mirror of https://github.com/llvm/torch-mlir
530 lines
20 KiB
C++
530 lines
20 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "torch-mlir/Conversion/TorchToMhlo/TorchToMhlo.h"
|
|
|
|
#include "../PassDetail.h"
|
|
#include "./PopulatePatterns.h"
|
|
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir-hlo/Dialect/mhlo/IR/hlo_ops.h"
|
|
#include "torch-mlir/Conversion/Utils/Utils.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/TorchUpstream.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
|
|
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionDialect.h"
|
|
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionOps.h"
|
|
#include <numeric>
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::torch;
|
|
using namespace mlir::torch::Torch;
|
|
using namespace mlir::torch::TorchConversion;
|
|
|
|
#ifdef TORCH_MLIR_ENABLE_MHLO_TRUNC_DIMSIZE_TO_I32
|
|
static constexpr size_t kMhloDimSizeBits = 32;
|
|
#else
|
|
static constexpr size_t kMhloDimSizeBits = 64;
|
|
#endif
|
|
|
|
namespace {
|
|
|
|
SmallVector<size_t> toPositiveDims(ArrayRef<int64_t> dims, int64_t rank) {
|
|
SmallVector<size_t> posDims;
|
|
posDims.reserve(rank);
|
|
std::transform(
|
|
dims.begin(), dims.end(), std::back_inserter(posDims),
|
|
[rank](int64_t d) -> size_t { return toPositiveDim(d, rank); });
|
|
return posDims;
|
|
}
|
|
|
|
FailureOr<SmallVector<Value, 4>>
|
|
getDimSizesOfTensor(PatternRewriter &rewriter, Operation *op, Value value,
|
|
ArrayRef<int64_t> inpDims) {
|
|
auto valueTy = value.getType().dyn_cast<RankedTensorType>();
|
|
if (!valueTy) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "getDimSizesOfTensor(): the input is not a ranked tensor");
|
|
}
|
|
|
|
auto rank = valueTy.getRank();
|
|
auto dims = toPositiveDims(inpDims, rank);
|
|
SmallVector<Value, 4> dimSizes;
|
|
dimSizes.reserve(dims.size());
|
|
|
|
auto loc = op->getLoc();
|
|
for (auto d : dims) {
|
|
dimSizes.emplace_back(rewriter.create<arith::IndexCastOp>(
|
|
loc, rewriter.getIntegerType(kMhloDimSizeBits),
|
|
rewriter.create<tensor::DimOp>(loc, value, d)));
|
|
}
|
|
return dimSizes;
|
|
}
|
|
|
|
FailureOr<SmallVector<Value, 4>>
|
|
getDimSizesOfTensor(PatternRewriter &rewriter, Operation *op, Value value) {
|
|
auto valueTy = value.getType().dyn_cast<RankedTensorType>();
|
|
if (!valueTy) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "getDimSizesOfTensor(): the input is not a ranked tensor");
|
|
}
|
|
|
|
auto rank = valueTy.getRank();
|
|
// Get int vector [0, 1, ..., rank-1]
|
|
std::vector<int64_t> dims(rank);
|
|
std::iota(dims.begin(), dims.end(), 0);
|
|
return getDimSizesOfTensor(rewriter, op, value, dims);
|
|
}
|
|
|
|
// A dimension index from torch.dialect might outside the range [0, dimSize].
|
|
// The function is used to normalize the input index into the range.
