kubernetes-handbook/concepts/service.md

1088 lines
49 KiB
Markdown
Raw Normal View History

<!--
Kubernetes [`Pods`](/docs/user-guide/pods) are mortal. They are born and when they die, they
are not resurrected. [`ReplicationControllers`](/docs/user-guide/replication-controller) in
particular create and destroy `Pods` dynamically (e.g. when scaling up or down
or when doing [rolling updates](/docs/user-guide/kubectl/v1.7/#rolling-update)). While each `Pod` gets its own IP address, even
those IP addresses cannot be relied upon to be stable over time. This leads to
a problem: if some set of `Pods` (let's call them backends) provides
functionality to other `Pods` (let's call them frontends) inside the Kubernetes
cluster, how do those frontends find out and keep track of which backends are
in that set?
-->
Kubernetes [`Pod`](https://kubernetes.io/docs/user-guide/pods) 是有生命周期的,它们可以被创建,也可以被销毁,然而一旦被销毁生命就永远结束。
通过 [`ReplicationController`](https://kubernetes.io/docs/user-guide/replication-controller) 能够动态地创建和销毁 `Pod`(例如,需要进行扩缩容,或者执行 [滚动升级](https://kubernetes.io/docs/user-guide/kubectl/v1.7/#rolling-update))。
每个 `Pod` 都会获取它自己的 IP 地址,即使这些 IP 地址不总是稳定可依赖的。
这会导致一个问题:在 Kubernetes 集群中,如果一组 `Pod`(称为 backend为其它 `Pod` (称为 frontend提供服务那么那些 frontend 该如何发现,并连接到这组 `Pod` 中的哪些 backend 呢?
<!--
Enter `Services`.
-->
关于 `Service`
<!--
A Kubernetes `Service` is an abstraction which defines a logical set of `Pods`
and a policy by which to access them - sometimes called a micro-service. The
set of `Pods` targeted by a `Service` is (usually) determined by a [`Label
Selector`](/docs/concepts/overview/working-with-objects/labels/#label-selectors) (see below for why you might want a
`Service` without a selector).
-->
Kubernetes `Service` 定义了这样一种抽象:一个 `Pod` 的逻辑分组,一种可以访问它们的策略 —— 通常称为微服务。
这一组 `Pod` 能够被 `Service` 访问到,通常是通过 [`Label Selector`](https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors)(查看下面了解,为什么可能需要没有 selector 的 `Service`)实现的。
<!--
As an example, consider an image-processing backend which is running with 3
replicas. Those replicas are fungible - frontends do not care which backend
they use. While the actual `Pods` that compose the backend set may change, the
frontend clients should not need to be aware of that or keep track of the list
of backends themselves. The `Service` abstraction enables this decoupling.
-->
举个例子,考虑一个图片处理 backend它运行了3个副本。这些副本是可互换的 —— frontend 不需要关心它们调用了哪个 backend 副本。
然而组成这一组 backend 程序的 `Pod` 实际上可能会发生变化frontend 客户端不应该也没必要知道,而且也不需要跟踪这一组 backend 的状态。
`Service` 定义的抽象能够解耦这种关联。
<!--
For Kubernetes-native applications, Kubernetes offers a simple `Endpoints` API
that is updated whenever the set of `Pods` in a `Service` changes. For
non-native applications, Kubernetes offers a virtual-IP-based bridge to Services
which redirects to the backend `Pods`.
-->
对 Kubernetes 集群中的应用Kubernetes 提供了简单的 `Endpoints` API只要 `Service` 中的一组 `Pod` 发生变更,应用程序就会被更新。
对非 Kubernetes 集群中的应用Kubernetes 提供了基于 VIP 的网桥的方式访问 `Service`,再由 `Service` 重定向到 backend `Pod`
* TOC
{:toc}
<!--
## Defining a service
-->
## 定义 Service
<!--
A `Service` in Kubernetes is a REST object, similar to a `Pod`. Like all of the
REST objects, a `Service` definition can be POSTed to the apiserver to create a
new instance. For example, suppose you have a set of `Pods` that each expose
port 9376 and carry a label `"app=MyApp"`.
-->
一个 `Service` 在 Kubernetes 中是一个 REST 对象,和 `Pod` 类似。
像所有的 REST 对象一样, `Service` 定义可以基于 POST 方式,请求 apiserver 创建新的实例。
例如,假定有一组 `Pod`,它们对外暴露了 9376 端口,同时还被打上 `"app=MyApp"` 标签。
```yaml
kind: Service
apiVersion: v1
metadata:
name: my-service
spec:
selector:
app: MyApp
ports:
- protocol: TCP
port: 80
targetPort: 9376
```
<!--
This specification will create a new `Service` object named "my-service" which
targets TCP port 9376 on any `Pod` with the `"app=MyApp"` label. This `Service`
will also be assigned an IP address (sometimes called the "cluster IP"), which
is used by the service proxies (see below). The `Service`'s selector will be
evaluated continuously and the results will be POSTed to an `Endpoints` object
also named "my-service".
-->
上述配置将创建一个名称为 “my-service” 的 `Service` 对象,它会将请求代理到使用 TCP 端口 9376并且具有标签 `"app=MyApp"``Pod` 上。
这个 `Service` 将被指派一个 IP 地址(通常称为 “Cluster IP”它会被服务的代理使用见下面
`Service` 的 selector 将会持续评估,处理结果将被 POST 到一个名称为 “my-service” 的 `Endpoints` 对象上。
<!--
Note that a `Service` can map an incoming port to any `targetPort`. By default
the `targetPort` will be set to the same value as the `port` field. Perhaps
more interesting is that `targetPort` can be a string, referring to the name of
a port in the backend `Pods`. The actual port number assigned to that name can
be different in each backend `Pod`. This offers a lot of flexibility for
deploying and evolving your `Services`. For example, you can change the port
number that pods expose in the next version of your backend software, without
breaking clients.
