torch-mlir/lib/Dialect/Torch/Transforms/RecomposeComplexOps.cpp

547 lines
22 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/Torch/Transforms/Passes.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
namespace {
// calculate: (a + b - 1) // b
// a/b's type should be !torch.int
Value getIntCeilDiv(PatternRewriter &rewriter, Location loc, Value a, Value b) {
Value cstOne =
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(1));
Value dividend = rewriter.create<AtenAddIntOp>(loc, a, b);
dividend = rewriter.create<AtenSubIntOp>(loc, dividend, cstOne);
Value result = rewriter.create<AtenFloordivIntOp>(loc, dividend, b);
return result;
}
} // namespace
namespace {
class RecomposeSliceCopy_ : public OpRewritePattern<AtenCopy_Op> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenCopy_Op op,
PatternRewriter &rewriter) const override {
// This pattern replaces the in-place mutation of a slice of a tensor with
// an `index_put` op. Since the slice of the tensor can have a different
// shape than the full tensor, this pattern requires the `copy_` op to not
// have users to avoid mismached types. This restriction can be removed by
// inserting another slice after the `index_put` that creates a tensor of
// the same shape as the operand to `copy_`.
if (!op.use_empty())
return rewriter.notifyMatchFailure(
op, "`AtenCopy_Op` must not have any users");
if (!op.getSelf().getDefiningOp() ||
!isa<AtenSliceTensorOp>(op.getSelf().getDefiningOp()))
return rewriter.notifyMatchFailure(
op, "defining op is not `AtenSliceTensorOp`");
auto sliceOp = cast<AtenSliceTensorOp>(op.getSelf().getDefiningOp());
// Get indices
int64_t dim;
if (!matchPattern(sliceOp.getDim(), m_TorchConstantInt(&dim)))
return failure();
int64_t end;
if (!matchPattern(sliceOp.getEnd(), m_TorchConstantInt(&end)))
return failure();
Value newStart = sliceOp.getStart();
Value newEnd = sliceOp.getEnd();
Value dimSize = rewriter.create<AtenSizeIntOp>(
op.getLoc(), sliceOp.getSelf(), sliceOp.getDim());
if (end < 0) {
newEnd =
rewriter.create<AtenAddIntOp>(op.getLoc(), dimSize, sliceOp.getEnd());
}
newStart = rewriter.create<PrimMinIntOp>(op.getLoc(), newStart, dimSize);
newEnd = rewriter.create<PrimMinIntOp>(op.getLoc(), newEnd, dimSize);
Value noneVal = rewriter.create<ConstantNoneOp>(op.getLoc());
Value falseVal = rewriter.create<ConstantBoolOp>(op.getLoc(), false);
// Create IndexPut_Op
BaseTensorType tensorType = cast<BaseTensorType>(op.getType());
Type rangeType = tensorType.getWithSizesAndDtype(
{kUnknownSize}, tensorType.getOptionalDtype());
Value range = rewriter.create<AtenArangeStartStepOp>(
op.getLoc(), rangeType, newStart, newEnd, sliceOp.getStep(),
/*dtype=*/noneVal, /*layout=*/noneVal, /*device=*/noneVal,
/*pin_memory=*/noneVal);
SmallVector<Value> indicesVector;
for (auto i = 0; i < dim; i++)
indicesVector.push_back(noneVal);
indicesVector.push_back(range);
Type indicesType = tensorType.getWithSizesAndDtype(
/*optionalSizes=*/std::nullopt, /*optionalDtype=*/nullptr);
Value indices = rewriter.create<PrimListConstructOp>(
op.getLoc(),
Torch::ListType::get(op->getContext(),
Torch::OptionalType::get(indicesType)),
indicesVector);
Value sliceOpInput = sliceOp.getSelf();
rewriter.replaceOpWithNewOp<Aten_IndexPutImpl_Op>(
op, sliceOpInput.getType(), sliceOpInput, indices, op.getSrc(),
/*accumulate=*/falseVal, /*unsafe=*/falseVal);
if (sliceOp->use_empty())
rewriter.eraseOp(sliceOp);
return success();
}
};
class RecomposeSelectFill_ : public OpRewritePattern<AtenFill_TensorOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenFill_TensorOp op,
PatternRewriter &rewriter) const override {
if (!op.getSelf().getDefiningOp() ||
!isa<AtenSelectIntOp>(op.getSelf().getDefiningOp()))
return failure();
auto selectOp = cast<AtenSelectIntOp>(op.getSelf().getDefiningOp());
