torch-mlir/lib/Dialect/Torch/Transforms/FuseQuantizedOps.cpp

381 lines
14 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/Torch/Transforms/Passes.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
namespace {
template <typename SrcOp> struct QuantInfo {
static constexpr unsigned operandsToQuantize[2] = {0, 1};
};
template <> struct QuantInfo<AtenReluOp> {
static constexpr unsigned operandsToQuantize[1] = {0};
};
template <typename SrcOp>
class QuantizeOperands : public OpRewritePattern<SrcOp> {
public:
using OpRewritePattern<SrcOp>::OpRewritePattern;
LogicalResult matchAndRewrite(SrcOp op,
PatternRewriter &rewriter) const override {
llvm::SmallVector<Value> operands(op->getOperands());
bool dequanted = false;
auto f = [&dequanted](Value operand) {
if (auto dequant = operand.getDefiningOp<AtenDequantizeTensorOp>()) {
operand = dequant.getOperand();
dequanted = true;
}
if (auto dequant = operand.getDefiningOp<AtenDequantizeSelfOp>()) {
operand = dequant.getOperand();
dequanted = true;
}
return operand;
};
for (unsigned i : QuantInfo<SrcOp>::operandsToQuantize) {
operands[i] = f(operands[i]);
}
if (!dequanted) {
return rewriter.notifyMatchFailure(op, "no dequantizations found");
}
rewriter.replaceOpWithNewOp<SrcOp>(op, op.getType(), operands);
return success();
}
};
template <typename SrcOp>
class QuantizeTransposedOperands : public OpRewritePattern<SrcOp> {
public:
using OpRewritePattern<SrcOp>::OpRewritePattern;
LogicalResult matchAndRewrite(SrcOp op,
PatternRewriter &rewriter) const override {
llvm::SmallVector<Value> operands(op->getOperands());
unsigned numOperands = operands.size();
bool dequanted = false;
for (unsigned i = 0; i < numOperands; i++) {
if (auto trans = operands[i].getDefiningOp<AtenTransposeIntOp>()) {
auto transOperands = trans.getOperands();
Value dequantOperand;
if (auto dequant =
transOperands[0].getDefiningOp<AtenDequantizeSelfOp>()) {
dequantOperand = dequant.getOperand();
if (auto quant =
dequantOperand
.getDefiningOp<Aten_MakePerTensorQuantizedTensorOp>()) {
auto quantOperands = quant.getOperands();
auto qType = quantOperands[0]
.getType()
.cast<ValueTensorType>()
.getOptionalDtype();
auto torchQType =
cast<ValueTensorType>(quant.getType()).getOptionalDtype();
auto transQTy =
rewriter.getType<ValueTensorType>(trans.getResult()
.getType()
.cast<ValueTensorType>()
.getOptionalSizes(),
qType);
auto newQuantTy =
rewriter.getType<ValueTensorType>(trans.getResult()
.getType()
.cast<ValueTensorType>()
.getOptionalSizes(),
torchQType);
Value newTrans = rewriter.create<AtenTransposeIntOp>(
op.getLoc(), transQTy, quantOperands[0], transOperands[1],
transOperands[2]);
Value newQuant =
rewriter.create<Aten_MakePerTensorQuantizedTensorOp>(
op.getLoc(), newQuantTy, newTrans, quantOperands[1],
quantOperands[2]);
operands[i] = newQuant;
dequanted = true;
}
}
}
}
if (!dequanted) {
return rewriter.notifyMatchFailure(
op, "no dequantized transpose inputs found.");
}
rewriter.replaceOpWithNewOp<SrcOp>(op, op.getType(), operands);
return success();
}
};
template <typename SrcOp> class QuantizeBias : public OpRewritePattern<SrcOp> {
public:
using OpRewritePattern<SrcOp>::OpRewritePattern;
LogicalResult matchAndRewrite(SrcOp op,
PatternRewriter &rewriter) const override {
llvm::SmallVector<Value> operands(op->getOperands());
if (operands.size() < 3)
return failure();
Value lhsScale;
if (auto qLhs =
operands[0].getDefiningOp<Aten_MakePerTensorQuantizedTensorOp>())
lhsScale = qLhs.getScale();
Value rhsScale;
if (auto qRhs =
operands[1].getDefiningOp<Aten_MakePerTensorQuantizedTensorOp>())
rhsScale = qRhs.getScale();
if (!rhsScale || !lhsScale)