-->
需要注意的是, `Service` 能够将一个接收端口映射到任意的 `targetPort`
默认情况下,`targetPort` 将被设置为与 `port` 字段相同的值。
可能更有趣的是,`targetPort` 可以是一个字符串,引用了 backend `Pod` 的一个端口的名称。
但是,实际指派给该端口名称的端口号,在每个 backend `Pod` 中可能并不相同。
对于部署和设计 `Service` ,这种方式会提供更大的灵活性。
例如,可以在 backend 软件下一个版本中,修改 Pod 暴露的端口,并不会中断客户端的调用。
<!--
Kubernetes `Services` support `TCP` and `UDP` for protocols. The default
is `TCP`.
-->
Kubernetes `Service` 能够支持 `TCP``UDP` 协议,默认 `TCP` 协议。
<!--
### Services without selectors
-->
### 没有 selector 的 Service
<!--
Services generally abstract access to Kubernetes `Pods`, but they can also
abstract other kinds of backends. For example:
* You want to have an external database cluster in production, but in test
you use your own databases.
* You want to point your service to a service in another
[`Namespace`](/docs/user-guide/namespaces) or on another cluster.
* You are migrating your workload to Kubernetes and some of your backends run
outside of Kubernetes.
In any of these scenarios you can define a service without a selector:
-->
Servcie 抽象了该如何访问 Kubernetes `Pod`,但也能够抽象其它类型的 backend例如
* 希望在生产环境中使用外部的数据库集群,但测试环境使用自己的数据库。
* 希望服务指向另一个 [`Namespace`](https://kubernetes.io/docs/user-guide/namespaces) 中或其它集群中的服务。
* 正在将工作负载转移到 Kubernetes 集群,和运行在 Kubernetes 集群之外的 backend。
在任何这些场景中,都能够定义没有 selector 的 `Service`
```yaml
kind: Service
apiVersion: v1
metadata:
name: my-service
spec:
ports:
- protocol: TCP
port: 80
targetPort: 9376
```
<!--
Because this service has no selector, the corresponding `Endpoints` object will not be
created. You can manually map the service to your own specific endpoints:
-->
由于这个 `Service` 没有 selector就不会创建相关的 `Endpoints` 对象。可以手动将 `Service` 映射到指定的 `Endpoints`
```yaml
kind: Endpoints
apiVersion: v1
metadata:
name: my-service
subsets:
- addresses:
- ip: 1.2.3.4
ports:
- port: 9376
```
<!--
NOTE: Endpoint IPs may not be loopback (127.0.0.0/8), link-local
(169.254.0.0/16), or link-local multicast (224.0.0.0/24).
-->
注意Endpoint IP 地址不能是 loopback127.0.0.0/8、 link-local169.254.0.0/16、或者 link-local 多播224.0.0.0/24
<!--
Accessing a `Service` without a selector works the same as if it had selector.
The traffic will be routed to endpoints defined by the user (`1.2.3.4:9376` in
this example).
-->
访问没有 selector 的 `Service`,与有 selector 的 `Service` 的原理相同。请求将被路由到用户定义的 Endpoint该示例中为 `1.2.3.4:9376`)。
<!--
An ExternalName service is a special case of service that does not have
selectors. It does not define any ports or endpoints. Rather, it serves as a
way to return an alias to an external service residing outside the cluster.
-->
ExternalName `Service``Service` 的特例,它没有 selector也没有定义任何的端口和 Endpoint。
相反地,对于运行在集群外部的服务,它通过返回该外部服务的别名这种方式来提供服务。
```yaml
kind: Service
apiVersion: v1
metadata:
name: my-service
namespace: prod
spec:
type: ExternalName
externalName: my.database.example.com
```
<!--
When looking up the host `my-service.prod.svc.CLUSTER`, the cluster DNS service
will return a `CNAME` record with the value `my.database.example.com`. Accessing
such a service works in the same way as others, with the only difference that
the redirection happens at the DNS level and no proxying or forwarding occurs.
Should you later decide to move your database into your cluster, you can start
its pods, add appropriate selectors or endpoints and change the service `type`.
-->
当查询主机 `my-service.prod.svc.CLUSTER`时,集群的 DNS 服务将返回一个值为 `my.database.example.com``CNAME` 记录。
访问这个服务的工作方式与其它的相同,唯一不同的是重定向发生在 DNS 层,而且不会进行代理或转发。
如果后续决定要将数据库迁移到 Kubernetes 集群中,可以启动对应的 Pod增加合适的 Selector 或 Endpoint修改 `Service``type`
<!--
## Virtual IPs and service proxies
-->
## VIP 和 Service 代理
<!--
Every node in a Kubernetes cluster runs a `kube-proxy`. `kube-proxy` is
responsible for implementing a form of virtual IP for `Services` of type other
than `ExternalName`.
In Kubernetes v1.0 the proxy was purely in userspace. In Kubernetes v1.1 an
iptables proxy was added, but was not the default operating mode. Since
Kubernetes v1.2, the iptables proxy is the default.
-->
在 Kubernetes 集群中,每个 Node 运行一个 `kube-proxy` 进程。`kube-proxy` 负责为 `Service` 实现了一种 VIP虚拟 IP的形式而不是 `ExternalName` 的形式。
在 Kubernetes v1.0 版本,代理完全在 userspace。在 Kubernetes v1.1 版本,新增了 iptables 代理,但并不是默认的运行模式。
从 Kubernetes v1.2 起,默认就是 iptables 代理。
<!--
As of Kubernetes v1.0, `Services` are a "layer 4" (TCP/UDP over IP) construct.
In Kubernetes v1.1 the `Ingress` API was added (beta) to represent "layer 7"
(HTTP) services.
-->
在 Kubernetes v1.0 版本,`Service` 是 “4层”TCP/UDP over IP概念。
在 Kubernetes v1.1 版本,新增了 `Ingress` APIbeta 版),用来表示 “7层”HTTP服务。
<!--
### Proxy-mode: userspace
-->
### userspace 代理模式
<!--
In this mode, kube-proxy watches the Kubernetes master for the addition and
removal of `Service` and `Endpoints` objects. For each `Service` it opens a
port (randomly chosen) on the local node. Any connections to this "proxy port"
will be proxied to one of the `Service`'s backend `Pods` (as reported in
`Endpoints`). Which backend `Pod` to use is decided based on the
`SessionAffinity` of the `Service`. Lastly, it installs iptables rules which
capture traffic to the `Service`'s `clusterIP` (which is virtual) and `Port`
and redirects that traffic to the proxy port which proxies the backend `Pod`.