// Get indices
int64_t dim;
if (!matchPattern(selectOp.getDim(), m_TorchConstantInt(&dim)))
return failure();
Value noneVal = rewriter.create<ConstantNoneOp>(op.getLoc());
Value falseVal = rewriter.create<ConstantBoolOp>(op.getLoc(), false);
// Create IndexPut_Op
// Convert indexNum to indexTensor for the selectOp
BaseTensorType selectOutTy = cast<BaseTensorType>(selectOp.getType());
SmallVector<int64_t> empty;
auto dtype = getTypeForTorchType(selectOp.getContext(),
selectOp.getIndex().getType());
Type emptyTensorType =
selectOutTy.getWithSizesAndDtype(llvm::ArrayRef(empty), dtype);
Value indexTensor = rewriter.create<PrimNumToTensorScalarOp>(
selectOp.getLoc(), emptyTensorType, selectOp.getIndex());
// Create indicesVector for IndexPut_Op by TorchNone and indexTensor
BaseTensorType tensorType = cast<BaseTensorType>(op->getResultTypes()[0]);
SmallVector<Value> indicesVector(dim, noneVal);
indicesVector.push_back(indexTensor);
Value indices = rewriter.create<PrimListConstructOp>(
op.getLoc(),
Torch::ListType::get(op->getContext(),
Torch::OptionalType::get(tensorType)),
indicesVector);
rewriter.replaceOpWithNewOp<Aten_IndexPutImpl_Op>(
op, op->getResultTypes(), selectOp.getSelf(), indices, op.getValue(),
/*accumulate=*/falseVal, /*unsafe=*/falseVal);
return success();
}
};
class RecomposeUnbindListUnpack : public OpRewritePattern<PrimListUnpackOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(PrimListUnpackOp op,
PatternRewriter &rewriter) const override {
// recompose AtenUnbindOp + PrimListUnpackOp to select.int
auto unbindOp = dyn_cast<AtenUnbindIntOp>(op.getOperand().getDefiningOp());
if (!unbindOp)
return rewriter.notifyMatchFailure(op, "Input is not AtenUnbindIntOp");
if (isListPotentiallyMutated(unbindOp.getResult()))
return rewriter.notifyMatchFailure(
op, "AtenUnbindIntOp result is potentially mutated");
Location loc = op.getLoc();
Value dim = unbindOp.getDim();
Value input = unbindOp.getSelf();
// add runtime.assert to check unbind's dim size == numResults
Value totalSize = rewriter.create<AtenSizeIntOp>(loc, input, dim);
Value cstNumResults = rewriter.create<ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(op.getNumResults()));
Value eqOrNot = rewriter.create<AtenEqIntOp>(loc, totalSize, cstNumResults);
rewriter.create<RuntimeAssertOp>(
loc, eqOrNot,
rewriter.getStringAttr("unbind's dim size should equal to "
"prim.list_unpack's num results"));
SmallVector<Value> slices;
for (size_t i = 0; i < op.getNumResults(); i++) {
// rewrite to select.int op
auto resultTy = op.getResult(i).getType();
auto index = rewriter.create<Torch::ConstantIntOp>(
op->getLoc(), rewriter.getI64IntegerAttr(i));
auto newSelect = rewriter.create<AtenSelectIntOp>(op->getLoc(), resultTy,
input, dim, index);
slices.push_back(newSelect);
}
rewriter.replaceOp(op, slices);
if (unbindOp.getResult().use_empty())
rewriter.eraseOp(unbindOp);
return success();
}
};
class RecomposeUnbindGetItem : public OpRewritePattern<Aten__Getitem__TOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(Aten__Getitem__TOp op,
PatternRewriter &rewriter) const override {
// recompose AtenUnbindIntOp + __getitem__t to select.int
auto unbind = dyn_cast<AtenUnbindIntOp>(op.getList().getDefiningOp());
if (!unbind)
return rewriter.notifyMatchFailure(op, "Input is not AtenUnbindIntOp");
if (isListPotentiallyMutated(unbind.getResult()))
return rewriter.notifyMatchFailure(
op, "AtenUnbindIntOp result is potentially mutated");
int64_t index;
if (!matchPattern(op.getIdx(), m_TorchConstantInt(&index)))
return rewriter.notifyMatchFailure(
op, "Expected `idx` of `Aten__Getitem__TOp` to be a constant int");
if (index < 0)
return rewriter.notifyMatchFailure(
op, "Expected `idx` of `Aten__Getitem__TOp` to be a positive int");
Location loc = op.getLoc();
