mirror of https://github.com/llvm/torch-mlir
752 lines
28 KiB
Python
752 lines
28 KiB
Python
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
# See https://llvm.org/LICENSE.txt for license information.
|
|
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
# Also available under a BSD-style license. See LICENSE.
|
|
|
|
# RUN: %PYTHON %s | FileCheck %s
|
|
|
|
from typing import Any, Callable, Optional, Tuple, Dict
|
|
|
|
import torch
|
|
import torch.export
|
|
import torch.nn as nn
|
|
import numpy as np
|
|
|
|
from torch_mlir.extras.fx_importer import FxImporter
|
|
from torch_mlir.extras.fx_importer import SparsityMeta
|
|
from torch_mlir import ir
|
|
from torch_mlir.dialects import torch as torch_d
|
|
from torch_mlir.compiler_utils import run_pipeline_with_repro_report
|
|
from torch_mlir_e2e_test.linalg_on_tensors_backends.refbackend import (
|
|
RefBackendLinalgOnTensorsBackend,
|
|
)
|
|
|
|
|
|
# All sparse layouts currently supported in torch.sparse.
|
|
SPARSE_LAYOUTS = [
|
|
torch.sparse_coo,
|
|
torch.sparse_csr,
|
|
torch.sparse_csc,
|
|
torch.sparse_bsr,
|
|
torch.sparse_bsc,
|
|
]
|
|
|
|
|
|
def sparse_metadata(a: torch.Tensor) -> SparsityMeta:
|
|
"""
|
|
Returns a meta data tuple for the given sparse tensor.
|
|
|
|
NOTE: this will be fully replaced by fx graph SparseTensorMetadata
|
|
"""
|
|
sparse_dim = a.sparse_dim()
|
|
dense_dim = a.dense_dim()
|
|
batch_dim = a.ndim - dense_dim - sparse_dim
|
|
blocksize = None
|
|
if a.layout is torch.sparse_coo:
|
|
return SparsityMeta(
|
|
a.layout,
|
|
batch_dim,
|
|
sparse_dim,
|
|
dense_dim,
|
|
blocksize,
|
|
a._indices().dtype,
|
|
a._indices().dtype,
|
|
)
|
|
elif a.layout is torch.sparse_csr or a.layout is torch.sparse_bsr:
|
|
if a.layout is torch.sparse_bsr:
|
|
blocksize = a.values().shape[batch_dim + 1 : batch_dim + 3]
|
|
return SparsityMeta(
|
|
a.layout,
|
|
batch_dim,
|
|
sparse_dim,
|
|
dense_dim,
|
|
blocksize,
|
|
a.crow_indices().dtype,
|
|
a.col_indices().dtype,
|
|
)
|
|
elif a.layout is torch.sparse_csc or a.layout is torch.sparse_bsc:
|
|
if a.layout is torch.sparse_bsc:
|
|
blocksize = a.values().shape[batch_dim + 1 : batch_dim + 3]
|
|
return SparsityMeta(
|
|
a.layout,
|
|
batch_dim,
|
|
sparse_dim,
|
|
dense_dim,
|
|
blocksize,
|
|
a.ccol_indices().dtype,
|
|
a.row_indices().dtype,
|
|
)
|
|
else:
|
|
raise RuntimeError(f"Unsupported sparse layout for {a}")
|
|
|
|
|
|
def sparse_export(
|
|
f: Callable, args: Tuple[Any, ...], kwargs: Optional[Dict[str, Any]] = None
|
|
) -> torch.export.ExportedProgram:
|
|
"""
|
|
This is a ***temporary*** wrapper around `torch.export.export`
|
|
that eventually should be removed and simply replaced by the
|
|
standard API for exporting traced graphs.
|
|
|
|
But until issue
|
|
|
|
https://github.com/pytorch/pytorch/pull/117907
|
|
|
|
is addressed, this wrapper provides support for the sparse
|
|
tensor types by first converting all operands to dense tensors,
|
|
building the traced graph as for the dense case, then annotating
|
|
sparse parameters with their actual sparse layout attributes,
|
|
followed by some simple propagation rules. This temporary solution
|
|
accelerates testing torch-mlir with PyTorch sparse tensors until
|
|
the issue is resolved upstream.
