1 line
1.6 MiB
1 line
1.6 MiB
{"./":{"url":"./","title":"序言","keywords":"","body":"Kubernetes Handbook——Kubernetes 中文指南/云原生应用架构实践手册 云原生是一种行为方式和设计理念,究其本质,凡是能够提高云上资源利用率和应用交付效率的行为或方式都是云原生的。云计算的发展史就是一部云原生化的历史。Kubernetes 开启了云原生 1.0 的序幕,服务网格 Istio 的出现,引领了后 Kubernetes 时代的微服务,serverless 的再次兴起,使得云原生从基础设施层不断向应用架构层挺进,我们正处于一个云原生 2.0 的新时代。—— Jimmy Song 👉 https://cloudnative.to Kubernetes 是 Google 于 2014 年 6 月基于其内部使用的 Borg 系统开源出来的容器编排调度引擎,Google 将其作为初始和核心项目贡献给 CNCF(云原生计算基金会),近年来逐渐发展出了云原生生态。 Kubernetes 的目标不仅仅是一个编排系统,而是提供一个规范用以描述集群的架构,定义服务的最终状态,使系统自动地达到和维持该状态。Kubernetes 作为云原生应用的基石,相当于一个云原生操作系统,其重要性不言而喻。 云原生技术有利于各组织在公有云、私有云和混合云等新型动态环境中,构建和运行可弹性扩展的应用。云原生的代表技术包括 容器、服务网格、微服务、不可变基础设施 和 声明式 API。这些技术能够构建容错性好、易于管理和便于观察的松耦合系统。结合可靠的自动化手段,云原生技术使工程师能够轻松地对系统作出频繁和可预测的重大变更。——CNCF(云原生计算基金会)。 关于本书 Kubernetes Handbook 开源于 2017 年 3 月并在其后不断完善,是第一本系统介绍 Kubernetes 的中文书籍。写作本书的过程中,笔者记录了从零开始学习和使用 Kubernetes 的历程,着重于经验总结和资料分享,亦有 Kubernetes 核心概念解析,希望能够帮助大家少走弯路,为大家介绍 Kubernetes 周边生态,如微服务、DevOps、大数据应用、Service Mesh、云原生应用、Serverless 等领域。 开始之前 在阅读本书之前希望您掌握以下知识和准备以下环境: 阅读云原生新手指南 Linux 操作系统原理 Linux 常用命令 Docker 容器原理及基本操作 一台可以上网的电脑,Mac/Windows/Linux 皆可 安装 Docker 本书主题 本书的主题不局限于 Kubernetes,还包括以下几大主题: 云原生开源组件 云原生应用与微服务架构 基于 Kubernetes 的 Service Mesh 架构 本书中的说明、安装的所有组件、所用示例和操作要求至少 Kubernetes 1.6+ 版本。 使用方式 您可以通过以下方式使用本书: GitHub 地址:https://github.com/rootsongjc/kubernetes-handbook GitBook 在线浏览:https://jimmysong.io/kubernetes-handbook/ 下载本书的发行版:https://github.com/rootsongjc/kubernetes-handbook/releases 按照说明自行编译成离线版本 Fork 一份添加你自己的笔记自行维护,有余力者可以一起参与进来 快速开始 如果您想要学习 Kubernetes 和云原生应用架构但是又不想自己从头开始搭建和配置一个集群,推荐以下几种方式: 使用虚拟机安装的拥有三个节点的 Kubernetes 集群:项目直接在本地部署一个 3 节点的分布式集群及其他如 Heapster、EFK、Istio 等可选组件 Cloud Native Sandbox:更加轻量级,在个人电脑上使用 Docker 运行单节点的 Kubernetes、Istio 等组件 Katacoda 提供的 Kubernetes 环境:免费的在线学习平台,无需注册,拥有 GitHub 账号即可登录 贡献与致谢 感谢大家对本书做出的贡献! 查看贡献者列表 查看如何贡献 查看文档的组织结构与使用方法 License 署名 - 非商业性使用 - 相同方式共享 4.0 (CC BY-NC-SA 4.0) Stargazers over time 图 1.1.1:Stargazers over time 云原生社区 云原生社区是一个中立的云原生终端用户社区,始与作者于 2016 年成立的 Kubernetes & CloudNative 实战群,覆盖了上千名早期云原生拥护者。在此基础上于 2020 年 5 月,由 CNCF 大使、开源领域意见领袖共同发起将原社群升级为云原生社区,旨在推广云原生技术,构建开发者生态。 官方网站 https://cloudnative.to,关注云原生社区微信公众号,申请加入社区。 云原生出版物 以下为笔者参与出版的云原生相关图书。 Cloud Native Go - 基于 Go 和 React 的 web 云原生应用构建指南(Kevin Hoffman & Dan Nemeth 著 宋净超 吴迎松 徐蓓 马超 译),电子工业出版社,2017 年 6 月出版 Python 云原生 - 使用 Python 和 React 构建云原生应用(Manish Sethi 著,宋净超译),电子工业出版社,2018 年 6 月出版 云原生 Java - Spring Boot、Spring Cloud 与 Cloud Foundry 弹性系统设计(Josh Long & Kenny Bastani 著,张若飞 宋净超译 ),电子工业出版社,2018 年 7 月出版 未来架构 —— 从服务化到云原生 - 张亮 吴晟 敖小剑 宋净超 著,电子工业出版社,2019 年 3 月出版 云原生模式 - 设计拥抱变化的软件(Cornelia Davis 著,张若飞 宋净超 译),电子工业出版社,2020 年 8 月出版 推荐 Awesome Cloud Native:云原生开源项目大全 深入剖析 Kubernetes:极客时间推出的 Kubernetes 专栏 深入浅出云计算:云原生时代给开发者和架构师的云计算指南 《Istio Handbook——Istio 服务网格进阶实战》:ServiceMesher 出品的开源电子书 云原生社区 Kubernetes SIG - 云原生社区组织的 Kubernetes 兴趣小组 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"cloud-native/cloud-native-definition.html":{"url":"cloud-native/cloud-native-definition.html","title":"云原生(Cloud Native)的定义","keywords":"","body":"云原生(Cloud Native)的定义 云原生(Cloud Native)这个词汇由来已久,以致于何时出现已无据可考。云原生开始大规模出现在受众视线中,与 Pivotal 提出的云原生应用的理念有着莫大的关系。我们现在谈到云原生,更多的指的是一种文化,而不具象为哪些技术体系。 Pivotal 推出过 Pivotal Cloud Foundry 云原生应用平台和 Spring 开源 Java 开发框架,成为云原生应用架构中先驱者和探路者。Pivotal 是云原生应用平台第一股,2018 年在纽交所上市,2019 年底被 VMWare 以 27 亿美元收购,加入到 VMware 新的产品线 Tanzu。 Pivotal 最初的定义 早在 2015 年 Pivotal 公司的 Matt Stine 写了一本叫做 迁移到云原生应用架构 的小册子,其中探讨了云原生应用架构的几个主要特征: 符合 12 因素应用 面向微服务架构 自服务敏捷架构 基于 API 的协作 抗脆弱性 我已于 2017 年翻译了本书,详见 迁移到云原生应用架构。 CNCF 最初的定义 到了 2015 年 Google 主导成立了云原生计算基金会(CNCF),起初 CNCF 对云原生(Cloud Native)的定义包含以下三个方面: 应用容器化 面向微服务架构 应用支持容器的编排调度 重定义 到了 2018 年,随着近几年来云原生生态的不断壮大,所有主流云计算供应商都加入了该基金会,且从 Cloud Native Landscape 中可以看出云原生有意蚕食原先非云原生应用的部分。CNCF 基金会中的会员以及容纳的项目越来越多,该定义已经限制了云原生生态的发展,CNCF 为云原生进行了重新定位。 以下是 CNCF 对云原生的重新定义(中英对照): Cloud native technologies empower organizations to build and run scalable applications in modern, dynamic environments such as public, private, and hybrid clouds. Containers, service meshes, microservices, immutable infrastructure, and declarative APIs exemplify this approach. 云原生技术有利于各组织在公有云、私有云和混合云等新型动态环境中,构建和运行可弹性扩展的应用。云原生的代表技术包括容器、服务网格、微服务、不可变基础设施和声明式 API。 These techniques enable loosely coupled systems that are resilient, manageable, and observable. Combined with robust automation, they allow engineers to make high-impact changes frequently and predictably with minimal toil. 这些技术能够构建容错性好、易于管理和便于观察的松耦合系统。结合可靠的自动化手段,云原生技术使工程师能够轻松地对系统作出频繁和可预测的重大变更。 The Cloud Native Computing Foundation seeks to drive adoption of this paradigm by fostering and sustaining an ecosystem of open source, vendor-neutral projects. We democratize state-of-the-art patterns to make these innovations accessible for everyone. 云原生计算基金会(CNCF)致力于培育和维护一个厂商中立的开源生态系统,来推广云原生技术。我们通过将最前沿的模式民主化,让这些创新为大众所用。 总结 关于什么是云原生的争论还在进行中,在笔者看来云原生是一种行为方式和设计理念,究其本质,凡是能够提高云上资源利用率和应用交付效率的行为或方式都是云原生的。云计算的发展史就是一部云原生化的历史。Kubernetes 开启了云原生 1.0 的序幕,服务网格 Istio 的出现,引领了后 Kubernetes 时代的微服务,serverless 的再次兴起,使得云原生从基础设施层不断向应用架构层挺进,我们正处于一个云原生 2.0 的新时代。 参考 CNCF Cloud Native Definition v1.0 - github.com 云原生关乎文化,而不是容器 - cloudnative.to 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"cloud-native/cloud-native-philosophy.html":{"url":"cloud-native/cloud-native-philosophy.html","title":"云原生的设计哲学","keywords":"","body":"云原生的设计哲学 云原生一词已经被过度的采用,很多软件都号称是云原生,很多打着云原生旗号的会议也如雨后春笋般涌现。 云原生本身甚至不能称为是一种架构,它首先是一种基础设施,运行在其上的应用称作云原生应用,只有符合云原生设计哲学的应用架构才叫云原生应用架构。 云原生的设计理念 云原生系统的设计理念如下: 面向分布式设计(Distribution):容器、微服务、API 驱动的开发; 面向配置设计(Configuration):一个镜像,多个环境配置; 面向韧性设计(Resistancy):故障容忍和自愈; 面向弹性设计(Elasticity):弹性扩展和对环境变化(负载)做出响应; 面向交付设计(Delivery):自动拉起,缩短交付时间; 面向性能设计(Performance):响应式,并发和资源高效利用; 面向自动化设计(Automation):自动化的 DevOps; 面向诊断性设计(Diagnosability):集群级别的日志、metric 和追踪; 面向安全性设计(Security):安全端点、API Gateway、端到端加密; 以上的设计理念很多都是继承自分布式应用的设计理念。虽然有如此多的理念但是我们仍然无法辨认什么样的设施才是云原生基础设施,不过可以先用排除法,我将解释什么不是云原生基础设施。 什么不是云原生基础设施? 云原生基础设施不等于在公有云上运行的基础设施。光是租用服务器并不会使您的基础设施云原生化。管理 IaaS 的流程与运维物理数据中心没什么两样,将现有架构迁移到云上也未必能获得回报。 云原生不是指在容器中运行应用程序。Netflix 率先推出云原生基础设施时,几乎所有应用程序部署在虚拟机中,而不是在容器中。改变应用程序的打包方式并不意味着就会增加自治系统的可扩展性和优势。即使应用程序是通过 CI/CD 渠道自动构建和部署的,也不意味着您就可以从增强 API 驱动部署的基础设施中受益。 这也并不意味着您只能运行容器编排器(例如 Kubernetes 和 Mesos)。容器编排器提供了云原生基础设施所需的许多平台功能,但并未按预期方式使用这些功能,这意味着您的应用程序会在一组服务器上运行,被动态调度。这是一个非常好的起步,但仍有许多工作要做。 调度器与编排器 术语 “调度器” 和 “编排器” 通常可以互换使用。 在大多数情况下,编排器负责集群中的所有资源利用(例如:存储,网络和 CPU)。该术语典型地用于描述执行许多任务的产品,如健康检查和云自动化。 调度器是编排平台的一个子集,仅负责选择运行在每台服务器上的进程和服务。 云原生不是微服务或基础设施即代码。微服务意味着更快的开发周期和更小的独特功能,但是单片应用程序可以具有相同的功能,使其能够通过软件有效管理,并且还可以从云原生基础设施中受益。 基础设施即代码以机器可解析语言或领域特定语言(DSL)定义、自动化您的基础设施。将代码应用于基础架构的传统工具包括配置管理工具(例如 Chef 和 Puppet)。这些工具在自动执行任务和提供一致性方面有很大帮助,但是它们在提供必要的抽象来描述超出单个服务器的基础设施方面存在缺陷。 配置管理工具一次自动化一台服务器,并依靠人员将服务器提供的功能绑定在一起。这将人类定位为基础设施规模的潜在瓶颈。这些工具也不会使构建完整系统所需的云基础设施(例如存储和网络)的额外部分自动化。 尽管配置管理工具为操作系统的资源(例如软件包管理器)提供了一些抽象,但它们并没有抽象出足够的底层操作系统来轻松管理它。如果一位工程师想要管理系统中的每个软件包和文件,这将是一个非常艰苦的过程,并且对于每个配置变体都是独一无二的。同样,定义不存在或不正确的资源的配置管理仅消耗系统资源并且不能提供任何价值。 虽然配置管理工具可以帮助自动化部分基础设施,但它们无法更好地管理应用程序。我们将在后面的章节中通过查看部署,管理,测试和操作基础架构的流程,探讨云原生基础设施的不同之处,但首先,我们将了解哪些应用程序是成功的以及应该何时与原生基础设施一起使用。 云原生应用程序 就像云改变了业务和基础设施之间的关系一样,云原生应用程序也改变了应用程序和基础设施之间的关系。我们需要了解与传统应用程序相比,云本身有什么不同,因此我们需要了解它们与基础设施的新关系。 为了写好本书,也为了有一个共享词汇表,我们需要定义 “云原生应用程序” 是什么意思。云原生与 12 因素应用程序不同,即使它们可能共享一些类似的特征。如果你想了解更多细节,请阅读 Kevin Hoffman 撰写的 “超越 12 因素应用程序”(O'Reilly,2012)。 云原生应用程序被设计为在平台上运行,并设计用于弹性,敏捷性,可操作性和可观察性。弹性包含失败而不是试图阻止它们;它利用了在平台上运行的动态特性。敏捷性允许快速部署和快速迭代。可操作性从应用程序内部控制应用程序生命周期,而不是依赖外部进程和监视器。可观察性提供信息来回答有关应用程序状态的问题。 云原生定义 云原生应用程序的定义仍在发展中。还有像 CNCF 这样的组织可以提供其他的定义。 云原生应用程序通过各种方法获取这些特征。它通常取决于应用程序的运行位置以及企业流程和文化。以下是实现云原生应用程序所需特性的常用方法: 微服务 健康报告 遥测数据 弹性 声明式的,而不是命令式的 微服务 作为单个实体进行管理和部署的应用程序通常称为单体应用。最初开发应用程序时,单体有很多好处。它们更易于理解,并允许您在不影响其他服务的情况下更改主要功能。 随着应用程序复杂性的增长,单体应用的益处逐渐减少。它们变得更难理解,而且失去了敏捷性,因为工程师很难推断和修改代码。 对付复杂性的最好方法之一是将明确定义的功能分成更小的服务,并让每个服务独立迭代。这增加了应用程序的灵活性,允许根据需要更轻松地更改部分应用程序。每个微服务可以由单独的团队进行管理,使用适当的语言编写,并根据需要进行独立扩缩容。 只要每项服务都遵守强有力的合约,应用程序就可以快速改进和改变。当然,转向微服务架构还有许多其他的考虑因素。其中最不重要的是弹性通信,我们在附录 A 中有讨论。 我们无法考虑转向微服务的所有考虑因素。拥有微服务并不意味着您拥有云原生基础设施。如果您想阅读更多,我们推荐 Sam Newman 的 Building Microservices(O'Reilly,2015)。虽然微服务是实现您的应用程序灵活性的一种方式,但正如我们之前所说的,它们不是云原生应用程序的必需条件。 健康报告 停止逆向工程应用程序并开始从内部进行监控。 —— Kelsey Hightower,Monitorama PDX 2016:healthz 没有人比开发人员更了解应用程序需要什么才能以健康的状态运行。很长一段时间,基础设施管理员都试图从他们负责运行的应用程序中找出 “健康” 该怎么定义。如果不实际了解应用程序的健康状况,他们尝试在应用程序不健康时进行监控并发出警报,这往往是脆弱和不完整的。 为了提高云原生应用程序的可操作性,应用程序应该暴露健康检查。开发人员可以将其实施为命令或过程信号,以便应用程序在执行自我检查之后响应,或者更常见的是:通过应用程序提供 Web 服务,返回 HTTP 状态码来检查健康状态。 Google Borg 示例 Google 的 Borg 报告中列出了一个健康报告的例子: 几乎每个在 Borg 下运行的任务都包含一个内置的 HTTP 服务器,该服务器发布有关任务运行状况和数千个性能指标(如 RPC 延迟)的信息。Borg 会监控运行状况检查 URL 并重新启动不及时响应或返回 HTTP 错误代码的任务。其他数据由监控工具跟踪,用于仪表板和服务级别目标(SLO)违规警报。 将健康责任转移到应用程序中使应用程序更容易管理和自动化。应用程序应该知道它是否正常运行以及它依赖于什么(例如,访问数据库)来提供业务价值。这意味着开发人员需要与产品经理合作来定义应用服务的业务功能并相应地编写测试。 提供健康检查的应用程序示例包括 Zookeeper 的 ruok 命令和 etcd 的 HTTP / 健康端点。 应用程序不仅仅有健康或不健康的状态。它们将经历一个启动和关闭过程,在这个过程中它们应该通过健康检查,报告它们的状态。如果应用程序可以让平台准确了解它所处的状态,平台将更容易知道如何操作它。 一个很好的例子就是当平台需要知道应用程序何时可以接收流量。在应用程序启动时,如果它不能正确处理流量,它就应该表现为未准备好。此额外状态将防止应用程序过早终止,因为如果运行状况检查失败,平台可能会认为应用程序不健康,并且会反复停止或重新启动它。 应用程序健康只是能够自动化应用程序生命周期的一部分。除了知道应用程序是否健康之外,您还需要知道应用程序是否正在进行哪些工作。这些信息来自遥测数据。 遥测数据 遥测数据是进行决策所需的信息。确实,遥测数据可能与健康报告重叠,但它们有不同的用途。健康报告通知我们应用程序生命周期状态,而遥测数据通知我们应用程序业务目标。 您测量的指标有时称为服务级指标(SLI)或关键性能指标(KPI)。这些是特定于应用程序的数据,可以确保应用程序的性能处于服务级别目标(SLO)内。如果您需要更多关于这些术语的信息以及它们与您的应用程序、业务需求的关系,我们推荐你阅读来自 Site Reliability Engineering(O'Reilly)的第 4 章。 遥测和度量标准用于解决以下问题: 应用程序每分钟收到多少请求? 有没有错误? 什么是应用程序延迟? 订购需要多长时间? 通常会将数据刮取或推送到时间序列数据库(例如 Prometheus 或 InfluxDB)进行聚合。遥测数据的唯一要求是它将被收集数据的系统格式化。 至少,可能最好实施度量标准的 RED 方法,该方法收集应用程序的速率,错误和执行时间。 请求率 收到了多少个请求 错误 应用程序有多少错误 时间 多久才能收到回复 遥测数据应该用于提醒而非健康监测。在动态的、自我修复的环境中,我们更少关注单个应用程序实例的生命周期,更多关注关于整体应用程序 SLO 的内容。健康报告对于自动应用程序管理仍然很重要,但不应该用于页面工程师。 如果 1 个实例或 50 个应用程序不健康,只要满足应用程序的业务需求,我们可能不会收到警报。度量标准可让您知道您是否符合您的 SLO,应用程序的使用方式以及对于您的应用程序来说什么是 “正常”。警报有助于您将系统恢复到已知的良好状态。 如果它移动,我们跟踪它。有时候我们会画出一些尚未移动的图形,以防万一它决定为它运行。 ——Ian Malpass,衡量所有,衡量一切 警报也不应该与日志记录混淆。记录用于调试,开发和观察模式。它暴露了应用程序的内部功能。度量有时可以从日志(例如错误率)计算,但需要额外的聚合服务(例如 ElasticSearch)和处理。 弹性 一旦你有遥测和监测数据,你需要确保你的应用程序对故障有适应能力。弹性是基础设施的责任,但云原生应用程序也需要承担部分工作。 基础设施被设计为抵制失败。硬件用于需要多个硬盘驱动器,电源以及全天候监控和部件更换以保持应用程序可用。使用云原生应用程序,应用程序有责任接受失败而不是避免失败。 在任何平台上,尤其是在云中,最重要的特性是其可靠性。 ——David Rensin,e ARCHITECT Show:来自 Google 的关于云计算的速成课程 设计具有弹性的应用程序可能是整本书本身。我们将在云原生应用程序中考虑弹性的两个主要方面:为失败设计和优雅降级。 为失败设计 唯一永远不会失败的系统是那些让你活着的系统(例如心脏植入物和刹车系统)。如果您的服务永远不会停止运行,您需要花费太多时间设计它们来抵制故障,并且没有足够的时间增加业务价值。您的 SLO 确定服务需要多长时间。您花费在工程设计上超出 SLO 的正常运行时间的任何资源都将被浪费掉。 您应该为每项服务测量两个值,即平均无故障时间(MTBF)和平均恢复时间(MTTR)。监控和指标可以让您检测您是否符合您的 SLO,但运行应用程序的平台是保持高 MTBF 和低 MTTR 的关键。 在任何复杂的系统中,都会有失败。您可以管理硬件中的某些故障(例如,RAID 和冗余电源),以及某些基础设施中的故障(例如负载平衡器)。但是因为应用程序知道他们什么时候健康,所以他们也应该尽可能地管理自己的失败。 设计一个以失败期望为目标的应用程序将比假定可用性的应用程序更具防御性。当故障不可避免时,将会有额外的检查,故障模式和日志内置到应用程序中。 知道应用程序可能失败的每种方式是不可能的。假设任何事情都可能并且可能会失败,这是一种云原生应用程序的模式。 您的应用程序的最佳状态是健康状态。第二好的状态是失败状态。其他一切都是非二进制的,难以监控和排除故障。 Honeycomb 首席执行官 CharityMajors 在她的文章 “Ops:现在每个人都在工作” 中指出:“分布式系统永远不会起作用;它们处于部分退化服务的持续状态。接受失败,设计弹性,保护和缩小关键路径。” 无论发生什么故障,云原生应用程序都应该是可适应的。他们期望失败,所以他们在检测到时进行调整。 有些故障不能也不应该被设计到应用程序中(例如,网络分区和可用区故障)。该平台应自主处理未集成到应用程序中的故障域。 优雅降级 云原生应用程序需要有一种方法来处理过载,无论它是应用程序还是负载下的相关服务。处理负载的一种方式是优雅降级。 “站点可靠性工程” 一书中描述了应用程序的优雅降级,因为它提供的响应在负载过重的情况下 “不如正常响应准确或含有较少数据的响应,但计算更容易”。 减少应用程序负载的某些方面由基础设施处理。智能负载平衡和动态扩展可以提供帮助,但是在某些时候,您的应用程序可能承受的负载比它可以处理的负载更多。云原生应用程序需要知道这种必然性并作出相应的反应。 优雅降级的重点是允许应用程序始终返回请求的答案。如果应用程序没有足够的本地计算资源,并且依赖服务没有及时返回信息,则这是正确的。依赖于一个或多个其他服务的服务应该可用于应答请求,即使依赖于服务不是。当服务退化时,返回部分答案或使用本地缓存中的旧信息进行答案是可能的解决方案。 尽管优雅的降级和失败处理都应该在应用程序中实现,但平台的多个层面应该提供帮助。如果采用微服务,则网络基础设施成为需要在提供应用弹性方面发挥积极作用的关键组件。有关构建弹性网络层的更多信息,请参阅附录 A。 可用性数学 云原生应用程序需要在基础设施之上建立一个平台,以使基础设施更具弹性。如果您希望将现有应用程序 “提升并转移” 到云中,则应检查云提供商的服务级别协议(SLA),并考虑在使用多个服务时会发生什么情况。 让我们拿运行我们的应用程序的云来进行假设。 计算基础设施的典型可用性是每月 99.95%的正常运行时间。这意味着您的实例每天可能会缩短到 43.2 秒,并且仍在您的云服务提供商的 SLA 中。 另外,实例的本地存储(例如 EBS 卷)也具有 99.95%的可用性正常运行时间。如果幸运的话,他们都会同时出现故障,但最糟糕的情况是他们可能会在不同的时间停机,让您的实例只有 99.9%的可用性。 您的应用程序可能还需要一个数据库,而不是自己安装一个计算可能的停机时间为 1 分 26 秒(99.9%可用性)的情况下,选择可靠性为 99.95%的更可靠的托管数据库。这使您的应用程序的可靠性达到 99.85%,或者每天可能发生 2 分钟和 9 秒的宕机时间。 将可用性乘到一起可以快速了解为什么应以不同方式处理云。真正不好的部分是,如果云提供商不符合其 SLA,它将退还其账单中一定比例的退款。 虽然您不必为停机支付费用,但我们并不知道世界上存在云计算信用的单一业务。如果您的应用程序的可用性不足以超过您收到的信用额度,那么您应该真正考虑是否应该运行这个应用程序。 声明式,非反应式 因为云原生应用程序被设计为在云环境中运行,所以它们与基础设施以及相关依赖应用程序的交互方式不同于传统应用程序。在云原生应用程序中,与任何事物的通信都需要通过网络来进行。很多时候,网络通信是通过 RESTful HTTP 调用完成的,但是也可以通过其他接口实现,比如远程过程调用 (RPC)。 传统的应用程序会通过向消息队列发送消息、在共享存储上写入文件或触发本地 shell 脚本来执行自动化任务。通信方法基于发生的事件作出反应(例如,如果用户单击提交,运行提交脚本)并且通常需要存在于同一物理或虚拟服务器上的信息。 Serverless 无服务器平台是云原生化的,并被设计为对事件做出反应。他们在云中工作得很好的原因是他们通过 HTTP API 进行通信,(这些 API)是单一用途的函数,并且在它们的调用中是声明性的。该平台还使它们可伸缩并可从云内访问。 传统应用程序中的反应式通信通常是构建弹性的一种尝试。如果应用程序(以反应式的方式)在磁盘上或消息队列中写入了一个文件,然后应用程序死亡,那么该消息或文件的结果仍然可以完成。 这里并不是说不应该使用像消息队列这样的技术,而是说在动态且经常出现故障的系统中,不能将它们作为惟一的弹性层来依赖。从根本上说,在云原生环境之中,应用程序之间的通信方法应该有所变化 - 这不仅是因为还存在其他方法来构建通信弹性(请参阅附录 A),而且还因为如果要让传统的通信方法在云中实现复制,我们往往需要做更多工作。 当应用程序可以信任通信的弹性时,它们应该放弃反应式并使用声明式。声明式通信信任网络会将消息送达。它也相信应用程序将返回成功或错误。这并不是说让应用程序观察变化不重要。Kubernetes 的控制器对 API 服务器做的就是这个。但是,一旦发现变更,他们就会声明一个新的状态,并相信 API 服务器和 kubelets 会做必要的事情。 声明式通信模型由于多种原因而变得更加健壮。最重要的是,它规范了通信模型,并且它将(如何从某种状态到达期望状态的)功能实现从应用程序转移到远程 API 或服务端点。这有助于简化应用程序,并使它们彼此的行为更具可预测性。 云原生应用程序如何影响基础设施? 希望你可以知道云原生应用程序与传统应用程序不同。云原生应用程序不能直接在 PaaS 上运行或与服务器的操作系统紧密耦合。它们期望在一个拥有大多数自治系统的动态环境中运行。 云原生基础设施在提供自主应用管理的 IaaS 之上创建了一个平台。该平台建立在动态创建的基础设施之上,以抽象出单个服务器并促进动态资源分配调度。 自动化与自治不一样。自动化使人类对他们所采取的行动产生更大的影响。 云原生是关于不需要人类做出决定的自治系统。它仍然使用自动化,但只有在决定了所需的操作之后。只有在系统不能自动确定正确的事情时才应该通知人。 具有这些特征的应用程序需要一个能够实际监控,收集度量标准并在发生故障时做出反应的平台。云原生应用程序不依赖于人员设置 ping 检查或创建 Syslog 规则。他们需要从选择基本操作系统或软件包管理器的过程中提取自助服务资源,并依靠服务发现和强大的网络通信来提供丰富的功能体验。 参考 “Cloud Native Infrastructure”, a Free O’Reilly eBook 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"cloud-native/kubernetes-history.html":{"url":"cloud-native/kubernetes-history.html","title":"Kubernetes 的诞生","keywords":"","body":"Kubernetes 的诞生 众所周知,Kubernetes 是 Google 于 2014 年 6 月基于其内部使用的 Borg 系统开源出来的容器编排调度引擎。其实从 2000 年开始,Google 就开始基于容器研发三个容器管理系统,分别是 Borg、Omega 和 Kubernetes。这篇由 Google 工程师 Brendan Burns、Brian Grant、David Oppenheimer、Eric Brewer 和 John Wilkes 几人在 2016 年发表的《Borg, Omega, and Kubernetes》论文里,阐述了 Google 从 Borg 到 Kubernetes 这个旅程中所获得知识和经验教训。 