|
|
Value getNormalizedDimSizeInternal(PatternRewriter &rewriter, Operation *op,
|
|
Value index, Value dimSize) {
|
|
auto loc = op->getLoc();
|
|
Value zero = rewriter.create<arith::ConstantOp>(
|
|
loc, rewriter.getIntegerAttr(rewriter.getI64Type(), 0));
|
|
|
|
// To normalize index into range [-dimSize, dimSize]
|
|
// index = min(max(-dimSize, index), dimSize)
|
|
auto negDimSize = rewriter.create<arith::SubIOp>(loc, zero, dimSize);
|
|
index = rewriter.create<arith::MaxSIOp>(loc, negDimSize, index);
|
|
index = rewriter.create<arith::MinSIOp>(loc, dimSize, index);
|
|
|
|
auto dimSizePlusIndex = rewriter.create<arith::AddIOp>(loc, dimSize, index);
|
|
auto indexPositive = rewriter.create<arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::sge, index, zero);
|
|
// get positive index: (index >=0) ? index: index + dimSize
|
|
return rewriter.create<arith::SelectOp>(loc, indexPositive, index,
|
|
dimSizePlusIndex);
|
|
}
|
|
|
|
Value getDynamicSliceInternal(PatternRewriter &rewriter, Operation *op,
|
|
Value input, Value startIndex, Value endIndex,
|
|
Value step, size_t dimIndex,
|
|
ArrayRef<Value> dimSizes) {
|
|
auto loc = op->getLoc();
|
|
// startIndex & endIndex has been normailized into range [0, dSize]
|
|
Type intType = rewriter.getIntegerType(kMhloDimSizeBits);
|
|
Value zero = rewriter.create<arith::ConstantOp>(
|
|
loc, rewriter.getIntegerAttr(intType, 0));
|
|
Value one = rewriter.create<arith::ConstantOp>(
|
|
loc, rewriter.getIntegerAttr(intType, 1));
|
|
|
|
SmallVector<Value, 4> startIndices;
|
|
SmallVector<Value, 4> endIndices;
|
|
SmallVector<Value, 4> strides;
|
|
|
|
auto inputTy = input.getType().dyn_cast<RankedTensorType>();
|
|
size_t rank = inputTy.getRank();
|
|
startIndices.reserve(rank);
|
|
endIndices.reserve(rank);
|
|
strides.reserve(rank);
|
|
|
|
auto endIndexIsZero = rewriter.create<arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::eq, endIndex, zero);
|
|
endIndex = rewriter.create<arith::SelectOp>(loc, endIndexIsZero,
|
|
dimSizes[dimIndex], endIndex);
|
|
|
|
for (size_t r = 0; r < rank; ++r) {
|
|
if (r == dimIndex) {
|
|
startIndices.push_back(startIndex);
|
|
endIndices.push_back(endIndex);
|
|
strides.push_back(step);
|
|
} else {
|
|
startIndices.push_back(zero);
|
|
endIndices.push_back(dimSizes[r]);
|
|
strides.push_back(one);
|
|
}
|
|
}
|
|
|
|
auto startTensor =
|
|
rewriter.create<tensor::FromElementsOp>(loc, startIndices).getResult();
|
|
auto endTensor =
|
|
rewriter.create<tensor::FromElementsOp>(loc, endIndices).getResult();
|
|
auto stridesTensor =
|
|
rewriter.create<tensor::FromElementsOp>(loc, strides).getResult();
|
|
|
|
auto inputShape = inputTy.getShape();
|
|
SmallVector<int64_t, 4> sliceShape(inputShape.begin(), inputShape.end());
|
|
sliceShape[dimIndex] = ShapedType::kDynamicSize;
|
|
auto sliceoutputTy =
|
|
RankedTensorType::get(sliceShape, inputTy.getElementType());
|
|
return rewriter.create<mhlo::RealDynamicSliceOp>(
|
|
loc, sliceoutputTy, input, startTensor, endTensor, stridesTensor);
|
|
}
|
|
|
|
// Get a dynamic slice of the tensor from startIndex to endIndex with stride
|
|
// step on the specifed dimension. The input startIndex(default to 0),
|
|
// endIndex(default to dimSize), and step(default to 1) can be optional.