|
|
"""
|
|
# Convert all arguments to dense.
|
|
dargs = tuple(a.to_dense() if a.layout in SPARSE_LAYOUTS else a for a in args)
|
|
mask = [a.layout in SPARSE_LAYOUTS for a in args]
|
|
# Build the regular FX traced graph with only dense arguments
|
|
# (the current version would crash otherwise, see issue above).
|
|
prog = torch.export.export(f, dargs, kwargs)
|
|
# Annotate sparse arguments in the graph and apply some very
|
|
# basic propagation rules for sparsity.
|
|
specs = prog.graph_signature.input_specs
|
|
alen = len(specs)
|
|
k = 0
|
|
for i, node in enumerate(prog.graph.nodes):
|
|
if node.op == "placeholder":
|
|
# Argument.
|
|
spec = specs[i]
|
|
if spec.kind is torch.export.graph_signature.InputKind.USER_INPUT:
|
|
if mask[k]:
|
|
node.meta["sparsity"] = sparse_metadata(args[k])
|
|
k = k + 1
|
|
elif node.op == "call_function":
|
|
# TODO: use upstream _opname implementation when available
|
|
opname = node.target._schema.name.split("::")[1]
|
|
# Zero preserving elt-wise unary op.
|
|
if opname in {"abs", "neg", "relu", "sin"}:
|
|
node.meta["sparsity"] = node.args[0].meta.get("sparsity", None)
|
|
elif opname == "_to_sparse":
|
|
dim = len(node.meta.get("val").shape)
|
|
node.meta["sparsity"] = SparsityMeta(
|
|
torch.sparse_coo, 0, dim, 0, None, torch.int64, torch.int64
|
|
)
|
|
# TODO: Uncomment this to hack sparsity into the network.
|
|
# elif opname == "_to_dense":
|
|
# # hack (assumes we never really want the to_dense for now)
|
|
# node.meta["sparsity"] = node.args[0].meta.get("sparsity", None)
|
|
elif opname == "select" and node.args[0].meta.get("sparsity", None):
|
|
dim = len(node.meta.get("val").shape)
|
|
node.meta["sparsity"] = SparsityMeta(
|
|
torch.sparse_coo, 0, dim, 0, None, torch.int64, torch.int64
|
|
)
|
|
elif opname == "stack" and node.args[0][0].meta.get("sparsity", None):
|
|
dim = len(node.meta.get("val").shape)
|
|
node.meta["sparsity"] = SparsityMeta(
|
|
torch.sparse_coo, 0, dim - 1, 1, None, torch.int64, torch.int64
|
|
)
|
|
return prog
|
|
|
|
|
|
def export_and_import(f, *args, **kwargs):
|
|
"""This method implements Stella's importer, stripped down to essentials."""
|
|
context = ir.Context()
|
|
torch_d.register_dialect(context)
|
|
fx_importer = FxImporter(context=context)
|
|
prog = sparse_export(f, args, kwargs)
|
|
fx_importer.import_frozen_program(prog)
|
|
return fx_importer.module
|
|
|
|
|
|
def sparse_jit(f, *args, **kwargs):
|
|
"""This method compiles and runs the given callable using linalg backend."""
|
|
# Import module and lower into Linalg IR.
|
|
module = export_and_import(f, *args, **kwargs)
|
|
run_pipeline_with_repro_report(
|
|
module,
|
|
(
|
|
"builtin.module("
|
|
"func.func(torch-decompose-complex-ops),"
|
|
"torch-backend-to-linalg-on-tensors-backend-pipeline)"
|
|
),
|
|
"Lowering TorchFX IR -> Linalg IR",
|
|
enable_ir_printing=False,
|
|
)
|
|
# Compile with reference Linalg backend.
|
|
backend = RefBackendLinalgOnTensorsBackend()
|
|
compiled = backend.compile(module)
|
|
invoker = backend.load(compiled)
|
|
xargs = []
|
|
# Prepare the buffer parameters (assume all dense).
|
|
# TODO: filters out scalar arguments, anything else?
|
|
params = dict(f.named_buffers(remove_duplicate=True))
|
|
params_flat, params_spec = torch.utils._pytree.tree_flatten(params)
|
|
for p in params_flat:
|
|
if len(p.shape) > 0:
|
|
xargs.append(p.numpy())
|
|
# Prepare input parameters. Sparse input tensors are split into
|
|
# their composite tensors. All PyTorch tensors are converted
|
|
# to their backing numpy arrays. Note that the output consists
|
|
# of numpy arrays as well, which can trivially be reconstructed
|
|
# into PyTorch tensors (dense and sparse).
|
|
for a in args:
|
|
if a.layout is torch.sparse_coo:
|
|
# Construct the additional position array required by MLIR with data
|
|
# array([0, nnz]). The COO format always uses int64 indices.
|
|
xargs.append(np.array([0, a._nnz()], dtype=np.int64))
|
|
# Transform a tensor<ndim x nnz> into ndim x tensor<nnz> to conform
|
|
# to the MLIR SoA COO representation.
|
|
for idx in a._indices():
|
|
xargs.append(idx.numpy())
|
|
xargs.append(a._values().numpy())
|
|
elif a.layout is torch.sparse_csr or a.layout is torch.sparse_bsr:
|
|
xargs.append(a.crow_indices().numpy())
|
|
xargs.append(a.col_indices().numpy())
|
|
xargs.append(a.values().numpy())
|
|
elif a.layout is torch.sparse_csc or a.layout is torch.sparse_bsc:
|
|
xargs.append(a.ccol_indices().numpy())
|
|
xargs.append(a.row_indices().numpy())
|
|
xargs.append(a.values().numpy())
|
|
else:
|
|
xargs.append(a.numpy())