return failure();
auto resultTy = cast<ValueTensorType>(op.getType());
if (!isa<mlir::FloatType>(resultTy.getDtype()))
return failure();
Value bias = operands[2];
auto biasTy = dyn_cast<ValueTensorType>(bias.getType());
if (biasTy) {
auto biasETy = biasTy.getOptionalDtype();
if (!biasETy || !isa<mlir::FloatType>(biasETy))
return failure();
}
Value biasScale = rewriter.create<AtenMulFloatOp>(
op.getLoc(), lhsScale.getType(), lhsScale, rhsScale);
Value zero = rewriter.create<Torch::ConstantIntOp>(
op.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
auto qi32Ty = rewriter.getType<QInt32Type>();
if (biasTy) {
auto newBiasTy =
rewriter.getType<ValueTensorType>(biasTy.getOptionalSizes(), qi32Ty);
Value dtype = getDtypeIntValueForType(rewriter, op.getLoc(), qi32Ty);
bias = rewriter.create<AtenQuantizePerTensorOp>(
op.getLoc(), newBiasTy, bias, biasScale, zero, dtype);
bias = rewriter.create<AtenIntReprOp>(
op.getLoc(),
rewriter.getType<ValueTensorType>(
biasTy.getOptionalSizes(),
rewriter.getIntegerType(32, IntegerType::Signed)),
bias);
operands[2] = bias;
}
auto convTy = rewriter.getType<ValueTensorType>(
resultTy.getOptionalSizes(),
rewriter.getIntegerType(32, IntegerType::Signed));
auto conv = rewriter.create<SrcOp>(op.getLoc(), convTy, operands);
auto convQTy =
rewriter.getType<ValueTensorType>(resultTy.getOptionalSizes(), qi32Ty);
auto makeOut = rewriter.create<Aten_MakePerTensorQuantizedTensorOp>(
op.getLoc(), convQTy, conv, biasScale, zero);
rewriter.replaceOpWithNewOp<AtenDequantizeTensorOp>(op, op.getType(),
makeOut);
return success();
}
};
template <typename SrcOp>
class QuantizeAccumulator : public OpRewritePattern<SrcOp> {
public:
using OpRewritePattern<SrcOp>::OpRewritePattern;
LogicalResult matchAndRewrite(SrcOp op,
PatternRewriter &rewriter) const override {
auto lhs = op.getOperand(0);
auto rhs = op.getOperand(1);
auto resultTy = dyn_cast_or_null<ValueTensorType>(op.getType());
if (!resultTy || !resultTy.hasDtype())
return failure();
Type resultETy = resultTy.getDtype();
if (!isa<mlir::FloatType>(resultETy))
return failure();
Value lhsScale;
if (auto defining =
lhs.template getDefiningOp<Aten_MakePerTensorQuantizedTensorOp>()) {
lhsScale = defining.getScale();
}
Value rhsScale;
if (auto defining =
rhs.template getDefiningOp<Aten_MakePerTensorQuantizedTensorOp>()) {
rhsScale = defining.getScale();
}
if (!lhsScale || !rhsScale)
return failure();
// Quantize the bias input to the expected result:
Value zero = rewriter.create<Torch::ConstantIntOp>(
op.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
auto qi32Ty = rewriter.getType<QInt32Type>();
Value biasScale = rewriter.create<AtenMulFloatOp>(
op.getLoc(), lhsScale.getType(), lhsScale, rhsScale);
// Update the quantied type:
llvm::SmallVector<Value> operands(op.getOperands());
auto newResultTy =
rewriter.getType<ValueTensorType>(resultTy.getOptionalSizes(), qi32Ty);
auto conv = rewriter.create<SrcOp>(op.getLoc(), newResultTy, operands);
// Attach the quantize information to the resulting qint32:
auto intReprTy = rewriter.getType<ValueTensorType>(
resultTy.getOptionalSizes(),
rewriter.getIntegerType(32, IntegerType::Signed));
auto intRepr = rewriter.create<AtenIntReprOp>(op.getLoc(), intReprTy, conv);
auto quantTy =
rewriter.getType<ValueTensorType>(resultTy.getOptionalSizes(), qi32Ty);
auto quant = rewriter.create<Aten_MakePerTensorQuantizedTensorOp>(
op.getLoc(), quantTy, intRepr, biasScale, zero);
auto dequant =
rewriter.create<AtenDequantizeTensorOp>(op.getLoc(), resultTy, quant);
rewriter.replaceOp(op, dequant);
return success();
}
};
// Use for ops which do not manipulate scale/zero point of an input.