Borg、Omega 和 Kubernetes Google 从 2000 年初就开始使用容器(Linux 容器)系统,Google 开发出来的第一个统一的容器管理系统在内部称之为 “Borg”,用来管理长时间运行的生产服务和批处理服务。由于 Borg 的规模、功能的广泛性和超高的稳定性,一直到现在 Borg 在 Google 内部依然是主要的容器管理系统。 Google 的第二套容器管理系统叫做 Omega,作为 Borg 的延伸,它的出现是出于提升 Borg 生态系统软件工程的愿望。Omega 应用到了很多在 Borg 内已经被认证的成功的模式,但是是从头开始来搭建以期更为一致的构架。由于越来越多的应用被开发并运行在 Borg 上,Google 开发了一个广泛的工具和服务的生态系统。它被应用到了很多在 Borg 内已经被认证的成功的模式,但是是从头开始来搭建以期更为一致的构架。这些系统提供了配置和更新 job 的机制,能够预测资源需求,动态地对在运行中的程序推送配置文件、服务发现、负载均衡、自动扩容、机器生命周期管理、额度管理等。许多 Omega 的创新(包括多个调度器)都被收录进了 Borg。 Google 的第三套容器管理系统就是我们所熟知的 Kubernetes,它是针对在 Google 外部的对 Linux 容器感兴趣的开发者以及 Google 在公有云底层商业增长的考虑而研发的。和 Borg、Omega 完全是谷歌内部系统相比,Kubernetes 是开源的。像 Omega 一样,Kubernetes 在其核心有一个被分享的持久存储,有组件来检测相关 object 的变化。跟 Omega 不同的是,Omega 把存储直接暴露给信任的控制平面的组件,而在 Kubernete 中,提供了完全由特定领域更高层面的版本控制、认证、语义、策略的 REST API 接口,以服务更多的用户。更重要的是,Kubernetes 是由一群底层开发能力更强的开发者开发的,他们主要的设计目标是用更容易的方法去部署和管理复杂的分布式系统,同时仍能从容器提升的效率中受益。 2014 年 Kubernetes 正式开源,2015 年被作为初创项目贡献给了云原生计算基金会(CNCF),从此开启了 Kubernetes 及云原生化的大潮。 参考 Borg, Omega, and Kubernetes: Lessons learned from three container-management systems over a decade - queue.acm.org Borg、Omega 和 Kubernetes:谷歌十几年来从这三个容器管理系统中得到的经验教训 - dockone.io 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"cloud-native/kubernetes-and-cloud-native-app-overview.html":{"url":"cloud-native/kubernetes-and-cloud-native-app-overview.html","title":"Kubernetes 与云原生应用概览","keywords":"","body":"Kubernetes与云原生应用概览 2017年9月,Mesos宣布支持Kubernetes,而在2017年10月份的DockerCon EU上,Docker公司宣布官方同时支持Swarm和Kubernetes容器编排,Kubernetes已然成为容器编排调度的标准。 作为全书的开头,首先从历史、生态和应用角度介绍一下Kubernetes与云原生应用,深入浅出,高屋建瓴,没有深入到具体细节,主要是为了给初次接触Kubernetes的小白扫盲,具体细节请参考链接。 从云计算到微服务再到云原生计算 下面将从云计算的发展历程引入云原生计算,请先看下图: 图 2.4.1:云计算演进历程 云原生应用到2020年将比目前至少翻一番,下图是Marc Wilczek的调查报告。 图 2.4.2:来自Twitter @MarcWilczek 云计算介绍 云计算包含的内容十分繁杂,也有很多技术和公司牵强附会说自己是云计算公司,说自己是做云的,实际上可能风马牛不相及。说白了,云计算就是一种配置资源的方式,根据资源配置方式的不同我们可以把云计算从宏观上分为以下三种类型: IaaS:这是为了想要建立自己的商业模式并进行自定义的客户,例如亚马逊的EC2、S3存储、Rackspace虚拟机等都是IaaS。 PaaS:工具和服务的集合,对于想用它来构建自己的应用程序或者想快速得将应用程序部署到生产环境而不必关心底层硬件的用户和开发者来说是特别有用的,比如Cloud Foundry、Google App Engine、Heroku等。 SaaS:终端用户可以直接使用的应用程序。这个就太多,我们生活中用到的很多软件都是SaaS服务,只要基于互联网来提供的服务基本都是SaaS服务,有的服务是免费的,比如Google Docs,还有更多的是根据我们购买的Plan和使用量付费,比如GitHub、各种云存储。 微服务介绍 微服务(Microservices)这个词比较新颖,但是其实这种架构设计理念早就有了。微服务是一种分布式架构设计理念,为了推动细粒度服务的使用,这些服务要能协同工作,每个服务都有自己的生命周期。一个微服务就是一个独立的实体,可以独立的部署在PAAS平台上,也可以作为一个独立的进程在主机中运行。服务之间通过API访问,修改一个服务不会影响其它服务。 要想了解微服务的详细内容推荐阅读《微服务设计》(Sam Newman著),我写过这本书的读书笔记 - 微服务设计读书笔记。 下文中会谈到Kubernetes与微服务的关系,其中Kubernetes的service天生就适合于微服务。 云原生概念介绍 下面是Cloud Native概念思维导图 图 2.4.3:Cloud native思维导图 云原生准确来说是一种文化,更是一种潮流,它是云计算的一个必然导向。它的意义在于让云成为云化战略成功的基石,而不是阻碍,如果业务应用上云之后开发和运维人员比原先还痛苦,成本还高的话,这样的云我们宁愿不上。 自从云的概念开始普及,许多公司都部署了实施云化的策略,纷纷搭建起云平台,希望完成传统应用到云端的迁移。但是这个过程中会遇到一些技术难题,上云以后,效率并没有变得更高,故障也没有迅速定位。 为了解决传统应用升级缓慢、架构臃肿、不能快速迭代、故障不能快速定位、问题无法快速解决等问题,云原生这一概念横空出世。云原生可以改进应用开发的效率,改变企业的组织结构,甚至会在文化层面上直接影响一个公司的决策。 另外,云原生也很好地解释了云上运行的应用应该具备什么样的架构特性——敏捷性、可扩展性、故障可恢复性。 综上所述,云原生应用应该具备以下几个关键词: 敏捷 可靠 高弹性 易扩展 故障隔离保护 不中断业务持续更新 以上特性也是云原生区别于传统云应用的优势特点。 从宏观概念上讲,云原生是不同思想的集合,集目前各种热门技术之大成,具体包括如下图所示的几个部分。 Kubernetes与云原生的关系 Kuberentes可以说是乘着Docker和微服务的东风,一经推出便迅速蹿红,它的很多设计思想都契合了微服务和云原生应用的设计法则,这其中最著名的就是开发了Heroku PaaS平台的工程师们总结的 Twelve-factor App了。 下面我将讲解Kubernetes设计时是如何按照了十二因素应用法则,并给出Kubernetes中的应用示例,并附上一句话简短的介绍。 Kubernetes介绍 Kubernetes是Google基于Borg开源的容器编排调度引擎,作为CNCF(Cloud Native Computing Foundation)最重要的组件之一,它的目标不仅仅是一个编排系统,而是提供一个规范,可以让你来描述集群的架构,定义服务的最终状态,Kubernetes可以帮你将系统自动得达到和维持在这个状态。 更直白的说,Kubernetes用户可以通过编写一个yaml或者json格式的配置文件,也可以通过工具/代码生成或直接请求Kubernetes API创建应用,该配置文件中包含了用户想要应用程序保持的状态,不论整个Kubernetes集群中的个别主机发生什么问题,都不会影响应用程序的状态,你还可以通过改变该配置文件或请求Kubernetes API来改变应用程序的状态。 12因素应用 12因素应用提出已经有几年的时间了,每个人对其可能都有自己的理解,切不可生搬硬套,也不一定所有云原生应用都必须符合这12条法则,其中有几条法则可能还有点争议,有人对其的解释和看法不同。 大家不要孤立的来看这每一个因素,将其与自己软件开发流程联系起来,这12个因素大致就是按照软件从开发到交付的流程顺序来写的。 图 2.4.4:十二因素应用 1.基准代码 每个代码仓库(repo)都生成docker image保存到镜像仓库中,并使用唯一的ID管理,在Jenkins中使用编译时的ID。 2.依赖 显式的声明代码中的依赖,使用软件包管理工具声明,比如Go中的Glide。 3.配置 将配置与代码分离,应用部署到Kubernetes中可以使用容器的环境变量或ConfigMap挂载到容器中。 4.后端服务 把后端服务当作附加资源,实质上是计算存储分离和降低服务耦合,分解单体应用。 5.构建、发布、运行 严格分离构建和运行,每次修改代码生成新的镜像,重新发布,不能直接修改运行时的代码和配置。 6.进程 应用程序进程应该是无状态的,这意味着再次重启后还可以计算出原先的状态。 7.端口绑定 在Kubernetes中每个Pod都有独立的IP,每个运行在Pod中的应用不必关心端口是否重复,只需在service中指定端口,集群内的service通过配置互相发现。 8.并发 每个容器都是一个进程,通过增加容器的副本数实现并发。 9.易处理 快速启动和优雅终止可最大化健壮性,Kuberentes优秀的Pod生存周期控制。 10.开发环境与线上环境等价 在Kubernetes中可以创建多个namespace,使用相同的镜像可以很方便的复制一套环境出来,镜像的使用可以很方便的部署一个后端服务。 11.日志 把日志当作事件流,使用stdout输出并收集汇聚起来,例如到ES中统一查看。 12.管理进程 后台管理任务当作一次性进程运行,kubectl exec进入容器内部操作。 另外,Cloud Native Go 这本书的作者,CapitalOne公司的Kevin Hoffman在TalkingData T11峰会上的High Level Cloud Native的演讲中讲述了云原生应用的15个因素,在原先的12因素应用的基础上又增加了如下三个因素: API优先 服务间的合约 团队协作的规约 文档化、规范化 RESTful或RPC 监控 实时监控远程应用 应用性能监控(APM) 应用健康监控 系统日志 不建议在线Debug 认证授权 不要等最后才去考虑应用的安全性 详细设计、明确声明、文档化 Bearer token、OAuth、OIDC认证 操作审计 详见High Level Cloud Native From Kevin Hoffman。 Kubernetes中的资源管理与容器设计模式 Kubernetes通过声明式配置,真正让开发人员能够理解应用的状态,并通过同一份配置可以立马启动一个一模一样的环境,大大提高了应用开发和部署的效率,其中Kubernetes设计的多种资源类型可以帮助我们定义应用的运行状态,并使用资源配置来细粒度的明确限制应用的资源使用。 而容器生态的成熟是 Kubernetes 诞生的前提,在谈到容器的设计模式之前我们先来了解下容器生态,请看下图: 图 2.4.5:容器生态 关于 Docker 容器的更多内容请参考 Docker最佳实践。 容器的设计模式 Kubernetes提供了多种资源对象,用户可以根据自己应用的特性加以选择。这些对象有: 类别 名称 资源对象 Pod、ReplicaSet、ReplicationController、Deployment、StatefulSet、DaemonSet、Job、CronJob、HorizontalPodAutoscaler 配置对象 Node、Namespace、Service、Secret、ConfigMap、Ingress、Label、CustomResourceDefinition、 ServiceAccount 存储对象 Volume、Persistent Volume 策略对象 SecurityContext、ResourceQuota、LimitRange 在 Kubernetes 系统中,Kubernetes 对象 是持久化的条目。Kubernetes 使用这些条目去表示整个集群的状态。特别地,它们描述了如下信息: 什么容器化应用在运行(以及在哪个 Node 上) 可以被应用使用的资源 关于应用如何表现的策略,比如重启策略、升级策略,以及容错策略 Kubernetes 对象是 “目标性记录” —— 一旦创建对象,Kubernetes 系统将持续工作以确保对象存在。通过创建对象,可以有效地告知 Kubernetes 系统,所需要的集群工作负载看起来是什么样子的,这就是 Kubernetes 集群的 期望状态。 详见Kubernetes Handbook - Objects。 资源限制与配额 两层的资源限制与配置 Pod级别,最小的资源调度单位 Namespace级别,限制资源配额和每个Pod的资源使用区间 请参考Kubernetes中的ResourceQuota和LimitRange配置资源限额 管理Kubernetes集群 手工部署Kubernetes是一个很艰巨的活,你需要了解网络配置、Docker的安装与使用、镜像仓库的构建、角色证书的创建、Kubernetes的基本原理和构成、Kubernetes应用程序的yaml文件编写等。 我编写了一本kubernetes-handbook可供大家免费阅读,该书记录了本人从零开始学习和使用Kubernetes的心路历程,着重于经验分享和总结,同时也会有相关的概念解析,希望能够帮助大家少踩坑,少走弯路。 部署Kubernetes集群 使用二进制部署 kubernetes 集群的所有组件和插件,而不是使用 kubeadm 等自动化方式来部署集群,同时开启了集群的TLS安全认证,这样可以帮助我们了解系统各组件的交互原理,进而能快速解决实际问题。详见在CentOS上部署Kubernetes集群。 集群详情 Kubernetes 1.6.0 Docker 1.12.5(使用yum安装) Etcd 3.1.5 Flanneld 0.7 vxlan 网络 TLS 认证通信 (所有组件,如 etcd、kubernetes master 和 node) RBAC 授权 kubelet TLS BootStrapping kubedns、dashboard、heapster(influxdb、grafana)、EFK(elasticsearch、fluentd、kibana) 集群插件 私有Docker镜像仓库Harbor(请自行部署,Harbor提供离线安装包,直接使用docker-compose启动即可) 步骤介绍 创建 TLS 证书和秘钥 创建kubeconfig文件 创建高可用etcd集群 安装kubectl命令行工具 部署master节点 安装flannel网络插件 部署node节点 安装kubedns插件 安装dashboard插件 安装heapster插件 安装EFK插件 服务发现与负载均衡 Kubernetes在设计之初就充分考虑了针对容器的服务发现与负载均衡机制,提供了Service资源,并通过kube-proxy配合cloud provider来适应不同的应用场景。随着Kubernetes用户的激增,用户场景的不断丰富,又产生了一些新的负载均衡机制。目前,Kubernetes中的负载均衡大致可以分为以下几种机制,每种机制都有其特定的应用场景: Service:直接用Service提供cluster内部的负载均衡,并借助cloud provider提供的LB提供外部访问 Ingress:还是用Service提供cluster内部的负载均衡,但是通过自定义LB提供外部访问 Service Load Balancer:把load balancer直接跑在容器中,实现Bare Metal的Service Load Balancer Custom Load Balancer:自定义负载均衡,并替代kube-proxy,一般在物理部署Kubernetes时使用,方便接入公司已有的外部服务 详见Kubernetes Handbook - 服务发现与负载均衡。 持续集成与发布 图 2.4.6:使用Jenkins进行持续集成与发布流程图 应用构建和发布流程说明: 用户向Gitlab提交代码,代码中必须包含Dockerfile 将代码提交到远程仓库 用户在发布应用时需要填写git仓库地址和分支、服务类型、服务名称、资源数量、实例个数,确定后触发Jenkins自动构建 Jenkins的CI流水线自动编译代码并打包成Docker镜像推送到Harbor镜像仓库 Jenkins的CI流水线中包括了自定义脚本,根据我们已准备好的Kubernetes的YAML模板,将其中的变量替换成用户输入的选项 生成应用的Kubernetes YAML配置文件 更新Ingress的配置,根据新部署的应用的名称,在Ingress的配置文件中增加一条路由信息 更新PowerDNS,向其中插入一条DNS记录,IP地址是边缘节点的IP地址。关于边缘节点,请查看边缘节点配置 Jenkins调用Kubernetes的API,部署应用 日志收集与监控 基于现有的ELK日志收集方案,稍作改造,选用filebeat来收集日志,可以作为sidecar的形式跟应用运行在同一个Pod中,比较轻量级消耗资源比较少。 图 2.4.7:filebeat日志收集架构图 详见Kubernetes Handbook - 应用日志收集。 安全性与权限管理 Kubernetes是一个多租户的云平台,因此必须对用户的权限加以限制,对用户空间进行隔离。Kubernetes中的隔离主要包括这几种: 网络隔离:需要使用网络插件,比如flannel, calico。 资源隔离:kubernetes原生支持资源隔离,pod就是资源隔离和调度的最小单位,同时使用namespace限制用户空间和资源限额。 身份隔离:使用RBAC-基于角色的访问控制,多租户的身份认证和权限控制。 如何开发Kubernetes原生应用步骤介绍 当我们有了一个kubernetes集群后,如何在上面开发和部署应用,应该遵循怎样的流程?下面我将展示如何使用go语言开发和部署一个Kubernetes native应用,使用wercker进行持续集成与持续发布,我将以一个很简单的前后端访问,获取伪造数据并展示的例子来说明。 云原生应用开发示例 我们将按照如下步骤来开发部署一个Kubernetes原生应用并将它部署到Kubernetes集群上开放给集群外访问: 服务API的定义 使用Go语言开发Kubernetes原生应用 一个持续构建与发布工具与环境 使用traefik和VIP做边缘节点提供外部访问路由 我写了两个示例用于演示,开发部署一个伪造的 metric 并显示在 web 页面上,包括两个service: k8s-app-monitor-test:生成模拟的监控数据,发送http请求,获取json返回值 K8s-app-monitor-agent:获取监控数据并绘图,访问浏览器获取图表 定义API生成API文档 使用API blueprint格式,定义API文档,格式类似于markdown,再使用aglio生成HTML文档。 图 2.4.8:API文档 详见:如何开发部署Kubernetes Native应用。 如何迁移到云原生应用架构 Pivotal 是云原生应用的提出者,并推出了 Pivotal Cloud Foundry 云原生应用平台和 Spring 开源 Java 开发框架,成为云原生应用架构中先驱者和探路者。 原书作于2015年,其中的示例主要针对 Java 应用,实际上也适用于任何应用类型,云原生应用架构适用于异构语言的程序开发,不仅仅是针对 Java 语言的程序开发。截止到本人翻译本书时,云原生应用生态系统已经初具规模,CNCF 成员不断发展壮大,基于 Cloud Native 的创业公司不断涌现,kubernetes 引领容器编排潮流,和 Service Mesh 技术(如 Linkerd 和 Istio) 的出现,Go 语言的兴起(参考另一本书 Cloud Native Go)等为我们将应用迁移到云原生架构的提供了更多的方案选择。 迁移到云原生应用架构指南 指出了迁移到云原生应用架构需要做出的企业文化、组织架构和技术变革,并给出了迁移指南。 主要讨论的应用程序架构包括: 十二因素应用程序:云原生应用程序架构模式的集合 微服务:独立部署的服务,只做一件事情 自助服务的敏捷基础设施:快速,可重复和一致地提供应用环境和后台服务的平台 基于API的协作:发布和版本化的API,允许在云原生应用程序架构中的服务之间进行交互 抗压性:根据压力变强的系统 详见:迁移到云原生应用架构 迁移案例解析 迁移步骤示意图如下: 图 2.4.9:迁移步骤示意图 步骤说明: 将原有应用拆解为服务 定义服务的接口/API通信方式 编写启动脚本作为容器的进程入口 准备应用配置文件 容器化、制作镜像 准备Kubernetes YAML文件 如果有外置配置文件需要创建ConfigMap或Secret存储 详见:迁移传统应用到Kubernetes步骤详解——以Hadoop YARN为例。 Service Mesh基本原理和示例介绍 Service Mesh现在一般被翻译作服务网格,目前主流的Service Mesh有如下几款: Istio:IBM、Google、Lyft共同开源,详细文档见Istio官方文档 Linkerd:原Twitter工程师开发,现为CNCF中的项目之一 Envoy:Lyft开源的,可以在Istio中使用Sidecar模式运行 Conduit:同样由Buoyant开源的轻量级的基于Kubernetes的Service Mesh 此外还有很多其它的Service Mesh鱼贯而出,请参考awesome-cloud-native。 什么是Service Mesh 如果用一句话来解释什么是 Service Mesh,可以将它比作是应用程序或者说微服务间的 TCP/IP,负责服务之间的网络调用、限流、熔断和监控。对于编写应用程序来说一般无须关心 TCP/IP 这一层(比如通过 HTTP 协议的 RESTful 应用),同样使用 Service Mesh 也就无须关心服务之间的那些原来是通过应用程序或者其他框架实现的事情,比如 Spring Cloud、OSS,现在只要交给 Service Mesh 就可以了。 图 2.4.10:service mesh架构图 详见什么是 Service Mesh - jimmysong.io。 Service Mesh使用指南 两款Service Mesh各有千秋,我分别写了他们的使用案例指南: 微服务管理框架Service Mesh——Linkerd安装试用笔记 微服务管理框架Service Mesh——Istio安装试用笔记 更多关于 Service Mesh 的内容请访问 ServiceMesher 社区网站。 使用案例 Kubernetes作为云原生计算的基本组件之一,开源2年时间以来热度与日俱增,它可以跟我们的生产结合,擦出很多火花,比如FaaS和Serverless类应用,都很适合运行在kubernetes上。 关于Cloud Native开源软件生态请参考 Awesome Cloud Native - jimmysong.io。 DevOps 下面是社区中Kubernetes开源爱好者的分享内容,我觉得是对Kubernetes在DevOps中应用的很好的形式值得大家借鉴。 真正践行DevOps,让开发人员在掌握自己的开发和测试环境,让环境一致,让开发效率提升,让运维没有堆积如山的tickets,让监控更加精准,从Kubernetes平台开始。 行动指南 根据环境(比如开发、测试、生产)划分namespace,也可以根据项目来划分 再为每个用户划分一个namespace、创建一个serviceaccount和kubeconfig文件,不同namespace间的资源隔离,目前不隔离网络,不同namespace间的服务可以互相访问 创建yaml模板,降低编写Kubernetes yaml文件编写难度 在kubectl命令上再封装一层,增加用户身份设置和环境初始化操作,简化kubectl命令和常用功能 管理员通过dashboard查看不同namespace的状态,也可以使用它来使操作更便捷 所有应用的日志统一收集到ElasticSearch中,统一日志访问入口 可以通过Grafana查看所有namespace中的应用的状态和kubernetes集群本身的状态 需要持久化的数据保存在分布式存储中,例如GlusterFS或Ceph中 使用Kibana查看日志 日志字段中包括了应用的标签、容器名称、主机名称、宿主机名称、IP地址、时间。 图 2.4.11:kibana界面 使用Grafana查看应用状态 注:感谢【K8S🤘Cloud Native实战群】尊贵的黄金会员小刚同学提供下面的Grafana监控图🙏 监控分类示意图: 图 2.4.12:Grafana界面示意图1 Kubernetes集群全局监控图1 该监控图可以看到集群硬件使用情况。 图 2.4.13:Grafana界面示意图2 Kubernetes全局监控图2 该监控可以看到单个用户的namespace下的所有资源的使用情况。 图 2.4.14:Grafana界面示意图3 Spark on Kubernetes TL;DR https://jimmysong.io/spark-on-k8s Spark原生支持standalone、mesos和YARN资源调度,现已支持Kubernetes原生调度,详见运行支持Kubernetes原生调度的spark程序-Spark on Kubernetes。 为何要使用spark on kubernetes 使用Kubernetes原生调度的spark on kubernetes是对原先的spark on yarn和yarn on docker的改变是革命性的,主要表现在以下几点: Kubernetes原生调度:不再需要二层调度,直接使用Kubernetes的资源调度功能,跟其他应用共用整个kubernetes管理的资源池; 资源隔离,粒度更细:原先yarn中的queue在spark on kubernetes中已不存在,取而代之的是kubernetes中原生的namespace,可以为每个用户分别指定一个namespace,限制用户的资源quota; 细粒度的资源分配:可以给每个spark任务指定资源限制,实际指定多少资源就使用多少资源,因为没有了像yarn那样的二层调度(圈地式的),所以可以更高效和细粒度的使用资源; 监控的变革:因为做到了细粒度的资源分配,所以可以对用户提交的每一个任务做到资源使用的监控,从而判断用户的资源使用情况,所有的metric都记录在数据库中,甚至可以为每个用户的每次任务提交计量; 日志的变革:用户不再通过yarn的web页面来查看任务状态,而是通过pod的log来查看,可将所有的kuberentes中的应用的日志等同看待收集起来,然后可以根据标签查看对应应用的日志; 如何提交任务 仍然使用spark-submit提交spark任务,可以直接指定Kubernetes API server地址,下面的命令提交本地jar包到Kubernetes集群上运行,同时指定了运行任务的用户、提交命名的用户、运行的excutor实例数、driver和executor的资源限制、使用的spark版本等信息。 详细使用说明见Apache Spark on Kubernetes用户指南 - jimmysong.io。 ./spark-submit \\ --deploy-mode cluster \\ --class com.talkingdata.alluxio.hadooptest \\ --master k8s://https://172.20.0.113:6443 \\ --kubernetes-namespace spark-cluster \\ --conf spark.kubernetes.driverEnv.SPARK_USER=hadoop \\ --conf spark.kubernetes.driverEnv.HADOOP_USER_NAME=hadoop \\ --conf spark.executorEnv.HADOOP_USER_NAME=hadoop \\ --conf spark.executorEnv.SPARK_USER=hadoop \\ --conf spark.kubernetes.authenticate.driver.serviceAccountName=spark \\ --conf spark.driver.memory=100G \\ --conf spark.executor.memory=10G \\ --conf spark.driver.cores=30 \\ --conf spark.executor.cores=2 \\ --conf spark.driver.maxResultSize=10240m \\ --conf spark.kubernetes.driver.limit.cores=32 \\ --conf spark.kubernetes.executor.limit.cores=3 \\ --conf spark.kubernetes.executor.memoryOverhead=2g \\ --conf spark.executor.instances=5 \\ --conf spark.app.name=spark-pi \\ --conf spark.kubernetes.driver.docker.image=harbor-001.jimmysong.io/library/spark-driver:v2.1.0-kubernetes-0.3.1-1 \\ --conf spark.kubernetes.executor.docker.image=harbor-001.jimmysong.io/library/spark-executor:v2.1.0-kubernetes-0.3.1-1 \\ --conf spark.kubernetes.initcontainer.docker.image=harbor-001.jimmysong.io/library/spark-init:v2.1.0-kubernetes-0.3.1-1 \\ --conf spark.kubernetes.resourceStagingServer.uri=http://172.20.0.114:31000 \\ ~/Downloads/tendcloud_2.10-1.0.jar 监控 下图是从Kubernetes dashboard上看到的spark-cluster这个namespace上运行的应用情况。 图 2.4.15:dashboard 下图是从Grafana监控页面上查看到的某个executor资源占用情况。 