mirror of https://github.com/llvm/torch-mlir
381 lines
14 KiB
C++
381 lines
14 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PassDetail.h"
|
|
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
|
#include "torch-mlir/Dialect/Torch/Transforms/Passes.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::torch;
|
|
using namespace mlir::torch::Torch;
|
|
|
|
namespace {
|
|
|
|
template <typename SrcOp> struct QuantInfo {
|
|
static constexpr unsigned operandsToQuantize[2] = {0, 1};
|
|
};
|
|
|
|
template <> struct QuantInfo<AtenReluOp> {
|
|
static constexpr unsigned operandsToQuantize[1] = {0};
|
|
};
|
|
template <typename SrcOp>
|
|
class QuantizeOperands : public OpRewritePattern<SrcOp> {
|
|
public:
|
|
using OpRewritePattern<SrcOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(SrcOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
llvm::SmallVector<Value> operands(op->getOperands());
|
|
|
|
bool dequanted = false;
|
|
auto f = [&dequanted](Value operand) {
|
|
if (auto dequant = operand.getDefiningOp<AtenDequantizeTensorOp>()) {
|
|
operand = dequant.getOperand();
|
|
dequanted = true;
|
|
}
|
|
if (auto dequant = operand.getDefiningOp<AtenDequantizeSelfOp>()) {
|
|
operand = dequant.getOperand();
|
|
dequanted = true;
|
|
}
|
|
return operand;
|
|
};
|
|
|
|
for (unsigned i : QuantInfo<SrcOp>::operandsToQuantize) {
|
|
operands[i] = f(operands[i]);
|
|
}
|
|
|
|
if (!dequanted) {
|
|
return rewriter.notifyMatchFailure(op, "no dequantizations found");
|
|
}
|
|
|
|
rewriter.replaceOpWithNewOp<SrcOp>(op, op.getType(), operands);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
template <typename SrcOp>
|
|
class QuantizeTransposedOperands : public OpRewritePattern<SrcOp> {
|
|
public:
|
|
using OpRewritePattern<SrcOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(SrcOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
llvm::SmallVector<Value> operands(op->getOperands());
|
|
unsigned numOperands = operands.size();
|
|
bool dequanted = false;
|
|
for (unsigned i = 0; i < numOperands; i++) {
|
|
if (auto trans = operands[i].getDefiningOp<AtenTransposeIntOp>()) {
|
|
auto transOperands = trans.getOperands();
|
|
Value dequantOperand;
|
|
if (auto dequant =
|
|
transOperands[0].getDefiningOp<AtenDequantizeSelfOp>()) {
|
|
dequantOperand = dequant.getOperand();
|
|
if (auto quant =
|
|
dequantOperand
|
|
.getDefiningOp<Aten_MakePerTensorQuantizedTensorOp>()) {
|
|
auto quantOperands = quant.getOperands();
|
|
auto qType = quantOperands[0]
|
|
.getType()
|
|
.cast<ValueTensorType>()
|
|
.getOptionalDtype();
|
|
auto torchQType =
|
|
cast<ValueTensorType>(quant.getType()).getOptionalDtype();
|
|
auto transQTy =
|
|
rewriter.getType<ValueTensorType>(trans.getResult()
|
|
.getType()
|
|
.cast<ValueTensorType>()
|
|
.getOptionalSizes(),