|
|
# Invoke.
|
|
return invoker.main(*xargs)
|
|
|
|
|
|
def run(f):
|
|
print(f"{f.__name__}")
|
|
print("-" * len(f.__name__))
|
|
f()
|
|
print()
|
|
|
|
|
|
@run
|
|
#
|
|
# CHECK-LABEL: test_sparse_id
|
|
# CHECK: #[[$COO:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton(soa)), posWidth = 64, crdWidth = 64 }>
|
|
# CHECK: func.func @main(
|
|
# CHECK-SAME: %[[A:.*]]: !torch.vtensor<[10,20],f64,#[[$COO]]>) -> !torch.vtensor<[10,20],f64,#[[$COO]]> {
|
|
# CHECK: return %[[A]] : !torch.vtensor<[10,20],f64,#[[$COO]]>
|
|
# CHECK: }
|
|
#
|
|
# CHECK: torch.sparse
|
|
# CHECK: tensor(indices=tensor({{\[}}[ 0, 1, 2, 9],
|
|
# CHECK: [ 0, 1, 10, 19]{{\]}}),
|
|
# CHECK: values=tensor([-1000., -1., 1., 1000.]),
|
|
# CHECK: size=(10, 20), nnz=4, dtype=torch.float64, layout=torch.sparse_coo)
|
|
# CHECK: torch.mlir
|
|
# CHECK: [0 4]
|
|
# CHECK: [0 1 2 9]
|
|
# CHECK: [ 0 1 10 19]
|
|
# CHECK: [-1000. -1. 1. 1000.]
|
|
#
|
|
def test_sparse_id():
|
|
class IdNet(torch.nn.Module):
|
|
def __init__(self):
|
|
super(IdNet, self).__init__()
|
|
|
|
def forward(self, x):
|
|
return x
|
|
|
|
net = IdNet()
|
|
idx = torch.tensor([[0, 1, 2, 9], [0, 1, 10, 19]])
|
|
val = torch.tensor([-1000.0, -1.0, 1.0, 1000.0], dtype=torch.float64)
|
|
sparse_input = torch.sparse_coo_tensor(idx, val, size=[10, 20])
|
|
m = export_and_import(net, sparse_input)
|
|
print(m)
|
|
|
|
# Run it with PyTorch torch.sparse and with TORCH-MLIR sparse_jit.
|
|
res1 = net(sparse_input)
|
|
res2 = sparse_jit(net, sparse_input)
|
|
print("torch.sparse")
|
|
print(res1)
|
|
print("torch.mlir")
|
|
print(res2[0])
|
|
print(res2[1])
|
|
print(res2[2])
|
|
print(res2[3])
|
|
|
|
|
|
@run
|
|
#
|
|
# CHECK-LABEL: test_sparse_sum
|
|
# CHECK: #[[$CSR:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed), posWidth = 64, crdWidth = 64 }>
|
|
# CHECK: func.func @main(
|
|
# CHECK-SAME: %[[A:.*]]: !torch.vtensor<[64,64],f32,#[[$CSR]]>) -> !torch.vtensor<[],f32> {
|
|
# CHECK: %[[N:.*]] = torch.constant.none
|
|
# CHECK: %[[R:.*]] = torch.aten.sum %[[A]], %[[N]] : !torch.vtensor<[64,64],f32,#[[$CSR]]>, !torch.none -> !torch.vtensor<[],f32>
|
|
# CHECK: return %[[R]] : !torch.vtensor<[],f32>
|
|
# CHECK: }
|
|
#
|
|
# CHECK: torch.sparse = tensor(4096.)
|
|
# CHECK: torch.mlir = 4096.0
|
|
#
|
|
def test_sparse_sum():
|
|
class SumNet(torch.nn.Module):
|
|
def __init__(self):
|
|
super(SumNet, self).__init__()
|
|
|
|
def forward(self, x):
|
|
return x.sum()
|
|
|
|
net = SumNet()
|
|
dense_input = torch.ones(64, 64)
|
|
sparse_input = dense_input.to_sparse_csr()
|
|
m = export_and_import(net, sparse_input)
|
|
print(m)
|
|
|
|
# Run it with PyTorch torch.sparse and with TORCH-MLIR sparse_jit.
|
|
res1 = net(sparse_input)
|
|
res2 = sparse_jit(net, sparse_input)
|
|
print("torch.sparse =", res1)
|
|
print("torch.mlir =", res2)
|
|
|
|
|
|
@run
|
|
#
|
|
# CHECK-LABEL: test_sparse_SpMV
|
|
# CHECK: #[[$BSR:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 floordiv 2 : dense, d1 floordiv 2 : compressed, d0 mod 2 : dense, d1 mod 2 : dense), posWidth = 64, crdWidth = 64 }>
|
|
# CHECK: func.func @main(
|
|
# CHECK-SAME: %[[A:.*0]]: !torch.vtensor<[10,10],f32,#[[$BSR]]>,
|
|
# CHECK-SAME: %[[B:.*1]]: !torch.vtensor<[10],f32>) -> !torch.vtensor<[10],f32> {
|
|
# CHECK: %[[R:.*]] = torch.aten.mv %[[A]], %[[B]] : !torch.vtensor<[10,10],f32,#[[$BSR]]>, !torch.vtensor<[10],f32> -> !torch.vtensor<[10],f32>