-->
这种模式kube-proxy 会监视 Kubernetes master 对 `Service` 对象和 `Endpoints` 对象的添加和移除。
对每个 `Service`,它会在本地 Node 上打开一个端口(随机选择)。
任何连接到“代理端口”的请求,都会被代理到 `Service` 的backend `Pods` 中的某个上面(如 `Endpoints` 所报告的一样)。
使用哪个 backend `Pod`,是基于 `Service``SessionAffinity` 来确定的。
最后,它安装 iptables 规则,捕获到达该 `Service``clusterIP`(是虚拟 IP`Port` 的请求,并重定向到代理端口,代理端口再代理请求到 backend `Pod`
<!--
The net result is that any traffic bound for the `Service`'s IP:Port is proxied
to an appropriate backend without the clients knowing anything about Kubernetes
or `Services` or `Pods`.
-->
网络返回的结果是,任何到达 `Service` 的 IP:Port 的请求,都会被代理到一个合适的 backend不需要客户端知道关于 Kubernetes、`Service`、或 `Pod` 的任何信息。
<!--
By default, the choice of backend is round robin. Client-IP based session affinity
can be selected by setting `service.spec.sessionAffinity` to `"ClientIP"` (the
default is `"None"`).
-->
默认的策略是,通过 round-robin 算法来选择 backend `Pod`
实现基于客户端 IP 的会话亲和性,可以通过设置 `service.spec.sessionAffinity` 的值为 `"ClientIP"` (默认值为 `"None"`)。
<!--
![Services overview diagram for userspace proxy](/images/docs/services-userspace-overview.svg)
-->
![userspace代理模式下Service概览图](https://d33wubrfki0l68.cloudfront.net/b8e1022c2dd815d8dd36b1bc4f0cc3ad870a924f/1dd12/images/docs/services-userspace-overview.svg)
<!--
### Proxy-mode: iptables
-->
### iptables 代理模式
<!--
In this mode, kube-proxy watches the Kubernetes master for the addition and
removal of `Service` and `Endpoints` objects. For each `Service` it installs
iptables rules which capture traffic to the `Service`'s `clusterIP` (which is
virtual) and `Port` and redirects that traffic to one of the `Service`'s
backend sets. For each `Endpoints` object it installs iptables rules which
select a backend `Pod`.
-->
这种模式kube-proxy 会监视 Kubernetes master 对 `Service` 对象和 `Endpoints` 对象的添加和移除。
对每个 `Service`,它会安装 iptables 规则,从而捕获到达该 `Service``clusterIP`(虚拟 IP和端口的请求进而将请求重定向到 `Service` 的一组 backend 中的某个上面。
对于每个 `Endpoints` 对象,它也会安装 iptables 规则,这个规则会选择一个 backend `Pod`
<!--
By default, the choice of backend is random. Client-IP based session affinity
can be selected by setting `service.spec.sessionAffinity` to `"ClientIP"` (the
default is `"None"`).
-->
默认的策略是,随机选择一个 backend。
实现基于客户端 IP 的会话亲和性,可以将 `service.spec.sessionAffinity` 的值设置为 `"ClientIP"` (默认值为 `"None"`)。
<!--
As with the userspace proxy, the net result is that any traffic bound for the
`Service`'s IP:Port is proxied to an appropriate backend without the clients
knowing anything about Kubernetes or `Services` or `Pods`. This should be
faster and more reliable than the userspace proxy. However, unlike the
userspace proxier, the iptables proxier cannot automatically retry another
`Pod` if the one it initially selects does not respond, so it depends on
having working [readiness probes](/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/#defining-readiness-probes).
-->
和 userspace 代理类似,网络返回的结果是,任何到达 `Service` 的 IP:Port 的请求,都会被代理到一个合适的 backend不需要客户端知道关于 Kubernetes、`Service`、或 `Pod` 的任何信息。
这应该比 userspace 代理更快、更可靠。然而,不像 userspace 代理,如果初始选择的 `Pod` 没有响应iptables 代理能够自动地重试另一个 `Pod`,所以它需要依赖 [readiness probes](https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/#defining-readiness-probes)。
<!--
![Services overview diagram for iptables proxy](/images/docs/services-iptables-overview.svg)
-->
![iptables代理模式下Service概览图](https://d33wubrfki0l68.cloudfront.net/837afa5715eb31fb9ca6516ec6863e810f437264/42951/images/docs/services-iptables-overview.svg)
<!--
## Multi-Port Services
-->
## 多端口 Service
<!--
Many `Services` need to expose more than one port. For this case, Kubernetes
supports multiple port definitions on a `Service` object. When using multiple
ports you must give all of your ports names, so that endpoints can be
disambiguated. For example:
-->
很多 `Service` 需要暴露多个端口。对于这种情况Kubernetes 支持在 `Service` 对象中定义多个端口。
当使用多个端口时,必须给出所有的端口的名称,这样 Endpoint 就不会产生歧义,例如:
```yaml
kind: Service
apiVersion: v1
metadata:
name: my-service
spec:
selector:
app: MyApp
ports:
- name: http
protocol: TCP
port: 80
targetPort: 9376
- name: https
protocol: TCP
port: 443
targetPort: 9377
```
<!--
## Choosing your own IP address
-->
## 选择自己的 IP 地址
<!--
You can specify your own cluster IP address as part of a `Service` creation
request. To do this, set the `spec.clusterIP` field. For example, if you
already have an existing DNS entry that you wish to replace, or legacy systems
that are configured for a specific IP address and difficult to re-configure.
The IP address that a user chooses must be a valid IP address and within the
`service-cluster-ip-range` CIDR range that is specified by flag to the API
server. If the IP address value is invalid, the apiserver returns a 422 HTTP
status code to indicate that the value is invalid.