Value dim = unbind.getDim();
Value input = unbind.getSelf();
// add runtime.assert to check: index
Value totalSize = rewriter.create<AtenSizeIntOp>(loc, input, dim);
Value ltOrNot = rewriter.create<AtenLtIntOp>(loc, op.getIdx(), totalSize);
rewriter.create<RuntimeAssertOp>(
loc, ltOrNot,
rewriter.getStringAttr("index should less than unbind's dim size"));
// rewrite to slice op
auto resultTy = op.getResult().getType();
Value newSelect = rewriter.create<AtenSelectIntOp>(loc, resultTy, input,
dim, op.getIdx());
rewriter.replaceOp(op, newSelect);
if (unbind.getResult().use_empty())
rewriter.eraseOp(unbind);
return success();
}
};
class RecomposeSplitTensorGetItemOp
: public OpRewritePattern<Aten__Getitem__TOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(Aten__Getitem__TOp op,
PatternRewriter &rewriter) const override {
// recompose AtenSplitTensorOp + __getitem__t to AtenSliceTensorOp
auto splitTensorOp =
dyn_cast<AtenSplitTensorOp>(op.getList().getDefiningOp());
if (!splitTensorOp)
return rewriter.notifyMatchFailure(op, "Input is not AtenSplitTensorOp");
if (isListPotentiallyMutated(splitTensorOp.getResult()))
return rewriter.notifyMatchFailure(
op, "SplitTensorOp result is potentially mutated");
int64_t index;
if (!matchPattern(op.getIdx(), m_TorchConstantInt(&index)))
return rewriter.notifyMatchFailure(
op, "Expected `idx` of `Aten__Getitem__TOp` to be a constant int");
if (index < 0)
return rewriter.notifyMatchFailure(
op, "Expected `idx` of `Aten__Getitem__TOp` to be a positive int");
int64_t splitSize;
if (!matchPattern(splitTensorOp.getSplitSize(),
m_TorchConstantInt(&splitSize)))
return rewriter.notifyMatchFailure(
op,
"Expected `SplitSize` of `AtenSplitTensorOp` to be a constant int");
Location loc = op.getLoc();
Value input = splitTensorOp.getSelf();
Value dim = splitTensorOp.getDim();
// add runtime.assert to check rank constraint: index < split_result_size
Value totalSize = rewriter.create<AtenSizeIntOp>(loc, input, dim);
Value splitResultSize =
getIntCeilDiv(rewriter, loc, totalSize, splitTensorOp.getSplitSize());
Value ltOrNot =
rewriter.create<AtenLtIntOp>(loc, op.getIdx(), splitResultSize);
rewriter.create<RuntimeAssertOp>(
loc, ltOrNot,
rewriter.getStringAttr("index should less than split_result_size"));
Value step =
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(1));
Value start = rewriter.create<ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(index * splitSize));
Value end = rewriter.create<ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(index * splitSize + splitSize));
Value sliceTensorOp = rewriter.create<AtenSliceTensorOp>(
loc, op.getResult().getType(), input, dim, start, end, step);
rewriter.replaceOp(op, sliceTensorOp);
if (splitTensorOp.getResult().use_empty())
rewriter.eraseOp(splitTensorOp);
return success();
}
};
class RecomposeSplitTensorListUnpack
: public OpRewritePattern<PrimListUnpackOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(PrimListUnpackOp op,
PatternRewriter &rewriter) const override {
// recompose AtenSplitTensorOp + PrimListUnpackOp to AtenSliceTensorOps
auto splitTensorOp =
dyn_cast<AtenSplitTensorOp>(op.getOperand().getDefiningOp());
if (!splitTensorOp)
return rewriter.notifyMatchFailure(op, "Input is not AtenSplitTensorOp");
if (isListPotentiallyMutated(splitTensorOp.getResult()))
return rewriter.notifyMatchFailure(
op, "SplitTensorOp result is potentially mutated");
int64_t splitSize;
if (!matchPattern(splitTensorOp.getSplitSize(),
m_TorchConstantInt(&splitSize)))
return rewriter.notifyMatchFailure(
op,
"Expected `SplitSize` of `AtenSplitTensorOp` to be a constant int");
Location loc = op.getLoc();
Value input = splitTensorOp.getSelf();
Value dim = splitTensorOp.getDim();
// add runtime.assert to check rank constraint