|
|
# CHECK: return %[[R]] : !torch.vtensor<[10],f32>
|
|
# CHECK: }
|
|
#
|
|
# CHECK: torch.sparse = tensor([55., 55., 55., 55., 55., 55., 55., 55., 55., 55.])
|
|
# CHECK: torch.mlir = [55. 55. 55. 55. 55. 55. 55. 55. 55. 55.]
|
|
#
|
|
def test_sparse_SpMV():
|
|
class SpMVNet(torch.nn.Module):
|
|
def __init__(self):
|
|
super(SpMVNet, self).__init__()
|
|
|
|
def forward(self, x, v):
|
|
return torch.mv(x, v)
|
|
|
|
net = SpMVNet()
|
|
dense_vector = torch.arange(1, 11, dtype=torch.float32)
|
|
dense_input = torch.ones(10, 10)
|
|
sparse_input = dense_input.to_sparse_bsr(blocksize=(2, 2))
|
|
m = export_and_import(net, sparse_input, dense_vector)
|
|
print(m)
|
|
|
|
# Run it with PyTorch torch.sparse and with TORCH-MLIR sparse_jit.
|
|
res1 = net(sparse_input, dense_vector)
|
|
res2 = sparse_jit(net, sparse_input, dense_vector)
|
|
print("torch.sparse =", res1)
|
|
print("torch.mlir =", res2)
|
|
|
|
|
|
@run
|
|
#
|
|
# CHECK-LABEL: test_sparse_SpMM
|
|
# CHECK: #[[$COO:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton(soa)), posWidth = 64, crdWidth = 64 }>
|
|
# CHECK: func.func @main(
|
|
# CHECK-SAME: %[[A:.*0]]: !torch.vtensor<[8,8],f32,#[[$COO]]>,
|
|
# CHECK-SAME: %[[B:.*1]]: !torch.vtensor<[8,8],f32>) -> !torch.vtensor<[8,8],f32> {
|
|
# CHECK: %[[R:.*]] = torch.aten.mm %[[A]], %[[B]] : !torch.vtensor<[8,8],f32,#[[$COO]]>, !torch.vtensor<[8,8],f32> -> !torch.vtensor<[8,8],f32>
|
|
# CHECK: return %[[R]] : !torch.vtensor<[8,8],f32>
|
|
# CHECK: }
|
|
#
|
|
# CHECK: torch.sparse
|
|
# CHECK: tensor({{\[}}[8., 8., 8., 8., 8., 8., 8., 8.],
|
|
# CHECK-COUNT-6: [8., 8., 8., 8., 8., 8., 8., 8.],
|
|
# CHECK: [8., 8., 8., 8., 8., 8., 8., 8.]{{\]}})
|
|
# CHECK: torch.mlir
|
|
# CHECK: {{\[}}[8. 8. 8. 8. 8. 8. 8. 8.]
|
|
# CHECK-COUNT-6: [8. 8. 8. 8. 8. 8. 8. 8.]
|
|
# CHECK: [8. 8. 8. 8. 8. 8. 8. 8.]{{\]}}
|
|
#
|
|
def test_sparse_SpMM():
|
|
class MatMulNet(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MatMulNet, self).__init__()
|
|
|
|
def forward(self, x, y):
|
|
return torch.matmul(x, y)
|
|
|
|
net = MatMulNet()
|
|
dense_input = torch.ones(8, 8)
|
|
sparse_input = dense_input.to_sparse_coo()
|
|
m = export_and_import(net, sparse_input, dense_input)
|
|
print(m)