图 2.4.16:Grafana 参考 迁移到云原生应用架构指南 Cloud Native Go - 已由电子工业出版社出版 Cloud Native Python - 已由电子工业出版社出版 Istio Service Mesh 中文文档 v1.2 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"cloud-native/from-kubernetes-to-cloud-native.html":{"url":"cloud-native/from-kubernetes-to-cloud-native.html","title":"云原生应用之路 —— 从 Kubernetes 到 Cloud Native","keywords":"","body":"云原生应用之路——从Kubernetes到Cloud Native 从Kubernetes到Cloud Native——云原生应用之路,这是我最近在 ArchSummit2017北京站 和 数人云&TalkingData合办的Service Mesh is coming meetup 中分享的话题。 本文简要介绍了容器技术发展的路径,为何Kubernetes的出现是容器技术发展到这一步的必然选择,而为何Kubernetes又将成为云原生应用的基石。 我的分享按照这样的主线展开:容器->Kubernetes->微服务->Cloud Native(云原生)->Service Mesh(服务网格)->使用场景->Open Source(开源)。 容器 容器——Cloud Native的基石 容器最初是通过开发者工具而流行,可以使用它来做隔离的开发测试环境和持续集成环境,这些都是因为容器轻量级,易于配置和使用带来的优势,docker和docker-compose这样的工具极大的方便的了应用开发环境的搭建,开发者就像是化学家一样在其中小心翼翼的进行各种调试和开发。 随着容器的在开发者中的普及,已经大家对CI流程的熟悉,容器周边的各种工具蓬勃发展,俨然形成了一个小生态,在2016年达到顶峰,下面这张是我画的容器生态图: 图 2.5.1:容器生态图 Container ecosystem 该生态涵盖了容器应用中从镜像仓库、服务编排、安全管理、持续集成与发布、存储和网络管理等各个方面,随着在单主机中运行容器的成熟,集群管理和容器编排成为容器技术亟待解决的问题。譬如化学家在实验室中研究出来的新产品,如何推向市场,进行大规模生产,成了新的议题。 为什么使用Kubernetes Kubernetes——让容器应用进入大规模工业生产。 Kubernetes是容器编排系统的事实标准 在单机上运行容器,无法发挥它的最大效能,只有形成集群,才能最大程度发挥容器的良好隔离、资源分配与编排管理的优势,而对于容器的编排管理,Swarm、Mesos和Kubernetes的大战已经基本宣告结束,Kubernetes成为了无可争议的赢家。 下面这张图是Kubernetes的架构图(图片来自网络),其中显示了组件之间交互的接口CNI、CRI、OCI等,这些将Kubernetes与某款具体产品解耦,给用户最大的定制程度,使得Kubernetes有机会成为跨云的真正的云原生应用的操作系统。 图 2.5.2:Kubernetes架构 随着Kubernetes的日趋成熟,“Kubernetes is becoming boring”,基于该“操作系统”之上构建的适用于不同场景的应用将成为新的发展方向,就像我们将石油开采出来后,提炼出汽油、柴油、沥青等等,所有的材料都将找到自己的用途,Kubernetes也是,毕竟我们谁也不是为了部署和管理容器而用Kubernetes,承载其上的应用才是价值之所在。 云原生的核心目标 图 2.5.3:Cloud Native Core target 云已经可以为我们提供稳定可以唾手可得的基础设施,但是业务上云成了一个难题,Kubernetes的出现与其说是从最初的容器编排解决方案,倒不如说是为了解决应用上云(即云原生应用)这个难题。 包括微服务和FaaS/Serverless架构,都可以作为云原生应用的架构。 图 2.5.4:FaaS Landscape 但就2017年为止,Kubernetes的主要使用场景也主要作为应用开发测试环境、CI/CD和运行Web应用这几个领域,如下图TheNewStack的Kubernetes生态状况调查报告所示。 图 2.5.5:Workloads running on Kubernetes 另外基于Kubernetes的构建PaaS平台和Serverless也处于爆发的准备的阶段,如下图中Gartner的报告中所示: 图 2.5.6:Gartner技术爆发趋势图2017 当前各大公有云如Google GKE、微软Azure ACS、亚马逊EKS(2018年上线)、VMWare、Pivotal、腾讯云、阿里云等都提供了Kubernetes服务。 微服务 微服务——Cloud Native的应用架构。 下图是Bilgin Ibryam给出的微服务中应该关心的主题,图片来自RedHat Developers。 图 2.5.7:Microservices concerns 微服务带给我们很多开发和部署上的灵活性和技术多样性,但是也增加了服务调用的开销、分布式系统管理、调试与服务治理方面的难题。 当前最成熟最完整的微服务框架可以说非Spring莫属,而Spring又仅限于Java语言开发,其架构本身又跟Kubernetes存在很多重合的部分,如何探索将Kubernetes作为微服务架构平台就成为一个热点话题。 就拿微服务中最基础的服务注册发现功能来说,其方式分为客户端服务发现和服务端服务发现两种,Java应用中常用的方式是使用Eureka和Ribbon做服务注册发现和负载均衡,这属于客户端服务发现,而在Kubernetes中则可以使用DNS、Service和Ingress来实现,不需要修改应用代码,直接从网络层面来实现。 图 2.5.8:两种服务发现方式 Cloud Native DevOps——通向云原生的云梯 CNCF(云原生计算基金会)给出了云原生应用的三大特征: 容器化包装:软件应用的进程应该包装在容器中独立运行。 动态管理:通过集中式的编排调度系统来动态的管理和调度。 微服务化:明确服务间的依赖,互相解耦。 下图是我整理的关于云原生所需要的能力和特征。 图 2.5.9:Cloud Native Features CNCF所托管的应用(目前已达12个),即朝着这个目标发展,其公布的Cloud Native Landscape,给出了云原生生态的参考体系。 图 2.5.10:Cloud Native Landscape v1.0 使用Kubernetes构建云原生应用 我们都是知道Heroku推出了适用于PaaS的12 factor app的规范,包括如下要素: 基准代码 依赖管理 配置 后端服务 构建,发布,运行 无状态进程 端口绑定 并发 易处理 开发环境与线上环境等价 日志作为事件流 管理进程 另外还有补充的三点: API声明管理 认证和授权 监控与告警 如果落实的具体的工具,请看下图,使用Kubernetes构建云原生架构: 图 2.5.11:Building a Cloud Native Architecture with Kubernetes followed 12 factor app 结合这12因素对开发或者改造后的应用适合部署到Kubernetes之上,基本流程如下图所示: 图 2.5.12:Creating Kubernetes native app 迁移到云架构 迁移到云端架构,相对单体架构来说会带来很多挑战。比如自动的持续集成与发布、服务监控的变革、服务暴露、权限的管控等。这些具体细节请参考Kubernetes-handbook中的说明:https://jimmysong.io/kubernetes-handbook,在此就不细节展开,另外推荐一本我翻译的由Pivotal出品的电子书——Migrating to Cloud Native Application Architectures,地址:https://jimmysong.io/migrating-to-cloud-native-application-architectures/。 Service Mesh Services for show, meshes for a pro. Kubernetes中的应用将作为微服务运行,但是Kubernetes本身并没有给出微服务治理的解决方案,比如服务的限流、熔断、良好的灰度发布支持等。 Service Mesh可以用来做什么 Traffic Management:API网关 Observability:服务调用和性能分析 Policy Enforcment:控制服务访问策略 Service Identity and Security:安全保护 Service Mesh的特点 专用的基础设施层 轻量级高性能网络代理 提供安全的、快速的、可靠地服务间通讯 扩展kubernetes的应用负载均衡机制,实现灰度发布 完全解耦于应用,应用可以无感知,加速应用的微服务和云原生转型 使用Service Mesh将可以有效的治理Kubernetes中运行的服务,当前开源的Service Mesh有: Linkderd:https://linkerd.io,由最早提出Service Mesh的公司Buoyant开源,创始人来自Twitter Envoy:https://www.envoyproxy.io/,Lyft开源的,可以在Istio中使用Sidecar模式运行 Istio:https://istio.io,由Google、IBM、Lyft联合开发并开源 Conduit:https://conduit.io,同样由Buoyant开源的轻量级的基于Kubernetes的Service Mesh 此外还有很多其它的Service Mesh鱼贯而出,请参考awesome-cloud-native。 Istio VS Linkerd Linkerd和Istio是最早开源的Service Mesh,它们都支持Kubernetes,下面是它们之间的一些特性对比。 Feature Istio Linkerd 部署架构 Envoy/Sidecar DaemonSets 易用性 复杂 简单 支持平台 Kubernetes Kubernetes/Mesos/Istio/Local 当前版本 0.8 1.4.3 是否已有生产部署 否 是 关于两者的架构可以参考各自的官方文档,我只从其在Kubernetes上的部署结构来说明其区别。 图 2.5.13:istio vs linkerd Istio的组件复杂,可以分别部署在Kubernetes集群中,但是作为核心路由组件Envoy是以Sidecar形式与应用运行在同一个Pod中的,所有进入该Pod中的流量都需要先经过Envoy。 Linker的部署十分简单,本身就是一个镜像,使用Kubernetes的DaemonSet方式在每个node节点上运行。 更多信息请参考kubernetes-handbook。 使用场景 Cloud Native的大规模工业生产 GitOps 给开发者带来最大的配置和上线的灵活性,践行DevOps流程,改善研发效率,下图这样的情况将更少发生。 图 2.5.14:Deployment pipeline 我们知道Kubernetes中的所有应用的部署都是基于YAML文件的,这实际上就是一种Infrastructure as code,完全可以通过Git来管控基础设施和部署环境的变更。 Big Data Spark现在已经非官方支持了基于Kubernetes的原生调度,其具有以下特点: Kubernetes原生调度:与yarn、mesos同级 资源隔离,粒度更细:以namespace来划分用户 监控的变革:单次任务资源计量 日志的变革:pod的日志收集 Feature Yarn Kubernetes queue queue namespace instance ExcutorContainer Executor Pod network host plugin heterogeneous no yes security RBAC ACL 下图是在Kubernetes上运行三种调度方式的spark的单个节点的应用部分对比: 图 2.5.15:Spark on Kubernetes with different schedulers 从上图中可以看到在Kubernetes上使用YARN调度、standalone调度和Kubernetes原生调度的方式,每个node节点上的Pod内的Spark Executor分布,毫无疑问,使用Kubernetes原生调度的Spark任务才是最节省资源的。 提交任务的语句看起来会像是这样的: ./spark-submit \\ --deploy-mode cluster \\ --class com.talkingdata.alluxio.hadooptest \\ --master k8s://https://172.20.0.113:6443 \\ --kubernetes-namespace spark-cluster \\ --conf spark.kubernetes.driverEnv.SPARK_USER=hadoop \\ --conf spark.kubernetes.driverEnv.HADOOP_USER_NAME=hadoop \\ --conf spark.executorEnv.HADOOP_USER_NAME=hadoop \\ --conf spark.executorEnv.SPARK_USER=hadoop \\ --conf spark.kubernetes.authenticate.driver.serviceAccountName=spark \\ --conf spark.driver.memory=100G \\ --conf spark.executor.memory=10G \\ --conf spark.driver.cores=30 \\ --conf spark.executor.cores=2 \\ --conf spark.driver.maxResultSize=10240m \\ --conf spark.kubernetes.driver.limit.cores=32 \\ --conf spark.kubernetes.executor.limit.cores=3 \\ --conf spark.kubernetes.executor.memoryOverhead=2g \\ --conf spark.executor.instances=5 \\ --conf spark.app.name=spark-pi \\ --conf spark.kubernetes.driver.docker.image=spark-driver:v2.1.0-kubernetes-0.3.1-1 \\ --conf spark.kubernetes.executor.docker.image=spark-executor:v2.1.0-kubernetes-0.3.1-1 \\ --conf spark.kubernetes.initcontainer.docker.image=spark-init:v2.1.0-kubernetes-0.3.1-1 \\ --conf spark.kubernetes.resourceStagingServer.uri=http://172.20.0.114:31000 \\ ~/Downloads/tendcloud_2.10-1.0.jar 关于支持Kubernetes原生调度的Spark请参考:https://jimmysong.io/spark-on-k8s/ Open Source Contributing is Not only about code, it is about helping a community. 下图是我们刚调研准备使用Kubernetes时候的调研方案选择。 图 2.5.16:Kubernetes solutions 对于一个初次接触Kubernetes的人来说,看到这样一个庞大的架构选型时会望而生畏,但是Kubernetes的开源社区帮助了我们很多。 图 2.5.17:Kubernetes SIG 我组建了K8S&Cloud Native实战、ServiceMesher微信群,参与了k8smeetup、KEUC2017、kubernetes-docs-cn Kubernetes官方中文文档项目。 有用的资料和链接 我的博客: https://jimmysong.io 微信群:k8s&cloud native实战群、ServiceMesher(见:https://jimmysong.io/about) Meetup:k8smeetup、ServiceMesher Cloud Native Go - 基于Go和React云原生Web应用开发:https://jimmysong.io/cloud-native-go Gitbook:https://jimmysong.io/kubernetes-handbook Cloud native开源生态:https://jimmysong.io/awesome-cloud-native/ 资料分享整理:https://github.com/rootsongjc/cloud-native-slides-share 迁移到云原生架构:https://jimmysong.io/migrating-to-cloud-native-application-architectures/ KubeCon + CloudNativeCon 2018年11月14-15日 上海 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"cloud-native/define-cloud-native-app.html":{"url":"cloud-native/define-cloud-native-app.html","title":"定义云原生应用","keywords":"","body":"定义云原生应用 本文参考的是 OAM 规范中对云原生应用的定义,并做出了引申。 云原生应用是一个相互关联但又不独立的组件(service、task、worker)的集合,这些组件与配置结合在一起并在适当的运行时实例化后,共同完成统一的功能目的。 云原生应用模型 下图是 OAM 定义的云原生应用模型示意图,为了便于理解,图中相同颜色的部分为同一类别的对象定义。 图 2.6.1:云原生应用模型 OAM 的规范中定义了以下对象,它们既是 OAM 规范中的基本术语也是云原生应用的基本组成。 Workload(工作负载):应用程序的工作负载类型,由平台提供。 Component(组件):定义了一个 Workload 的实例,并以基础设施中立的术语声明其运维特性。 Trait(特征):用于将运维特性分配给组件实例。 ApplicationScope(应用作用域):用于将组件分组成具有共同特性的松散耦合的应用。 ApplicationConfiguration(应用配置):描述 Component 的部署、Trait 和 ApplicationScope。 OAM 规范中提供了一个使用以上对象定义云原生应用的工作流示例。 关注点分离 下图是不同角色对于该模型的关注点示意图。 图 2.6.2:云原生应用模型中的目标角色 我们可以看到对于一个云原生应用来说,不同的对象是由不同的角色来负责的: 基础设施运维:提供不同的 Workload 类型供开发者使用; 应用运维:定义适用于不同 Workload 的运维属性 Trait 和管理 Component 的 ApplicationScope 即作用域; 应用开发者:负责应用组件 Component 的定义; 应用开发者和运维:共同将 Component 与运维属性 Trait 绑定在一起,维护应用程序的生命周期; 基于 OAM 中的对象定义的云原生应用可以充分利用平台能力自由组合,开发者和运维人员的职责可以得到有效分离,组件的复用性得到大幅提高。 定义标准 CNCF 中的有几个定义标准的「开源项目」,其中有的项目都已经毕业。 SMI(Service Mesh Interface):服务网格接口 Cloud Events:Serverless 中的事件标准 TUF:更新框架标准 SPIFFE:身份安全标准 这其中唯独没有应用定义标准,CNCF SIG App delivery 即是要做这个的。当然既然要指定标准,自然要对不同平台和场景的逻辑做出更高级别的抽象(这也意味着你在掌握了底层逻辑的情况下还要学习更多的概念),这样才能屏蔽底层差异。 参考 The Open Application Model specification - github.com 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"cloud-native/oam.html":{"url":"cloud-native/oam.html","title":"OAM","keywords":"","body":"OAM(开放应用模型) OAM(Open Application Model)是阿里巴巴和微软共同开源的云原生应用规范模型,同时开源了基于 OAM 的实现 Rudr,自 2019 年 10 月宣布开源以来截止本文发稿已经有快半年时间了。 当前可能大部分人才刚刚开始了解 OAM,所以这篇文章将从最基础出发,为大家介绍 OAM 的诞生背景和要解决的问题,以及它在云原生生态中的作用。 Takeaways 如果你没有兴趣或者时间阅读下面的全文,那么建议阅读下面这些核心观点: OAM 的本质是根据软件设计的“兴趣点分离”原则对负责的 DevOps 流程的高度抽象和封装,这背后还是“康威定律”在起作用。 OAM 仅定义云原生应用的规范,目前推出的 Rudr 可以看做是 OAM 规范的 Kubernetes 解释器,将云原生应用定义翻译成 Kubernetes 的资源对象。 OAM 与 Crossplane 将展开合作,就 Kubernetes 式以 API 为中心的应用定义发扬光大,并深度参与 CNCF SIG App Delivery,以共同定义云原生应用标准。 康威定律(Conway’s Law) 康威定律是马尔文·康威(Melvin Conway)1967年提出的: \"设计系统的架构受制于产生这些设计的组织的沟通结构。\" OAM 简介 OAM 全称是 Open Application Model,从名称上来看它所定义的就是一种模型,同时也实现了基于 OAM 的我认为这种模型旨在定义了云原生应用的标准。 开放(Open):支持异构的平台、容器运行时、调度系统、云供应商、硬件配置等,总之与底层无关 应用(Application):云原生应用 模型(Model):定义标准,以使其与底层平台无关 既然要制定标准,自然要对不同平台和场景的逻辑做出更高级别的抽象(这也意味着你在掌握了底层逻辑的情况下还要学习更多的概念),这样才能屏蔽底层差异。本文将默认底层平台为 Kubernetes。 是从管理大量 CRD 中汲取的经验。 业务和研发的沟通成本,比如 YAML 配置中很多字段是开发人员不关心的。 设计原则 OAM 规范的设计遵循了以下原则: 关注点分离:根据功能和行为来定义模型,以此划分不同角色的职责, 平台中立:OAM 的实现不绑定到特定平台; 优雅:尽量减少设计复杂性; 复用性:可移植性好,同一个应用程序可以在不同的平台上不加改动地执行; 不作为编程模型:OAM 提供的是应用程序模型,描述了应用程序的组成和组件的拓扑结构,而不关注应用程序的具体实现。 下图是 OAM 规范示意图。 图 2.6.1.1:OAM 规范示意图 图片来自 oam/spec issue #346。 OAM 基本对象 OAM 模型中包含以下基本对象,以本文发稿时的最新 API 版本 core.oam.dev/v1alpha2 为准: Component:OAM 中最基础的对象,该配置与基础设施无关,定义负载实例的运维特性。例如一个微服务 workload 的定义。 TraitDefinition:一个组件所需的运维策略与配置,例如环境变量、Ingress、AutoScaler、Volume 等。(注意:该对象在 apiVersion: core.oam.dev/v1alpha1 中的名称为 Trait)。 ScopeDefinition:多个 Component 的共同边界。可以根据组件的特性或者作用域来划分 Scope,一个 Component 可能同时属于多个 Scope。 ApplicationConfiguration:将 Component(必须)、Trait(必须)、Scope(非必须)等组合到一起形成一个完整的应用配置。 OAM API 的演变 因为 OAM 还处在发展早起,API 变化较快,以上四个对象在不同的 API 版本中的 kind 名称不同,请大家使用时注意区别。 名称 core.oam.dev/v1alpha1 core.oam.dev/v1alpha2 Component ComponentSchematic Component Trait Trait TraitDefinition Scope Scope ScopeDefinition Application configuration ApplicationConfiguration ApplicationConfiguration 总的来说,OAM 模型对象的定义格式与 Kubernetes 对象的类型字段相似。关于 OAM 的基本概念模型的更多信息请访问 Overview and Terminology。 OAM 工作原理 下图来自阿里云原生应用平台团队孙健波在《OAM:云原生时代的应用模型与 下一代 DevOps 技术》中的分享,OAM 的工作原理如下图所示,OAM Spec 定义了云原生应用的规范(使用一些列 CRD 定义), Rudr 可以看做是 OAM 规范的解析器,将应用定义翻译为 Kubernetes 中的资源对象。 图 2.6.1.2:OAM 的原理 可以将上图分为三个层次: 汇编层:即人工或者使用工具来根据 OAM 规范定义汇编出一个云原生应用的定义,其中包含了该应用的工作负载和运维能力配置。 转义层:汇编好的文件将打包为 YAML 文件,由 Rudr 或其他 OAM 的实现将其转义为 Kubernetes 或其他云服务(例如 Istio)上可运行的资源对象。 执行层:执行经过转义好的云平台上的资源对象并执行资源配置。 Rudr 注意:Rudr 是对 OAM v1alpha1 在 Kubernetes 环境下的实现,OAM 正在与 Crossplane 合作,不建议再使用 Rudr。 Crossplane Crossplane 使用 Kubernetes 社区开创的以 API 为中心的声明式配置和自动化方法,使基础设施和应用管理标准化。官方网站:https://crossplane.io/。 安装 Rudr 请参考 Rudr 文档安装,主要依赖以下组件: kubectl helm 3 Kubernetes 1.15+ 执行下面的命令安装 Rudr 和需要的 trait。 # 克隆项目 git clone https://github.com/oam-dev/rudr.git cd rudr # 创建一个名为 oam 的 namespace kubectl create namespace oam # 安装 Rudr helm install rudr ./charts/rudr --wait -n oam # 要使用 ingress trait,推荐安装 Nginx ingress helm repo add stable https://kubernetes-charts.storage.googleapis.com/ helm install nginx-ingress stable/nginx-ingress # 要使用 autoscaler trait,安装 HorizontalPodAutoscaler helm repo add kedacore https://kedacore.github.io/charts helm repo update helm install keda kedacore/keda -n oam 查看当前 oam namespace 下的所有 pod,你会发现已创建了以下 pod。 $ kubectl get pod -n oam NAME READY STATUS RESTARTS AGE keda-operator-b6466c989-pn25n 1/1 Running 0 63m keda-operator-metrics-apiserver-6cf88c468-k5wd8 1/1 Running 0 63m nginx-ingress-controller-787bd69d8-n6v8c 1/1 Running 15 7d nginx-ingress-default-backend-7c868597f4-vvddn 1/1 Running 2 7d rudr-c648c9b7b-knj9b 1/1 Running 7 7d 部署示例 我们使用 OAM 官方提供的教程 Tutorial: Deploy, inspect, and update a Rudr application and its components 中的 Python flask 示例,该示例基于 OAM v1alpha1 API,最新版 API 的示例可以参考 crossplane-oam-sample。 # 部署 Component kubectl apply -f examples/helloworld-python-component.yaml 此时 get pod 会发现并没有创建任何新的 pod,因为 examples/helloworld-python-component.yaml 文件中只定义了一个名为 helloworld-python-v1 的 ComponentSchematic,但是 ComponentSchematic 是仅仅是定义了一个组件而已,还无法直接创建 pod 的,还需要创建一个 ApplicationConfiguration 将其与 Trait 绑定才可以创建应用的 pod。 关于该示例的详细信息请参考 Python flask 示例的创建步骤。 创建应用配置 在部署了 ComponentSchematic 之后我们还需要创建一个 ApplicationConfiguration 将其与 Trait 资源绑定才可以创建应用。 当前已有的 Trait 在安装 Rudr 时已在 oam namespace 中部署了一些 trait,使用下面的命令查看。 $ kubectl get trait -n oam NAME AGE auto-scaler 7d1h empty 7d1h ingress 7d1h manual-scaler 7d1h volume-mounter 7d1h 在 examples/first-app-config.yaml 中将 ComponentSchematic 与 ingress Trait 联系起来。一个完整的可部署的应用配置 examples/first-app-config.yaml 的内容如下所示: apiVersion: core.oam.dev/v1alpha1 kind: ApplicationConfiguration metadata: name: first-app spec: components: - componentName: helloworld-python-v1 # 引用了上文中的 Component instanceName: first-app-helloworld-python-v1 parameterValues: - name: target value: Rudr - name: port value: '9999' traits: - name: ingress # Ingress 引用,Rudr 已默认创建 properties: hostname: example.com path: / servicePort: 9999 执行下面的命令部署应用。 