|
|
qType);
|
|
auto newQuantTy =
|
|
rewriter.getType<ValueTensorType>(trans.getResult()
|
|
.getType()
|
|
.cast<ValueTensorType>()
|
|
.getOptionalSizes(),
|
|
torchQType);
|
|
Value newTrans = rewriter.create<AtenTransposeIntOp>(
|
|
op.getLoc(), transQTy, quantOperands[0], transOperands[1],
|
|
transOperands[2]);
|
|
Value newQuant =
|
|
rewriter.create<Aten_MakePerTensorQuantizedTensorOp>(
|
|
op.getLoc(), newQuantTy, newTrans, quantOperands[1],
|
|
quantOperands[2]);
|
|
operands[i] = newQuant;
|
|
dequanted = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (!dequanted) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "no dequantized transpose inputs found.");
|
|
}
|
|
rewriter.replaceOpWithNewOp<SrcOp>(op, op.getType(), operands);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
template <typename SrcOp> class QuantizeBias : public OpRewritePattern<SrcOp> {
|
|
public:
|
|
using OpRewritePattern<SrcOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(SrcOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
llvm::SmallVector<Value> operands(op->getOperands());
|
|
if (operands.size() < 3)
|
|
return failure();
|
|
|
|
Value lhsScale;
|
|
if (auto qLhs =
|
|
operands[0].getDefiningOp<Aten_MakePerTensorQuantizedTensorOp>())
|
|
lhsScale = qLhs.getScale();
|
|
|
|
Value rhsScale;
|
|
if (auto qRhs =
|
|
operands[1].getDefiningOp<Aten_MakePerTensorQuantizedTensorOp>())
|
|
rhsScale = qRhs.getScale();
|
|
|
|
if (!rhsScale || !lhsScale)
|
|
return failure();
|
|
|
|
auto resultTy = cast<ValueTensorType>(op.getType());
|
|
if (!isa<mlir::FloatType>(resultTy.getDtype()))
|
|
return failure();
|
|
|
|
Value bias = operands[2];
|
|
auto biasTy = dyn_cast<ValueTensorType>(bias.getType());
|
|
|
|
if (biasTy) {
|
|
auto biasETy = biasTy.getOptionalDtype();
|
|
if (!biasETy || !isa<mlir::FloatType>(biasETy))
|
|
return failure();
|
|
}
|
|
|
|
Value biasScale = rewriter.create<AtenMulFloatOp>(
|
|
op.getLoc(), lhsScale.getType(), lhsScale, rhsScale);
|
|
|
|
Value zero = rewriter.create<Torch::ConstantIntOp>(
|
|
op.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
|
|
|
|
auto qi32Ty = rewriter.getType<QInt32Type>();
|
|
|
|
if (biasTy) {
|
|
auto newBiasTy =
|
|
rewriter.getType<ValueTensorType>(biasTy.getOptionalSizes(), qi32Ty);
|
|
Value dtype = getDtypeIntValueForType(rewriter, op.getLoc(), qi32Ty);
|
|
bias = rewriter.create<AtenQuantizePerTensorOp>(
|
|
op.getLoc(), newBiasTy, bias, biasScale, zero, dtype);
|
|
bias = rewriter.create<AtenIntReprOp>(
|
|
op.getLoc(),
|
|
rewriter.getType<ValueTensorType>(
|
|
biasTy.getOptionalSizes(),
|
|
rewriter.getIntegerType(32, IntegerType::Signed)),
|
|
bias);
|
|
operands[2] = bias;
|
|
}
|
|
|
|
auto convTy = rewriter.getType<ValueTensorType>(
|
|
resultTy.getOptionalSizes(),
|
|