|
|
|
|
# Run it with PyTorch torch.sparse and with TORCH-MLIR sparse_jit.
|
|
res1 = net(sparse_input, dense_input)
|
|
res2 = sparse_jit(net, sparse_input, dense_input)
|
|
print("torch.sparse")
|
|
print(res1)
|
|
print("torch.mlir")
|
|
print(res2)
|
|
|
|
|
|
@run
|
|
#
|
|
# CHECK-LABEL: test_sparse_eltwise
|
|
# CHECK: #[[$CSRD:.*]] = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : dense, d1 : compressed, d2 : dense), posWidth = 64, crdWidth = 64 }>
|
|
# CHECK: func.func @main(
|
|
# CHECK-SAME: %[[A:.*]]: !torch.vtensor<[4,2,2],f32,#[[$CSRD]]>) -> !torch.vtensor<[4,2,2],f32,#[[$CSRD]]> {
|
|
# CHECK: %[[R:.*]] = torch.aten.neg %[[A]] : !torch.vtensor<[4,2,2],f32,#[[$CSRD]]> -> !torch.vtensor<[4,2,2],f32,#[[$CSRD]]>
|
|
# CHECK: return %[[R]] : !torch.vtensor<[4,2,2],f32,#[[$CSRD]]>
|
|
# CHECK: }
|
|
# CHECK: #[[$BCSR:.*]] = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : batch, d1 : dense, d2 : compressed), posWidth = 64, crdWidth = 64 }>
|
|
# CHECK: func.func @main(
|
|
# CHECK-SAME: %[[A:.*]]: !torch.vtensor<[4,2,2],f32,#[[$BCSR]]>) -> !torch.vtensor<[4,2,2],f32,#[[$BCSR]]> {
|
|
# CHECK: %[[R:.*]] = torch.aten.neg %[[A]] : !torch.vtensor<[4,2,2],f32,#[[$BCSR]]> -> !torch.vtensor<[4,2,2],f32,#[[$BCSR]]>
|
|
# CHECK: return %[[R]] : !torch.vtensor<[4,2,2],f32,#[[$BCSR]]>
|
|
# CHECK: }
|
|
#
|
|
# CHECK: torch.sparse
|
|
# CHECK: tensor(crow_indices=tensor([0, 2, 4, 6, 8]),
|
|
# CHECK: col_indices=tensor([0, 1, 0, 1, 0, 1, 0, 1]),
|
|
# CHECK: values=tensor({{\[}}[ -1., -2.],
|
|
# CHECK: [ -3., -4.],
|
|
# CHECK: [ -5., -6.],
|
|
# CHECK: [ -7., -8.],
|
|
# CHECK: [ -9., -10.],
|
|
# CHECK: [-11., -12.],
|
|
# CHECK: [-13., -14.],
|
|
# CHECK: [-15., -16.]{{\]}}), size=(4, 2, 2), nnz=8,
|
|
# CHECK: layout=torch.sparse_csr)
|
|
# CHECK: torch.mlir
|
|
# CHECK: [0 2 4 6 8]
|
|
# CHECK: [0 1 0 1 0 1 0 1]
|
|
# CHECK: [ -1. -2. -3. -4. -5. -6. -7. -8. -9. -10. -11. -12. -13. -14.
|
|
# CHECK: -15. -16.]
|
|
# CHECK: torch.mlir.batch
|
|
#
|
|
def test_sparse_eltwise():
|
|
class EltNet(torch.nn.Module):
|
|
def __init__(self):
|
|
super(EltNet, self).__init__()
|
|
|
|
def forward(self, x):
|
|
return -x
|
|
|
|
net = EltNet()
|
|
dense_input = torch.reshape(
|
|
torch.arange(1, 17, dtype=torch.float32), shape=(4, 2, 2)
|
|
)
|
|
|
|
# This yields a plain CSR with dense **sub**tensor
|
|
sparse_input = dense_input.to_sparse_csr(dense_dim=1)
|
|
m = export_and_import(net, sparse_input)
|
|
print(m)
|
|
|
|
# This yields a **batched** CSR.
|
|
batch_input = dense_input.to_sparse_csr(dense_dim=0)
|
|
m = export_and_import(net, batch_input)
|
|
print(m)
|
|
|
|
# Run it with PyTorch torch.sparse and with TORCH-MLIR sparse_jit.
|
|
res1 = net(sparse_input)
|
|
res2 = sparse_jit(net, sparse_input)
|
|
# TODO: make this work
|
|
# res3 = sparse_jit(net, batch_input)
|
|
print("torch.sparse")
|
|
print(res1)
|
|
print("torch.mlir")
|
|
print(res2[0])
|
|
print(res2[1])
|
|
print(res2[2])
|
|
print("torch.mlir.batch")
|
|
|
|
|
|
@run
|
|
#
|
|
# CHECK-LABEL: test_sparse_coo3
|
|
# CHECK: #[[$COO3:.*]] = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : compressed(nonunique), d1 : singleton(nonunique, soa), d2 : singleton(soa)), posWidth = 64, crdWidth = 64 }>
|
|
# CHECK: func.func @main(
|
|
# CHECK-SAME: %[[A:.*]]: !torch.vtensor<[10,20,30],f64,#[[$COO3]]>) -> !torch.vtensor<[10,20,30],f64,#[[$COO3]]> {
|
|
# CHECK: %[[R:.*]] = torch.aten.relu %[[A]] : !torch.vtensor<[10,20,30],f64,#[[$COO3]]> -> !torch.vtensor<[10,20,30],f64,#[[$COO3]]>