kubectl apply -f examples/first-app-config.yaml -n oam 若此时查看 oam namespace 下的 pod 将发现有一个新的 pod 创建。 $ kubectl get pod -o oam NAME READY STATUS RESTARTS AGE first-app-helloworld-python-v1-69945684c7-wfd82 1/1 Running 0 16m ... 测试 执行下面的命令可以测试刚安装的应用。 # 将 Python flask 应用的 pod 暴露到本机 export POD_NAME=$(kubectl get pods -l \"oam.dev/instance-name=first-app-helloworld-python-v1,app.kubernetes.io/name=first-app\" -o jsonpath=\"{.items[0].metadata.name}\") kubectl port-forward $POD_NAME 9999:9999 Forwarding from 127.0.0.1:9999 -> 9999 Forwarding from [::1]:9999 -> 9999 在浏览器中访问 http://127.0.0.1:9999 将看到 Hello Rudr! 的输出,这表示测试成功。 未来 从以上描述中可以看出 OAM 对于定义云原生应用标准的野望,其目标不仅限于 Kubernetes 之上的又一上层抽象,而是对于一切云服务,在基于资源对象的基础上,Trait 来控制 Kubernetes 中的一众高层次非可调度的资源对象,如 AutoScaler、Volume、Ingress,Istio 中的流量配置对象 VirtualService、DestinationRule 等,还可容纳更多的云服务,对于 Serverless 时代的去基础设施化的思想不谋而合,未来可期。 参考 OAM 官方网站 - oam.dev 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"cloud-native/workload.html":{"url":"cloud-native/workload.html","title":"Workload","keywords":"","body":"Workload 本文基于 OAM v1alpha2 版本。 应用程序可用的 Workload 类型是由平台提供商和基础设施运维人员提供的。Workload 模型参照 Kubernetes 规范定义,理论上,平台商可以定义如容器、Pod、Serverless 函数、虚拟机、数据库、消息队列等任何类型的 Workload。 下面是一个 Workload 定义的是示例。 apiVersion: core.oam.dev/v1alpha2 kind: WorkloadDefinition metadata: name: schema.example.jimmysong.io spec: definitionRef: name: schema.example.jimmysong.io CR 即 Custom Resource(自定义资源),指的是实例化后的 Kubernetes CRD。应用开发者可以在 Component 的 Workload 中直接定义 CR。definitionRef 将 Workload shcema 在 OAM 解释器中注册,通过增加一个抽象层,使其与 Operator 框架解耦(毕竟不是说有 CRD 都是面向应用开发者的),表示可作为负载类型使用。 请保持 spec.definitionRef.name 的值与 metadata.name 的值相同,因为 definitionRef 是对相应的 Workload schema 的引用,对于 Kubernetes 平台来说,即对 CRD 的引用。应用开发者在定义 Component 引用该 Workload 的时候需要直接实例化一个 CRD 的配置(及创建一个 CR)。 OAM 中将 Workload 分成了 core.oam.dev(核心)、standard.oam.dev(标准)及自定义扩展类别。目前 OAM 中支持的核心 Workload 有 ContainerizedWorkload。 关于 Workload 的详细信息参考 OAM 中的 Workload 规范。 参考 The Open Application Model specification - github.com 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"cloud-native/component.html":{"url":"cloud-native/component.html","title":"Component","keywords":"","body":"Component 本文基于 OAM v1alpha2 版本。 Component 用于定义应用程序的基本组件,其中包含了对 Workload 的引用,一个 Component 中只能定义一个 Workload,这个 Workload 是与平台无关的,可以直接引用 Kubernetes 中的 CRD。 下面是根据 OAM 规范定义的一个 Component 示例。 apiVersion: core.oam.dev/v1alpha2 kind: Component metadata: name: my-component spec: workload: apiVersion: core.oam.dev/v1alpha2 kind: ContainerizedWorkload spec: os: linux containers: - name: server image: my-image:latest parameters: - name: myServerImage required: true fieldPaths: - \".spec.containers[0].image\" Component 定义由以下几个部分组成: metadata:关于 Component 的信息,主要是针对应用运维的信息。 workload:该 Component 的实际工作负载。具体有哪些负载类型可用可以咨询平台提供商,平台运维也可以根据 Workload 规范 来扩展负载类型,比如 Containers、Functions、VirtualMachine、VirtualService 等。OAM 目前定义的核心负载类型有 ContainerizedWorkload(与 Kubernetes 中的 Pod 定义类似,同样支持定义多个容器,但是缺少了 Pod 中的一些属性 )。 parameters:在应用程序运行时可以调整的参数,即应用开发者在 Component 中的原有定义可以在运行时被应用运维人员覆盖。parameters 使用 JSONPath 的方式引用 spec 中的字段。 Component 的配置在应用后是可更改的(Mutable), 有的 Trait 可能会监听 Component 的变更并作出相应的操作,每次变更都会导致新的 ApplicationConfiguration 发布。 关于 Component 的详细信息请参考 OAM 中的 Component 规范。 参考 The Open Application Model specification - github.com 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"cloud-native/trait.html":{"url":"cloud-native/trait.html","title":"Trait","keywords":"","body":"Trait 本文基于 OAM v1alpha2 版本。 Trait 用于定义 Component 的运维属性,是对 Component 运行时的叠加,需要通过 ApplicationConfiguration 的配置将其与 Component 绑定,用于动态修改 Component 中 workload 的行为。 不同的 Trait 可能适用于不同的 Component(因为不同的 Component 中的 workload 可能不同,因此它们的运维特性也可能不同),如流量路由规则(如负载均衡策略、入口路由、出口路由、百分比路由、限流、熔断、超时限制、故障注入等)、自动缩放策略、升级策略、发布策略等。 Trait 还具有以下几个特征: Trait 是根据在 Component 中引用的顺序应用的,如果某些运维特征本身具有依赖性,可以通过显式排序来解决; 对于某一类型的 Trait 在同一个 Component 实例只能应用一个; 在应用 Trait 时,需要进行冲突检查,如果一组 Trait 的特性不能满足运维组合,则判定为不合法; 将运维属性从应用组件本身的定义( Component)中剥离有如下几个好处: Trait 通常由应用运维人员定义和维护,而不需要应用开发人员参与,应用开发人员对 Trait 可能无感知,减轻了应用开发人员的负担; Trait 将云原生应用程序的一些通用运维属性从应用配置中剥离出来,大大提高了运维逻辑的可复用性; 应用 Trait 组合前进行运维特性检查,可以有效防止配置冲突和无法预期的情况发生; 下面是根据 OAM 规范定义的一个 Trait 示例。 apiVersion: core.oam.dev/v1alpha2 kind: TraitDefinition metadata: name: manualscalertrait.core.oam.dev spec: appliesToWorkloads: - core.oam.dev/v1alpha2.ContainerizedWorkload definitionRef: name: manualscalertrait.core.oam.dev CR 即 Custom Resource(自定义资源),指的是实例化后的 Kubernetes CRD。definitionRef 将 Trait shcema 在 OAM 解释器中注册,通过增加一个抽象层,使其与 Operator 框架解耦(毕竟不是所有 CRD 都是面向应用开发者的)。 OAM 中将 Trait 分成了 core.oam.dev(核心)、standard.oam.dev(标准)及自定义扩展类别。一个 Trait 具体适用于哪些 workload 可以在 Trait 的 TraitDefinition 中定义。目前 OAM 中支持的核心 Trait 有 ManualScalerTrait。 关于 Trait 的详细请参考 OAM 中的 Trait 规范。 参考 The Open Application Model specification - github.com 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"cloud-native/application-scope.html":{"url":"cloud-native/application-scope.html","title":"Application Scope","keywords":"","body":"Application Scope 本文基于 OAM v1alpha2 版本。 ApplicationScope 根据 Component 中的应用逻辑或共同行为划定作用域,将其分组以便于管理。 ApplicationScope 具有以下特征: 一个 Component 可能属于一个或多个 ApplicationScope; 有的 ApplicationScope 可以限定其中是否可以部署同一个 Component 的多个实例; ApplicationScope 可以作为 Component 与基础设施的连接层,提供身份、网络或安全能力; Trait 可以根据 Component 中定义的 ApplicationScope 来执行适当的运维特性; 目前 OAM 中支持的核心应用范围类型有 NetworkScope 和 HealthScope。 下面是使用 NetworkScope 来声明作用域的示例: apiVersion: core.oam.dev/v1alpha2 kind: NetworkScope metadata: name: my-network labels: region: my-region environment: production spec: networkId: my-network subnetIds: - my-subnetwork-01 - my-subnetwork-02 - my-subnetwork-03 internetGatewayType: nat 上面的示例的作用是将三个子网划定为一组网络边界,这通常是使用 VPC 实现。 关于 ApplicationScope 的详细信息请参考 OAM 中的 ApplicationScope 规范。 参考 The Open Application Model specification - github.com 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"cloud-native/application-configuration.html":{"url":"cloud-native/application-configuration.html","title":"Application Configuration","keywords":"","body":"Application Configuration 本文基于 OAM v1alpha2 版本。 ApplicationConfiguration 将 Component 与 Trait 组合,定义了一个应用程序的配置,Component 每部署一次就会产生一个实例(Instance),实例是可以被升级的(包括回滚和重新部署),而每次部署和升级就会产生一次新的发布(Release)。 12 因素应用严格区分构建、发布、运行这三个步骤。每次构建和修改配置后都会产生一次新的发布(Release)。OAM 中将 Component、Trait、ApplicaitonScope 组合而成的 ApplicationConfiguration 即等同于 Release。每次对 ApplciationConfiguration 的更新都会创建一个新的 Release(跟 Helm 中的 Release 概念一致)。 下面是一个 ApplicationConfiguration 示例。 apiVersion: core.oam.dev/v1alpha2 kind: ApplicationConfiguration metadata: name: my-app annotations: version: v1.0.0 description: \"My first application deployment.\" spec: components: - componentName: my-component parameterValues: - name: PARAMETER_NAME value: SUPPLIED_VALUE - name: ANOTHER_PARAMETER value: \"AnotherValue\" traits: - name: manualscaler.core.oam.dev version: v1 spec: replicaCount: 3 scopes: - scopeRef: apiVersion: core.oam.dev/v1alpha2 kind: NetworkScope name: my-network 关于 ApplicationConfiguration 的详细信息参考 OAM 中的 ApplicationConfiguration 规范。 参考 The Open Application Model specification - github.com 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"cloud-native/crossplane.html":{"url":"cloud-native/crossplane.html","title":"Crossplane","keywords":"","body":"Crossplane 本文主要为读者介绍 Crossplane 是什么及如何结合 OAM 来管理 Kubernetes 应用。 Crossplane 是什么? Crossplane 是一个开源的 Kubernetes 插件,可以使用 kubectl 配置和管理基础设施、服务和应用。它的意义在使用 Kubernetes 风格的 API 统一了云基础设施和应用程序的管理。 该项目是由 Upbound 公司和 Rook 项目的创始人于 2018 年 12 月发起,开源社区主要参与者来自微软、阿里巴巴、Gitlab、红帽等。 Crossplane 的特性 下面几点是 Crossplane 的基本特性。 支持自定义 API(CRD) 在 Crossplane 提供的 CRD 之上构建自己的内部基础设施抽象。您的自定义 API 可以包含策略保护,隐藏基础设施的复杂性,并使其安全地供应用程序消费。 支持 OAM Crossplane 实现了 OAM(开放应用模型),帮助统一应用和基础架构管理,以团队为中心的流程。通过 Crossplane 和 OAM,应用和基础架构配置可以共存,并使用相同的工具进行部署。 支持混合云 无论你使用的是 EKS、AKS、GKE、ACK、PKS 中的单个 Kubernetes 集群,还是 Rancher 或 Anthos 这样的多集群管理器,Crossplane 都能很好地与它们集成。Crossplane 安装到任何现有的集群中,暴露出 CRD 和跨基础设施和服务提供商的标准 API,使供应和管理变得轻而易举。 准备条件 在安装使用 Crossplane 之前需要确保您的系统满足以下要求: Kubernetes v1.16+ Helm 3 Crossplane v0.11+ 安装 Crossplane 在准备好以上条件之后,执行下面的命令安装 Crossplane。 kubectl create namespace crossplane-system helm repo add crossplane-alpha https://charts.crossplane.io/alpha helm install crossplane --namespace crossplane-system crossplane-alpha/crossplane 该步骤会创建一个 crossplane-system 的 namespace 和如下的 CRD。 # OAM 的 CRD applicationconfigurations.core.oam.dev components.core.oam.dev containerizedworkloads.core.oam.dev manualscalertraits.core.oam.dev scopedefinitions.core.oam.dev traitdefinitions.core.oam.dev workloaddefinitions.core.oam.dev buckets.storage.crossplane.io # crossplane 原生的 CRD clusterpackageinstalls.packages.crossplane.io compositions.apiextensions.crossplane.io infrastructuredefinitions.apiextensions.crossplane.io infrastructurepublications.apiextensions.crossplane.io kubernetesapplicationresources.workload.crossplane.io kubernetesapplications.workload.crossplane.io kubernetesclusters.compute.crossplane.io kubernetestargets.workload.crossplane.io machineinstances.compute.crossplane.io mysqlinstances.database.crossplane.io nosqlinstances.database.crossplane.io packageinstalls.packages.crossplane.io packages.packages.crossplane.io postgresqlinstances.database.crossplane.io providers.kubernetes.crossplane.io redisclusters.cache.crossplane.io stackdefinitions.packages.crossplane.io 安装 OAM controller。 kubectl create namespace oam-system helm install controller -n oam-system ./manifests/charts/oam-core-resources/ 部署示例 部署一个 WordPress 示例应用。 kubectl apply -f manifests/oam/containerized-workload 该应用采用 OAM 规范定义,包括 Workload、Component、Trait 和 ApplicationConfiguration,感兴趣的读者可以到 manifests/oam/containerized-workload 目录下查看,其中 sample_workload_definition.yaml 文件的内容如下: apiVersion: core.oam.dev/v1alpha2 kind: WorkloadDefinition metadata: name: containerizedworkloads.core.oam.dev spec: definitionRef: name: containerizedworkloads.core.oam.dev childResourceKinds: - apiVersion: apps/v1 kind: Deployment - apiVersion: v1 kind: Service 此处定义了一个 containerizedworkloads.core.oam.dev Workload,其中添加一个 childResourceKinds 字段。目前,workloadDefinition 不过是真正的 CRD 的一个注册器。Workload 所有者在向 OAM 系统注册控制器时填写这个字段,声明其工作负载控制器实际生成的 Kubernetes 资源类型。在本示例中该 Workload 生成的是 Kubernetes 的 Deployment 和 Service。 关于此处配置的详细原理请参考 Traits and workloads interaction mechanism in OAM。 验证 在部署了上面的示例后,会创建一个名为 example-appconfig-workload 的 Deployment 和名为 example-appconfig-workload 的 Service。 $ kubectl get deployment NAME READY UP-TO-DATE AVAILABLE AGE example-appconfig-workload 3/3 3 3 9h $ kubectl get svc NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE example-appconfig-workload NodePort 10.99.30.250 80:31557/TCP 9h 查看该 Service 的 NodePort(本示例中为 31557) 及 minikube 的 IP 地址(本示例中为 192.168.64.2)。在浏览器中访问 http://192.168.64.2:31557 即可看到 Workpress 的启动页面。 图 2.6.2.1:Wordpress 页面 参考 crossplane/addon-oam-kubernetes-local - github.com Traits and workloads interaction mechanism in OAM - github.com Crossplane CNCF Sandbox - docs.google.com 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"cloud-native/cloud-native-programming-languages.html":{"url":"cloud-native/cloud-native-programming-languages.html","title":"云原生编程语言","keywords":"","body":"云原生编程语言 以下内容来自Joe Duffy的博客,Hello, Pulumi!。他说这些是为了说明为什么要创造Pulumi,在此我引用它说明为什么会有云原生编程语言。 对于每一个serverless函数来说,我都要写几十行的JSON或者YAML配置。要链接到一个API端点,我还要学习晦涩的概念,执行一系列复制-粘贴的低级工作。如果我想在本机上运行一个小的集群的话,那么Docker还是很棒的,但是如果要在生产上使用的话,那么就要手动管理etcd集群,配置网络和iptables路由表,还有一系列与我的应用程序本身不相干的事情。不过Kubernetes的出现至少让我可以配置一次下次就可以跨云平台重用,但这还是会分散开发人员的精力。 我认为我还算一个经验丰富的工程师,已经在软件行业从业20年了,但是当我想要将自己的代码部署到云中的时候,我感觉自己就像是个傻子。真是太令人悲哀了!如果我掌握了这些能力,那么是世界就会出触手可及。我总是在淌这浑水,处理云的复杂性,而我真正想做的是花时间来创造业务价值。 关于编程的许多方面都经历了类似的转变过程: 在80年代初,我们使用汇编语言对微处理器进行了编程。最终,编译器技术进步了,我们可以同时处理多种常见的架构。像FORTRAN和C这样的Low-level的编程语言开始兴起。 在90年代初期,我们直接针对低级别操作系统原语进行编程,无论是POSIX系统调用还是Win32 API,并进行手动内存和资源管理。最终,语言运行时技术和处理器速度提升到了可以使用更高级别语言的状态,如Java。除了动态语言之外,这种趋势已经加速,如JavaScript统治了Web。 在21世纪初期,我们的编程模型中的共享内存并发性最好是原始的(我花了很多时间在这个问题上)。现在,我们简单地假设OS具有高级线程共享、调度和异步IO功能,以及编程到更高级别的API,例如任务和承诺。 我相信云软件也在进行类似的转变。从构建单一应用程序到构建真正的云优先分布式系统,我们正处在一场巨变中。然而,当海啸发生之前,人们几乎不知道它正在发生。 从上面的角度来看,使用“配置”情况是有道理的。在虚拟机的早期,我们利用现有的应用程序并将它们扔在栅栏上,以便有人添加一点INI或XML粘合剂,让它们在虚拟机内部运行,以实现更灵活的管理。随着我们将这些相同的虚拟机“提升并转移到云中”,这种配置方法一直伴随着我们。这将我们带到了大致正确的边界。 使用这种相同类型的配置表示基于容器的微服务、serverless和细粒度托管服务之间的关系导致了异常的复杂性。将应用程序转变为分布式系统应该是事后的想法。事实证明,云覆盖了您的架构和设计。表达架构和设计的最好的方式是使用代码,使用真正的编程语言编写抽象,重用和优秀的工具。 早些时候,Eric和我采访了几十个客户。我们发现,开发人员和DevOps工程师都普遍感到幻灭。我们发现了极端的专业化,即使在同一个团队中,工程师也不会使用同一种语言。最近几周我已经听到了这个消息,我期待有一天会出现NoYAML运动。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"cloud-native/cloud-native-programming-language-ballerina.html":{"url":"cloud-native/cloud-native-programming-language-ballerina.html","title":"云原生编程语言 Ballerina","keywords":"","body":"云原生编程语言 Ballerina 当我第一眼看到 Ballerina 还真有点惊艳的感觉。Ballerina 这个单词的意思是“芭蕾舞女演员”。我想他们之所以给公司和这们语言起这个名字,可能是希望它成为云原生这个大舞台中,Ballerina 能像一个灵活的芭蕾舞者一样轻松自如吧! Ballerina 是一款开源的编译式的强类型语言,该语言本身的代码可以通过 GitHub 上获取。我们可以通过 Ballerina 官网上的设计哲学页面来对这门云原生编程语言一探究竟。 图 2.7.1.1:云原生编程语言ballerina 未来的应用程序应该是基于 API 的,而众多 API 之间的通讯和集成就成了关键问题。Ballerina 是一款使用文本和图形语法编译的、事务的、静态和强类型编程语言。Ballerina 包含分布式系统集成到语言的基本概念,并提供类型安全,并发环境下实现的分布式事务,可靠的消息传递,流处理和工作流。 为什么创建 Ballerina? 与 ESB 集成仍然是瀑布式开发。你必须部署服务器,配置连接器,使用 XML 编程服务逻辑以及使用 XPath 查询和转换数据。这不是开发者友好的。 带有 Spring 和 Node.js 等框架的编程语言提供了灵活性,但是它没有使适合于序列并行化、并发模型编程的分布式系统结构变得简单。 ESB、EAI、BPM 和 DSL 需要 XML 和配置来中断迭代开发流程:编辑、构建、运行和测试。这与运行实际应用之间是有一条鸿沟的,而云原生编程语言 Ballerina 的出现就是为了解决这条“集成鸿沟”的。 Ballerina 设计理念 序列图 图 2.7.1.2:云原生编程语言Ballerina的序列图设计理念 语言灵感 序列图反映了设计开发人员记录的互联的系统。Ballerina 的语法和高效的编码模式要求开发人员使用强大的交互最佳实践来编码。 序列图可视化 Ballerina 的语言语义模型旨在定义独立的各方如何通过结构化的交互沟通。接着,每个 Ballerina 程序都可以显示为其流程的序列图。IntelliJ 和 VS Code 的插件中提供了这些可视化。Ballerina Composer 是一款通过序列图创建 Ballerina 服务的工具。 