..
arange.py
[MLIR][TORCH] Add E2E support for torch.arange op
2021-12-27 22:45:48 +05:30
argmax.py
add argmax lowering
2021-10-13 14:31:16 -04:00
backprop.py
Add e2e test for aten.log_softmax_back_data op
2021-11-19 00:08:28 +05:30
basic.py
[LINALG] Add decomposition of `aten.dropout` op
2022-03-22 13:14:49 +05:30
cast.py
[LINALG] Add E2E support for `aten.[Bool.Tensor|Float.Tensor]` op
2022-02-14 23:09:20 +05:30
constant_alloc.py
[MLIR][TORCH] Add E2E support for aten.full_like op
2022-03-04 21:58:23 +05:30
conv.py
Refine static shapes for conv2d and maxpool2d
2022-01-03 11:09:23 -06:00
elementwise.py
[MLIR][TORCH] Add E2E support for aten.erf op.
2022-03-09 22:22:03 +05:30
elementwise_comparison.py
[LINALG] Add E2E support for `aten.[le|ge].Scalar` ops
2022-02-15 12:21:09 +05:30
histogram_binning_calibration.py
Adding an e2e test for histogram binning calibration
2022-01-25 18:27:20 -05:00
index_put.py
[MLIR][TORCH] Add E2E support for aten.index_put op
2022-03-16 22:02:02 +05:30
index_select.py
[MLIR][TORCH] Add E2E support for aten.index_select op
2021-12-09 23:13:36 +05:30
main.py
This PR implements an eager mode backend for PyTorch through the torch-mlir framework. This is accomplished by overriding the `__torch_dispatch__` class method on wrapper subclass `TorchMLIRTensor(torch.Tensor)`.
2022-03-22 14:42:57 -07:00
matmul.py
Add lowering of aten.matmul op.
2021-10-26 12:45:09 -04:00
mlp.py
Support aten::linear with rank 3 inputs
2021-11-18 22:15:04 +05:30
nll_loss.py
Add `reduction` support to `torch.nll_loss_forward` ( #624 )
2022-02-28 11:01:23 -08:00
norm_like.py
[TORCH][MLIR] Fix the return types of `aten.native_layer_norm`.
2022-03-17 12:08:32 +05:30
quantized_models.py
Dual license the torch-mlir project.
2021-10-01 10:46:08 -07:00
reduction.py
[MLIR][TORCH]Add support for integer-type inputs for sum and max op
2022-03-08 22:52:34 +05:30
reshape_like.py
[LINALG] Add handling of unknown dimension in size list of `view` op ( #633 )
2022-03-02 13:35:01 -08:00
rng.py
This PR implements an eager mode backend for PyTorch through the torch-mlir framework. This is accomplished by overriding the `__torch_dispatch__` class method on wrapper subclass `TorchMLIRTensor(torch.Tensor)`.
2022-03-22 14:42:57 -07:00
scalar.py
[LINALG] Add decomposition of `aten.dropout` op
2022-03-22 13:14:49 +05:30
scalar_comparison.py
[LINALG] Add E2E support for `aten.eq.int` op
2022-02-15 01:37:35 +05:30
slice_like.py
Introduce new shape library design.
2022-03-15 12:41:58 -07:00
squeeze.py
Introduce new shape library design.
2022-03-15 12:41:58 -07:00
table_batch_embedding.py
[TBE] Add a test module for table batch embedding
2022-01-28 02:24:28 +05:30
threshold.py
[tosa] Support for some ops and fix for Issue #532 ( #575 )
2022-02-11 12:30:02 -08:00
type_conversion.py
Convert bool to float or integer type.
2022-02-07 21:22:22 +05:30
type_promotion.py
Add scalar type promotion for mul and div ( #454 )
2021-12-03 13:51:25 -06:00
vision_models.py
Add aten.hardtanh e2e support.
2022-03-02 12:28:06 -05:00
xfail_sets.py
This PR implements an eager mode backend for PyTorch through the torch-mlir framework. This is accomplished by overriding the `__torch_dispatch__` class method on wrapper subclass `TorchMLIRTensor(torch.Tensor)`.
2022-03-22 14:42:57 -07:00