Value totalSize = rewriter.create<AtenSizeIntOp>(loc, input, dim);
Value cstNumResults = rewriter.create<ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(op.getNumResults()));
Value cstOne =
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(1));
// assert: numResults == floordiv(totalSize + splitSize - 1, splitSize)
Value splitResultSize =
getIntCeilDiv(rewriter, loc, totalSize, splitTensorOp.getSplitSize());
Value eqOrNot =
rewriter.create<AtenEqIntOp>(loc, splitResultSize, cstNumResults);
rewriter.create<RuntimeAssertOp>(
loc, eqOrNot,
rewriter.getStringAttr("numResults should equal to floordiv(totalSize "
"+ splitSize - 1, splitSize)"));
SmallVector<Value> slices;
for (size_t i = 0; i < op.getNumResults(); i++) {
auto resultTy = op.getResult(i).getType();
auto start = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(i * splitSize));
auto end = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr((i + 1) * splitSize));
Value sliceTensorOp = rewriter.create<AtenSliceTensorOp>(
loc, resultTy, input, dim, start, end, /*step=*/cstOne);
slices.push_back(sliceTensorOp);
}
rewriter.replaceOp(op, slices);
// erase splitTensorOp if no user left
if (splitTensorOp.getResult().use_empty())
rewriter.eraseOp(splitTensorOp);
return success();
}
};
class RecomposeSplitWithSizesListUnpack
: public OpRewritePattern<PrimListUnpackOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(PrimListUnpackOp op,
PatternRewriter &rewriter) const override {
// recompose AtenSplitWithSizesOp + PrimListUnpackOp to AtenSliceTensorOps
auto splitOp =
dyn_cast<AtenSplitWithSizesOp>(op.getOperand().getDefiningOp());
if (!splitOp) {
return rewriter.notifyMatchFailure(op,
"Input is not AtenSplitWithSizesOp");
}
if (isListPotentiallyMutated(splitOp.getResult())) {
return rewriter.notifyMatchFailure(
op, "splitWithSizesOp result is potentially mutated");
}
if (isListPotentiallyMutated(splitOp.getSplitSizes())) {
return rewriter.notifyMatchFailure(
op, "splitWithSizesOp's split_sizes is potentially mutated");
}
auto splitSizesConstruct =
splitOp.getSplitSizes().getDefiningOp<Torch::PrimListConstructOp>();
if (!splitSizesConstruct) {
return rewriter.notifyMatchFailure(
op, "split_sizes is not from PrimListConstructOp");
}
int64_t sumSplitSize = 0;
SmallVector<int64_t> splitSizes;
for (auto operand : splitSizesConstruct.getOperands()) {
int64_t value = -1;
// TODO: support when split_sizes are not constant int
if (!matchPattern(operand, m_TorchConstantInt(&value))) {
return rewriter.notifyMatchFailure(
op, "one of split_sizes is not constant int");
}
if (value < 0) {
return rewriter.notifyMatchFailure(op, "all of split_sizes must > 0");
}
sumSplitSize += value;
splitSizes.push_back(value);
}
if (splitSizes.size() != op.getNumResults()) {
return rewriter.notifyMatchFailure(
op, "split_sizes must be same as splitOp result size");
}
Location loc = op.getLoc();
Value input = splitOp.getSelf();
Value dim = splitOp.getDim();
// add runtime.assert to check rank constraint
Value totalSize = rewriter.create<AtenSizeIntOp>(loc, input, dim);
Value cstSumSplitSize = rewriter.create<ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(sumSplitSize));
Value eqOrNot =
rewriter.create<AtenEqIntOp>(loc, totalSize, cstSumSplitSize);
rewriter.create<RuntimeAssertOp>(
loc, eqOrNot,
rewriter.getStringAttr("split dim must be sum of split_sizes"));
// calculate slice op's lower bound and up bound
SmallVector<int64_t> boundaryOfSliceOp(splitSizes.size() + 1, 0);
for (size_t i = 1; i < boundaryOfSliceOp.size(); i++) {
boundaryOfSliceOp[i] = boundaryOfSliceOp[i - 1] + splitSizes[i - 1];
}
SmallVector<Value> slices;
Value cstOne =
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(1));
for (size_t i = 0; i < op.getNumResults(); i++) {
auto resultTy = op.getResult(i).getType();