|
|
FailureOr<Value> getDynamicSlice(PatternRewriter &rewriter, Operation *op,
|
|
Value input,
|
|
llvm::Optional<Value> startIndexOpt,
|
|
llvm::Optional<Value> endIndexOpt,
|
|
llvm::Optional<Value> stepOpt, int64_t dim) {
|
|
auto loc = op->getLoc();
|
|
auto inputTy = input.getType().dyn_cast<RankedTensorType>();
|
|
auto rank = inputTy.getRank();
|
|
|
|
dim = (dim + rank) % rank;
|
|
Value dimSize = rewriter.create<arith::IndexCastOp>(
|
|
loc, rewriter.getI64Type(),
|
|
rewriter.create<tensor::DimOp>(loc, input, dim));
|
|
|
|
Value normStartIndex =
|
|
startIndexOpt
|
|
? getNormalizedDimSizeInternal(rewriter, op, *startIndexOpt, dimSize)
|
|
: rewriter.create<arith::ConstantOp>(
|
|
loc, rewriter.getIntegerAttr(rewriter.getI64Type(), 0));
|
|
Value normEndIndex =
|
|
endIndexOpt
|
|
? getNormalizedDimSizeInternal(rewriter, op, *endIndexOpt, dimSize)
|
|
: dimSize;
|
|
Value step =
|
|
stepOpt ? *stepOpt
|
|
: rewriter.create<arith::ConstantOp>(
|
|
loc, rewriter.getIntegerAttr(rewriter.getI64Type(), 1));
|
|
|
|
#ifdef TORCH_MLIR_ENABLE_MHLO_TRUNC_DIMSIZE_TO_I32
|
|
auto i32Type = rewriter.getIntegerType(kMhloDimSizeBits);
|
|
normStartIndex =
|
|
rewriter.create<arith::TruncIOp>(loc, i32Type, normStartIndex);
|
|
normEndIndex = rewriter.create<arith::TruncIOp>(loc, i32Type, normEndIndex);
|
|
step = rewriter.create<arith::TruncIOp>(loc, i32Type, step);
|
|
#endif
|
|
FailureOr<SmallVector<Value, 4>> dimSizesInfo =
|
|
getDimSizesOfTensor(rewriter, op, input);
|
|
if (failed(dimSizesInfo))
|
|
return rewriter.notifyMatchFailure(
|
|
op, "failed to get dimension sizes of the input");
|
|
|
|
auto dimSizes = *dimSizesInfo;
|
|
return getDynamicSliceInternal(rewriter, op, input, normStartIndex,
|
|
normEndIndex, step, dim, dimSizes);
|
|
}
|
|
|
|
template <typename AtenOpT>
|
|
class ConvertAtenOp : public OpConversionPattern<AtenOpT> {
|
|
public:
|
|
using OpConversionPattern<AtenOpT>::OpConversionPattern;
|
|
using OpAdaptor = typename AtenOpT::Adaptor;
|
|
LogicalResult
|
|
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override;
|
|
};
|
|
|
|
template <>
|
|
LogicalResult ConvertAtenOp<AtenSliceTensorOp>::matchAndRewrite(
|
|
AtenSliceTensorOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
auto self = adaptor.self();
|
|
auto selfTy = self.getType().template cast<RankedTensorType>();
|
|
if (!selfTy)
|
|
return op.emitError("only ranked tensor types are supported");
|
|
int64_t dim;
|
|
if (!matchPattern(op.dim(), m_TorchConstantInt(&dim)))
|
|
return rewriter.notifyMatchFailure(
|
|
op, "only constant dim is currently supported");
|
|
|
|
auto getOptionalVal = [&](Value val) -> llvm::Optional<Value> {
|
|
if (val.getType().isa<Torch::NoneType>()) {
|
|
return llvm::None;
|
|
} else {
|
|
return val;
|
|
}
|
|
};
|
|
|
|
llvm::Optional<Value> start = getOptionalVal(adaptor.start());
|
|
llvm::Optional<Value> end = getOptionalVal(adaptor.end());
|
|
llvm::Optional<Value> step = getOptionalVal(adaptor.step());
|
|
|
|
FailureOr<Value> sliceInfo =
|
|
getDynamicSlice(rewriter, op, self, start, end, step, dim);
|
|
if (failed(sliceInfo))
|
|
return op.emitError("can not create a dynmaic slice");
|
|
|
|
auto slice = *sliceInfo;
|
|
rewriter.replaceOpWithNewOp<mhlo::ConvertOp>(
|
|
op, getTypeConverter()->convertType(op.getType()), slice);
|
|
|
|
return success();
|
|
}
|
|
|
|
// This defines a template to construct ops whose legalizations are
|
|
// specialized.