template <typename SrcOp>
class QuantizeResultLikeOperand : public OpRewritePattern<SrcOp> {
public:
using OpRewritePattern<SrcOp>::OpRewritePattern;
LogicalResult matchAndRewrite(SrcOp op,
PatternRewriter &rewriter) const override {
llvm::SmallVector<Value> operands(op->getOperands());
Value input = operands[0];
auto inputType = dyn_cast_or_null<ValueTensorType>(input.getType());
if (!inputType || !inputType.hasDtype())
return failure();
auto qDtype = inputType.getDtype();
auto resultTy = dyn_cast_or_null<ValueTensorType>(op.getType());
if (!resultTy || !resultTy.hasDtype())
return failure();
Type resultETy = resultTy.getDtype();
if (!isa<mlir::FloatType>(resultETy))
return failure();
Value inputScale, inputZeroPoint;
Type definingOpInputType;
if (auto defining = input.template getDefiningOp<
Aten_MakePerTensorQuantizedTensorOp>()) {
inputScale = defining.getScale();
inputZeroPoint = defining.getZeroPoint();
definingOpInputType = defining.getSelf().getType();
}
auto inputIntReprType =
dyn_cast_or_null<ValueTensorType>(definingOpInputType);
if (!inputScale || !inputZeroPoint || !inputIntReprType ||
!inputIntReprType.hasDtype())
return failure();
auto intReprDtype = inputIntReprType.getDtype();
// set SrcOp type to use quantized dtype from input
auto newResultTy =
rewriter.getType<ValueTensorType>(resultTy.getOptionalSizes(), qDtype);
auto newResult = rewriter.create<SrcOp>(op.getLoc(), newResultTy, operands);
// int repr to get non quantized int type result
auto intReprTy = rewriter.getType<ValueTensorType>(
resultTy.getOptionalSizes(), intReprDtype);
auto intRepr =
rewriter.create<AtenIntReprOp>(op.getLoc(), intReprTy, newResult);
// requantize so the scale and zero-point info can be attached
auto quantTy =
rewriter.getType<ValueTensorType>(resultTy.getOptionalSizes(), qDtype);
auto quant = rewriter.create<Aten_MakePerTensorQuantizedTensorOp>(
op.getLoc(), quantTy, intRepr, inputScale, inputZeroPoint);
// dequant back to original dtype
auto dequant =
rewriter.create<AtenDequantizeTensorOp>(op.getLoc(), resultTy, quant);
rewriter.replaceOp(op, dequant);
return success();
}
};
template <typename SrcOp> class RemoveUnused : public OpRewritePattern<SrcOp> {
public:
using OpRewritePattern<SrcOp>::OpRewritePattern;
LogicalResult matchAndRewrite(SrcOp op,
PatternRewriter &rewriter) const override {
auto result = op.getResult();
if (result.use_empty()) {
op.erase();
return success();
}
return failure();
}
};
class FuseQuantizedOpsPass : public FuseQuantizedOpsBase<FuseQuantizedOpsPass> {
public:
void runOnOperation() override {
MLIRContext *context = &getContext();
RewritePatternSet patterns(context);
patterns.insert<
RemoveUnused<AtenDequantizeSelfOp>,
RemoveUnused<AtenDequantizeTensorOp>,
RemoveUnused<AtenQuantizePerTensorOp>,
RemoveUnused<Aten_MakePerTensorQuantizedTensorOp>,
RemoveUnused<AtenTransposeIntOp>, QuantizeOperands<AtenConvolutionOp>,
QuantizeOperands<AtenMatmulOp>, QuantizeOperands<AtenReluOp>,
QuantizeTransposedOperands<AtenMatmulOp>,
QuantizeAccumulator<AtenMatmulOp>, QuantizeOperands<AtenMmOp>,
QuantizeTransposedOperands<AtenMmOp>, QuantizeAccumulator<AtenMmOp>,
QuantizeResultLikeOperand<AtenReluOp>, QuantizeBias<AtenConvolutionOp>>(
context);
GreedyRewriteConfig config;
if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns),
config))) {
return signalPassFailure();
}
}
};
} // namespace
std::unique_ptr<OperationPass<func::FuncOp>>
mlir::torch::Torch::createFuseQuantizedOpsPass() {
return std::make_unique<FuseQuantizedOpsPass>();
}