rewriter.getIntegerType(32, IntegerType::Signed));
|
|
auto conv = rewriter.create<SrcOp>(op.getLoc(), convTy, operands);
|
|
|
|
auto convQTy =
|
|
rewriter.getType<ValueTensorType>(resultTy.getOptionalSizes(), qi32Ty);
|
|
auto makeOut = rewriter.create<Aten_MakePerTensorQuantizedTensorOp>(
|
|
op.getLoc(), convQTy, conv, biasScale, zero);
|
|
rewriter.replaceOpWithNewOp<AtenDequantizeTensorOp>(op, op.getType(),
|
|
makeOut);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
template <typename SrcOp>
|
|
class QuantizeAccumulator : public OpRewritePattern<SrcOp> {
|
|
public:
|
|
using OpRewritePattern<SrcOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(SrcOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto lhs = op.getOperand(0);
|
|
auto rhs = op.getOperand(1);
|
|
|
|
auto resultTy = dyn_cast_or_null<ValueTensorType>(op.getType());
|
|
if (!resultTy || !resultTy.hasDtype())
|
|
return failure();
|
|
|
|
Type resultETy = resultTy.getDtype();
|
|
if (!isa<mlir::FloatType>(resultETy))
|
|
return failure();
|
|
|
|
Value lhsScale;
|
|
if (auto defining =
|
|
lhs.template getDefiningOp<Aten_MakePerTensorQuantizedTensorOp>()) {
|
|
lhsScale = defining.getScale();
|
|
}
|
|
|
|
Value rhsScale;
|
|
if (auto defining =
|
|
rhs.template getDefiningOp<Aten_MakePerTensorQuantizedTensorOp>()) {
|
|
rhsScale = defining.getScale();
|
|
}
|
|
|
|
if (!lhsScale || !rhsScale)
|
|
return failure();
|
|
|
|
// Quantize the bias input to the expected result:
|
|
Value zero = rewriter.create<Torch::ConstantIntOp>(
|
|
op.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
|
|
|
|
auto qi32Ty = rewriter.getType<QInt32Type>();
|
|
Value biasScale = rewriter.create<AtenMulFloatOp>(
|
|
op.getLoc(), lhsScale.getType(), lhsScale, rhsScale);
|
|
|
|
// Update the quantied type:
|
|
llvm::SmallVector<Value> operands(op.getOperands());
|
|
|
|
auto newResultTy =
|
|
rewriter.getType<ValueTensorType>(resultTy.getOptionalSizes(), qi32Ty);
|
|
auto conv = rewriter.create<SrcOp>(op.getLoc(), newResultTy, operands);
|
|
|
|
// Attach the quantize information to the resulting qint32:
|
|
auto intReprTy = rewriter.getType<ValueTensorType>(
|
|
resultTy.getOptionalSizes(),
|
|
rewriter.getIntegerType(32, IntegerType::Signed));
|
|
auto intRepr = rewriter.create<AtenIntReprOp>(op.getLoc(), intReprTy, conv);
|
|
|
|
auto quantTy =
|
|
rewriter.getType<ValueTensorType>(resultTy.getOptionalSizes(), qi32Ty);
|
|
auto quant = rewriter.create<Aten_MakePerTensorQuantizedTensorOp>(
|
|
op.getLoc(), quantTy, intRepr, biasScale, zero);
|
|
auto dequant =
|
|
rewriter.create<AtenDequantizeTensorOp>(op.getLoc(), resultTy, quant);
|
|
rewriter.replaceOp(op, dequant);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// Use for ops which do not manipulate scale/zero point of an input.