|
|
template <typename AtenOpT>
|
|
class ConvertAtenViewOp : public OpConversionPattern<AtenOpT> {
|
|
public:
|
|
using OpConversionPattern<AtenOpT>::OpConversionPattern;
|
|
using OpAdaptor = typename AtenOpT::Adaptor;
|
|
|
|
LogicalResult matchAndRewrite(
|
|
AtenOpT op,
|
|
OpAdaptor adaptor,
|
|
ConversionPatternRewriter& rewriter) const override {
|
|
auto rankType =
|
|
adaptor.self().getType().template dyn_cast<RankedTensorType>();
|
|
if (!rankType)
|
|
return op.emitError("Only ranked tensor types are currently supported");
|
|
|
|
SmallVector<Value, 4> dimSizes;
|
|
if (!getAtenViewOpSizes(op, adaptor, rewriter, dimSizes)) {
|
|
return op.emitError("Dims size must be a list of Scalar");
|
|
}
|
|
|
|
auto loc = op.getLoc();
|
|
auto newRank = dimSizes.size();
|
|
if (newRank == 0 || rankType.getRank() == 0) {
|
|
rewriter.replaceOpWithNewOp<mhlo::ReshapeOp>(
|
|
op,
|
|
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
|
|
op.getType()),
|
|
adaptor.self());
|
|
return success();
|
|
}
|
|
|
|
std::for_each(dimSizes.begin(), dimSizes.end(), [&](Value& dSize) {
|
|
dSize = rewriter.create<ToI64Op>(loc, dSize).getResult();
|
|
return dSize;
|
|
});
|
|
|
|
#ifdef TORCH_MLIR_ENABLE_MHLO_TRUNC_DIMSIZE_TO_I32
|
|
// The i64 calculation is much slower than i32 on some devices, such as Nvidia GPU.
|
|
// One can truncate from i64 to i32 since dimension sizes are unlikely to exceed
|
|
// the range of i32(4GiB)
|
|
std::for_each(dimSizes.begin(), dimSizes.end(), [&](Value& dSize) {
|
|
// dimSize: cast i64 -> i32
|
|
dSize = rewriter.create<arith::TruncIOp>(loc, rewriter.getI32Type(), dSize);
|
|
return dSize;
|
|
});
|
|
#endif
|
|
|
|
Type intType = rewriter.getIntegerType(kMhloDimSizeBits);
|
|
Value numel = rewriter.create<arith::ConstantOp>(
|
|
loc, rewriter.getIntegerAttr(intType, 1));
|
|
for (auto d : dimSizes) {
|
|
numel = rewriter.create<arith::MulIOp>(loc, numel, d);
|
|
}
|
|
numel = rewriter.create<arith::IndexCastOp>(loc, rewriter.getIndexType(),
|
|
numel);
|
|
|
|
Value mhloShape = rewriter.create<tensor::FromElementsOp>(loc, dimSizes);
|
|
Value computedShape = rewriter.create<mhlo::ComputeReshapeShapeOp>(
|
|
loc, mhloShape.getType(), numel, mhloShape);
|
|
rewriter.replaceOpWithNewOp<mhlo::DynamicReshapeOp>(
|
|
op,
|
|
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
|
|
op.getType()),
|
|
adaptor.self(), computedShape);
|
|
return success();
|
|
}
|
|
|
|
bool getAtenViewOpSizes(
|
|
AtenOpT op,
|
|
OpAdaptor adaptor,
|
|
ConversionPatternRewriter& rewriter,
|
|
SmallVector<Value, 4>& dimSizes) const;
|
|
};
|
|
|
|
template <>
|
|
bool ConvertAtenViewOp<AtenViewOp>::getAtenViewOpSizes(
|
|
AtenViewOp op,
|
|
OpAdaptor adaptor,
|
|
ConversionPatternRewriter& rewriter,
|
|
SmallVector<Value, 4>& dimSizes) const {
|
|
return getListConstructElements(adaptor.size(), dimSizes);
|
|
}
|
|
|
|
template <>
|
|
bool ConvertAtenViewOp<AtenReshapeOp>::getAtenViewOpSizes(
|
|
AtenReshapeOp op,
|
|
OpAdaptor adaptor,
|
|
ConversionPatternRewriter& rewriter,
|
|
SmallVector<Value, 4>& dimSizes) const {
|
|
return getListConstructElements(adaptor.shape(), dimSizes);
|
|
}
|
|
|
|
FailureOr<Value> unsqueezeTensor(PatternRewriter &rewriter, Operation *op,
|
|
Value tensor,
|
|
ArrayRef<int64_t> inputUnsqzDims) {
|
|
// Returns a new tensor with dims of size 1 inserted at the specified
|
|
// position.