|
|
# CHECK: return %[[R]] : !torch.vtensor<[10,20,30],f64,#[[$COO3]]>
|
|
# CHECK: }
|
|
#
|
|
# CHECK: torch.sparse
|
|
# CHECK: tensor(indices=tensor({{\[}}[ 0, 1, 1, 4, 9, 9],
|
|
# CHECK: [ 0, 1, 1, 5, 19, 19],
|
|
# CHECK: [ 0, 1, 3, 6, 28, 29]{{\]}}),
|
|
# CHECK: values=tensor([ 0., 0., 1., 2., 3., 1000.]),
|
|
# CHECK: size=(10, 20, 30), nnz=6, dtype=torch.float64, layout=torch.sparse_coo)
|
|
# CHECK: torch.mlir
|
|
# CHECK: [0 6]
|
|
# CHECK: [0 1 1 4 9 9]
|
|
# CHECK: [ 0 1 1 5 19 19]
|
|
# CHECK: [ 0 1 3 6 28 29]
|
|
# CHECK: [ 0. 0. 1. 2. 3. 1000.]
|
|
#
|
|
def test_sparse_coo3():
|
|
class COO3Net(torch.nn.Module):
|
|
def __init__(self):
|
|
super(COO3Net, self).__init__()
|
|
self.relu = nn.ReLU()
|
|
|
|
def forward(self, x):
|
|
return self.relu(x)
|
|
|
|
net = COO3Net()
|
|
|
|
# Direct 3-dim COO construction.
|
|
idx = torch.tensor([[0, 1, 1, 4, 9, 9], [0, 1, 1, 5, 19, 19], [0, 1, 3, 6, 28, 29]])
|
|
val = torch.tensor([-1000.0, -1.0, 1.0, 2.0, 3.0, 1000.0], dtype=torch.float64)
|
|
sparse_input = torch.sparse_coo_tensor(idx, val, size=[10, 20, 30])
|
|
|
|
m = export_and_import(net, sparse_input)
|
|
print(m)
|
|
|
|
# Run it with PyTorch torch.sparse and with TORCH-MLIR sparse_jit.
|
|
res1 = net(sparse_input)
|
|
res2 = sparse_jit(net, sparse_input)
|
|
print("torch.sparse")
|
|
print(res1)
|
|
print("torch.mlir")
|
|
print(res2[0])
|
|
print(res2[1])
|
|
print(res2[2])
|
|
print(res2[3])
|
|
print(res2[4])
|
|
|
|
|
|
@run
|
|
#
|
|
# CHECK-LABEL: test_sparse_activation
|
|
# CHECK: #[[$COO:.*]] = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : compressed(nonunique), d1 : singleton(nonunique, soa), d2 : singleton(soa)), posWidth = 64, crdWidth = 64 }>
|
|
# CHECK: func.func @main(
|
|
# CHECK-SAME: %[[A:.*]]: !torch.vtensor<[2,2,2],f32>) -> !torch.vtensor<[2,2,2],f32,#[[$COO]]> {
|
|
# CHECK: %[[N1:.*]] = torch.constant.none
|
|
# CHECK: %[[N2:.*]] = torch.constant.none
|
|
# CHECK: %[[N3:.*]] = torch.constant.none
|
|
# CHECK: %[[R:.*]] = torch.operator "torch.aten._to_sparse"(%[[A]], %[[N1]], %[[N2]], %[[N3]]) : (!torch.vtensor<[2,2,2],f32>, !torch.none, !torch.none, !torch.none) -> !torch.vtensor<[2,2,2],f32,#[[$COO]]>
|
|
# CHECK: return %[[R]] : !torch.vtensor<[2,2,2],f32,#[[$COO]]>
|
|
# CHECK: }
|
|
#
|
|
# CHECK: torch.sparse
|
|
# CHECK: tensor(indices=tensor({{\[}}[0, 0, 0, 0, 1, 1, 1, 1],
|
|
# CHECK: [0, 0, 1, 1, 0, 0, 1, 1],
|
|
# CHECK: [0, 1, 0, 1, 0, 1, 0, 1]{{\]}}),
|
|
# CHECK: values=tensor([1., 1., 1., 1., 1., 1., 1., 1.]),
|
|
# CHECK: size=(2, 2, 2), nnz=8, layout=torch.sparse_coo)
|
|
# CHECK: torch.mlir
|
|
# CHECK: [0 8]
|
|
# CHECK: [0 0 0 0 1 1 1 1]
|
|
# CHECK: [0 0 1 1 0 0 1 1]
|
|
# CHECK: [0 1 0 1 0 1 0 1]
|
|
# CHECK: [1. 1. 1. 1. 1. 1. 1. 1.]
|
|
#
|
|
def test_sparse_activation():
|
|
class SparseActivationCOO(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x.to_sparse()
|
|
|
|
net = SparseActivationCOO()
|
|
x = torch.ones(2, 2, 2)
|
|
m = export_and_import(net, x)
|
|
print(m)