Actor 与 action 客户端、worker 和远程系统在 Ballerina 的序列图中以不同的 actor 表示。在代码中,远程端点通过连接器进行连接,连接器提供类型安全操作。在图形上,每个连接器在序列图中表示为一个 actor(即一条垂直线),action 表示为与这些actor 的交互。 并发 图 2.7.1.3:云原生编程语言Ballerina的并发理念 序列图和并发 Ballerina 的并发模型是并行优先的,因为与远程方的交互总是涉及多个 worker。Worker 之间的交互作为消息传递进行处理,它们之间没有共享状态。 Worker 语义 Ballerina 的执行模型由称为 worker 的轻量级并行执行单元组成。Worker 使用非阻塞策略来确保没有函数锁定正在执行的线程,例如等待响应的 HTTP I/O调用。 编程模型 Worker 和 fork/join 语义抽象了底层非阻塞方法,以启用更简单的并发编程模型。 类型系统 下面是 Ballerina 中支持的类型。 any anything; int integer = 0; float floatingPoint = 0.0; boolean b = true; string hi = \"hello\"; blob bl = hi.toBlob(\"UTF-8\"); json jsonNative = { a: \"hello\", b: 5 }; xml x = xml ` XML natively `; string[] stringArray = [\"hi\", \"there\"]; int[][] arrayOfArrays = [[1,2],[3,4]]; json | xml | string unionType; (string, int) tuple = (\"hello\", 5); () n = (); // the empty tuple acts as \"null\" string | int stringOrInt = \"this is a union type\"; int | () intOrNull = 5; var inferred = (\"hello\", 5); map myMap = {\"ballerina\": true}; type myRecord { string a; int b; }; type myObject object { public { string x; } private { string y; } new (string xi, string yi) { x = xi; y = yi; } function getX() returns (string) { return x; } }; 类型安全 Ballerina 有一个结构化的类型系统,包括 primitive、recored、object、tuple 和 union 类型。该类型安全模型在赋值时包含了类型推断,并为连接器、逻辑和网络绑定的有效负载提供了大量的编译时完整性检查。 Union 类型和显式 Null 各个网络端点通常会根据其输入和逻辑返回具有不同有效负载类型消息或 error。Ballerina 的类型系统采用了基于 union 类型的方法。Union 类型明确地采用了这种语义,不需要开发人员创建不必要的“包装”类型。这种方法也增强了对 null 值的处理。默认情况下,类型不支持 null 值。开发人员必须明确创建 union 类型来处理 null 值。结果是 null 的异常不会发生,并且语言语法和编译器会识别是否需要 null 处理逻辑。 异构数据处理 Ballerina 类型系统内置丰富的对 JSON、XML、流和表格的支持以及对 ProtoBuf 和 gRPC 的直接支持。这样做的结果是可以获得处理网络负载、SQL 编程和流处理的干净可读的代码。数据转换逻辑不受复杂的生成类型、第三方库代码或其他混淆因素的影响——简单明了的可读代码捕捉与异构数据和转换逻辑的交互。 Ballerina 如何工作? Ballerina 的语法、代码和编译器创建了运行时服务和部署构件,这些工件都是云原生就绪的,您可以选择将其部署在 IaaS、编排系统或 service mesh 中的。开发人员的体验旨在维护流程,包括快速的编辑、构建、调试周期并集成到团队的生命周期工具链中。 运行时架构 图 2.7.1.4:云原生编程语言ballerina运行时架构 Ballerina API 网关 强制执行身份策略并保证性能。通过代码注解(类似于 Spring 中的注解)进行配置和部署。可以运行嵌入式服务、作为管理多个服务的容器代理或者使用 API 管理解决方案(如 WSO2 API Manager)。 Ballerina service 表示您的 API 和执行逻辑。服务通过不同的协议运行,内部代码结构被编译为支持 OpenAPI 和 Swagger 的API接口。服务与端点进行通信,无论它们是调用客户端还是其他服务。 Ballerina bridge 允许传统代码和服务参与分布式事务中的 Ballerina 服务。Bridge 将您现有服务与本地代理包装起来,通过调用 Ballerina 服务参与和代理分布式事务。 消息代理、事务协调者和身份代理 为参与事务、事件驱动的通信和为认证流程的 Ballerina 服务提供代理基础设施功能。这些组件可以嵌入到单个服务部署中或者进行单独部署和扩展以管理多个服务。 部署架构 图 2.7.1.5:云原生编程语言ballerina部署架构图 IaaS 使用代码注解和构建系统,可以打包 Ballerina 服务和其他运行时组件(如 API 网关)以部署到任何云原生环境中。在 IaaS 环境中,Ballerina 服务可以以虚拟机或容器的方式运行,也可以在构建期间将镜像推送到 registry 中。 编排器 代码注解会触发编译器扩展,从而为不同的编排器(如 Kubernetes 或 Cloud Foundry)生成 Ballerina 组件的工件包。供应商或 DevOps 可以添加自定义代码注解以生成特定于环境的部署,例如自定义蓝色部署算法。 Service mesh Ballerina 可以选择断路器和事务流程逻辑委托给像 Istio 或 Envoy 这样的 service mesh(如果有的话)。如果没有 service mesh 的话,Ballerina 服务将嵌入相应的功能。 生命周期 图 2.7.1.6:云原生编程语言ballerina生命周期架构图 Ballerina 工具 使用我们的语言服务器可以在 VS Code 和 IntelliJ 中获取自动补全和调试等智能感知。Ballerina 的关键字和语法结构可以用序列图的方式来表示。使用 Ballerina Composer 可以可视化的编辑 Ballerina 代码。另外它也可以做可视化得运行时和开发环境追踪。 Ballerina 构建 将服务编译为经过优化的字节码,以便使用内存调优后的 BVM 运行。提供了使用Testerina 的项目结构、依赖管理、包管理和单元测试。构建锁可以轻松地重新创建服务和部署。生成可执行文件(.balx)或库(.balo)。 CI/CD 部署代码注解会触发构建扩展,从而为持续集成、持续交付或编排器环境生成工件。将构建工件推送到您的 CI/CD 系统或完全跳过。 Registry 将端点连接器、自定义注解和代码功能作为可共享软件包组合在一起。可以在全球共享资源库——Ballerina Central 中 pull 或 push 版本化的软件包。 Ballerina 的语言特性 Ballerina 设计为云优先,内置对现代 Web 协议和数据格式的支持,完全支持图灵完备编程语言,以及对微服务架构的原生支持。 API 构造 逻辑语言 异步 Json 和 XML 注解 稳定和强大的类型 stream Ballerina 中集成了哪些内容? Ballerina 是一种旨在集成简化的语言。基于顺序图的交互,Ballerina 内置了对通用集成模式和连接器的支持,包括分布式事务、补偿和断路器。凭借对 JSON 和 XML 的一流支持,Ballerina 能够简单有效地构建跨网络终端的强大集成。 类型安全端点集成 类型安全连接器 可靠的消息传递 分布式事务 断路器 注入攻击防护 Docker 和 Kubernetes 关于 Ballerina 中各个功能的示例代码请查阅 ballerina-example。 参考 https://ballerina.io Microservices, Docker, Kubernetes, Serverless, Service Mesh, and Beyond 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"cloud-native/cloud-native-programming-language-pulumi.html":{"url":"cloud-native/cloud-native-programming-language-pulumi.html","title":"云原生编程语言 Pulumi","keywords":"","body":"云原生编程语言Pulumi 2018年6月18日 Joe Duffy在他的博客中宣布开源了云原生编程语言Pulumi。这是继Ballerina之后我看到的另一款云原生编程语言,他们之间有一些共同的特点,例如都是为了支持多种云环境,基于不可变基础设施和基础设施即代码的理念构建,使云原生应用的集成更加方便,但也有一些不同,Ballerina是直接创建了一个基于JVM的语言,而Pulumi是为不同编程语言构建了SDK。 下文部分来自Joe Duffy的博客Hello, Pulumi! 图 2.7.2.1:云原生编程语言Pulumi TL;DR 有了Pulumi,38页的手动操作说明将变成了38行代码。25000行YAML配置变成了使用真实编程语言的500行语句。 Pulumi的整个运行时、CLI、支持的库都可以在GitHub上免费下载。我们的团队正急切的等待您的反馈。与此同时,我需要告诉您一些关于Pulumi的事情,为什么我们会创造它。 Pulumi是什么? Pulumi是一个支持多语言和混合云开发平台。它可以让您使用真实语言和真实代码创建云计算的各个方面,从基础设施到应用程序本身。只需编写程序并运行它们,Pulumi就能帮你完成出其余部分。 Pulumi的中心是一个云对象模型,与运行时相结合以了解如何以任何语言编写程序,理解执行它们所需的云资源,然后以强大的方式规划和管理您的云资源。这种云运行时和对象模型本质上是与语言、云中立的,这就是为什么我们能够支持如此多的语言和云平台。更多支持正在路上。 Pulumi采用了基础设施即代码以及不可变基础设施的概念,并可让您从您最喜欢的语言(而不是YAML或DSL)中获得自动化和可重复性优势。在部署它们之前,您可以对变更进行区分,并且我们会对谁更改了什么以及何时更改进行完善的审计追踪。核心模型因此是陈述性的。 使用真正的语言可以带来巨大的好处: 熟悉:不需要学习新的定制DSL或基于YAML的模板语言 抽象:正如我们喜爱的编程语言那样,我们可以用更小的东西来构建更大的东西 共享和重用:利用现有的语言包管理器共享和重用这些抽象,无论是与社区、团队内部共享 表现力:充分利用您的编程语言,包括异步、循环和条件 工具:通过使用真正的语言,我们可以即时访问IDE、重构、测试、静态分析和编排等等 生产力:将以上所有好处加在一起,一起将变得更快,我们也会变得更快乐 当提供原始云资源时,这些好处当然最重要,但是我们在团队中发现,您只能使用抽象。这包括在函数中包装事物以消除样板并创建引入更高级别概念的自定义类,通常将它们打包并重复使用。 例如,此代码在AWS中创建一个DynamoDB数据库: import * as aws from \"@pulumi/aws\"; let music = new aws.dynamodb.Table(\"music\", { attributes: [ { name: \"Album\", type: \"S\" }, { name: \"Artist\", type: \"S\" }, ], hashKey: \"Album\", rangeKey: \"Artist\", }); 此代码创建一个基于容器的任务和无服务器功能,由一个存储桶触发: import * as cloud from \"@pulumi/cloud\"; let bucket = new cloud.Bucket(\"bucket\"); let task = new cloud.Task(\"ffmpegThumbTask\", { build: \"./path_to_dockerfile/\", }); bucket.onPut(\"onNewVideo\", bucketArgs => { let file = bucketArgs.key; return task.run({ environment: { \"S3_BUCKET\": bucket.id.get(), \"INPUT_VIDEO\": file, \"TIME_OFFSET\": file.substring(file.indexOf('_')+1, file.indexOf('.')).replace('-',':'), \"OUTPUT_FILE\": file.substring(0, file.indexOf('_')) + '.jpg', }, }); }); 更好的是,这些代码可以根据您的需求部署到任何公共或私有云中。 最后,这个例子创建了一个Redis缓存。我们怎么知道?我们不需要。缓存组件是一个抽象,它封装了我们可以安全忽略的不重要的细节: import {Cache} from \"./cache\"; let cache = new Cache(\"url-cache\"); 在使用Pulumi之后,你不会再以同样的方式考虑基础设施。你的大脑将不再是一个独立于应用程序的独特“事物”,而是开始将分布式云系统看作是你的程序架构的核心部分,而不是事后的想法。 由于抽象,我们已经能够提供一些强大的库。该库是提炼和执行最佳实践的绝佳方式。当然,对于我们自己的库来说没有什么特别的,因为它们只是功能、类和代码,我们期待着看到你为自己、你的团队或者社区建立的那些库。 我们最复杂的库——Pulumi云框架——提供了一些令人兴奋的正在进行的工作的早期预览,展示如何创建跨越云提供商自己对诸如容器、无服务器功能和存储桶等核心概念的抽象。以同样的方式,您可以用Node.js、Python、Java、.NET等语言编写功能强大的应用程序,利用进程、线程和文件系统,无论是在macOS、Linux还是Windows上,这种方法都可以让您创建针对任何云提供商的现代混合云应用程序。像Kubernetes和其他CNCF产品组合这样的技术正在帮助推动这一不可避免的结果,因为它们在整个云基板上实现了对基本计算抽象的民主化和共识。 Pulumi不是PaaS,尽管它提供类似PaaS的生产力;您的程序总是直接针对您选择的云运行,并且始终可以访问该基础云的全部功能。即使您选择使用更高级别的组件,它也会向下兼容,并且您可以随时直接使用原始资源。它就像任何复杂的现代软件:有时,整个事情必须用C++编写,以便访问底层平台的全部功能,但对于大多数常见情况,70%到100%可以是平台独立代码,而只有不到30%的专业化才能真正需要直接与操作系统交互。 接下来我还将发布十几篇博客文章来介绍Pulumi所有方面的更多细节。然而,为了保持这篇文章尽量简短,我将首先介绍下Pulumi的一些我最喜欢的方面。 我最喜欢的东西 这很难选择,但这里有一些关于Pulumi我最喜欢的东西: 开源。我坚信所有开发人员工具都应该是开源的。当然,Pulumi也是一家公司,但是有充足的机会通过增加便利性以建立商业模式。(可以认为是Git与GitHub的关系)我们从以前的工作中受益匪浅,其中包括Docker、Terraform、Kubernetes、TypeScript以及其他许多明确提及的工作。我们期待成为生态系统的一部分。因为我们在开放源代码方面下了很大功夫,所以我很高兴看到社区给我们带来什么,特别是在更高级别的软件包领域。 多语言。就像使用Java和.NET一样,Pulumi运行时的架构可以支持多种语言,并以目标语言的所有方面(风格、语法、软件包等)的惯用方式来实现。因为我们是开源的,任何人都可以贡献自己的力量。 混合云。我们的云对象模型是一个强大的基础,可以支持任何云提供商。这提供了一个统一的编程模型,工具和控制平面,用于在任何地方管理云软件。如果仅仅是为了让一个简单的基于容器的应用程序在生产中运行起来,没有必要学习三种不同的YAML方言和五种不同的CLI。 云对象模型。这个底层云对象模型为您的云计算构建方式提供了丰富的视图。所得到的对象使用程序中的依赖关系组成一个DAG,系统可以分析和理解这些依赖关系以提供洞察力,这是我们打算随着时间的推移解锁复杂的静态分析和可视化的功能。 可重复使用的组件。由于拥有真正的语言,我们可以构建更高层次的抽象。我最喜欢的例子之一是帮助我们的客户定期从部署中排除1000行YAML,这是我们的AWS基础架构软件包。它采用AWS最佳实践来设置虚拟私有云,并提供专用子网和多可用区域支持,并将其转变为几行代码以配置整个网络: import * as awsinfra from \"@pulumi/aws-infra\"; let network = new awsinfra.Network(`${prefix}-net`, { numberOfAvailabilityZones: 3, // Create subnets in many AZs usePrivateSubnets: true, // Run inside private per-AZ subnets }); 迄今为止,我最喜欢的成功案例是将客户的25,000行AWS CloudFormation YAML文件(其中使用无服务器、容器、基础设施和三个自定义部署管道)使用500行TypeScript和一个Pulumi的持续部署架构来替换。这不仅仅使得公司所有工程师都可以理解的代码变得少得多,这样他们可以将过去需要花费数周时间才能完成的事情现在用一个下午就可以搞定,而且现在可以在任何云或原生的Kubernetes上运行,而不仅是在AWS。管理团队的CloudFormation堆栈,而不是一个工作量过饱和的工程师,整个团队可以更加高效。 统一的容器构建/发布管道。尝试将容器投入生产时有个问题让我早就感到很沮丧,就是同步我的应用程序、容器和基础架构管理,因为每个容器都倾向于使用不同的工具。我们的云框架演示了一个集成的工作流程,在这个工作流程中,只需简单地运行Pulumi构建、diff、推送和拉取新的容器镜像,所有这些都经过精心安排,以消除停机时间。 Lambda无服务器功能 。 AWS的取了个好名字:Lambda。在Pulumi中,我现在可以用我最喜欢的语言使用lambda表达式来编写我的无服务器函数,而不需要一行YAML: import * as aws from \"@pulumi/aws\"; import * as serverless from \"@pulumi/aws-serverless\"; let topic = new aws.sns.Topic(\"topic\"); serverless.cloudwatch.onEvent(\"hourly\", \"rate(60 minutes)\", event => { const sns = new (await import \"aws-sdk\").SNS(); return sns.publish({ Message: JSON.stringify({ event: event }), TopicArn: topic.id.get(), }).promise(); }); 此功能允许您捕获对变量的引用:常量、配置设置或加密,甚至可以引用其他资源,以便与它们进行通信。当你第一次这样做的时候,我保证你会有一个“哇塞”的时刻,将无服务器连接到你写过的每一个事件驱动的代码片段。 使用API的资源。因为我可以捕获对其他云资源的引用,所以我可以在其上创建API以使它们更易于在我的运行时代码中使用。这使得“演员般的”编程模型无需处理配置和服务发现。 堆栈。 Pulumi的核心是“堆栈”的概念。堆栈是您的云计算的独立实例,其资源和配置与所有其他堆栈不同。您可能有一堆用于生产、暂存和测试的堆栈,或者可能是每个单一租户的环境。Pulumi的CLI使得启动和卸载大量堆栈变得轻而易举。这会打开以前可能没有尝试过的工作流,例如每个开发人员都拥有自己的堆栈,将新堆叠起来(并拆除)以测试每个Pull请求,甚至将服务的层拆分成多个链接在一起的堆栈。 我将在未来的博客文章介绍如何做。现在Pulumi已经公开,期望在接下来的几天和几周内听到更多的消息。我希望这能让您更好地了解整体平台,其方法和独特优势。 下一步是什么? 我们希望通过Pulumi,开发人员和DevOps团队都将体验到云的复兴。构建强大的云软件将更加愉快、更高效、更具协作性。现代云计算软件将从代码孤岛转变为等量的配置胶水,成为优雅的分布式系统。 这是一个难题。我绝不会说我们已经解决了它。我确实相信Pulumi是我亲身见过并希望最接近我心目中的云开发平台。在这个激动人心的时刻,投注于语言将使我们所有人“站在巨人的肩膀上”,这让我感到乐观;语言总是一个安全的赌注。 今天很可能是我职业生涯中最激动人心的一天。我想感谢我们的团队和所有帮助过我们的人,放纵我们的疯狂想法并相信我们。 现在访问https://pulumi.io,或者直接运行: $ curl -fsSL https://get.pulumi.com | sh 我迫不及待想看看你将使用Pulumi构建的所有令人难以置信的东西。 参考 Pulumi Hello, Pulumi! 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"cloud-native/the-future-of-cloud-native.html":{"url":"cloud-native/the-future-of-cloud-native.html","title":"云原生的未来","keywords":"","body":"云原生的未来 要想搞明云原生的未来,首先我们要弄明白云原生是什么。CNCF给出的定义是: 容器化 微服务 容器可以动态调度 我认为云原生实际上是一种理念或者说是方法论,它包括如下四个方面: 容器化:作为应用包装的载体 持续交付:利用容器的轻便的特性,构建持续集成和持续发布的流水线 DevOps:开发与运维之间的协同,上升到一种文化的层次,能够让应用快速的部署和发布 微服务:这是应用开发的一种理念,将单体应用拆分为微服务才能更好的实现云原生,才能独立的部署、扩展和更新 一句话解释什么是云原生应用:云原生应用就是为了在云上运行而开发的应用。 Kubernetes:云原生操作系统 图 2.8.1:Kubernetes 云原生的操作系统 要运行这样的应用必须有一个操作系统,就像我们运行PC或手机应用一样,而Kubernetes就是一个这样的操作系统。 我们再来看下操作系统包括哪些层次。 图 2.8.2:操作系统层次 硬件管理:可以管理CPU、内存、网络和存储 设备接口、虚拟化工具、实用工具 Shell、用户界面 各种终端工具,如awk、sort、grep、vim等 下面是CNCF给出的云原生景观图。 图 2.8.3:云原生景观图 该图中包括云原生的各种层次的提供者和应用,通过该图可以组合出一些列的云原生平台。 IaaS云提供商(公有云、私有云) 配置管理,提供最基础的集群配置 运行时,包括存储和容器运行时、网络等 调度和管理层,协同和服务发现、服务管理 应用层 也可以有平台提供以上所有功能,还可以有提供可观测性、分析和扩展应用。 看到这个景观图,大家觉得Kubernetes真的还只做了容器编排吗?实际上它是制定了一个标准。就像一个系统一样,所有的应用和插件都是基于它来构建的。 Kubernetes的现状与未来 Kubernetes发展已经有3年多的时间了,它已经基本成为了容器编排调度框架的标准。它的各种抽象与资源定义已经被大家广为接受。其中最基础的调度单元Pod。 创建一个自定义资源类型需要满足的条件。 这是KubeVirt的架构图。 图 2.8.4:KubeVirt架构图 我们看到图中有两个是Kubernetes原生的组件,API server和kubelet,我们创建了virt-controller就是为了创建CRD的controller,它扩展了kube-controller的功能,用于管理虚拟机的生命周期,同时在每个节点上都用DaemonSet的方式运行一个virt-handler,这个handler是用于创建虚拟机的处理器,每个节点上即可用运行虚拟机也可以运行容器,只要这个节点上有virt-handler就可以运行和调度虚拟机。 Kubernetes做了什么? Kubernetes优秀的分布式架构设计,给我们提供了众多了可扩展接口,可以让我们很方便的扩展自己的运行时、网络和存储插件,同时还可以通过CRD管理我们自己的分布式应用。它的声明式配置方式可以让我们利用Kubernetes的原语快速的编排出一个云原生应用。 Kubernetes的资源隔离也能保证对集群资源的最大化和最优利用率。 下图中展示了Kubernetes中的资源隔离层次。 图 2.8.5:Kubernetes中的资源隔离 容器 Pod:命名空间的隔离,共享网络,每个Pod都有独立IP,使用Service Account为Pod赋予账户 Sandbox:是对最小资源调度单位的抽象,甚至可以是虚拟机 Node:网络隔离,每个节点间网络是隔离的,每个节点都有单独的IP地址 Cluster:元数据的隔离,使用Federation可以将不同的集群联合在一起 Kubernetes中的基本资源类型分成了三类: 部署:Deploymnt、ReplicaSet、StatefulSet、DaemonSet、Job、CronJob 服务:Service、Ingress 存储:PV、PVC、ConfigMap、Secret 在最近一届的KubeCon & CloudNativeCon上Operator已经变得越来越流行。下面是OpenEBS的一个使用Operator的例子。 图 2.8.6:OpenEBS 控制平面架构 OpenEBS是一款容器化存储,它基于Ceph构建,容器化存储最大的好处就是复用Kubernetes的资源类型,简化存储应用的部署,将单体的存储拆分为“微服务化”的存储,即每个应用在声明PV的时候才会创建存储,并与PV的生命周期一样都是独立于应用的。 OpenEBS的存储也是分控制平面和数据平面的,下图是OpenEBS的架构图。 图 2.8.7:OpenEBS 的存储卷管理 黄色部分是OpenEBS的组件(除了kube-dashboard),它是使用Kubernetes的各种原语和CRD来创建的,架构跟Kubernetes本身也很类似。 用户在使用OpenEBS的StorageClass创建PV的时候,OpenEBS会为每个PV创建一个用户管理该PV的Deployment,这个Deployment再来创建存储副本,每个PV的存储副本都可以不同,这取决的用户如何定义的StorageClass。这样就可以将原来的单体存储拆分为微服务化的存储。 上面说到了Operator的一个应用,下面再来看一个我们之前在Kubernetes中部署Hadoop YARN和Spark的例子。 图 2.8.8:Hadoop YARN 迁移到 Kubernetes的示例 图 2.8.9:Spark on Yarn with Kubernetes Kubernetes始于12因素应用的PaaS平台,它是微服务的绝佳部署管理平台,基于它可以应用多种设计模式。它的未来将变成什么样呢? 图 2.8.10:云原生与12因素应用 Service Mesh:解决微服务治理问题 Auto Pilot:自动驾驭能力,服务自动扩展,智能运维 FaaS/Serverless:用户无需再关注底层平台,只需要部署服务,根据服务的资源消耗和使用时间付费 Serverless的发展 为了实现上述的各种能力,急需解决的就是基于Kubernetes的持续集成和发布问题。 当前出现了一系列的基于Kubernetes的CI/CD工具,如Jenkins-x、Gitkube,它提供了从代码提交、自动编译、打包镜像、配置注入、发布部署到Kubernetes平台的一系列自动化流程。 甚至出现了像ballerina这样的云原生编程语言,它的出现就是为了解决应用开发到服务集成之间的鸿沟的。它有以下几个特点。 图 2.8.11:云原生编程语言 使用云原生语义的DSL 注解式配置 序列图式操作 支持微服务的治理 要完成云的集成CI/CD,或者用一个词代替来说就是GitOps的需求越来越强烈。 图 2.8.12:Gitkube Kubernetes没有做什么 看下这张图中的两个服务,它们使用的是kube-proxy里基于iptables的原生的负载均衡,并且服务间的流量也没有任何控制。 图 2.8.13:Kuberentes中的流量管理 Kubernetes缺少的最重要的一个功能就是微服务的治理,微服务比起单体服务来说使得部署和运维起来更加复杂,对于微服务的可观测性也有更高的要求,同时CI/CD流程Kubernetes本身也没有提供。 Service Mesh Service Mesh是一个专用的基础设施层,它能够将微服务的治理层应用层下沉到基础设施层,将原来开发人员很多活给分担出去,让开发人员更注重业务逻辑和应用的性能本身,将服务治理的能力交给平台来解决。使用Service Mesh能够提供安全的服务间通讯、在服务间通讯应用各种策略实现灰度发布、流量切分等功能,它还能适配多语言,让微服务应用无感知的迁移到云原生。 这是Istio在Kubenetes中创建的各种CRD,这些CRD有些是作为路由策略、有些是做监控指标和权限控制的。 这是Istio Service Mesh的架构图。 图 2.8.14:Istio Service Mesh架构图 Pilot:提供用户接口,用户可以通过该接口配置各种路由规则,Pilot还可以通过适配器获取平台上各种服务之间的管理,Evnoy这个使用Sidecar方式部署到每个应用pod中的进程会通过Pilot中的Envoy API获得平台上各个服务之间的管理,同时也会应用用户配置的路由规则。 Mixer:获取各种平台属性,服务间通讯时会先访问Mixer兼容各平台的属性信息,如quota、访问控制和策略评估,将服务间的访问信息记录后上报到mixer形成遥测报告。 每个Pod上还有SA和SPIFFE做权限管控。 Service Mesh实际上为了解决社会分工问题,它本身是为了解决微服务的治理。 图 2.8.15:Service Mesh架构 Pilot和控制平面是为了运维人员准备的。 数据平面是为开发人员准备的。 Isito在每个上下游服务之间部署一个Envoy,Envoy中有几个基本的服务发现服务,监听器即Envoy要转发的流量端口,Endpoint是要转发的目的地,Cluster是一系列Endpoint用来做负载均衡,Route是定义各种路由规则,每个Envoy进程里可以设置多个Listener。 图 2.8.16:Envoy proxy架构图 本文根据 Jimmy Song 于2018年5月20日在第四届南京全球技术周上【互联网技术专场】上的题为【云原生应用的下一站】的演讲的部分内容的文字整理而成。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"cloud-native/quick-start.html":{"url":"cloud-native/quick-start.html","title":"云原生新手入门指南","keywords":"","body":"云原生新手入门指南 Kubernetes 一词来自希腊语,意思是 “飞行员” 或 “舵手”。