-->
`Service` 创建的请求中,可以通过设置 `spec.clusterIP` 字段来指定自己的集群 IP 地址。
比如,希望替换一个已经已存在的 DNS 条目,或者遗留系统已经配置了一个固定的 IP 且很难重新配置。
用户选择的 IP 地址必须合法,并且这个 IP 地址在 `service-cluster-ip-range` CIDR 范围内,这对 API Server 来说是通过一个标识来指定的。
如果 IP 地址不合法API Server 会返回 HTTP 状态码 422表示值不合法。
<!--
### Why not use round-robin DNS?
-->
### 为何不使用 round-robin DNS
<!--
A question that pops up every now and then is why we do all this stuff with
virtual IPs rather than just use standard round-robin DNS. There are a few
reasons:
* There is a long history of DNS libraries not respecting DNS TTLs and
caching the results of name lookups.
* Many apps do DNS lookups once and cache the results.
* Even if apps and libraries did proper re-resolution, the load of every
client re-resolving DNS over and over would be difficult to manage.
We try to discourage users from doing things that hurt themselves. That said,
if enough people ask for this, we may implement it as an alternative.
-->
一个不时出现的问题是,为什么我们都使用 VIP 的方式,而不使用标准的 round-robin DNS有如下几个原因
* 长久以来DNS 库都没能认真对待 DNS TTL、缓存域名查询结果
* 很多应用只查询一次 DNS 并缓存了结果
* 就算应用和库能够正确查询解析,每个客户端反复重解析造成的负载也是非常难以管理的
我们尽力阻止用户做那些对他们没有好处的事情,如果很多人都来问这个问题,我们可能会选择实现它。
<!--
## Discovering services
-->
## 服务发现
<!--
Kubernetes supports 2 primary modes of finding a `Service` - environment
variables and DNS.
-->
Kubernetes 支持2种基本的服务发现模式 —— 环境变量和 DNS。
<!--
### Environment variables
-->
### 环境变量
<!--
When a `Pod` is run on a `Node`, the kubelet adds a set of environment variables
for each active `Service`. It supports both [Docker links
compatible](https://docs.docker.com/userguide/dockerlinks/) variables (see
[makeLinkVariables](http://releases.k8s.io/{{page.githubbranch}}/pkg/kubelet/envvars/envvars.go#L49))
and simpler `{SVCNAME}_SERVICE_HOST` and `{SVCNAME}_SERVICE_PORT` variables,
where the Service name is upper-cased and dashes are converted to underscores.
-->
`Pod` 运行在 `Node`kubelet 会为每个活跃的 `Service` 添加一组环境变量。
它同时支持 [Docker links兼容](https://docs.docker.com/userguide/dockerlinks/) 变量(查看 [makeLinkVariables](http://releases.k8s.io/{{page.githubbranch}}/pkg/kubelet/envvars/envvars.go#L49))、简单的 `{SVCNAME}_SERVICE_HOST``{SVCNAME}_SERVICE_PORT` 变量,这里 `Service` 的名称需大写,横线被转换成下划线。
<!--
For example, the Service `"redis-master"` which exposes TCP port 6379 and has been
allocated cluster IP address 10.0.0.11 produces the following environment
variables:
-->
举个例子,一个名称为 `"redis-master"` 的 Service 暴露了 TCP 端口 6379同时给它分配了 Cluster IP 地址 10.0.0.11,这个 Service 生成了如下环境变量:
```shell
REDIS_MASTER_SERVICE_HOST=10.0.0.11
REDIS_MASTER_SERVICE_PORT=6379
REDIS_MASTER_PORT=tcp://10.0.0.11:6379
REDIS_MASTER_PORT_6379_TCP=tcp://10.0.0.11:6379
REDIS_MASTER_PORT_6379_TCP_PROTO=tcp
REDIS_MASTER_PORT_6379_TCP_PORT=6379
REDIS_MASTER_PORT_6379_TCP_ADDR=10.0.0.11
```
<!--
*This does imply an ordering requirement* - any `Service` that a `Pod` wants to
access must be created before the `Pod` itself, or else the environment
variables will not be populated. DNS does not have this restriction.
-->
*这意味着需要有顺序的要求* —— `Pod` 想要访问的任何 `Service` 必须在 `Pod` 自己之前被创建否则这些环境变量就不会被赋值。DNS 并没有这个限制。
### DNS
<!--
An optional (though strongly recommended) [cluster
add-on](http://releases.k8s.io/{{page.githubbranch}}/cluster/addons/README.md) is a DNS server. The
DNS server watches the Kubernetes API for new `Services` and creates a set of
DNS records for each. If DNS has been enabled throughout the cluster then all
`Pods` should be able to do name resolution of `Services` automatically.
-->
一个可选(尽管强烈推荐)[集群插件](http://releases.k8s.io/master/cluster/addons/README.md) 是 DNS 服务器。
DNS 服务器监视着创建新 `Service` 的 Kubernetes API从而为每一个 `Service` 创建一组 DNS 记录。
如果整个集群的 DNS 一直被启用,那么所有的 `Pod` 应该能够自动对 `Service` 进行名称解析。
<!--
For example, if you have a `Service` called `"my-service"` in Kubernetes
`Namespace` `"my-ns"` a DNS record for `"my-service.my-ns"` is created. `Pods`
which exist in the `"my-ns"` `Namespace` should be able to find it by simply doing
a name lookup for `"my-service"`. `Pods` which exist in other `Namespaces` must
qualify the name as `"my-service.my-ns"`. The result of these name lookups is the
cluster IP.
-->
例如,有一个名称为 `"my-service"``Service`,它在 Kubernetes 集群中名为 `"my-ns"``Namespace` 中,为 `"my-service.my-ns"` 创建了一条 DNS 记录。
在名称为 `"my-ns"``Namespace` 中的 `Pod` 应该能够简单地通过名称查询找到 `"my-service"`
在另一个 `Namespace` 中的 `Pod` 必须限定名称为 `"my-service.my-ns"`
这些名称查询的结果是 Cluster IP。
<!--
Kubernetes also supports DNS SRV (service) records for named ports. If the
`"my-service.my-ns"` `Service` has a port named `"http"` with protocol `TCP`, you
can do a DNS SRV query for `"_http._tcp.my-service.my-ns"` to discover the port
number for `"http"`.