|
|
|
|
# Run it with PyTorch torch.sparse and with TORCH-MLIR sparse_jit.
|
|
res1 = net(x)
|
|
res2 = sparse_jit(net, x)
|
|
print("torch.sparse")
|
|
print(res1)
|
|
print("torch.mlir")
|
|
print(res2[0])
|
|
print(res2[1])
|
|
print(res2[2])
|
|
print(res2[3])
|
|
print(res2[4])
|
|
|
|
|
|
@run
|
|
#
|
|
# CHECK-LABEL: test_sparse_network
|
|
# CHECK: func.func @main(
|
|
# CHECK-SAME: %[[A:.*]]: !torch.vtensor<[2,3,8,8],f32>) -> !torch.vtensor<[8],f32> {
|
|
# ... lots of IR ...
|
|
# CHECK-COUNT-15: torch.aten.mul.Tensor
|
|
# ... lots of IR ...
|
|
# CHECK: }
|
|
#
|
|
# CHECK: torch.sparse
|
|
# CHECK: tensor([ 0., 11., 9., 11., 13., 11., 10., 12.])
|
|
# CHECK: torch.mlir
|
|
# CHECK: [ 0. 11. 9. 11. 13. 11. 10. 12.]
|
|
#
|
|
def test_sparse_network():
|
|
def spike(input):
|
|
return (input >= 0).float()
|
|
|
|
def sqSum(input):
|
|
return (input * input).sum()
|
|
|
|
class LIF(nn.Module):
|
|
def __init__(self):
|
|
super(LIF, self).__init__()
|
|
self.thresh = 1.0
|
|
self.decay = 0.5
|
|
self.act = spike
|
|
|
|
def forward(self, X):
|
|
"""A filter that yields a binary-valued sparse tensor."""
|
|
mem = 0
|
|
spike_pot = []
|
|
T = X.size(-1)
|
|
for t in range(T):
|
|
mem = mem * self.decay + X[..., t]
|
|
spike = self.act(mem - self.thresh)
|
|
spike = spike.to_sparse().to_dense() # prop hack
|
|
mem = mem * (1.0 - spike)
|
|
spike_pot.append(spike)
|
|
spike_pot = torch.stack(spike_pot, dim=-1)
|
|
return spike_pot
|
|
|
|
class tdLayer(nn.Module):
|
|
def __init__(self, layer):
|
|
super(tdLayer, self).__init__()
|
|
self.layer = layer
|
|
|
|
def forward(self, X):
|
|
T = X.size(-1)
|
|
out = []
|
|
for t in range(T):
|
|
m = self.layer(X[..., t])
|
|
out.append(m)
|
|
out = torch.stack(out, dim=-1)
|
|
return out
|
|
|
|
class Block(nn.Module):
|
|
def __init__(self):
|
|
super(Block, self).__init__()
|
|
self.spike = LIF()
|
|
self.layer = tdLayer(sqSum)
|
|
|
|
def forward(self, X):
|
|
out = self.spike(X)
|
|
out = self.layer(out)
|
|
return out
|
|
|
|
net = Block()
|
|
|
|
# Get a random (but reproducible) input, so that a
|
|
# general sparse tensor appears after LIF.
|
|
torch.manual_seed(0)
|
|
x = torch.rand(2, 3, 8, 8)
|
|
m = export_and_import(net, x)
|
|
print(m)
|
|
|
|
# Run it with PyTorch torch.sparse and with TORCH-MLIR sparse_jit.
|
|
res1 = net(x)
|
|
res2 = sparse_jit(net, x)
|
|
print("torch.sparse")
|
|
print(res1)
|
|
print("torch.mlir")
|
|
print(res2)
|
|
|
|
|
|
@run
|
|
#
|
|
# CHECK-LABEL: test_sparse_feature_scaling
|
|
# CHECK: func.func @main(
|
|
# CHECK-SAME: %[[A:.*]]: !torch.vtensor<[4,4],f32>) -> !torch.vtensor<[4,4],f32> {
|
|
# ... more IR ...
|
|
# CHECK: %[[D:.*]] = torch.operator "torch.aten._to_sparse"
|
|
# CHECK: %[[R:.*]] = torch.aten.mm %[[D]], %[[A]]
|
|
# CHECK return %[[R]] : !torch.vtensor<[4,4],f32>
|
|
# CHECK: }
|
|
#
|
|
# CHECK: torch.sparse
|
|
# CHECK: tensor({{\[}}[0.3342, 0.5173, 0.0596, 0.0889],
|
|
# CHECK: [0.1321, 0.2724, 0.2105, 0.3851],
|
|
# CHECK: [0.2478, 0.3439, 0.1898, 0.2185],
|
|
# CHECK: [0.0222, 0.1683, 0.2928, 0.5167]{{\]}})
|
|
# CHECK: torch.mlir
|
|
#
|
|
def test_sparse_feature_scaling():
|
|
class Scale(nn.Module):
|
|
def forward(self, F):
|
|
sum_vector = torch.sum(F, dim=1)
|
|
reciprocal_vector = 1 / sum_vector
|
|
reciprocal_vector[reciprocal_vector == float("inf")] = 0
|
|
scaling_diagonal = torch.diag(reciprocal_vector).to_sparse()
|
|
return scaling_diagonal @ F
|
|
|
|
net = Scale()