这个名字很贴切,Kubernetes 可以帮助你在波涛汹涌的容器海洋中航行。 Kubernetes 是做什么的?什么是 Docker?什么是容器编排?Kubernetes 是如何工作和扩展的?你可能还有很多其他的问题,本文将一一为你解答。 这篇文章适合初学者,尤其是那些工作忙碌,没有办法抽出太多时间来了解 Kubernetes 和云原生的开发者们,希望本文可以帮助你进入 Kubernetes 的世界。 简而言之,Kubernetes 提供了一个平台或工具来帮助你快速协调或扩展容器化应用,特别是在 Docker 容器。让我们深入了解一下这些概念。 容器和容器化 那么什么是容器呢? 要讨论容器化首先要谈到虚拟机 (VM),顾名思义,虚拟机就是可以远程连接的虚拟服务器,比如 AWS 的 EC2 或阿里云的 ECS。 接下来,假如你要在虚拟机上运行一个网络应用 —— 包括一个 MySQL 数据库、一个 Vue 前端和一些 Java 库,在 Ubuntu 操作系统 (OS) 上运行。你不用熟悉其中的每一个技术 —— 你只要记住,一个应用程序由各种组件、服务和库组成,它们运行在操作系统上。 现在,将应用程序打包成一个虚拟机镜像,这个镜像中包括了 Ubuntu 操作系统。这使得虚拟机变得非常笨重 —— 通常有几个 G 的大小。 虚拟机镜像包含了整个操作系统及所有的库,对应用程序来说,这个镜像过于臃肿,其中大部分组件并没有被应用程序直接调用。如果你需要重新创建、备份或扩展这个应用程序,就需要复制整个环境(虚拟机镜像),在新环境中启动应用通常需要几十秒甚至几分钟时间。如果你想单独升级应用中的某个组件,比如说 Vue 应用,就需要重建整个虚拟机镜像。另外,如果你的两个应用依赖同一个底层镜像,升级底层镜像会同时影响这两个应用,而有时候,你只需要升级其中一个应用的依赖而已。这就是所谓的 “依赖陷阱”。 解决这个问题的办法就是容器。容器是继虚拟机之后更高层次的抽象,在这层抽象中,整个应用程序的每个组件被单独打包成一个个独立的单元,这个单元就是所谓的容器。通过这种方式,可以将代码和应用服务从底层架构中分离出来,实现了完全的可移植性(在任何操作系统或环境上运行应用的能力)。所以在上面的例子中,Ubuntu 操作系统就是一个单元(容器)。MySQL 数据库是另一个容器,Vue 环境和随之而来的库也是一个容器。 但是,MySQL 数据库是如何自己 “运行” 的?数据库本身肯定也要在操作系统上运行吧?没错! 更高层次的容器,比如 MySQL 容器,实际上会包含必要的库来与底层的操作系统容器通信和集成。所以你可以把容器看成是整个应用堆栈中的一层,每层都依赖于下层的单元。而这就类似于船舶或港口中集装箱的堆叠方式,每个容器的稳定性都依赖于下面的容器的支持。所以应用容器的核心是一个受控的执行环境。它们允许你从头开始定义整个环境,从操作系统开始,到你要使用的各个版本的库,再到你要添加的代码版本。 与容器相关的一个重要概念是微服务。将应用程序的各个组件拆分并打包成独立的服务,这样每个组件都可以很容易地被替换、升级、调试。上面的例子中,我们会为 Vue 前端创建一个微服务,为 MySQL 数据库创建另一个微服务,为 Java 中间件部分创建另一个微服务,以此类推。很明显,微服务与容器化是相辅相成的。 从 Docker 开始 现在你已经对容器有一定了解了吧?Docker 是最常用的容器化工具,也是最流行的容器运行时。 Docker 开源于 2013 年。用于打包和创建容器,管理基于容器的应用。所有 Linux 发行版、Windows 和 macOS 都支持 Docker。 还有其他的容器化工具,如 CoreOS rkt、Mesos Containerizer 和 LXC。但是目前,绝大多数的容器化应用都是在 Docker 上运行的。 再到 Kubernetes 首先,简单介绍一下历史。Kubernetes 是 Google 基于其内部容器调度平台 Borg 的经验开发的。2014 年开源,并作为 CNCF(云原生计算基金会)的核心发起项目。 那么 Kubernetes 又跟容器是什么关系呢?让我们再回到上面的例子。假设我们的应用爆火,每天的注册用户越来越多。 现在,我们需要增加后端资源,使浏览我们网站的用户在浏览页面时加载时间不会过长或者超时。最简单的方式就是增加容器的数量,然后使用负载均衡器将传入的负载(以用户请求的形式)分配给容器。 这样做虽然行之有效,但也只能在用户规模有限的情况下使用。当用户请求达到几十万或几百万时,这种方法也是不可扩展的。你需要管理几十个也许是几百个负载均衡器,这本身就是另一个令人头疼的问题。如果我们想对网站或应用进行任何升级,也会遇到问题,因为负载均衡不会考虑到应用升级的问题。我们需要单独配置每个负载均衡器,然后升级该均衡器所服务的容器。想象一下,当你有 20 个负载均衡器和每周 5 或 6 个小的更新时,你将不得不进行大量的手工劳动。 我们需要的是一种可以一次性将变更传递给所有受控容器的方法,同时也需要一种可以轻松地调度可用容器的方法,这个过程还必须要是自动化的,这正是 Kubernetes 所做的事情。 接下来,我们将探讨 Kubernetes 究竟是如何工作的,它的各种组件和服务,以及更多关于如何使用 Kubernetes 来编排、管理和监控容器化环境。为了简单起见,假设我们使用的是 Docker 容器,尽管如前所述,Kubernetes 除了支持 Docker 之外,还支持其他几种容器平台。 Kubernetes 架构和组件 首先,最重要的是你需要认识到 Kubernetes 利用了 “期望状态” 原则。就是说,你定义了组件的期望状态,而 Kubernetes 要将它们始终调整到这个状态。 例如,你想让你的 Web 服务器始终运行在 4 个容器中,以达到负载均衡的目的,你的数据库复制到 3 个不同的容器中,以达到冗余的目的。这就是你想要的状态。如果这 7 个容器中的任何一个出现故障,Kubernetes 引擎会检测到这一点,并自动创建出一个新的容器,以确保维持所需的状态。 现在我们来定义一些 Kubernetes 的重要组件。 当你第一次设置 Kubernetes 时,你会创建一个集群。所有其他组件都是集群的一部分。你也可以创建多个虚拟集群,称为命名空间 (namespace),它们是同一个物理集群的一部分。这与你可以在同一物理服务器上创建多个虚拟机的方式非常相似。如果你不需要,也没有明确定义的命名空间,那么你的集群将在始终存在的默认命名空间中创建。 Kubernetes 运行在节点 (node) 上,节点是集群中的单个机器。如果你有自己的硬件,节点可能对应于物理机器,但更可能对应于在云中运行的虚拟机。节点是部署你的应用或服务的地方,是 Kubernetes 工作的地方。有 2 种类型的节点 ——master 节点和 worker 节点,所以说 Kubernetes 是主从结构的。 主节点是一个控制其他所有节点的特殊节点。一方面,它和集群中的任何其他节点一样,这意味着它只是另一台机器或虚拟机。另一方面,它运行着控制集群其他部分的软件。它向集群中的所有其他节点发送消息,将工作分配给它们,工作节点向主节点上的 API Server 汇报。 Master 节点本身也包含一个名为 API Server 的组件。这个 API 是节点与控制平面通信的唯一端点。API Server 至关重要,因为这是 worker 节点和 master 节点就 pod、deployment 和所有其他 Kubernetes API 对象的状态进行通信的点。 Woker 节点是 Kubernetes 中真正干活的节点。当你在应用中部署容器或 pod(稍后定义)时,其实是在将它们部署到 worker 节点上运行。Worker 节点托管和运行一个或多个容器的资源。 Kubernetes 中的逻辑而非物理的工作单位称为 pod。一个 pod 类似于 Docker 中的容器。记得我们在前面讲到,容器可以让你创建独立、隔离的工作单元,可以独立运行。但是要创建复杂的应用程序,比如 Web 服务器,你经常需要结合多个容器,然后在一个 pod 中一起运行和管理。这就是 pod 的设计目的 —— 一个 pod 允许你把多个容器,并指定它们如何组合在一起来创建应用程序。而这也进一步明确了 Docker 和 Kubernetes 之间的关系 —— 一个 Kubernetes pod 通常包含一个或多个 Docker 容器,所有的容器都作为一个单元来管理。 Kubernetes 中的 service 是一组逻辑上的 pod。把一个 service 看成是一个 pod 的逻辑分组,它提供了一个单一的 IP 地址和 DNS 名称,你可以通过它访问服务内的所有 pod。有了服务,就可以非常容易地设置和管理负载均衡,当你需要扩展 Kubernetes pod 时,这对你有很大的帮助,我们很快就会看到。 ReplicationController 或 ReplicaSet 是 Kubernetes 的另一个关键功能。它是负责实际管理 pod 生命周期的组件 —— 当收到指令时或 pod 离线或意外停止时启动 pod,也会在收到指示时杀死 pod,也许是因为用户负载减少。所以换句话说,ReplicationController 有助于实现我们所期望的指定运行的 pod 数量的状态。 什么是 Kubectl? kubectl 是一个命令行工具,用于与 Kubernetes 集群和其中的 pod 通信。使用它你可以查看集群的状态,列出集群中的所有 pod,进入 pod 中执行命令等。你还可以使用 YAML 文件定义资源对象,然后使用 kubectl 将其应用到集群中。 Kubernetes 中的自动扩展 请记住,我们使用 Kubernetes 而不是直接使用 Docker 的原因之一,是因为 Kubernetes 能够自动扩展应用实例的数量以满足工作负载的需求。 自动缩放是通过集群设置来实现的,当服务需求增加时,增加节点数量,当需求减少时,则减少节点数量。但也要记住,节点是 “物理” 结构 —— 我们把 “物理” 放在引号里,因为要记住,很多时候,它们实际上是虚拟机。 无论如何,节点是物理机器的事实意味着我们的云平台必须允许 Kubernetes 引擎创建新机器。各种云提供商对 Kubernetes 支持基本都满足这一点。 我们再继续说一些概念,这次是和网络有关的。 什么是 kubernetes Ingress 和 Egress? 外部用户或应用程序与 Kubernetes pod 交互,就像 pod 是一个真正的服务器一样。我们需要设置安全规则允许哪些流量可以进入和离开 “服务器”,就像我们为托管应用程序的服务器定义安全规则一样。 进入 Kubernetes pod 的流量称为 Ingress,而从 pod 到集群外的出站流量称为 egress。我们创建入口策略和出口策略的目的是限制不需要的流量进入和流出服务。而这些策略也是定义 pod 使用的端口来接受传入和传输传出数据 / 流量的地方。 什么是 Ingress Controller? 但是在定义入口和出口策略之前,你必须首先启动被称为 Ingress Controller(入口控制器)的组件;这个在集群中默认不启动。有不同类型的入口控制器,Kubernetes 项目默认只支持 Google Cloud 和开箱即用的 Nginx 入口控制器。通常云供应商都会提供自己的入口控制器。 什么是 Replica 和 ReplicaSet? 为了保证应用程序的弹性,需要在不同节点上创建多个 pod 的副本。这些被称为 Replica。假设你所需的状态策略是 “让名为 webserver-1 的 pod 始终维持在 3 个副本”,这意味着 ReplicationController 或 ReplicaSet 将监控活动副本的数量,如果其中有任何一个 replica 因任何原因不可用(例如节点的故障),那么 Deployment Controller 将自动创建一个新的系统(定义如下)。 所需状态是在 deployment 中定义的。 Master 节点的中有一个子系统叫做 Deployment Controller,负责实际执行并使当前状态不断趋向于所需状态。 因此,举例来说,如果你目前有 2 个 pod 的副本,而你所希望的状态应该有 3 个,那么 Replication Controller 或 ReplicaSet 会自动检测到这个要求,并指示 Deployment Controller 根据预定义的设置部署一个新的 pod。 什么是服务网格? 服务网格 (Service Mesh) 用于管理服务之间的网络流量,是云原生的网络基础设施层,也是 Kubernetes 次世代的云原生应用 的重要组成部分。 服务网格利用容器之间的网络设置来控制或改变应用程序中不同组件之间的交互。下面,我们用一个例子来说明。假设你想测试 Nginx 的新版本,检查它是否与你的 Web 应用兼容。你用新的 Nginx 版本创建了一个新的容器 (Container2),并从当前容器 (Container1) 中复制了当前的 Nginx webserver 配置。但你不想影响组成 web 应用的其他微服务(假设每个容器对应一个单独的微服务)—— 就是 MySQL 数据库、Node.js 前端、负载均衡器等。 所以使用服务网格,你可以立即只把 webserver 微服务改成 Container2(新 Nginx 版本的那个)进行测试。如果确定它不能工作,比如因为它导致网站出现一些兼容性问题,那么你就调用服务网格来快速切换回原来的 Container1。而这一切都不需要对其他容器进行任何配置变更 —— 这些变更对其他容器是完全透明的。 如果没有服务网格,对容器来说这项工作将十分繁琐,因为这涉及到逐一更改所有其他容器上的配置,将它们所包含的服务从 Container1 指向 Container2,然后在测试失败后,将它们全部改回来。 在前面这部分 Kubernetes 指南中,我们介绍了一些与 Kubernetes 网络相关的概念。Kubernetes 中的网络可能很棘手,很难理解,如果你刚刚开始,你可能需要一些实践来理解这里。关于服务网格的更多内容请参考 Istio Handbook——Istio 服务网格进阶实战。 在下一部分中,我们将展开更多关于 Kubernetes 的话题:如何开始学习 Kubernetes,如何在本地安装和测试 Kubernetes,以及 Kubernetes 的一些优秀的监控工具。 如何学习 Kubernetes? 自学 Kubernetes 知识基本上有三种不同的途径,我们在这里只提供了一个指导大纲。 一、从零开始学习和安装 Kubernetes 要想真正掌握 Kubernetes,最好的办法莫过于自己从头开始安装 Kubernetes。不过要注意的是,从零开始安装 Kubernetes 并不是一件容易的事情。安装 Kubernetes 并不是简单的 “下载文件 -> 点击安装” 式的操作,Kubernetes 由多个组件组成,这些组件必须单独安装和配置。而在此之前,你也需要相当的技术储备来做安装前的准备,比如熟悉 Linux 操作系统。如果你决定使用这种方式学习的话,推荐你阅读 Kubernetes Handbook——Kubernetes 中文指南 / 云原生架构实践手册。此外,请记住,尽管 Kubernetes 作为一个开源解决方案在技术上是免费的,但它确实有一些隐藏的成本,只不过对初学者来说可能并不明显。 二、Kubernetes 自托管解决方案 这些解决方案样是一些工具和实用程序,大大简化了在本地计算机上安装和配置小型 Kubernetes 集群的任务。它们是学习 Kubernetes 的好方法,同时对于新手来说也不会太难,又足够小巧可以到安装在个人电脑上。最流行的自托管 Kubernetes 工具和环境是 Minikube、MicroK8s、Docker Desktop 和 Kind。这些解决方案往往有一些限制,例如,Minikube 只允许创建一个节点。尽管有这些缺点,但这些工具还是非常值得推荐,因为它们将易学性和成本效益结合起来,对于刚开始使用 Kubernetes 的初学者来说,是一个很好的选择。 三、云托管的解决方案 如今各大云供应商都提供了定制化的 Kubernetes 解决方案来。你也可以通过线上教学平台如 Katacoda 上的免费课程来学习 Kubernetes,它们都是云托管的,你不需要自己安装,只不过你需要云供应商的集群需要付费。 本地测试和调试 Kubernetes 作为本地安装 Kubernetes 的一部分,你很可能还需要一些测试和调试能力,以确保一切都在顺利运行,特别是定义入口和出口策略等棘手的任务。此外,还有 Kubernetes 附加组件的生态系统,你可能想使用这些组件来扩展 Kubernetes 集群的功能。添加所有这些都需要进行更多的测试,以确保它们能与你的 Kubernetes 集群完美的集成。 用于在本地开发和调试 Kubernetes 服务的工具有:Microsoft Bridge to Kubernetes 和 telepresence。这些工具可以让你在本地运行单个服务,同时将该服务连接到远程 Kubernetes 集群。这样你就可以让自己的本地机器作为 Kubernetes 集群中的一部分来运行 —— 这对于在本地而不是在生产集群上开发服务非常有用。 Kubernetes 项目也了解到了 Kubernetes 安装对端到端 (E2E) 测试的需求。为此,项目核心团队一直在确保在最近的版本中更恰当地支持 E2E 测试。这包括诸如允许测试重用和纳入更多附加组件和驱动程序的测试等。 Kubernetes 监控工具 Kubernetes 提供了应用程序在集群的每个层次上的资源使用情况的详细信息 —— 容器、pod、服务。这些详细信息使你能够评估应用程序的性能,确定哪些瓶颈可以解决以提高整体性能。 毕竟,监控可以帮助你了解应用和集群运行情况的详细信息,这对于学习 Kubernetes 是十分有帮助的。 Kubernetes 包含两个内置度量收集工具用于监控:资源管道和全度量管道。资源管道是一个较低级和较有限的工具,主要集中在与各种控制器相关的指标上。全指标管道,顾名思义,从几乎所有集群组件中获取并显示更丰富的指标。 还有一些第三方工具可以安装并集成到 Kubernetes 集群中。对于 Kubernetes 来说,最普遍使用的两个工具是 Prometheus 和 Grafana。 Prometheus 监控 Prometheus 是一个功能丰富的开源监控和警报工具。Prometheus 包含一个内部数据存储用来收集指标,如生成的时间序列数据。Prometheus 还拥有众多插件,允许它将数据暴露给各种外部解决方案,并从其他数据源导入数据,包括所有主要公有云监控解决方案。 Grafana 仪表盘 Grafana 是一个优秀的仪表盘、分析和数据可视化工具。它没有 Prometheus 的全功能数据收集能力,但 Prometheus 又没有 Grafana 的数据呈现界面。事实上,他们最好是结合在一起使用 ——Prometheus 负责数据收集和汇总,Grafana 负责数据展示。它们共同创造了一个强大的组合,涵盖了数据收集、基本警报和可视化。 高级警报 对于高级警报,你可以添加 Nagios 或 Prometheus Alertmanager 等工具。这些警报工具通常有大量的集成。你可以为自定义值班团队,然后定义你想要监控的参数,例如 “当任何 pod 不可用时” 或 “当任何节点无法访问时”、“当容量达到 90%” 等,然后通过电子邮件、短信、手机应用提醒、电话呼叫等方式向值班人员发送自定义通知。你还可以创建升级策略,比如,如果一个被定义为 “危急” 的警报在 10 分钟内没有值班人员确认,那么就将警报升级(发送警报)到该人员的经理。 现在,你应该已经对 Docker 和 Kubernetes 有了大体的认识。了解了 Kubernetes 的作用,知道它是如何进行容器化应用部署和管理的。 调试和监控技术不仅仅是运维需要,你也可以把它当作学习方式。有什么比边做边学更好呢? 请记住,如果你的应用规模太小,而且预计用户需求不会有太大变化或重大波动(比如一个只在公司内部使用的应用),那么 Kubernetes 对你来说可能没有必要,这种情况下,直接使用 Docker 就足够了。 更多 云原生领域的开源项目众多(见 Awesome Cloud Native / 云原生开源项目大全),其中有大量的优秀项目可供我们学习。此外,Kubernetes 开源已经多年时间,网上有大量的学习资料,业界出版过很多书籍,建议大家通过阅读官方文档和实践来学习,也可以参考我编写的 Kubernetes Handbook——Kubernetes 中文指南 / 云原生架构实践手册。 推荐大家加入我发起创办的云原生社区,这是一个立足中国,放眼世界的云原生终端用户社区,致力于云原生技术的传播和应用。云原生社区主办的云原生学院定期邀请云原生和开源领域的大咖在 B 站上进行直播分享,成员自发组织了多个 SIG(特别兴趣小组)进行讨论学习。欢迎加入我们,共同学习和交流云原生技术。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"cloud-native/play-with-kubernetes.html":{"url":"cloud-native/play-with-kubernetes.html","title":"Play with Kubernetes","keywords":"","body":"Play with Kubernetes 本书的主角是Kubernetes,在开始后面几章的长篇大论之前让大家可以零基础上手,揭开Kubernetes的神秘面纱。 本文不是讲解Kubernetes的高深原理也不是讲Kuberentes的具体用法,而是通过Play with Kubernetes来带您进入Kubernetes的世界,相当于Kubernetes世界的“Hello World”!而且除了一台可以上网的电脑和浏览器之外不需要再准备任何东西,甚至(至少目前为止)不需要注册账号,上手即玩。 当然免费使用也是有限制的,当前的限制如下: 内置kubeadm来创建kubernetes集群,版本为v1.8.4 每个实例配置为1 core,4G Memory,最多创建5个实例 每个集群的使用时间是4个小时(当然你可以同时启动多个集群,根据浏览器的session来判断集群) 在Kubernetes集群中创建的服务无法通过外网访问,只能在Play with Kubernetes的网络内访问 登陆Play with Kubernetes,点击【登陆】-【开始】即可开始你的Kubernetes之旅! 创建Kubernetes集群 启动第一个实例作为Master节点,在web终端上执行: 1. 初始化master节点: kubeadm init --apiserver-advertise-address $(hostname -i) 2. 初始化集群网络: kubectl apply -n kube-system -f \"https://cloud.weave.works/k8s/net?k8s-version=$(kubectl version | base64 | tr -d '\\n')\" 3. 执行下列初始化命令: mkdir -p $HOME/.kube cp -i /etc/kubernetes/admin.conf $HOME/.kube/config chown $(id -u):$(id -g) $HOME/.kube/config 4. 启动新的实例作为node节点,根据master节点上的提示,在新的web终端上执行: kubeadm join --token 513212.cfea0165b8988d18 192.168.0.13:6443 --discovery-token-ca-cert-hash sha256:b7b6dcc98f3ead3f9e363cb3928fbc04774ee0d63e8eb2897ae30e05aebf8070 注意:192.168.0.13是master节点的IP,请替换您的master节点的实际IP。 再添加几个实例,重复执行第四步,即可向Kubernetes集群中增加节点。 此时在master节点上执行kubectl get nodes查看节点所有节点状态,并创建nginx deployment,如下图所示: 图 3.2.1:Play with Kubernetes网页截图 Play with Kuberentes (PWK) is a project hacked by Marcos Lilljedahl and Jonathan Leibiusky and sponsored by Docker Inc. 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"cloud-native/cloud-native-local-quick-start.html":{"url":"cloud-native/cloud-native-local-quick-start.html","title":"快速部署一个云原生本地实验环境","keywords":"","body":"快速部署一个云原生本地实验环境 本文旨在帮助您快速部署一个云原生本地实验环境,让您可以基本不需要任何Kubernetes和云原生技术的基础就可以对云原生环境一探究竟。 本文中使用kubernetes-vagrant-centos-cluster在本地使用 Vagrant 启动三个虚拟机部署分布式的Kubernetes集群。 如仅需要体验云原生环境和测试服务功能,可以使用更加轻量级的cloud-native-sandbox,通过个人电脑的Docker部署单节点的Kubernetes、Istio等云原生环境。 准备环境 需要准备以下软件和环境: 8G以上内存 Vagrant 2.0+ VirtualBox 5.0 + 提前下载kubernetes1.9.1以上版本的release压缩包,至百度网盘下载(并将名字中的版本号删除) Mac/Linux,不支持Windows 支持Kubernetes1.9以上版本(支持当前Kubernetes最新版本1.11.1) 集群 我们使用Vagrant和Virtualbox安装包含3个节点的kubernetes集群,其中master节点同时作为node节点。 IP 主机名 组件 172.17.8.101 node1 kube-apiserver、kube-controller-manager、kube-scheduler、etcd、kubelet、docker、flannel、dashboard 172.17.8.102 node2 kubelet、docker、flannel、traefik 172.17.8.103 node3 kubelet、docker、flannel 注意:以上的IP、主机名和组件都是固定在这些节点的,即使销毁后下次使用vagrant重建依然保持不变。 容器IP范围:172.33.0.0/30 Kubernetes service IP范围:10.254.0.0/16 安装的组件 安装完成后的集群包含以下组件: flannel(host-gw模式) kubernetes dashboard etcd(单节点) kubectl CoreDNS kubernetes(版本根据下载的kubernetes安装包而定) 可选插件 Heapster + InfluxDB + Grafana ElasticSearch + Fluentd + Kibana Istio service mesh 使用说明 确保安装好以上的准备环境后,执行下列命令启动kubernetes集群: git clone https://github.com/rootsongjc/kubernetes-vagrant-centos-cluster.git cd kubernetes-vagrant-centos-cluster vagrant up 注意:克隆完Git仓库后,需要提前下载kubernetes的压缩包到kubenetes-vagrant-centos-cluster目录下,并将压缩包名字中的版本号删除,包括如下两个文件: kubernetes-client-linux-amd64.tar.gz kubernetes-server-linux-amd64.tar.gz 如果是首次部署,会自动下载centos/7的box,这需要花费一些时间,另外每个节点还需要下载安装一系列软件包,整个过程大概需要10几分钟。 如果您在运行vagrant up的过程中发现无法下载centos/7的box,可以手动下载后将其添加到vagrant中。 手动添加centos/7 box wget -c http://cloud.centos.org/centos/7/vagrant/x86_64/images/CentOS-7-x86_64-Vagrant-1801_02.VirtualBox.box vagrant box add CentOS-7-x86_64-Vagrant-1801_02.VirtualBox.box --name centos/7 这样下次运行vagrant up的时候就会自动读取本地的centos/7 box而不会再到网上下载。 访问kubernetes集群 访问Kubernetes集群的方式有三种: 本地访问 在VM内部访问 kubernetes dashboard 通过本地访问 可以直接在你自己的本地环境中操作该kubernetes集群,而无需登录到虚拟机中,执行以下步骤: 将conf/admin.kubeconfig文件放到~/.kube/config目录下即可在本地使用kubectl命令操作集群。 mkdir -p ~/.kube cp conf/admin.kubeconfig ~/.kube/config 我们推荐您使用这种方式。 在虚拟机内部访问 如果有任何问题可以登录到虚拟机内部调试: vagrant ssh node1 sudo -i kubectl get nodes Kubernetes dashboard 还可以直接通过dashboard UI来访问:https://172.17.8.101:8443 可以在本地执行以下命令获取token的值(需要提前安装kubectl): kubectl -n kube-system describe secret `kubectl -n kube-system get secret|grep admin-token|cut -d \" \" -f1`|grep \"token:\"|tr -s \" \"|cut -d \" \" -f2 注意:token的值也可以在vagrant up的日志的最后看到。 图 3.3.1:Kubernetes dashboard Heapster监控 创建Heapster监控: kubectl apply -f addon/heapster/ 访问Grafana 使用Ingress方式暴露的服务,在本地/etc/hosts中增加一条配置: 172.17.8.102 grafana.jimmysong.io 访问Grafana:http://grafana.jimmysong.io 图 3.3.2:Grafana Traefik 部署Traefik ingress controller和增加ingress配置: kubectl apply -f addon/traefik-ingress 在本地/etc/hosts中增加一条配置: 172.17.8.102 traefik.jimmysong.io 访问Traefik UI:http://traefik.jimmysong.io 图 3.3.3:Traefik dashboard EFK 使用EFK做日志收集。 