-->
Kubernetes 也支持对端口名称的 DNS SRVService记录。
如果名称为 `"my-service.my-ns"``Service` 有一个名为 `"http"``TCP` 端口,可以对 `"_http._tcp.my-service.my-ns"` 执行 DNS SRV 查询,得到 `"http"` 的端口号。
<!--
The Kubernetes DNS server is the only way to access services of type
`ExternalName`. More information is available in the [DNS Pods and Services](/docs/concepts/services-networking/dns-pod-service/).
-->
Kubernetes DNS 服务器是唯一的一种能够访问 `ExternalName` 类型的 Service 的方式。
更多信息可以查看[DNS Pod 和 Service](https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/)。
<!--
## Headless services
-->
## Headless Service
<!--
Sometimes you don't need or want load-balancing and a single service IP. In
this case, you can create "headless" services by specifying `"None"` for the
cluster IP (`spec.clusterIP`).
-->
有时不需要或不想要负载均衡,以及单独的 Service IP。
遇到这种情况,可以通过指定 Cluster IP`spec.clusterIP`)的值为 `"None"` 来创建 `Headless` Service。
<!--
This option allows developers to reduce coupling to the Kubernetes system by
allowing them freedom to do discovery their own way. Applications can still use
a self-registration pattern and adapters for other discovery systems could easily
be built upon this API.
-->
这个选项允许开发人员自由寻找他们自己的方式,从而降低与 Kubernetes 系统的耦合性。
应用仍然可以使用一种自注册的模式和适配器,对其它需要发现机制的系统能够很容易地基于这个 API 来构建。
<!--
For such `Services`, a cluster IP is not allocated, kube-proxy does not handle
these services, and there is no load balancing or proxying done by the platform
for them. How DNS is automatically configured depends on whether the service has
selectors defined.
-->
对这类 `Service` 并不会分配 Cluster IPkube-proxy 不会处理它们,而且平台也不会为它们进行负载均衡和路由。
DNS 如何实现自动配置,依赖于 `Service` 是否定义了 selector。
<!--
### With selectors
-->
### 配置 Selector
<!--
For headless services that define selectors, the endpoints controller creates
`Endpoints` records in the API, and modifies the DNS configuration to return A
records (addresses) that point directly to the `Pods` backing the `Service`.
-->
对定义了 selector 的 Headless ServiceEndpoint 控制器在 API 中创建了 `Endpoints` 记录,并且修改 DNS 配置返回 A 记录(地址),通过这个地址直接到达 `Service` 的后端 `Pod` 上。
<!--
### Without selectors
-->
### 不配置 Selector
<!--
For headless services that do not define selectors, the endpoints controller does
not create `Endpoints` records. However, the DNS system looks for and configures
either:
* CNAME records for `ExternalName`-type services
* A records for any `Endpoints` that share a name with the service, for all
other types
-->
对没有定义 selector 的 Headless ServiceEndpoint 控制器不会创建 `Endpoints` 记录。
然而 DNS 系统会查找和配置,无论是:
* `ExternalName` 类型 Service 的 CNAME 记录
* 记录:与 Service 共享一个名称的任何 `Endpoints`,以及所有其它类型
<!--
## Publishing services - service types
For some parts of your application (e.g. frontends) you may want to expose a
Service onto an external (outside of your cluster) IP address.
-->
## 发布服务 —— 服务类型
对一些应用(如 Frontend的某些部分可能希望通过外部Kubernetes 集群外部IP 地址暴露 Service。
<!--
Kubernetes `ServiceTypes` allow you to specify what kind of service you want.
The default is `ClusterIP`.
`Type` values and their behaviors are:
* `ClusterIP`: Exposes the service on a cluster-internal IP. Choosing this value
makes the service only reachable from within the cluster. This is the
default `ServiceType`.
* `NodePort`: Exposes the service on each Node's IP at a static port (the `NodePort`).
A `ClusterIP` service, to which the NodePort service will route, is automatically
created. You'll be able to contact the `NodePort` service, from outside the cluster,
by requesting `<NodeIP>:<NodePort>`.
* `LoadBalancer`: Exposes the service externally using a cloud provider's load balancer.
`NodePort` and `ClusterIP` services, to which the external load balancer will route,
are automatically created.
* `ExternalName`: Maps the service to the contents of the `externalName` field
(e.g. `foo.bar.example.com`), by returning a `CNAME` record with its value.
No proxying of any kind is set up. This requires version 1.7 or higher of
`kube-dns`.
-->
Kubernetes `ServiceTypes` 允许指定一个需要的类型的 Service默认是 `ClusterIP` 类型。
`Type` 的取值以及行为如下:
* `ClusterIP`:通过集群的内部 IP 暴露服务,选择该值,服务只能够在集群内部可以访问,这也是默认的 `ServiceType`
* `NodePort`:通过每个 Node 上的 IP 和静态端口(`NodePort`)暴露服务。`NodePort` 服务会路由到 `ClusterIP` 服务,这个 `ClusterIP` 服务会自动创建。通过请求 `<NodeIP>:<NodePort>`,可以从集群的外部访问一个 `NodePort` 服务。
* `LoadBalancer`:使用云提供商的负载局衡器,可以向外部暴露服务。外部的负载均衡器可以路由到 `NodePort` 服务和 `ClusterIP` 服务。
* `ExternalName`:通过返回 `CNAME` 和它的值,可以将服务映射到 `externalName` 字段的内容(例如, `foo.bar.example.com`)。
没有任何类型代理被创建,这只有 Kubernetes 1.7 或更高版本的 `kube-dns` 才支持。
<!--
### Type NodePort
If you set the `type` field to `"NodePort"`, the Kubernetes master will
allocate a port from a flag-configured range (default: 30000-32767), and each
Node will proxy that port (the same port number on every Node) into your `Service`.