|
|
|
|
# Get a random (but reproducible) features input.
|
|
torch.manual_seed(0)
|
|
f = torch.rand(4, 4)
|
|
m = export_and_import(net, f)
|
|
print(m)
|
|
|
|
# Run it with PyTorch torch.sparse and with TORCH-MLIR sparse_jit.
|
|
res1 = net(f)
|
|
# TODO: make this work
|
|
# res2 = sparse_jit(net, f)
|
|
print("torch.sparse")
|
|
print(res1)
|
|
print("torch.mlir")
|
|
|
|
|
|
@run
|
|
#
|
|
# CHECK-LABEL: test_sparse_gcn
|
|
# CHECK: #[[$COO:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton(soa)), posWidth = 64, crdWidth = 64 }>
|
|
# CHECK: func.func @main(
|
|
# CHECK-SAME: %[[A:.*]]: !torch.vtensor<[4,4],f32>,
|
|
# CHECK-SAME: %[[B:.*]]: !torch.vtensor<[4,4],f32,#[[$COO]]>) -> !torch.vtensor<[4,4],f32> {
|
|
# CHECK: %[[LIT:.*]] = torch.vtensor.literal(dense_resource<torch_tensor_4_4_torch.float32> : tensor<4x4xf32>) : !torch.vtensor<[4,4],f32>
|
|
# CHECK: %[[MM:.*]] = torch.aten.mm %[[A]], %[[LIT]] : !torch.vtensor<[4,4],f32>, !torch.vtensor<[4,4],f32> -> !torch.vtensor<[4,4],f32>
|
|
# CHECK: %[[SMM:.*]] = torch.aten.mm %[[B]], %[[MM]] : !torch.vtensor<[4,4],f32,#sparse>, !torch.vtensor<[4,4],f32> -> !torch.vtensor<[4,4],f32>
|
|
# CHECK: %[[BIAS:.*]] = torch.vtensor.literal(dense_resource<torch_tensor_4_torch.float32> : tensor<4xf32>) : !torch.vtensor<[4],f32>
|
|
# CHECK: %[[ONE:.*]] = torch.constant.int 1
|
|
# CHECK: %[[R:.*]] = torch.aten.add.Tensor %[[SMM]], %[[BIAS]], %[[ONE]] : !torch.vtensor<[4,4],f32>, !torch.vtensor<[4],f32>, !torch.int -> !torch.vtensor<[4,4],f32>
|
|
# CHECK return %[[R]] : !torch.vtensor<[4,4],f32>
|
|
# CHECK: }
|
|
#
|
|
# CHECK: torch.sparse
|
|
# CHECK: tensor({{\[}}[4.4778, 4.4778, 4.4778, 4.4778],
|
|
# CHECK: [5.7502, 5.7502, 5.7502, 5.7502],
|
|
# CHECK: [4.6980, 4.6980, 4.6980, 4.6980],
|
|
# CHECK: [3.6407, 3.6407, 3.6407, 3.6407]{{\]}})
|
|
# CHECK: torch.mlir
|
|
# CHECK: {{\[}}[4.477828 4.477828 4.477828 4.477828 ]
|
|
# CHECK: [5.7501717 5.7501717 5.7501717 5.7501717]
|
|
# CHECK: [4.697952 4.697952 4.697952 4.697952 ]
|
|
# CHECK: [3.640687 3.640687 3.640687 3.640687 ]{{\]}}
|
|
#
|
|
def test_sparse_gcn():
|
|
class GraphConv(nn.Module):
|
|
def __init__(self, input_dim, output_dim):
|
|
super(GraphConv, self).__init__()
|
|
self.kernel = nn.Parameter(torch.Tensor(input_dim, output_dim))
|
|
nn.init.ones_(self.kernel)
|
|
self.bias = nn.Parameter(torch.Tensor(output_dim))
|
|
nn.init.ones_(self.bias)
|
|
|
|
def forward(self, inp, adj_mat):
|
|
# Input matrix times weight matrix.
|
|
support = torch.mm(inp, self.kernel)
|
|
# Sparse adjacency matrix times support matrix.
|
|
output = torch.spmm(adj_mat, support)
|
|
# Add bias.
|
|
output = output + self.bias
|
|
return output
|
|
|
|
net = GraphConv(4, 4)
|
|
|
|
# Get a random (but reproducible) matrices.
|
|
torch.manual_seed(0)
|
|
inp = torch.rand(4, 4)
|
|
adj_mat = torch.rand(4, 4).to_sparse()
|
|
m = export_and_import(net, inp, adj_mat)
|
|
print(m)
|
|
|
|
# Run it with PyTorch torch.sparse and with TORCH-MLIR sparse_jit.
|
|
# Set to inference mode to avoid autograd component in result.
|
|
with torch.no_grad():
|
|
res1 = net(inp, adj_mat)
|
|
res2 = sparse_jit(net, inp, adj_mat)
|
|
print("torch.sparse")
|
|
print(res1)
|
|
print("torch.mlir")
|
|
print(res2)
|