.onOp("Sinh", 9,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value operand;
if (binder.tensorOperand(operand) ||
binder.tensorResultType(resultType))
return failure();
rewriter.replaceOpWithNewOp<Torch::AtenSinhOp>(
binder.op, resultType, operand);
return success();
});
// split with fixed-size parts
// Arguments:
// - input: the tensor to split
// Attributes:
// - axis: the axis along which to split the input
// - num_outputs: the number of outputs to produce
// Outputs:
// - outputs: the produced outputs. Variadic with num_outputs elements.
// Note: torch.aten gives a list of tensors, but ONNX gives a variadic list of
// tensors
// so we need to unpack the list
patterns.onOp(
"Split", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Value self;
int64_t axis;
int64_t num_outputs;
if (binder.tensorOperand(self))
return rewriter.notifyMatchFailure(
binder.op, "Not converting to AtenSplitTensorOp due to input "
"tensor mismatch");
if (binder.s64IntegerAttr(axis, "axis", 0))
return rewriter.notifyMatchFailure(binder.op,
"Failed to get axis attribute");
if (binder.s64IntegerAttr(num_outputs, "num_outputs", 0))
return rewriter.notifyMatchFailure(
binder.op, "Failed to get num_outputs attribute");
auto result0Ty =
binder.op->getResult(0).getType().cast<Torch::ValueTensorType>();
auto selfTy = self.getType().cast<Torch::ValueTensorType>();
int64_t dim = axis;
if (dim < 0)
dim += selfTy.getSizes().size();
// set intermediate shape to the shape of the first result
// if the results are of different shapes
// set the splitted axis to variable shape
llvm::SmallVector<int64_t> intermediateShape(result0Ty.getSizes());
for (auto result : binder.op->getResultTypes()) {
int64_t d = result.cast<Torch::ValueTensorType>().getSizes()[dim];
intermediateShape[dim] = d == intermediateShape[dim] ? d : -1;
}
Value dimValue = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), dim));
Value splitSize = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), num_outputs));
// TODO: Attempting to use the shape expected by the ONNX mlir as ground
// truth. For now just use dynamic shapes.
auto resultOuterType =
Torch::ListType::get(rewriter.getType<Torch::ValueTensorType>(
/*std::optional<llvm::ArrayRef<int64_t>>=*/intermediateShape,
result0Ty.getOptionalDtype()));
Torch::AtenSplitTensorOp new_op =
rewriter.create<Torch::AtenSplitTensorOp>(
binder.getLoc(), resultOuterType, self, splitSize, dimValue);
// the onnx op is variadic with multiple results, but AtenSplitWithSizes
// outputs a list so we need to unpack the list
rewriter.replaceOpWithNewOp<Torch::PrimListUnpackOp>(
binder.op, binder.op->getResults().getType(), new_op.getResult());
return success();
});
// split with variable parts
// Arguments:
// - input: the tensor to split
// - split: the sizes of the splits to be produced
// Attributes:
// - axis: the axis along which to split the input
// - num_outputs: the number of outputs to produce
// Outputs:
// - outputs: the produced outputs. Variadic with num_outputs elements.
// Note: torch.aten gives a list of tensors, but ONNX gives a variadic list of
// tensors
// so we need to unpack the list
patterns.onOp(
"Split", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Value self;
Value split;
int64_t axis;
int64_t num_outputs;
if (binder.tensorOperandAtIndex(self, 0) ||
binder.tensorOperandAtIndex(split, 1))
return rewriter.notifyMatchFailure(
binder.op, "Not converting to AtenSplitWithSizesOp due to input "
"tensor mismatch");
if (binder.s64IntegerAttr(axis, "axis", 0))
return rewriter.notifyMatchFailure(binder.op,
"Failed to get axis attribute");
if (binder.s64IntegerAttr(num_outputs, "num_outputs", 0))
return rewriter.notifyMatchFailure(
binder.op, "Failed to get num_outputs attribute");
auto result0Ty =
binder.op->getResult(0).getType().cast<Torch::ValueTensorType>();
auto selfTy =
cast<Torch::ValueTensorType>(binder.op->getOperand(0).getType());
int64_t dim = axis;
if (dim < 0)
dim += selfTy.getSizes().size();
llvm::SmallVector<int64_t> intermediateShape(result0Ty.getSizes());
for (auto result : binder.op->getResultTypes()) {
int64_t d = result.cast<Torch::ValueTensorType>().getSizes()[dim];
intermediateShape[dim] = d == intermediateShape[dim] ? d : -1;
}
Torch::PrimTolistOp splitToList = rewriter.create<Torch::PrimTolistOp>(
binder.getLoc(),
Torch::ListType::get(rewriter.getType<Torch::IntType>()), split);
Value dimValue = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), dim));
// TODO: Attempting to use the shape expected by the ONNX mlir as ground
// truth. For now just use dynamic shapes.