That port will be reported in your `Service`'s `spec.ports[*].nodePort` field.
-->
### NodePort 类型
如果设置 `type` 的值为 `"NodePort"`Kubernetes master 将从给定的配置范围内默认30000-32767分配端口每个 Node 将从该端口(每个 Node 上的同一端口)代理到 `Service`。该端口将通过 `Service``spec.ports[*].nodePort` 字段被指定。
<!--
If you want a specific port number, you can specify a value in the `nodePort`
field, and the system will allocate you that port or else the API transaction
will fail (i.e. you need to take care about possible port collisions yourself).
The value you specify must be in the configured range for node ports.
-->
如果需要指定的端口号,可以配置 `nodePort` 的值,系统将分配这个端口,否则调用 API 将会失败(比如,需要关心端口冲突的可能性)。
<!--
This gives developers the freedom to set up their own load balancers, to
configure environments that are not fully supported by Kubernetes, or
even to just expose one or more nodes' IPs directly.
-->
这可以让开发人员自由地安装他们自己的负载均衡器,并配置 Kubernetes 不能完全支持的环境参数,或者直接暴露一个或多个 Node 的 IP 地址。
<!--
Note that this Service will be visible as both `<NodeIP>:spec.ports[*].nodePort`
and `spec.clusterIp:spec.ports[*].port`.
-->
需要注意的是Service 将能够通过 `<NodeIP>:spec.ports[*].nodePort``spec.clusterIp:spec.ports[*].port` 而对外可见。
<!--
### Type LoadBalancer
-->
### LoadBalancer 类型
<!--
On cloud providers which support external load balancers, setting the `type`
field to `"LoadBalancer"` will provision a load balancer for your `Service`.
The actual creation of the load balancer happens asynchronously, and
information about the provisioned balancer will be published in the `Service`'s
`status.loadBalancer` field. For example:
-->
使用支持外部负载均衡器的云提供商的服务,设置 `type` 的值为 `"LoadBalancer"`,将为 `Service` 提供负载均衡器。
负载均衡器是异步创建的,关于被提供的负载均衡器的信息将会通过 `Service``status.loadBalancer` 字段被发布出去。
```yaml
kind: Service
apiVersion: v1
metadata:
name: my-service
spec:
selector:
app: MyApp
ports:
- protocol: TCP
port: 80
targetPort: 9376
nodePort: 30061
clusterIP: 10.0.171.239
loadBalancerIP: 78.11.24.19
type: LoadBalancer
status:
loadBalancer:
ingress:
- ip: 146.148.47.155
```
<!--
Traffic from the external load balancer will be directed at the backend `Pods`,
though exactly how that works depends on the cloud provider. Some cloud providers allow
the `loadBalancerIP` to be specified. In those cases, the load-balancer will be created
with the user-specified `loadBalancerIP`. If the `loadBalancerIP` field is not specified,
an ephemeral IP will be assigned to the loadBalancer. If the `loadBalancerIP` is specified, but the
cloud provider does not support the feature, the field will be ignored.
-->
来自外部负载均衡器的流量将直接打到 backend `Pod` 上,不过实际它们是如何工作的,这要依赖于云提供商。
在这些情况下,将根据用户设置的 `loadBalancerIP` 来创建负载均衡器。
某些云提供商允许设置 `loadBalancerIP`。如果没有设置 `loadBalancerIP`,将会给负载均衡器指派一个临时 IP。
如果设置了 `loadBalancerIP`,但云提供商并不支持这种特性,那么设置的 `loadBalancerIP` 值将会被忽略掉。
<!--
#### Internal load balancer on AWS
In a mixed environment it is sometimes necessary to route traffic from services inside the same VPC.
This can be achieved by adding the following annotation to the service:
-->
### AWS 内部负载均衡器
在混合云环境中有时从虚拟私有云VPC环境中的服务路由流量是非常有必要的。
可以通过在 `Service` 中增加 `annotation` 来实现,如下所示:
```yaml
[...]
metadata:
name: my-service
annotations:
service.beta.kubernetes.io/aws-load-balancer-internal: 0.0.0.0/0
[...]
```
<!--
In a split-horizon DNS environment you would need two services to be able to route both external and internal traffic to your endpoints.
-->
在水平分割的 DNS 环境中,需要两个 `Service` 来将外部和内部的流量路由到 Endpoint 上。
<!--
#### SSL support on AWS
For partial SSL support on clusters running on AWS, starting with 1.3 two
annotations can be added to a `LoadBalancer` service:
-->
### AWS SSL 支持
对运行在 AWS 上部分支持 SSL 的集群,从 1.3 版本开始,可以为 `LoadBalancer` 类型的 `Service` 增加两个 annotation
```
metadata:
name: my-service
annotations:
service.beta.kubernetes.io/aws-load-balancer-ssl-cert: arn:aws:acm:us-east-1:123456789012:certificate/12345678-1234-1234-1234-123456789012
```
<!--
The first specifies which certificate to use. It can be either a
certificate from a third party issuer that was uploaded to IAM or one created
within AWS Certificate Manager.
-->
第一个 annotation 指定了使用的证书。它可以是第三方发行商发行的证书,这个证书或者被上传到 IAM或者由 AWS 的证书管理器创建。
```yaml
metadata:
name: my-service
annotations:
service.beta.kubernetes.io/aws-load-balancer-backend-protocol: (https|http|ssl|tcp)
```
<!--
The second annotation specifies which protocol a pod speaks. For HTTPS and
SSL, the ELB will expect the pod to authenticate itself over the encrypted
connection.
-->
第二个 annotation 指定了 `Pod` 使用的协议。
对于 HTTPS 和 SSLELB 将期望该 `Pod` 基于加密的连接来认证自身。
<!--
HTTP and HTTPS will select layer 7 proxying: the ELB will terminate
the connection with the user, parse headers and inject the `X-Forwarded-For`
header with the user's IP address (pods will only see the IP address of the
ELB at the other end of its connection) when forwarding requests.
TCP and SSL will select layer 4 proxying: the ELB will forward traffic without
modifying the headers.