kubectl apply -f addon/efk/ 注意:运行EFK的每个节点需要消耗很大的CPU和内存,请保证每台虚拟机至少分配了4G内存。 Helm 用来部署helm。 hack/deploy-helm.sh Service Mesh 我们使用 istio 作为 service mesh。 安装 kubectl apply -f addon/istio/ 运行示例 kubectl apply -n default -f 在您自己的本地主机的/etc/hosts文件中增加如下配置项。 172.17.8.102 grafana.istio.jimmysong.io 172.17.8.102 servicegraph.istio.jimmysong.io 我们可以通过下面的URL地址访问以上的服务。 Service URL grafana http://grafana.istio.jimmysong.io servicegraph http://servicegraph.istio.jimmysong.io/dotviz, http://servicegraph.istio.jimmysong.io/graph, http://servicegraph.istio.jimmysong.io/force/forcegraph.htm tracing http://172.17.8.101:$JAEGER_PORT productpage http://172.17.8.101:$GATEWAY_PORT/productpage 注意:JAEGER_PORT可以通过kubectl -n istio-system get svc tracing -o jsonpath='{.spec.ports[0].nodePort}'获取,GATEWAY_PORT可以通过kubectl -n istio-system get svc istio-ingressgateway -o jsonpath='{.spec.ports[0].nodePort}'获取。 图 3.3.4:bookinfo示例 Vistio Vizceral是Netflix发布的一个开源项目,用于近乎实时地监控应用程序和集群之间的网络流量。Vistio是使用Vizceral对Istio和网格监控的改进。它利用Istio Mixer生成的指标,然后将其输入Prometheus。Vistio查询Prometheus并将数据存储在本地以允许重播流量。 # Deploy vistio via kubectl kubectl apply -f addon/vistio/ # Expose vistio-api kubectl -n default port-forward $(kubectl -n default get pod -l app=vistio-api -o jsonpath='{.items[0].metadata.name}') 9091:9091 & # Expose vistio in another terminal window kubectl -n default port-forward $(kubectl -n default get pod -l app=vistio-web -o jsonpath='{.items[0].metadata.name}') 8080:8080 & 如果一切都已经启动并准备就绪,您就可以访问Vistio UI,开始探索服务网格网络,访问http://localhost:8080 您将会看到类似下图的输出。 图 3.3.5:vistio视图动画 更多详细内容请参考Vistio—使用Netflix的Vizceral可视化Istio service mesh。 Kiali Kiali是一个用于提供Istio service mesh观察性的项目,更多信息请查看 https://kiali.io。 在本地该项目的根路径下执行下面的命令: kubectl apply -n istio-system -f addon/kiali Kiali web地址:http://172.17.8.101:31439 用户名/密码:admin/admin 图 3.3.6:Kiali页面 注意:Kilia使用Jaeger做追踪,请不用屏蔽kilia页面的弹出窗口。 Weave scope Weave scope可用于监控、可视化和管理Docker&Kubernetes集群,详情见 https://www.weave.works/oss/scope/ 在本地该项目的根路径下执行下面的命令: kubectl apply -f addon/weave-scope 在本地的/etc/hosts下增加一条记录。 172.17.8.102 scope.weave.jimmysong.io 现在打开浏览器,访问 http://scope.weave.jimmysong.io/ 图 3.3.7:Scope页面 管理 除了特别说明,以下命令都在当前的repo目录下操作。 挂起 将当前的虚拟机挂起,以便下次恢复。 vagrant suspend 恢复 恢复虚拟机的上次状态。 vagrant resume 注意:我们每次挂起虚拟机后再重新启动它们的时候,看到的虚拟机中的时间依然是挂载时候的时间,这样将导致监控查看起来比较麻烦。因此请考虑先停机再重新启动虚拟机。 重启 停机后重启启动。 vagrant halt vagrant up # login to node1 vagrant ssh node1 # run the prosivision scripts /vagrant/hack/k8s-init.sh exit # login to node2 vagrant ssh node2 # run the prosivision scripts /vagrant/hack/k8s-init.sh exit # login to node3 vagrant ssh node3 # run the prosivision scripts /vagrant/hack/k8s-init.sh sudo -i cd /vagrant/hack ./deploy-base-services.sh exit 现在你已经拥有一个完整的基础的kubernetes运行环境,在该repo的根目录下执行下面的命令可以获取kubernetes dahsboard的admin用户的token。 hack/get-dashboard-token.sh 根据提示登录即可。 清理 清理虚拟机。 vagrant destroy rm -rf .vagrant 注意 仅做开发测试使用,不要在生产环境使用该项目。 参考 Kubernetes handbook - jimmysong.io duffqiu/centos-vagrant coredns/deployment Vistio—使用Netflix的Vizceral可视化Istio service mesh 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"cloud-native/setup-kubernetes-with-rancher-and-aliyun.html":{"url":"cloud-native/setup-kubernetes-with-rancher-and-aliyun.html","title":"使用 Rancher 在阿里云上部署 Kubenretes 集群","keywords":"","body":"使用Rancher在阿里云上部署Kubernetes集群 如果您已经购买了阿里云的 ECS,那么您可以使用 Rancher 很方便的构建起一套 Kubernetes 集群用于测试及小规模使用。使用 Rancher 可以自动和可视化的完成 Kubernetes 集群的安装工作,省去的繁琐的人工安装过程,然您快速投入的业务开发中。下文根据 Rancher 2.x 安装 Kubernetes 集群。 注:阿里云上已支持容器服务 ACK,如果您需要高性能、企业级的 Kubernetes 服务不妨考虑一下。 准备 要想使用阿里云 ECS 和 Rancher 直接搭建一套 Kubernetes 集群,需要准备以下条件: 开通了公网 IP 的 ECS ECS 规格建议至少 4C8G ECS 使用的阿里云的经典网络 安全组规则 组成 Kubenretes 集群的 ECS 位于阿里云经典网络中,需要为集群配置安全组规则如下: UDP/8472 端口:阿里云默认禁止了 UDP,我们使用的 flannel 网络插件的VXLAN 模式,需要将 ECS 的安全组设置 UDP/8472 端口开放 TCP/6443:Kubernetes API Server TCP/2379:etcd TCP/2380:etcd TCP/80:http TCP/443:https 步骤 假设现在我们有两个节点 master 和 node,请参考 Rancher Quick Start Guide 安装 Rancher。 图 3.4.1:Rancher 界面 Master 先在 Master 节点安装 Rancher server、control、etcd 和 worker。 选择网络组件为 Flannel,同时在自定义主机运行命令中选择主机角色、填写主机的内网和外网 IP。 图 3.4.2:自定义节点信息 docker run -d --restart=unless-stopped -p 80:80 -p 443:443 rancher/rancher Rancher 将自动创建 Kubernetes 集群,并默认在 80 端口运行 web server。 Node 添加 Node 节点时只需要在 Rancher 的 web 界面上找到您刚安装的集群并选择【编辑集群】并选择节点角色为 Worker 即可增加一台 Kubenretes 集群节点。 集群交互 图 3.4.3:Rancher 集群监控页面 如果您习惯使用命令行与集群交互可以 Rancher 的 web 上找到集群首页上的 Kubeconfig File 下载按钮,将该文件中的内容保存到您自己电脑的 ~/.kube/config 文件中。然后现在对应 Kubernetes 版本的 kubectl 命令并放到 PATH 路径下即可。 如果您没有在本地安装 kubectl 工具,也可以通过 Rancher 的集群页面上的 Launch kubectl 命令通过 web 来操作集群。 参考 Rancher - rancher.com 阿里云容器服务 ACK - aliyun.com 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/":{"url":"concepts/","title":"Kubernetes 架构","keywords":"","body":"Kubernetes 架构 Kubernetes 最初源于谷歌内部的 Borg,提供了面向应用的容器集群部署和管理系统。Kubernetes 的目标旨在消除编排物理 / 虚拟计算,网络和存储基础设施的负担,并使应用程序运营商和开发人员完全将重点放在以容器为中心的原语上进行自助运营。Kubernetes 也提供稳定、兼容的基础(平台),用于构建定制化的 workflows 和更高级的自动化任务。 Kubernetes 具备完善的集群管理能力,包括多层次的安全防护和准入机制、多租户应用支撑能力、透明的服务注册和服务发现机制、内建负载均衡器、故障发现和自我修复能力、服务滚动升级和在线扩容、可扩展的资源自动调度机制、多粒度的资源配额管理能力。Kubernetes 还提供完善的管理工具,涵盖开发、部署测试、运维监控等各个环节。 Borg 简介 Borg 是谷歌内部的大规模集群管理系统,负责对谷歌内部很多核心服务的调度和管理。Borg 的目的是让用户能够不必操心资源管理的问题,让他们专注于自己的核心业务,并且做到跨多个数据中心的资源利用率最大化。 Borg 主要由 BorgMaster、Borglet、borgcfg 和 Scheduler 组成,如下图所示 图 4.1.1:Borg 架构 BorgMaster 是整个集群的大脑,负责维护整个集群的状态,并将数据持久化到 Paxos 存储中; Scheduer 负责任务的调度,根据应用的特点将其调度到具体的机器上去; Borglet 负责真正运行任务(在容器中); borgcfg 是 Borg 的命令行工具,用于跟 Borg 系统交互,一般通过一个配置文件来提交任务。 Kubernetes 架构 Kubernetes 借鉴了 Borg 的设计理念,比如 Pod、Service、Label 和单 Pod 单 IP 等。Kubernetes 的整体架构跟 Borg 非常像,如下图所示。 图 4.1.2:Kubernetes 架构 Kubernetes 主要由以下几个核心组件组成: etcd 保存了整个集群的状态; apiserver 提供了资源操作的唯一入口,并提供认证、授权、访问控制、API 注册和发现等机制; controller manager 负责维护集群的状态,比如故障检测、自动扩展、滚动更新等; scheduler 负责资源的调度,按照预定的调度策略将 Pod 调度到相应的机器上; kubelet 负责维护容器的生命周期,同时也负责 Volume(CSI)和网络(CNI)的管理; Container runtime 负责镜像管理以及 Pod 和容器的真正运行(CRI); kube-proxy 负责为 Service 提供 cluster 内部的服务发现和负载均衡; 除了核心组件,还有一些推荐的插件,其中有的已经成为 CNCF 中的托管项目: CoreDNS 负责为整个集群提供 DNS 服务 Ingress Controller 为服务提供外网入口 Prometheus 提供资源监控 Dashboard 提供 GUI Federation 提供跨可用区的集群 Kubernetes 架构示意图 整体架构 下图清晰表明了 Kubernetes 的架构设计以及组件之间的通信协议。 图 4.1.3:Kuberentes 架构(图片来自于网络) 下面是更抽象的一个视图: 图 4.1.4:kubernetes 整体架构示意图 Master 架构 图 4.1.5:Kubernetes master 架构示意图 Node 架构 图 4.1.6:kubernetes node 架构示意图 分层架构 Kubernetes 设计理念和功能其实就是一个类似 Linux 的分层架构,如下图所示。 图 4.1.7:Kubernetes 分层架构示意图 核心层:Kubernetes 最核心的功能,对外提供 API 构建高层的应用,对内提供插件式应用执行环境 应用层:部署(无状态应用、有状态应用、批处理任务、集群应用等)和路由(服务发现、DNS 解析等)、Service Mesh(部分位于应用层) 管理层:系统度量(如基础设施、容器和网络的度量),自动化(如自动扩展、动态 Provision 等)以及策略管理(RBAC、Quota、PSP、NetworkPolicy 等)、Service Mesh(部分位于管理层) 接口层:kubectl 命令行工具、客户端 SDK 以及集群联邦 生态系统:在接口层之上的庞大容器集群管理调度的生态系统,可以划分为两个范畴 Kubernetes 外部:日志、监控、配置管理、CI/CD、Workflow、FaaS、OTS 应用、ChatOps、GitOps、SecOps 等 Kubernetes 内部:CRI、CNI、CSI、镜像仓库、Cloud Provider、集群自身的配置和管理等 关于分层架构,可以关注下 Kubernetes 社区正在推进的 Kubernetes architectual roadmap 和 slide。 参考文档 Borg, Omega, and Kubernetes - Lessons learned from three container-management systems over a decade Paper - Large-scale cluster management at Google with Borg KUBERNETES: AN OVERVIEW Kubernetes architectual roadmap 和 slide 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/concepts.html":{"url":"concepts/concepts.html","title":"设计理念","keywords":"","body":"Kubernetes 的设计理念 这一章将介绍 Kubernetes 的设计理念及基本概念。 Kubernetes 设计理念与分布式系统 分析和理解 Kubernetes 的设计理念可以使我们更深入地了解 Kubernetes 系统,更好地利用它管理分布式部署的云原生应用,另一方面也可以让我们借鉴其在分布式系统设计方面的经验。 分层架构 Kubernetes 设计理念和功能其实就是一个类似 Linux 的分层架构,如下图所示 图 4.1.1.1:Kubernetes 分层架构示意图 核心层:Kubernetes 最核心的功能,对外提供 API 构建高层的应用,对内提供插件式应用执行环境 应用层:部署(无状态应用、有状态应用、批处理任务、集群应用等)和路由(服务发现、DNS 解析等) 管理层:系统度量(如基础设施、容器和网络的度量),自动化(如自动扩展、动态 Provision 等)以及策略管理(RBAC、Quota、PSP、NetworkPolicy 等) 接口层:kubectl 命令行工具、客户端 SDK 以及集群联邦 生态系统:在接口层之上的庞大容器集群管理调度的生态系统,可以划分为两个范畴 Kubernetes 外部:日志、监控、配置管理、CI、CD、Workflow、FaaS、OTS 应用、ChatOps 等 Kubernetes 内部:CRI、CNI、CVI、镜像仓库、Cloud Provider、集群自身的配置和管理等 API 设计原则 对于云计算系统,系统 API 实际上处于系统设计的统领地位,正如本文前面所说,Kubernetes 集群系统每支持一项新功能,引入一项新技术,一定会新引入对应的 API 对象,支持对该功能的管理操作,理解掌握的 API,就好比抓住了 Kubernetes 系统的牛鼻子。Kubernetes 系统 API 的设计有以下几条原则: 所有 API 应该是声明式的。正如前文所说,声明式的操作,相对于命令式操作,对于重复操作的效果是稳定的,这对于容易出现数据丢失或重复的分布式环境来说是很重要的。另外,声明式操作更容易被用户使用,可以使系统向用户隐藏实现的细节,隐藏实现的细节的同时,也就保留了系统未来持续优化的可能性。此外,声明式的 API,同时隐含了所有的 API 对象都是名词性质的,例如 Service、Volume 这些 API 都是名词,这些名词描述了用户所期望得到的一个目标分布式对象。 API 对象是彼此互补而且可组合的。这里面实际是鼓励 API 对象尽量实现面向对象设计时的要求,即 “高内聚,松耦合”,对业务相关的概念有一个合适的分解,提高分解出来的对象的可重用性。事实上,Kubernetes 这种分布式系统管理平台,也是一种业务系统,只不过它的业务就是调度和管理容器服务。 高层 API 以操作意图为基础设计。如何能够设计好 API,跟如何能用面向对象的方法设计好应用系统有相通的地方,高层设计一定是从业务出发,而不是过早的从技术实现出发。因此,针对 Kubernetes 的高层 API 设计,一定是以 Kubernetes 的业务为基础出发,也就是以系统调度管理容器的操作意图为基础设计。 低层 API 根据高层 API 的控制需要设计。设计实现低层 API 的目的,是为了被高层 API 使用,考虑减少冗余、提高重用性的目的,低层 API 的设计也要以需求为基础,要尽量抵抗受技术实现影响的诱惑。 尽量避免简单封装,不要有在外部 API 无法显式知道的内部隐藏的机制。简单的封装,实际没有提供新的功能,反而增加了对所封装 API 的依赖性。内部隐藏的机制也是非常不利于系统维护的设计方式,例如 StatefulSet 和 ReplicaSet,本来就是两种 Pod 集合,那么 Kubernetes 就用不同 API 对象来定义它们,而不会说只用同一个 ReplicaSet,内部通过特殊的算法再来区分这个 ReplicaSet 是有状态的还是无状态。 API 操作复杂度与对象数量成正比。这一条主要是从系统性能角度考虑,要保证整个系统随着系统规模的扩大,性能不会迅速变慢到无法使用,那么最低的限定就是 API 的操作复杂度不能超过 O(N),N 是对象的数量,否则系统就不具备水平伸缩性了。 API 对象状态不能依赖于网络连接状态。由于众所周知,在分布式环境下,网络连接断开是经常发生的事情,因此要保证 API 对象状态能应对网络的不稳定,API 对象的状态就不能依赖于网络连接状态。 尽量避免让操作机制依赖于全局状态,因为在分布式系统中要保证全局状态的同步是非常困难的。 控制机制设计原则 控制逻辑应该只依赖于当前状态。这是为了保证分布式系统的稳定可靠,对于经常出现局部错误的分布式系统,如果控制逻辑只依赖当前状态,那么就非常容易将一个暂时出现故障的系统恢复到正常状态,因为你只要将该系统重置到某个稳定状态,就可以自信的知道系统的所有控制逻辑会开始按照正常方式运行。 假设任何错误的可能,并做容错处理。在一个分布式系统中出现局部和临时错误是大概率事件。错误可能来自于物理系统故障,外部系统故障也可能来自于系统自身的代码错误,依靠自己实现的代码不会出错来保证系统稳定其实也是难以实现的,因此要设计对任何可能错误的容错处理。 尽量避免复杂状态机,控制逻辑不要依赖无法监控的内部状态。因为分布式系统各个子系统都是不能严格通过程序内部保持同步的,所以如果两个子系统的控制逻辑如果互相有影响,那么子系统就一定要能互相访问到影响控制逻辑的状态,否则,就等同于系统里存在不确定的控制逻辑。 假设任何操作都可能被任何操作对象拒绝,甚至被错误解析。由于分布式系统的复杂性以及各子系统的相对独立性,不同子系统经常来自不同的开发团队,所以不能奢望任何操作被另一个子系统以正确的方式处理,要保证出现错误的时候,操作级别的错误不会影响到系统稳定性。 每个模块都可以在出错后自动恢复。由于分布式系统中无法保证系统各个模块是始终连接的,因此每个模块要有自我修复的能力,保证不会因为连接不到其他模块而自我崩溃。 每个模块都可以在必要时优雅地降级服务。所谓优雅地降级服务,是对系统鲁棒性的要求,即要求在设计实现模块时划分清楚基本功能和高级功能,保证基本功能不会依赖高级功能,这样同时就保证了不会因为高级功能出现故障而导致整个模块崩溃。根据这种理念实现的系统,也更容易快速地增加新的高级功能,因为不必担心引入高级功能影响原有的基本功能。 Kubernetes 的核心技术概念和 API 对象 API 对象是 Kubernetes 集群中的管理操作单元。Kubernetes 集群系统每支持一项新功能,引入一项新技术,一定会新引入对应的 API 对象,支持对该功能的管理操作。例如副本集 Replica Set 对应的 API 对象是 RS。 每个 API 对象都有 3 大类属性:元数据 metadata、规范 spec 和状态 status。元数据是用来标识 API 对象的,每个对象都至少有 3 个元数据:namespace,name 和 uid;除此以外还有各种各样的标签 labels 用来标识和匹配不同的对象,例如用户可以用标签 env 来标识区分不同的服务部署环境,分别用 env=dev、env=testing、env=production 来标识开发、测试、生产的不同服务。规范描述了用户期望 Kubernetes 集群中的分布式系统达到的理想状态(Desired State),例如用户可以通过复制控制器 Replication Controller 设置期望的 Pod 副本数为 3;status 描述了系统实际当前达到的状态(Status),例如系统当前实际的 Pod 副本数为 2;那么复制控制器当前的程序逻辑就是自动启动新的 Pod,争取达到副本数为 3。 Kubernetes 中所有的配置都是通过 API 对象的 spec 去设置的,也就是用户通过配置系统的理想状态来改变系统,这是 Kubernetes 重要设计理念之一,即所有的操作都是声明式(Declarative)的而不是命令式(Imperative)的。声明式操作在分布式系统中的好处是稳定,不怕丢操作或运行多次,例如设置副本数为 3 的操作运行多次也还是一个结果,而给副本数加 1 的操作就不是声明式的,运行多次结果就错了。 Pod Kubernetes 有很多技术概念,同时对应很多 API 对象,最重要的也是最基础的是 Pod。Pod 是在 Kubernetes 集群中运行部署应用或服务的最小单元,它是可以支持多容器的。Pod 的设计理念是支持多个容器在一个 Pod 中共享网络地址和文件系统,可以通过进程间通信和文件共享这种简单高效的方式组合完成服务。Pod 对多容器的支持是 K8 最基础的设计理念。比如你运行一个操作系统发行版的软件仓库,一个 Nginx 容器用来发布软件,另一个容器专门用来从源仓库做同步,这两个容器的镜像不太可能是一个团队开发的,但是他们一块儿工作才能提供一个微服务;这种情况下,不同的团队各自开发构建自己的容器镜像,在部署的时候组合成一个微服务对外提供服务。 Pod 是 Kubernetes 集群中所有业务类型的基础,可以看作运行在 Kubernetes 集群中的小机器人,不同类型的业务就需要不同类型的小机器人去执行。目前 Kubernetes 中的业务主要可以分为长期伺服型(long-running)、批处理型(batch)、节点后台支撑型(node-daemon)和有状态应用型(stateful application);分别对应的小机器人控制器为 Deployment、Job、DaemonSet 和 StatefulSet,本文后面会一一介绍。 副本控制器(Replication Controller,RC) RC 是 Kubernetes 集群中最早的保证 Pod 高可用的 API 对象。通过监控运行中的 Pod 来保证集群中运行指定数目的 Pod 副本。指定的数目可以是多个也可以是 1 个;少于指定数目,RC 就会启动运行新的 Pod 副本;多于指定数目,RC 就会杀死多余的 Pod 副本。即使在指定数目为 1 的情况下,通过 RC 运行 Pod 也比直接运行 Pod 更明智,因为 RC 也可以发挥它高可用的能力,保证永远有 1 个 Pod 在运行。RC 是 Kubernetes 较早期的技术概念,只适用于长期伺服型的业务类型,比如控制小机器人提供高可用的 Web 服务。 副本集(Replica Set,RS) RS 是新一代 RC,提供同样的高可用能力,区别主要在于 RS 后来居上,能支持更多种类的匹配模式。副本集对象一般不单独使用,而是作为 Deployment 的理想状态参数使用。 部署(Deployment) 部署表示用户对 Kubernetes 集群的一次更新操作。部署是一个比 RS 应用模式更广的 API 对象,可以是创建一个新的服务,更新一个新的服务,也可以是滚动升级一个服务。滚动升级一个服务,实际是创建一个新的 RS,然后逐渐将新 RS 中副本数增加到理想状态,将旧 RS 中的副本数减小到 0 的复合操作;这样一个复合操作用一个 RS 是不太好描述的,所以用一个更通用的 Deployment 来描述。以 Kubernetes 的发展方向,未来对所有长期伺服型的的业务的管理,都会通过 Deployment 来管理。 服务(Service) RC、RS 和 Deployment 只是保证了支撑服务的微服务 Pod 的数量,但是没有解决如何访问这些服务的问题。一个 Pod 只是一个运行服务的实例,随时可能在一个节点上停止,在另一个节点以一个新的 IP 启动一个新的 Pod,因此不能以确定的 IP 和端口号提供服务。要稳定地提供服务需要服务发现和负载均衡能力。服务发现完成的工作,是针对客户端访问的服务,找到对应的的后端服务实例。在 K8 集群中,客户端需要访问的服务就是 Service 对象。每个 Service 会对应一个集群内部有效的虚拟 IP,集群内部通过虚拟 IP 访问一个服务。在 Kubernetes 集群中微服务的负载均衡是由 Kube-proxy 实现的。Kube-proxy 是 Kubernetes 集群内部的负载均衡器。它是一个分布式代理服务器,在 Kubernetes 的每个节点上都有一个;这一设计体现了它的伸缩性优势,需要访问服务的节点越多,提供负载均衡能力的 Kube-proxy 就越多,高可用节点也随之增多。与之相比,我们平时在服务器端做个反向代理做负载均衡,还要进一步解决反向代理的负载均衡和高可用问题。 任务(Job) Job 是 Kubernetes 用来控制批处理型任务的 API 对象。批处理业务与长期伺服业务的主要区别是批处理业务的运行有头有尾,而长期伺服业务在用户不停止的情况下永远运行。Job 管理的 Pod 根据用户的设置把任务成功完成就自动退出了。成功完成的标志根据不同的 spec.completions 策略而不同:单 Pod 型任务有一个 Pod 成功就标志完成;定数成功型任务保证有 N 个任务全部成功;工作队列型任务根据应用确认的全局成功而标志成功。 后台支撑服务集(DaemonSet) 长期伺服型和批处理型服务的核心在业务应用,可能有些节点运行多个同类业务的 Pod,有些节点上又没有这类 Pod 运行;而后台支撑型服务的核心关注点在 Kubernetes 集群中的节点(物理机或虚拟机),要保证每个节点上都有一个此类 Pod 运行。节点可能是所有集群节点也可能是通过 nodeSelector 选定的一些特定节点。典型的后台支撑型服务包括,存储,日志和监控等在每个节点上支持 Kubernetes 集群运行的服务。 有状态服务集(StatefulSet) Kubernetes 在 1.3 版本里发布了 Alpha 版的 PetSet 功能,在 1.5 版本里将 PetSet 功能升级到了 Beta 版本,并重新命名为 StatefulSet,最终在 1.9 版本里成为正式 GA 版本。在云原生应用的体系里,有下面两组近义词;第一组是无状态(stateless)、牲畜(cattle)、无名(nameless)、可丢弃(disposable);第二组是有状态(stateful)、宠物(pet)、有名(having name)、不可丢弃(non-disposable)。RC 和 RS 主要是控制提供无状态服务的,其所控制的 Pod 的名字是随机设置的,一个 Pod 出故障了就被丢弃掉,在另一个地方重启一个新的 Pod,名字变了。名字和启动在哪儿都不重要,重要的只是 Pod 总数;而 StatefulSet 是用来控制有状态服务,StatefulSet 中的每个 Pod 的名字都是事先确定的,不能更改。StatefulSet 中 Pod 的名字的作用,并不是《千与千寻》的人性原因,而是关联与该 Pod 对应的状态。 对于 RC 和 RS 中的 Pod,一般不挂载存储或者挂载共享存储,保存的是所有 Pod 共享的状态,Pod 像牲畜一样没有分别(这似乎也确实意味着失去了人性特征);对于 StatefulSet 中的 Pod,每个 Pod 挂载自己独立的存储,如果一个 Pod 出现故障,从其他节点启动一个同样名字的 Pod,要挂载上原来 Pod 的存储继续以它的状态提供服务。 