auto start = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(boundaryOfSliceOp[i]));
auto end = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr((boundaryOfSliceOp[i + 1])));
Value sliceTensorOp = rewriter.create<AtenSliceTensorOp>(
loc, resultTy, input, dim, start, end, /*step=*/cstOne);
slices.push_back(sliceTensorOp);
}
rewriter.replaceOp(op, slices);
// erase splitOp if no user left
if (splitOp.getResult().use_empty())
rewriter.eraseOp(splitOp);
return success();
}
};
class RecomposeChunkListUnpack : public OpRewritePattern<PrimListUnpackOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(PrimListUnpackOp op,
PatternRewriter &rewriter) const override {
// recompose AtenChunkOp + PrimListUnpackOp to AtenSliceTensorOps
auto chunkOp = dyn_cast<AtenChunkOp>(op.getOperand().getDefiningOp());
if (!chunkOp)
return rewriter.notifyMatchFailure(op, "Input is not AtenChunkOp");
if (isListPotentiallyMutated(chunkOp.getResult()))
return rewriter.notifyMatchFailure(
op, "AtenChunkOp result is potentially mutated");
Value dim = chunkOp.getDim();
Value input = chunkOp.getSelf();
Value chunks = chunkOp.getChunks();
Location loc = chunkOp.getLoc();
Value totalSize = rewriter.create<Torch::AtenSizeIntOp>(loc, input, dim);
// chunkSize = floordiv(totalSize + chunks - 1, chunks)
Value chunkSize = getIntCeilDiv(rewriter, loc, totalSize, chunks);
// add runtime.assert to check chunks == NumResults
Value cstNumResults = rewriter.create<ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(op.getNumResults()));
Value eqOrNot = rewriter.create<AtenEqIntOp>(loc, chunks, cstNumResults);
rewriter.create<RuntimeAssertOp>(
loc, eqOrNot,
rewriter.getStringAttr(
"chunks should equal to prim.list_unpack's num results"));
Value cstOne =
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(1));
SmallVector<Value> slices;
for (size_t i = 0; i < op.getNumResults(); i++) {
// rewrite to slice op with
// start = chunkSize * i,
// end = lastIndex ? totalSize : chunkSize * (i+1)
auto resultTy = op.getResult(i).getType();
auto index = rewriter.create<Torch::ConstantIntOp>(
op->getLoc(), rewriter.getI64IntegerAttr(i));
auto start = rewriter.create<AtenMulIntOp>(loc, index, chunkSize);
Value end;
if (i == op.getNumResults() - 1) {
end = totalSize;
} else {
auto nextIdx = rewriter.create<AtenAddIntOp>(loc, index, cstOne);
end = rewriter.create<AtenMulIntOp>(loc, nextIdx, chunkSize);
}
Value sliceTensorOp = rewriter.create<AtenSliceTensorOp>(
loc, resultTy, input, dim, start, end, /*step=*/cstOne);
slices.push_back(sliceTensorOp);
}
rewriter.replaceOp(op, slices);
// erase chunkOp if no user left
if (chunkOp.getResult().use_empty())
rewriter.eraseOp(chunkOp);
return success();
}
};
} // namespace
namespace {
class RecomposeComplexOpsPass
: public RecomposeComplexOpsBase<RecomposeComplexOpsPass> {
public:
void runOnOperation() override {
MLIRContext *context = &getContext();
RewritePatternSet patterns(context);
// pattern.add calls go here
patterns.add<RecomposeSliceCopy_>(context);
patterns.add<RecomposeSelectFill_>(context);
patterns.add<RecomposeSplitTensorGetItemOp>(context);
patterns.add<RecomposeSplitTensorListUnpack>(context);
patterns.add<RecomposeSplitWithSizesListUnpack>(context);
patterns.add<RecomposeUnbindListUnpack>(context);
patterns.add<RecomposeUnbindGetItem>(context);
patterns.add<RecomposeChunkListUnpack>(context);
GreedyRewriteConfig config;
config.useTopDownTraversal = true;
config.maxIterations = GreedyRewriteConfig::kNoLimit;
if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns),
config))) {
return signalPassFailure();
}
}
};
} // namespace
std::unique_ptr<OperationPass<func::FuncOp>>
mlir::torch::Torch::createRecomposeComplexOpsPass() {
return std::make_unique<RecomposeComplexOpsPass>();
}