-->
HTTP 和 HTTPS 将选择7层代理ELB 将中断与用户的连接,当转发请求时,会解析 Header 信息并添加上用户的 IP 地址(`Pod` 将只能在连接的另一端看到该 IP 地址)。
TCP 和 SSL 将选择4层代理ELB 将转发流量,并不修改 Header 信息。
<!--
### External IPs
If there are external IPs that route to one or more cluster nodes, Kubernetes services can be exposed on those
`externalIPs`. Traffic that ingresses into the cluster with the external IP (as destination IP), on the service port,
will be routed to one of the service endpoints. `externalIPs` are not managed by Kubernetes and are the responsibility
of the cluster administrator.
In the ServiceSpec, `externalIPs` can be specified along with any of the `ServiceTypes`.
In the example below, my-service can be accessed by clients on 80.11.12.10:80 (externalIP:port)
-->
### 外部 IP
如果外部的 IP 路由到集群中一个或多个 Node 上Kubernetes `Service` 会被暴露给这些 `externalIPs`
通过外部 IP作为目的 IP 地址)进入到集群,打到 `Service` 的端口上的流量,将会被路由到 `Service` 的 Endpoint 上。
`externalIPs` 不会被 Kubernetes 管理,它属于集群管理员的职责范畴。
根据 `Service` 的规定,`externalIPs` 可以同任意的 `ServiceType` 来一起指定。
在上面的例子中,`my-service` 可以在 80.11.12.10:80外部 IP:端口)上被客户端访问。
```yaml
kind: Service
apiVersion: v1
metadata:
name: my-service
spec:
selector:
app: MyApp
ports:
- name: http
protocol: TCP
port: 80
targetPort: 9376
externalIPs:
- 80.11.12.10
```
<!--
## Shortcomings
Using the userspace proxy for VIPs will work at small to medium scale, but will
not scale to very large clusters with thousands of Services. See [the original
design proposal for portals](http://issue.k8s.io/1107) for more details.
-->
## 不足之处
为 VIP 使用 userspace 代理,将只适合小型到中型规模的集群,不能够扩展到上千 `Service` 的大型集群。
查看 [最初设计方案](http://issue.k8s.io/1107) 获取更多细节。
<!--
Using the userspace proxy obscures the source-IP of a packet accessing a `Service`.
This makes some kinds of firewalling impossible. The iptables proxier does not
obscure in-cluster source IPs, but it does still impact clients coming through
a load-balancer or node-port.
-->
使用 userspace 代理,隐藏了访问 `Service` 的数据包的源 IP 地址。
这使得一些类型的防火墙无法起作用。
iptables 代理不会隐藏 Kubernetes 集群内部的 IP 地址,但却要求客户端请求必须通过一个负载均衡器或 Node 端口。
<!--
The `Type` field is designed as nested functionality - each level adds to the
previous. This is not strictly required on all cloud providers (e.g. Google Compute Engine does
not need to allocate a `NodePort` to make `LoadBalancer` work, but AWS does)
but the current API requires it.
-->
`Type` 字段支持嵌套功能 —— 每一层需要添加到上一层里面。
不会严格要求所有云提供商例如GCE 就没必要为了使一个 `LoadBalancer` 能工作而分配一个 `NodePort`,但是 AWS 需要 ),但当前 API 是强制要求的。
<!--
## Future work
In the future we envision that the proxy policy can become more nuanced than
simple round robin balancing, for example master-elected or sharded. We also
envision that some `Services` will have "real" load balancers, in which case the
VIP will simply transport the packets there.
-->
## 未来工作
未来我们能预见到,代理策略可能会变得比简单的 round-robin 均衡策略有更多细微的差别,比如 master 选举或分片。
我们也能想到,某些 `Service` 将具有 “真正” 的负载均衡器,这种情况下 VIP 将简化数据包的传输。
<!--
We intend to improve our support for L7 (HTTP) `Services`.
We intend to have more flexible ingress modes for `Services` which encompass
the current `ClusterIP`, `NodePort`, and `LoadBalancer` modes and more.
-->
我们打算为 L7HTTP`Service` 改进我们对它的支持。
我们打算为 `Service` 实现更加灵活的请求进入模式,这些 `Service` 包含当前 `ClusterIP`、`NodePort` 和 `LoadBalancer` 模式,或者更多。
<!--
## The gory details of virtual IPs
The previous information should be sufficient for many people who just want to
use `Services`. However, there is a lot going on behind the scenes that may be
worth understanding.
-->
## VIP 的那些骇人听闻的细节
对很多想使用 `Service` 的人来说,前面的信息应该足够了。
然而,有很多内部原理性的内容,还是值去理解的。
<!--
### Avoiding collisions
One of the primary philosophies of Kubernetes is that users should not be
exposed to situations that could cause their actions to fail through no fault
of their own. In this situation, we are looking at network ports - users
should not have to choose a port number if that choice might collide with
another user. That is an isolation failure.
-->
### 避免冲突
Kubernetes 最主要的哲学之一,是用户不应该暴露那些能够导致他们操作失败、但又不是他们的过错的场景。
这种场景下,让我们来看一下网络端口 —— 用户不应该必须选择一个端口号,而且该端口还有可能与其他用户的冲突。
这就是说,在彼此隔离状态下仍然会出现失败。
<!--
In order to allow users to choose a port number for their `Services`, we must
ensure that no two `Services` can collide. We do that by allocating each
`Service` its own IP address.
-->
为了使用户能够为他们的 `Service` 选择一个端口号我们必须确保不能有2个 `Service` 发生冲突。
我们可以通过为每个 `Service` 分配它们自己的 IP 地址来实现。
<!--
To ensure each service receives a unique IP, an internal allocator atomically
updates a global allocation map in etcd prior to creating each service. The map object
must exist in the registry for services to get IPs, otherwise creations will
fail with a message indicating an IP could not be allocated. A background
controller is responsible for creating that map (to migrate from older versions
of Kubernetes that used in memory locking) as well as checking for invalid
assignments due to administrator intervention and cleaning up any IPs
that were allocated but which no service currently uses.
