torch-mlir/frontends
Sean Silva f49ebf1690 Add `!torch.int` type.
This replaces the ad-hoc use of `i64` throughout the Torch layer, and
helps to keep it crystal clear the distinction between `!torch.int`
(which is modeling the Python `int` type) and the various types that
serve as dtypes of tensors, which are a totally different type universe.

Changes:
- `!torch.int` type and C bindings.
- Change `torch.constant.int` parser to not need the `: i64` at the end.
- `m_TorchConstantInt` matcher to aid with matching constants.
- BackendTypeConversion changes for `!torch.int` -> `i64` type
  conversion.
- Refactor finalizing patterns in FinalizingBackendTypeConversionPass
  (they were getting very repetitive).
- Mechanical rewriting of `!torch.int` to `i64` in all the tests, and
  `AnyTorchIntType` to `Torch_IntType` in the `.td` files.
2021-06-17 07:28:23 -07:00
..
pytorch Add `!torch.int` type. 2021-06-17 07:28:23 -07:00
README.md Create frontends/pytorch directory. (#31) 2020-08-18 09:43:20 -07:00
__init__.py Add pytorch interface to ATen Dialect (#30) 2020-08-21 11:22:47 -07:00

README.md

NPComp - Frontends

NPComp maintains in-tree frontends for various popular numeric-python based frameworks. In general these are:

  • Considered optional components
  • Target dialects maintained at the top-level of the project
  • Maintained in isolation so as to facilitate moving them out to dedicated projects at an appropriate point of the lifecycle (i.e. if NPComp is successful as a general purpose target for such frameworks, then it may make sense to contribute/build each frontend to their respective up-stream project).

Frontends try to stylistically fit into the outer project except for when it is more clear/advantageous to align them with the conventions of the source project. This is approached on a case by case basis as needed. Deviations should be documented in a local style guide for the frontend.