|
|
//
|
|
// The position indices (must be high to low dimension number of the returned
|
|
// tensor) are specified with unsqzDims. Indices must be in-order, and in
|
|
// range of tensor rank. Thus, unsqueeze a rank 1 tensor with {0, 2}, {0, 1,
|
|
// 3}, {0, 1, 2} are all valid dimension sets, but {0, 3}, {2} are not.
|
|
auto dimSizesInfo = getDimSizesOfTensor(rewriter, op, tensor);
|
|
if (failed(dimSizesInfo))
|
|
return rewriter.notifyMatchFailure(
|
|
op, "failed to get dimension sizes of the input");
|
|
|
|
auto dimSizes = *dimSizesInfo;
|
|
auto rank = dimSizes.size();
|
|
size_t newRank = rank + inputUnsqzDims.size();
|
|
auto unsqzDims = toPositiveDims(inputUnsqzDims, newRank);
|
|
for (size_t k = 0, sz = unsqzDims.size(); k < sz; ++k)
|
|
if (k > 1 && unsqzDims[k] <= unsqzDims[k - 1])
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unsqueeze dimensions must be specified in order");
|
|
|
|
auto loc = op->getLoc();
|
|
auto rankTy = tensor.getType().dyn_cast<RankedTensorType>();
|
|
auto oldShape = rankTy.getShape();
|
|
Type intType = rewriter.getIntegerType(kMhloDimSizeBits);
|
|
auto one = rewriter.create<arith::ConstantOp>(
|
|
loc, rewriter.getIntegerAttr(intType, 1));
|
|
|
|
std::vector<Value> newDimSizes;
|
|
std::vector<int64_t> newShape;
|
|
newDimSizes.reserve(newRank);
|
|
newShape.reserve(newRank);
|
|
for (size_t k = 0, i = 0, j = 0; k < newRank; ++k) {
|
|
if (j < unsqzDims.size() && unsqzDims[j] == k) {
|
|
newDimSizes.push_back(one);
|
|
newShape.push_back(1);
|
|
j++;
|
|
} else {
|
|
newDimSizes.push_back(dimSizes[i]);
|
|
newShape.push_back(oldShape[i]);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
auto outTy = RankedTensorType::get(newShape, rankTy.getElementType());
|
|
auto mhloShape = rewriter.create<tensor::FromElementsOp>(loc, newDimSizes);
|
|
return rewriter.create<mhlo::DynamicReshapeOp>(loc, outTy, tensor, mhloShape)
|
|
.getResult();
|
|
}
|
|
|
|
template <>
|
|
LogicalResult ConvertAtenOp<AtenSqueezeOp>::matchAndRewrite(
|
|
AtenSqueezeOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
auto self = adaptor.self();
|
|
auto selfTy = self.getType().template cast<RankedTensorType>();
|
|
if (!selfTy)
|
|
return op.emitError("only ranked tensor types are supported");
|
|
|
|
auto rank = selfTy.getRank();
|
|
if (rank == 0)
|
|
return rewriter.notifyMatchFailure(
|
|
op, "The rank of tensor must be greater than 0");
|
|
|
|
SmallVector<int64_t, 4> dims;
|
|
dims.reserve(rank);
|
|
for (int r = 0; r < rank; ++r) {
|
|
auto dSize = selfTy.getShape()[r];
|
|
if (dSize == ShapedType::kDynamicSize)
|
|
return rewriter.notifyMatchFailure(
|
|
op, "the size of the dimension being squeezed can't be unknown");
|
|
if (dSize != 1)
|
|
dims.push_back(r);
|
|
}
|
|
|
|
auto newDimSizesInfo = getDimSizesOfTensor(rewriter, op, self, dims);
|
|
if (failed(newDimSizesInfo))
|
|
return rewriter.notifyMatchFailure(
|
|
op, "failed to get dimension sizes of the input");
|
|
auto newDimSizes = *newDimSizesInfo;
|
|
auto mhloShape =
|
|
rewriter.create<tensor::FromElementsOp>(op.getLoc(), newDimSizes);
|
|
rewriter.replaceOpWithNewOp<mhlo::DynamicReshapeOp>(
|
|
op, getTypeConverter()->convertType(op.getType()), self, mhloShape);
|
|
return success();