|
|
template <typename SrcOp>
|
|
class QuantizeResultLikeOperand : public OpRewritePattern<SrcOp> {
|
|
public:
|
|
using OpRewritePattern<SrcOp>::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(SrcOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
llvm::SmallVector<Value> operands(op->getOperands());
|
|
Value input = operands[0];
|
|
|
|
auto inputType = dyn_cast_or_null<ValueTensorType>(input.getType());
|
|
if (!inputType || !inputType.hasDtype())
|
|
return failure();
|
|
auto qDtype = inputType.getDtype();
|
|
|
|
auto resultTy = dyn_cast_or_null<ValueTensorType>(op.getType());
|
|
if (!resultTy || !resultTy.hasDtype())
|
|
return failure();
|
|
|
|
Type resultETy = resultTy.getDtype();
|
|
if (!isa<mlir::FloatType>(resultETy))
|
|
return failure();
|
|
|
|
Value inputScale, inputZeroPoint;
|
|
Type definingOpInputType;
|
|
if (auto defining = input.template getDefiningOp<
|
|
Aten_MakePerTensorQuantizedTensorOp>()) {
|
|
inputScale = defining.getScale();
|
|
inputZeroPoint = defining.getZeroPoint();
|
|
definingOpInputType = defining.getSelf().getType();
|
|
}
|
|
|
|
auto inputIntReprType =
|
|
dyn_cast_or_null<ValueTensorType>(definingOpInputType);
|
|
if (!inputScale || !inputZeroPoint || !inputIntReprType ||
|
|
!inputIntReprType.hasDtype())
|
|
return failure();
|
|
auto intReprDtype = inputIntReprType.getDtype();
|
|
|
|
// set SrcOp type to use quantized dtype from input
|
|
auto newResultTy =
|
|
rewriter.getType<ValueTensorType>(resultTy.getOptionalSizes(), qDtype);
|
|
auto newResult = rewriter.create<SrcOp>(op.getLoc(), newResultTy, operands);
|
|
|
|
// int repr to get non quantized int type result
|
|
auto intReprTy = rewriter.getType<ValueTensorType>(
|
|
resultTy.getOptionalSizes(), intReprDtype);
|
|
auto intRepr =
|
|
rewriter.create<AtenIntReprOp>(op.getLoc(), intReprTy, newResult);
|
|
|
|
// requantize so the scale and zero-point info can be attached
|
|
auto quantTy =
|
|
rewriter.getType<ValueTensorType>(resultTy.getOptionalSizes(), qDtype);
|
|
auto quant = rewriter.create<Aten_MakePerTensorQuantizedTensorOp>(
|
|
op.getLoc(), quantTy, intRepr, inputScale, inputZeroPoint);
|
|
|
|
// dequant back to original dtype
|
|
auto dequant =
|
|
rewriter.create<AtenDequantizeTensorOp>(op.getLoc(), resultTy, quant);
|
|
rewriter.replaceOp(op, dequant);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
template <typename SrcOp> class RemoveUnused : public OpRewritePattern<SrcOp> {
|
|
public:
|
|
using OpRewritePattern<SrcOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(SrcOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto result = op.getResult();
|
|
if (result.use_empty()) {
|
|
op.erase();
|
|
return success();
|
|
}
|
|
return failure();
|
|
}
|
|
};
|
|
|
|
class FuseQuantizedOpsPass : public FuseQuantizedOpsBase<FuseQuantizedOpsPass> {
|
|
public:
|
|
void runOnOperation() override {
|
|
MLIRContext *context = &getContext();
|
|
RewritePatternSet patterns(context);
|
|
patterns.insert<
|
|
RemoveUnused<AtenDequantizeSelfOp>,
|
|
RemoveUnused<AtenDequantizeTensorOp>,
|
|
RemoveUnused<AtenQuantizePerTensorOp>,
|
|
RemoveUnused<Aten_MakePerTensorQuantizedTensorOp>,
|
|
RemoveUnused<AtenTransposeIntOp>, QuantizeOperands<AtenConvolutionOp>,
|
|
QuantizeOperands<AtenMatmulOp>, QuantizeOperands<AtenReluOp>,
|
|
QuantizeTransposedOperands<AtenMatmulOp>,
|
|
QuantizeAccumulator<AtenMatmulOp>, QuantizeOperands<AtenMmOp>,
|
|
QuantizeTransposedOperands<AtenMmOp>, QuantizeAccumulator<AtenMmOp>,
|
|
QuantizeResultLikeOperand<AtenReluOp>, QuantizeBias<AtenConvolutionOp>>(
|
|
context);
|
|
|
|
GreedyRewriteConfig config;
|
|
if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns),
|
|
config))) {
|
|
return signalPassFailure();
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
std::unique_ptr<OperationPass<func::FuncOp>>
|
|
mlir::torch::Torch::createFuseQuantizedOpsPass() {
|
|
return std::make_unique<FuseQuantizedOpsPass>();
|
|
}
|