-->
为了保证每个 `Service` 被分配到一个唯一的 IP需要一个内部的分配器能够原子地更新 etcd 中的一个全局分配映射表,这个更新操作要先于创建每一个 `Service`
为了使 `Service` 能够获取到 IP这个映射表对象必须在注册中心存在否则创建 `Service` 将会失败,指示一个 IP 不能被分配。
一个后台 Controller 的职责是创建映射表(从 Kubernetes 的旧版本迁移过来,旧版本中是通过在内存中加锁的方式实现),并检查由于管理员干预和清除任意 IP 造成的不合理分配,这些 IP 被分配了但当前没有 `Service` 使用它们。
<!--
### IPs and VIPs
Unlike `Pod` IP addresses, which actually route to a fixed destination,
`Service` IPs are not actually answered by a single host. Instead, we use
`iptables` (packet processing logic in Linux) to define virtual IP addresses
which are transparently redirected as needed. When clients connect to the
VIP, their traffic is automatically transported to an appropriate endpoint.
The environment variables and DNS for `Services` are actually populated in
terms of the `Service`'s VIP and port.
We support two proxy modes - userspace and iptables, which operate slightly
differently.
-->
### IP 和 VIP
不像 `Pod` 的 IP 地址,它实际路由到一个固定的目的地,`Service` 的 IP 实际上不能通过单个主机来进行应答。
相反,我们使用 `iptables`Linux 中的数据包处理逻辑来定义一个虚拟IP地址VIP它可以根据需要透明地进行重定向。
当客户端连接到 VIP 时,它们的流量会自动地传输到一个合适的 Endpoint。
环境变量和 DNS实际上会根据 `Service` 的 VIP 和端口来进行填充。
<!--
#### Userspace
As an example, consider the image processing application described above.
When the backend `Service` is created, the Kubernetes master assigns a virtual
IP address, for example 10.0.0.1. Assuming the `Service` port is 1234, the
`Service` is observed by all of the `kube-proxy` instances in the cluster.
When a proxy sees a new `Service`, it opens a new random port, establishes an
iptables redirect from the VIP to this new port, and starts accepting
connections on it.
-->
#### Userspace
作为一个例子,考虑前面提到的图片处理应用程序。
当创建 backend `Service`Kubernetes master 会给它指派一个虚拟 IP 地址,比如 10.0.0.1。
假设 `Service` 的端口是 1234`Service` 会被集群中所有的 `kube-proxy` 实例观察到。
当代理看到一个新的 `Service` 它会打开一个新的端口,建立一个从该 VIP 重定向到新端口的 iptables并开始接收请求连接。
<!--
When a client connects to the VIP the iptables rule kicks in, and redirects
the packets to the `Service proxy`'s own port. The `Service proxy` chooses a
backend, and starts proxying traffic from the client to the backend.
This means that `Service` owners can choose any port they want without risk of
collision. Clients can simply connect to an IP and port, without being aware
of which `Pods` they are actually accessing.
-->
当一个客户端连接到一个 VIPiptables 规则开始起作用,它会重定向该数据包到 `Service代理` 的端口。
`Service代理` 选择一个 backend并将客户端的流量代理到 backend 上。
这意味着 `Service` 的所有者能够选择任何他们想使用的端口,而不存在冲突的风险。
客户端可以简单地连接到一个 IP 和端口,而不需要知道实际访问了哪些 `Pod`
<!--
#### Iptables
Again, consider the image processing application described above.
When the backend `Service` is created, the Kubernetes master assigns a virtual
IP address, for example 10.0.0.1. Assuming the `Service` port is 1234, the
`Service` is observed by all of the `kube-proxy` instances in the cluster.
When a proxy sees a new `Service`, it installs a series of iptables rules which
redirect from the VIP to per-`Service` rules. The per-`Service` rules link to
per-`Endpoint` rules which redirect (Destination NAT) to the backends.
-->
#### Iptables
再次考虑前面提到的图片处理应用程序。
当创建 backend `Service`Kubernetes master 会给它指派一个虚拟 IP 地址,比如 10.0.0.1。
假设 `Service` 的端口是 1234`Service` 会被集群中所有的 `kube-proxy` 实例观察到。
当代理看到一个新的 `Service` 它会安装一系列的 iptables 规则,从 VIP 重定向到 per-`Service` 规则。
该 per-`Service` 规则连接到 per-`Endpoint` 规则,该 per-`Endpoint` 规则会重定向(目标 NAT到 backend。
<!--
When a client connects to the VIP the iptables rule kicks in. A backend is
chosen (either based on session affinity or randomly) and packets are
redirected to the backend. Unlike the userspace proxy, packets are never
copied to userspace, the kube-proxy does not have to be running for the VIP to
work, and the client IP is not altered.
This same basic flow executes when traffic comes in through a node-port or
through a load-balancer, though in those cases the client IP does get altered.
-->
当一个客户端连接到一个 VIPiptables 规则开始起作用。一个 backend 会被选择(或者根据会话亲和性,或者随机),数据包被重定向到这个 backend。
不像 userspace 代理数据包从来不拷贝到用户空间kube-proxy 不是必须为该 VIP 工作而运行,并且客户端 IP 是不可更改的。
当流量打到 Node 的端口上,或通过负载均衡器,会执行相同的基本流程,但是在那些案例中客户端 IP 是可以更改的。
<!--
## API Object
Service is a top-level resource in the Kubernetes REST API. More details about the
API object can be found at: [Service API
object](/docs/api-reference/{{page.version}}/#service-v1-core).
-->
## API 对象
2017-07-31 13:26:01 +08:00
在 Kubernetes REST API 中Service 是 top-level 资源。关于 API 对象的更多细节可以查看:[Service API 对象](https://kubernetes.io/docs/api-reference/v1.7/#service-v1-core)。
<!--
## For More Information
Read [Connecting a Front End to a Back End Using a Service](/docs/tutorials/connecting-apps/connecting-frontend-backend/).
-->
## 更多信息
阅读 [使用 Service 连接 Frontend 到 Backend](https://kubernetes.io/docs/tutorials/connecting-apps/connecting-frontend-backend/)。