auto resultOuterType =
Torch::ListType::get(rewriter.getType<Torch::ValueTensorType>(
/*std::optional<llvm::ArrayRef<int64_t>>=*/intermediateShape,
result0Ty.getOptionalDtype()));
Torch::AtenSplitWithSizesOp new_op =
rewriter.create<Torch::AtenSplitWithSizesOp>(
binder.getLoc(), resultOuterType, self,
splitToList.getResult(0), dimValue);
// the onnx op is variadic with multiple results, but AtenSplitWithSizes
// outputs a list so we need to unpack the list
rewriter.replaceOpWithNewOp<Torch::PrimListUnpackOp>(
binder.op, binder.op->getResults().getType(), new_op.getResult());
return success();
});
patterns.onOp("Tan", 7,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value operand;
if (binder.tensorOperand(operand) ||
binder.tensorResultType(resultType))
return failure();
rewriter.replaceOpWithNewOp<Torch::AtenTanOp>(
binder.op, resultType, operand);
return success();
});
patterns.onOp(
"Transpose", 13,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
auto loc = binder.getLoc();
Torch::ValueTensorType resultType;
Value operand;
if (binder.tensorOperand(operand) ||
binder.tensorResultType(resultType))
return failure();
auto operandType = operand.getType().cast<Torch::ValueTensorType>();
TensorType tensorType = operandType.toBuiltinTensor();
if (!tensorType || !tensorType.hasRank())
return failure();
// Default permutation is to reverse orders:
int64_t rank = tensorType.getRank();
llvm::SmallVector<int64_t> reverse(rank);
for (int64_t i = 0; i < rank; ++i) {
reverse[i] = rank - i - 1;
}
llvm::SmallVector<int64_t> permutations;
if (failed(binder.s64IntegerArrayAttr(permutations, "perm", reverse)))
return rewriter.notifyMatchFailure(binder.op,
"Failed to obtain permutations");
if (static_cast<int64_t>(permutations.size()) != rank)
return rewriter.notifyMatchFailure(
binder.op, "Permutation length does not match operand rank");
llvm::SmallVector<int64_t> shape(tensorType.getShape());
llvm::SmallVector<int64_t> current(rank);
for (int64_t i = 0; i < rank; ++i) {
current[i] = i;
}
for (int64_t i = 0; i < rank; ++i) {
if (current[i] == permutations[i])
continue;
int64_t target = i + 1;
for (; target < rank; ++target) {
if (current[target] == permutations[i])
break;
}
std::swap(shape[i], shape[target]);
std::swap(current[i], current[target]);
Value dim0 = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), i));
Value dim1 = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), target));
operand = rewriter.create<Torch::AtenTransposeIntOp>(
loc,
Torch::ValueTensorType::get(tensorType.getContext(), shape,
operandType.getOptionalDtype()),
operand, dim0, dim1);
}
rewriter.replaceOp(binder.op, operand);
return success();
});
patterns.onOp(
"Slice", 13, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultTorchType;
Value operand, starts, ends;
// Handle if axes are not provided
if (binder.tensorOperandAtIndex(operand, 0) ||
binder.tensorOperandAtIndex(starts, 1) ||
binder.tensorOperandAtIndex(ends, 2) ||
binder.tensorResultType(resultTorchType)) {
return failure();
}
auto context = rewriter.getContext();
auto operandTorchTy = operand.getType().cast<Torch::ValueTensorType>();
auto operandTy =
operandTorchTy.toBuiltinTensor().dyn_cast<RankedTensorType>();
if (!operandTy)
return rewriter.notifyMatchFailure(
binder.op,
"Expected tensor operator argument to be a ranked tensor type");
auto startsTorchTy = starts.getType().cast<Torch::ValueTensorType>();
auto startsTy =
startsTorchTy.toBuiltinTensor().dyn_cast<RankedTensorType>();
int startSize = startsTy.getDimSize(0);
auto endsTorchTy = ends.getType().cast<Torch::ValueTensorType>();
auto endsTy =
endsTorchTy.toBuiltinTensor().dyn_cast<RankedTensorType>();
int endSize = endsTy.getDimSize(0);
auto resultTy =
resultTorchType.toBuiltinTensor().dyn_cast<RankedTensorType>();
if (!resultTy)
return rewriter.notifyMatchFailure(
binder.op, "Expected result type to be a ranked tensor type");
Location loc = binder.getLoc();
// Binding `axes` from its arguments or through a default value
Value axes;
if (binder.getNumOperands() >= 4) {
if (binder.tensorOperandAtIndex(axes, 3)) {
return failure();
}
} else {
// The default axes value is the range from 0 to the number of
// dimensions