|
|
}
|
|
|
|
template <>
|
|
LogicalResult ConvertAtenOp<AtenSqueezeDimOp>::matchAndRewrite(
|
|
AtenSqueezeDimOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
auto self = adaptor.self();
|
|
auto selfTy = self.getType().template cast<RankedTensorType>();
|
|
if (!selfTy)
|
|
return op.emitError("only ranked tensor types are supported");
|
|
int64_t dim;
|
|
if (!matchPattern(op.dim(), m_TorchConstantInt(&dim)))
|
|
return rewriter.notifyMatchFailure(
|
|
op, "only constant dim is currently supported");
|
|
|
|
auto rank = selfTy.getRank();
|
|
if (rank == 0)
|
|
return rewriter.notifyMatchFailure(
|
|
op, "the rank of tensor must be greater than 0");
|
|
|
|
dim = toPositiveDim(dim, rank);
|
|
if (selfTy.getShape()[dim] != 1) {
|
|
if (selfTy.getShape()[dim] == ShapedType::kDynamicSize)
|
|
return rewriter.notifyMatchFailure(
|
|
op, "the size of the dimension being squeezed is can't be unknown");
|
|
|
|
rewriter.replaceOp(op, adaptor.self());
|
|
return success();
|
|
}
|
|
|
|
SmallVector<int64_t, 4> dims(rank);
|
|
std::iota(dims.begin(), dims.end(), 0);
|
|
dims.erase(dims.begin() + dim);
|
|
auto newDimSizesInfo = getDimSizesOfTensor(rewriter, op, self, dims);
|
|
if (failed(newDimSizesInfo))
|
|
return rewriter.notifyMatchFailure(
|
|
op, "failed to get dimension sizes of the input");
|
|
auto newDimSizes = *newDimSizesInfo;
|
|
auto mhloShape =
|
|
rewriter.create<tensor::FromElementsOp>(op.getLoc(), newDimSizes);
|
|
rewriter.replaceOpWithNewOp<mhlo::DynamicReshapeOp>(
|
|
op, getTypeConverter()->convertType(op.getType()), self, mhloShape);
|
|
return success();
|
|
}
|
|
|
|
template <>
|
|
LogicalResult ConvertAtenOp<AtenUnsqueezeOp>::matchAndRewrite(
|
|
AtenUnsqueezeOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
auto selfType = adaptor.self().getType().dyn_cast<TensorType>();
|
|
if (!selfType) {
|
|
return op.emitError("only tensor types are currently supported");
|
|
}
|
|
|
|
int64_t dim;
|
|
if (!matchPattern(op.dim(), m_TorchConstantInt(&dim)))
|
|
return op->emitError("dim must be a Scalar constant");
|
|
|
|
auto unsqzTensorInfo = unsqueezeTensor(rewriter, op, adaptor.self(), {dim});
|
|
if (failed(unsqzTensorInfo))
|
|
return rewriter.notifyMatchFailure(op,
|
|
"failed to create unsqueezed tensor");
|
|
|
|
rewriter.replaceOp(op, *unsqzTensorInfo);
|
|
return success();
|
|
}
|
|
} // namespace
|
|
|
|
void mlir::torch::torch_to_mhlo::populateViewLikeOpPatternsAndLegality(
|
|
TypeConverter &typeConverter, RewritePatternSet &patterns,
|
|
ConversionTarget &target) {
|
|
MLIRContext *context = patterns.getContext();
|
|
|
|
#define INSERT_ATENOP_PATTERN(AtenOp) \
|
|
target.addIllegalOp<AtenOp>(); \
|
|
patterns.add<ConvertAtenOp<AtenOp>>(typeConverter, context);
|
|
INSERT_ATENOP_PATTERN(AtenSliceTensorOp);
|
|
INSERT_ATENOP_PATTERN(AtenSqueezeOp);
|
|
INSERT_ATENOP_PATTERN(AtenSqueezeDimOp);
|
|
INSERT_ATENOP_PATTERN(AtenUnsqueezeOp);
|
|
#undef INSERT_ATENOP_PATTERN
|
|
|
|
#define INSERT_VIEW_OP_PATTERN(AtenOp) \
|
|
target.addIllegalOp<AtenOp>(); \
|
|
patterns.add<ConvertAtenViewOp<AtenOp>>(typeConverter, context);
|
|
INSERT_VIEW_OP_PATTERN(AtenViewOp);
|
|
INSERT_VIEW_OP_PATTERN(AtenReshapeOp);
|
|
#undef INSERT_VIEW_OP_PATTERN
|
|
}
|