Value none = rewriter.create<Torch::ConstantNoneOp>(loc);
auto defaultAxesType = Torch::ValueTensorType::get(
context, ArrayRef<int64_t>{operandTy.getRank()},
rewriter.getIntegerType(64, /*signed*/ 1));
Value arangeLength = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64),
operandTy.getRank()));
axes = rewriter.create<Torch::AtenArangeOp>(
loc, defaultAxesType, arangeLength, none, none, none, none);
}
// Binding `steps` from its arguments or through a default value
Value steps;
if (binder.getNumOperands() >= 5) {
if (binder.tensorOperandAtIndex(steps, 4)) {
return failure();
}
} else {
// The default `steps` value is a 1d tensor filled with ones with a
// size of the dimension of the operand
Value none = rewriter.create<Torch::ConstantNoneOp>(loc);
auto defaultStepsType = Torch::ValueTensorType::get(
context, ArrayRef<int64_t>{operandTy.getRank()},
rewriter.getIntegerType(64, /*signed*/ 1));
Value sizeStepInput = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64),
operandTy.getRank()));
Value sizeStepsInput = rewriter.create<Torch::PrimListConstructOp>(
loc,
Torch::ListType::get(
Torch::IntType::get(binder.op->getContext())),
sizeStepInput);
steps = rewriter.create<Torch::AtenOnesOp>(
loc, defaultStepsType, sizeStepsInput, none, none, none, none);
}
if (!(endsTy.getRank() == 1 && startsTy.getRank() == 1 &&
startSize == endSize))
return rewriter.notifyMatchFailure(
binder.op, "Expected the rank of starts and ends tensors to be 1 "
"and their dimensions to match");
auto axesTorchTy = axes.getType().cast<Torch::ValueTensorType>();
auto axesTy =
axesTorchTy.toBuiltinTensor().dyn_cast<RankedTensorType>();
int64_t numAxes = axesTy.getDimSize(0);
if (!(axesTy && numAxes == endSize))
return rewriter.notifyMatchFailure(
binder.op, "Axes should be the same size of starts and ends");
auto stepsTy = steps.getType()
.cast<Torch::ValueTensorType>()
.toBuiltinTensor()
.dyn_cast<RankedTensorType>();
if (!(stepsTy && stepsTy.getDimSize(0) == endsTy.getDimSize(0)))
return rewriter.notifyMatchFailure(
binder.op, "Steps should be the same size of starts and ends");
Value zero = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
auto select = [&](Value v, Value k) -> Value {
auto ty = v.getType().cast<Torch::ValueTensorType>();
auto sel = rewriter.create<Torch::AtenIndexSelectOp>(
loc,
Torch::ValueTensorType::get(ty.getContext(), ArrayRef<int64_t>{1},
ty.getOptionalDtype()),
v, zero, k);
Value item = rewriter.create<Torch::AtenItemOp>(
loc, rewriter.getType<Torch::IntType>(), sel);
return item;
};
llvm::SmallVector<int64_t> intermediateShape(operandTy.getShape());
for (int i = 0, s = operandTy.getRank(); i < s; ++i) {
if (operandTy.getDimSize(i) != resultTy.getDimSize(i)) {
intermediateShape[i] = -1;
}
}
auto intermediateType = Torch::ValueTensorType::get(
context, intermediateShape, resultTorchType.getOptionalDtype());
for (int i = 0; i < numAxes; ++i) {
Value k = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), i));
Value kTensor = rewriter.create<Torch::PrimNumToTensorScalarOp>(
loc,
Torch::ValueTensorType::get(
context, ArrayRef<int64_t>{1},
rewriter.getIntegerType(64, /*signed*/ 1)),
k);
Value start = select(starts, kTensor);
Value end = select(ends, kTensor);
Value axis = select(axes, kTensor);
Value step = select(steps, kTensor);
auto sliceType = intermediateType;
if (i == numAxes - 1)
sliceType = resultTorchType;
operand = rewriter.create<Torch::AtenSliceTensorOp>(
loc, sliceType, operand, axis, start, end, step);
}
rewriter.replaceOp(binder.op, operand);
return success();
});
patterns.onOp(
"Reshape", 5, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value data;
Value shape;
int64_t allowzero;
if (binder.tensorOperands(data, shape) ||
binder.tensorResultType(resultType) ||
binder.s64IntegerAttr(allowzero, "allowzero", 0))
return failure();
Torch::BaseTensorType shapeType =
shape.getType().cast<Torch::BaseTensorType>();
SmallVector<Value> dimList;
SmallVector<int64_t> selectSizes;
selectSizes.push_back(1);
Type selectResultType = shapeType.getWithSizesAndDtype(
llvm::ArrayRef(selectSizes), shapeType.getOptionalDtype());
auto shapeSizes =
dyn_cast<Torch::ValueTensorType>(shape.getType()).getSizes();
auto dataSizes =
dyn_cast<Torch::ValueTensorType>(data.getType()).getSizes();
Value zero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
if (allowzero == 0) {
// convert shape (tensor) into torch int list while dealing with zero
// vals
for (int i = 0; i < shapeSizes[0]; i++) {
// Go through the shape list and get each dim in the list
Value selectIndex = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), i));
Value extract = rewriter.create<Torch::AtenSelectIntOp>(
binder.getLoc(), selectResultType, shape, zero, selectIndex);
Value dim = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), extract);
// deal with zero axis values: replace with original dim value in
// input
Value isZero =
rewriter.create<Torch::AtenEqIntOp>(binder.getLoc(), dim, zero);
isZero =
rewriter.create<Torch::AtenIntBoolOp>(binder.getLoc(), isZero);
Value adjustment;
int64_t inputDimsSize = dataSizes.size();
if (i < inputDimsSize) {
adjustment = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64),
dataSizes[i]));
}
// Will never have a 0 in the shape tensor input at an index out of
// bounds of original input dims Therefore, no need to adjust
else {
adjustment = zero;
}
Value finalOffset = rewriter.create<Torch::AtenMulIntOp>(
binder.getLoc(), isZero, adjustment);
Value finalDim = rewriter.create<Torch::AtenAddIntOp>(
binder.getLoc(), dim, finalOffset);
dimList.push_back(finalDim);
}
Value dimValueList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(
Torch::IntType::get(binder.op->getContext())),
dimList);
rewriter.replaceOpWithNewOp<Torch::AtenReshapeOp>(
binder.op, resultType, data, dimValueList);
return success();
}
// convert axes (tensor) into torch int list
for (int i = 0; i < shapeSizes[0]; i++) {
// Go through the axes list and get each dim in the list
Value selectIndex = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), i));
Value extract = rewriter.create<Torch::AtenSelectIntOp>(
binder.getLoc(), selectResultType, shape, zero, selectIndex);
Value dim = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), extract);
dimList.push_back(dim);
}
Value dimValueList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
dimList);
rewriter.replaceOpWithNewOp<Torch::AtenReshapeOp>(binder.op, resultType,
data, dimValueList);
return success();
});
patterns.onOp(
"Range", 11, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
// ONNX.Range(start, limit, delta) -- limit is exclusive
Torch::ValueTensorType resultType;
Value start, limit, delta;
auto loc = binder.getLoc();
Value none = rewriter.create<Torch::ConstantNoneOp>(loc);
if (binder.tensorOperandAtIndex(start, 0) ||
binder.tensorOperandAtIndex(limit, 1) ||
binder.tensorOperandAtIndex(delta, 2) ||
binder.tensorResultType(resultType))
return failure();
// Convert a 0-dimensional/Scalar Tensor ([]) to Scalar Torch Numeric
// Value torch.tensor(1.1) equivalent in ONNX to 1.1 as an example
// type of start, limit, delta can be one of: double, float, int16,
// int32, int64 Assuming start, limit and delta to be same type (could
// they be different?)
Torch::BaseTensorType startTensorType =
start.getType().cast<Torch::BaseTensorType>();
bool isFloatDType = startTensorType.getDtype().isF64() ||
startTensorType.getDtype().isF32();
bool isIntDType = startTensorType.getDtype().isInteger(16) ||
startTensorType.getDtype().isInteger(32) ||
startTensorType.getDtype().isInteger(64);
if (!isFloatDType && !isIntDType) {
return rewriter.notifyMatchFailure(
binder.op, "Expected the start, limit, delta to be one of "
"double, float, int16, int32, int64");
}
Value scalarStart, scalarLimit, scalarDelta;
if (isFloatDType) {
scalarStart = getItemOp<Torch::FloatType>(binder, rewriter, start);
scalarLimit = getItemOp<Torch::FloatType>(binder, rewriter, limit);
scalarDelta = getItemOp<Torch::FloatType>(binder, rewriter, delta);
} else {
scalarStart = getItemOp<Torch::IntType>(binder, rewriter, start);
scalarLimit = getItemOp<Torch::IntType>(binder, rewriter, limit);
scalarDelta = getItemOp<Torch::IntType>(binder, rewriter, delta);
}
rewriter.replaceOpWithNewOp<Torch::AtenArangeStartStepOp>(
binder.op, resultType, scalarStart, scalarLimit, scalarDelta, none,
none, none, none);
return success();
});
}