适合于 StatefulSet 的业务包括数据库服务 MySQL 和 PostgreSQL,集群化管理服务 ZooKeeper、etcd 等有状态服务。StatefulSet 的另一种典型应用场景是作为一种比普通容器更稳定可靠的模拟虚拟机的机制。传统的虚拟机正是一种有状态的宠物,运维人员需要不断地维护它,容器刚开始流行时,我们用容器来模拟虚拟机使用,所有状态都保存在容器里,而这已被证明是非常不安全、不可靠的。使用 StatefulSet,Pod 仍然可以通过漂移到不同节点提供高可用,而存储也可以通过外挂的存储来提供高可靠性,StatefulSet 做的只是将确定的 Pod 与确定的存储关联起来保证状态的连续性。 集群联邦(Federation) Kubernetes 在 1.3 版本里发布了 beta 版的 Federation 功能。在云计算环境中,服务的作用距离范围从近到远一般可以有:同主机(Host,Node)、跨主机同可用区(Available Zone)、跨可用区同地区(Region)、跨地区同服务商(Cloud Service Provider)、跨云平台。Kubernetes 的设计定位是单一集群在同一个地域内,因为同一个地区的网络性能才能满足 Kubernetes 的调度和计算存储连接要求。而联合集群服务就是为提供跨 Region 跨服务商 Kubernetes 集群服务而设计的。 每个 Kubernetes Federation 有自己的分布式存储、API Server 和 Controller Manager。用户可以通过 Federation 的 API Server 注册该 Federation 的成员 Kubernetes Cluster。当用户通过 Federation 的 API Server 创建、更改 API 对象时,Federation API Server 会在自己所有注册的子 Kubernetes Cluster 都创建一份对应的 API 对象。在提供业务请求服务时,Kubernetes Federation 会先在自己的各个子 Cluster 之间做负载均衡,而对于发送到某个具体 Kubernetes Cluster 的业务请求,会依照这个 Kubernetes Cluster 独立提供服务时一样的调度模式去做 Kubernetes Cluster 内部的负载均衡。而 Cluster 之间的负载均衡是通过域名服务的负载均衡来实现的。 Federation V1 的设计是尽量不影响 Kubernetes Cluster 现有的工作机制,这样对于每个子 Kubernetes 集群来说,并不需要更外层的有一个 Kubernetes Federation,也就是意味着所有现有的 Kubernetes 代码和机制不需要因为 Federation 功能有任何变化。 目前正在开发的 Federation V2,在保留现有 Kubernetes API 的同时,会开发新的 Federation 专用的 API 接口,详细内容可以在 这里 找到。 存储卷(Volume) Kubernetes 集群中的存储卷跟 Docker 的存储卷有些类似,只不过 Docker 的存储卷作用范围为一个容器,而 Kubernetes 的存储卷的生命周期和作用范围是一个 Pod。每个 Pod 中声明的存储卷由 Pod 中的所有容器共享。Kubernetes 支持非常多的存储卷类型,特别的,支持多种公有云平台的存储,包括 AWS,Google 和 Azure 云;支持多种分布式存储包括 GlusterFS 和 Ceph;也支持较容易使用的主机本地目录 emptyDir, hostPath 和 NFS。Kubernetes 还支持使用 Persistent Volume Claim 即 PVC 这种逻辑存储,使用这种存储,使得存储的使用者可以忽略后台的实际存储技术(例如 AWS,Google 或 GlusterFS 和 Ceph),而将有关存储实际技术的配置交给存储管理员通过 Persistent Volume 来配置。 持久存储卷(Persistent Volume,PV)和持久存储卷声明(Persistent Volume Claim,PVC) PV 和 PVC 使得 Kubernetes 集群具备了存储的逻辑抽象能力,使得在配置 Pod 的逻辑里可以忽略对实际后台存储技术的配置,而把这项配置的工作交给 PV 的配置者,即集群的管理者。存储的 PV 和 PVC 的这种关系,跟计算的 Node 和 Pod 的关系是非常类似的;PV 和 Node 是资源的提供者,根据集群的基础设施变化而变化,由 Kubernetes 集群管理员配置;而 PVC 和 Pod 是资源的使用者,根据业务服务的需求变化而变化,有 Kubernetes 集群的使用者即服务的管理员来配置。 节点(Node) Kubernetes 集群中的计算能力由 Node 提供,最初 Node 称为服务节点 Minion,后来改名为 Node。Kubernetes 集群中的 Node 也就等同于 Mesos 集群中的 Slave 节点,是所有 Pod 运行所在的工作主机,可以是物理机也可以是虚拟机。不论是物理机还是虚拟机,工作主机的统一特征是上面要运行 kubelet 管理节点上运行的容器。 密钥对象(Secret) Secret 是用来保存和传递密码、密钥、认证凭证这些敏感信息的对象。使用 Secret 的好处是可以避免把敏感信息明文写在配置文件里。在 Kubernetes 集群中配置和使用服务不可避免的要用到各种敏感信息实现登录、认证等功能,例如访问 AWS 存储的用户名密码。为了避免将类似的敏感信息明文写在所有需要使用的配置文件中,可以将这些信息存入一个 Secret 对象,而在配置文件中通过 Secret 对象引用这些敏感信息。这种方式的好处包括:意图明确,避免重复,减少暴漏机会。 用户帐户(User Account)和服务帐户(Service Account) 顾名思义,用户帐户为人提供账户标识,而服务账户为计算机进程和 Kubernetes 集群中运行的 Pod 提供账户标识。用户帐户和服务帐户的一个区别是作用范围;用户帐户对应的是人的身份,人的身份与服务的 namespace 无关,所以用户账户是跨 namespace 的;而服务帐户对应的是一个运行中程序的身份,与特定 namespace 是相关的。 命名空间(Namespace) 命名空间为 Kubernetes 集群提供虚拟的隔离作用,Kubernetes 集群初始有两个命名空间,分别是默认命名空间 default 和系统命名空间 kube-system,除此以外,管理员可以可以创建新的命名空间满足需要。 RBAC 访问授权 Kubernetes 在 1.3 版本中发布了 alpha 版的基于角色的访问控制(Role-based Access Control,RBAC)的授权模式。相对于基于属性的访问控制(Attribute-based Access Control,ABAC),RBAC 主要是引入了角色(Role)和角色绑定(RoleBinding)的抽象概念。在 ABAC 中,Kubernetes 集群中的访问策略只能跟用户直接关联;而在 RBAC 中,访问策略可以跟某个角色关联,具体的用户在跟一个或多个角色相关联。显然,RBAC 像其他新功能一样,每次引入新功能,都会引入新的 API 对象,从而引入新的概念抽象,而这一新的概念抽象一定会使集群服务管理和使用更容易扩展和重用。 总结 从 Kubernetes 的系统架构、技术概念和设计理念,我们可以看到 Kubernetes 系统最核心的两个设计理念:一个是 容错性,一个是 易扩展性。容错性实际是保证 Kubernetes 系统稳定性和安全性的基础,易扩展性是保证 Kubernetes 对变更友好,可以快速迭代增加新功能的基础。 按照分布式系统一致性算法 Paxos 发明人计算机科学家 Leslie Lamport 的理念,一个分布式系统有两类特性:安全性 Safety 和活性 Liveness。安全性保证系统的稳定,保证系统不会崩溃,不会出现业务错误,不会做坏事,是严格约束的;活性使得系统可以提供功能,提高性能,增加易用性,让系统可以在用户 “看到的时间内” 做些好事,是尽力而为的。Kubernetes 系统的设计理念正好与 Lamport 安全性与活性的理念不谋而合,也正是因为 Kubernetes 在引入功能和技术的时候,非常好地划分了安全性和活性,才可以让 Kubernetes 能有这么快版本迭代,快速引入像 RBAC、Federation 和 PetSet 这种新功能。 参考 《Kubernetes 与云原生应用》系列之 Kubernetes 的系统架构与设计理念 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/etcd.html":{"url":"concepts/etcd.html","title":"Etcd 解析","keywords":"","body":"Etcd解析 Etcd是Kubernetes集群中的一个十分重要的组件,用于保存集群所有的网络配置和对象的状态信息。在后面具体的安装环境中,我们安装的etcd的版本是v3.1.5,整个kubernetes系统中一共有两个服务需要用到etcd用来协同和存储配置,分别是: 网络插件flannel、对于其它网络插件也需要用到etcd存储网络的配置信息 kubernetes本身,包括各种对象的状态和元信息配置 注意:flannel操作etcd使用的是v2的API,而kubernetes操作etcd使用的v3的API,所以在下面我们执行etcdctl的时候需要设置ETCDCTL_API环境变量,该变量默认值为2。 原理 Etcd使用的是raft一致性算法来实现的,是一款分布式的一致性KV存储,主要用于共享配置和服务发现。关于raft一致性算法请参考该动画演示。 关于Etcd的原理解析请参考Etcd 架构与实现解析。 使用Etcd存储Flannel网络信息 我们在安装Flannel的时候配置了FLANNEL_ETCD_PREFIX=\"/kube-centos/network\"参数,这是Flannel查询etcd的目录地址。 查看Etcd中存储的flannel网络信息: $ etcdctl --ca-file=/etc/kubernetes/ssl/ca.pem --cert-file=/etc/kubernetes/ssl/kubernetes.pem --key-file=/etc/kubernetes/ssl/kubernetes-key.pem ls /kube-centos/network -r 2018-01-19 18:38:22.768145 I | warning: ignoring ServerName for user-provided CA for backwards compatibility is deprecated /kube-centos/network/config /kube-centos/network/subnets /kube-centos/network/subnets/172.30.31.0-24 /kube-centos/network/subnets/172.30.20.0-24 /kube-centos/network/subnets/172.30.23.0-24 查看flannel的配置: $ etcdctl --ca-file=/etc/kubernetes/ssl/ca.pem --cert-file=/etc/kubernetes/ssl/kubernetes.pem --key-file=/etc/kubernetes/ssl/kubernetes-key.pem get /kube-centos/network/config 2018-01-19 18:38:22.768145 I | warning: ignoring ServerName for user-provided CA for backwards compatibility is deprecated { \"Network\": \"172.30.0.0/16\", \"SubnetLen\": 24, \"Backend\": { \"Type\": \"host-gw\" } } 使用Etcd存储Kubernetes对象信息 Kubernetes使用etcd v3的API操作etcd中的数据。所有的资源对象都保存在/registry路径下,如下: ThirdPartyResourceData apiextensions.k8s.io apiregistration.k8s.io certificatesigningrequests clusterrolebindings clusterroles configmaps controllerrevisions controllers daemonsets deployments events horizontalpodautoscalers ingress limitranges minions monitoring.coreos.com namespaces persistentvolumeclaims persistentvolumes poddisruptionbudgets pods ranges replicasets resourcequotas rolebindings roles secrets serviceaccounts services statefulsets storageclasses thirdpartyresources 如果你还创建了CRD(自定义资源定义),则在此会出现CRD的API。 查看集群中所有的Pod信息 例如我们直接从etcd中查看kubernetes集群中所有的pod的信息,可以使用下面的命令: ETCDCTL_API=3 etcdctl get /registry/pods --prefix -w json|python -m json.tool 此时将看到json格式输出的结果,其中的key使用了base64编码,关于etcdctl命令的详细用法请参考使用etcdctl访问kubernetes数据。 Etcd V2与V3版本API的区别 Etcd V2和V3之间的数据结构完全不同,互不兼容,也就是说使用V2版本的API创建的数据只能使用V2的API访问,V3的版本的API创建的数据只能使用V3的API访问。这就造成我们访问etcd中保存的flannel的数据需要使用etcdctl的V2版本的客户端,而访问kubernetes的数据需要设置ETCDCTL_API=3环境变量来指定V3版本的API。 Etcd数据备份 我们安装的时候指定的Etcd数据的存储路径是/var/lib/etcd,一定要对该目录做好备份。 参考 etcd官方文档 etcd v3命令和API Etcd 架构与实现解析 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/open-interfaces.html":{"url":"concepts/open-interfaces.html","title":"开放接口","keywords":"","body":"开放接口 Kubernetes作为云原生应用的基础调度平台,相当于云原生的操作系统,为了便于系统的扩展,Kubernetes中开放的以下接口,可以分别对接不同的后端,来实现自己的业务逻辑: CRI(Container Runtime Interface):容器运行时接口,提供计算资源 CNI(Container Network Interface):容器网络接口,提供网络资源 CSI(Container Storage Interface):容器存储接口,提供存储资源 以上三种资源相当于一个分布式操作系统的最基础的几种资源类型,而Kuberentes是将他们粘合在一起的纽带。 图 4.1.3.1:开放接口 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/cri.html":{"url":"concepts/cri.html","title":"CRI - Container Runtime Interface(容器运行时接口)","keywords":"","body":"CRI - Container Runtime Interface(容器运行时接口) CRI中定义了容器和镜像的服务的接口,因为容器运行时与镜像的生命周期是彼此隔离的,因此需要定义两个服务。该接口使用Protocol Buffer,基于gRPC,在Kubernetes v1.10+版本中是在pkg/kubelet/apis/cri/runtime/v1alpha2的api.proto中定义的。 CRI架构 Container Runtime实现了CRI gRPC Server,包括RuntimeService和ImageService。该gRPC Server需要监听本地的Unix socket,而kubelet则作为gRPC Client运行。 图 4.1.3.1.1:CRI架构-图片来自kubernetes blog 启用CRI 除非集成了rktnetes,否则CRI都是被默认启用了,从Kubernetes1.7版本开始,旧的预集成的docker CRI已经被移除。 要想启用CRI只需要在kubelet的启动参数重传入此参数:--container-runtime-endpoint远程运行时服务的端点。当前Linux上支持unix socket,windows上支持tcp。例如:unix:///var/run/dockershim.sock、 tcp://localhost:373,默认是unix:///var/run/dockershim.sock,即默认使用本地的docker作为容器运行时。 CRI接口 Kubernetes 1.9中的CRI接口在api.proto中的定义如下: // Runtime service defines the public APIs for remote container runtimes service RuntimeService { // Version returns the runtime name, runtime version, and runtime API version. rpc Version(VersionRequest) returns (VersionResponse) {} // RunPodSandbox creates and starts a pod-level sandbox. Runtimes must ensure // the sandbox is in the ready state on success. rpc RunPodSandbox(RunPodSandboxRequest) returns (RunPodSandboxResponse) {} // StopPodSandbox stops any running process that is part of the sandbox and // reclaims network resources (e.g., IP addresses) allocated to the sandbox. // If there are any running containers in the sandbox, they must be forcibly // terminated. // This call is idempotent, and must not return an error if all relevant // resources have already been reclaimed. kubelet will call StopPodSandbox // at least once before calling RemovePodSandbox. It will also attempt to // reclaim resources eagerly, as soon as a sandbox is not needed. Hence, // multiple StopPodSandbox calls are expected. rpc StopPodSandbox(StopPodSandboxRequest) returns (StopPodSandboxResponse) {} // RemovePodSandbox removes the sandbox. If there are any running containers // in the sandbox, they must be forcibly terminated and removed. // This call is idempotent, and must not return an error if the sandbox has // already been removed. rpc RemovePodSandbox(RemovePodSandboxRequest) returns (RemovePodSandboxResponse) {} // PodSandboxStatus returns the status of the PodSandbox. If the PodSandbox is not // present, returns an error. rpc PodSandboxStatus(PodSandboxStatusRequest) returns (PodSandboxStatusResponse) {} // ListPodSandbox returns a list of PodSandboxes. rpc ListPodSandbox(ListPodSandboxRequest) returns (ListPodSandboxResponse) {} // CreateContainer creates a new container in specified PodSandbox rpc CreateContainer(CreateContainerRequest) returns (CreateContainerResponse) {} // StartContainer starts the container. rpc StartContainer(StartContainerRequest) returns (StartContainerResponse) {} // StopContainer stops a running container with a grace period (i.e., timeout). // This call is idempotent, and must not return an error if the container has // already been stopped. // TODO: what must the runtime do after the grace period is reached? rpc StopContainer(StopContainerRequest) returns (StopContainerResponse) {} // RemoveContainer removes the container. If the container is running, the // container must be forcibly removed. // This call is idempotent, and must not return an error if the container has // already been removed. rpc RemoveContainer(RemoveContainerRequest) returns (RemoveContainerResponse) {} // ListContainers lists all containers by filters. rpc ListContainers(ListContainersRequest) returns (ListContainersResponse) {} // ContainerStatus returns status of the container. If the container is not // present, returns an error. rpc ContainerStatus(ContainerStatusRequest) returns (ContainerStatusResponse) {} // UpdateContainerResources updates ContainerConfig of the container. rpc UpdateContainerResources(UpdateContainerResourcesRequest) returns (UpdateContainerResourcesResponse) {} // ExecSync runs a command in a container synchronously. rpc ExecSync(ExecSyncRequest) returns (ExecSyncResponse) {} // Exec prepares a streaming endpoint to execute a command in the container. rpc Exec(ExecRequest) returns (ExecResponse) {} // Attach prepares a streaming endpoint to attach to a running container. rpc Attach(AttachRequest) returns (AttachResponse) {} // PortForward prepares a streaming endpoint to forward ports from a PodSandbox. rpc PortForward(PortForwardRequest) returns (PortForwardResponse) {} // ContainerStats returns stats of the container. If the container does not // exist, the call returns an error. rpc ContainerStats(ContainerStatsRequest) returns (ContainerStatsResponse) {} // ListContainerStats returns stats of all running containers. rpc ListContainerStats(ListContainerStatsRequest) returns (ListContainerStatsResponse) {} // UpdateRuntimeConfig updates the runtime configuration based on the given request. rpc UpdateRuntimeConfig(UpdateRuntimeConfigRequest) returns (UpdateRuntimeConfigResponse) {} // Status returns the status of the runtime. rpc Status(StatusRequest) returns (StatusResponse) {} } // ImageService defines the public APIs for managing images. service ImageService { // ListImages lists existing images. rpc ListImages(ListImagesRequest) returns (ListImagesResponse) {} // ImageStatus returns the status of the image. If the image is not // present, returns a response with ImageStatusResponse.Image set to // nil. rpc ImageStatus(ImageStatusRequest) returns (ImageStatusResponse) {} // PullImage pulls an image with authentication config. rpc PullImage(PullImageRequest) returns (PullImageResponse) {} // RemoveImage removes the image. // This call is idempotent, and must not return an error if the image has // already been removed. rpc RemoveImage(RemoveImageRequest) returns (RemoveImageResponse) {} // ImageFSInfo returns information of the filesystem that is used to store images. rpc ImageFsInfo(ImageFsInfoRequest) returns (ImageFsInfoResponse) {} } 这其中包含了两个gRPC服务: RuntimeService:容器和Sandbox运行时管理。 ImageService:提供了从镜像仓库拉取、查看、和移除镜像的RPC。 当前支持的CRI后端 我们最初在使用Kubernetes时通常会默认使用Docker作为容器运行时,其实从Kubernetes 1.5开始已经开始支持CRI,目前是处于Alpha版本,通过CRI接口可以指定使用其它容器运行时作为Pod的后端,目前支持 CRI 的后端有: cri-o:cri-o是Kubernetes的CRI标准的实现,并且允许Kubernetes间接使用OCI兼容的容器运行时,可以把cri-o看成Kubernetes使用OCI兼容的容器运行时的中间层。 cri-containerd:基于Containerd的Kubernetes CRI 实现 rkt:由CoreOS主推的用来跟docker抗衡的容器运行时 frakti:基于hypervisor的CRI docker:kuberentes最初就开始支持的容器运行时,目前还没完全从kubelet中解耦,docker公司同时推广了OCI标准 CRI是由SIG-Node来维护的。 当前通过CRI-O间接支持CRI的后端 当前同样存在一些只实现了OCI标准的容器,但是它们可以通过CRI-O来作为Kubernetes的容器运行时。CRI-O是Kubernetes的CRI标准的实现,并且允许Kubernetes间接使用OCI兼容的容器运行时。 Clear Containers:由Intel推出的兼容OCI容器运行时,可以通过CRI-O来兼容CRI。 Kata Containers:符合OCI规范,可以通过CRI-O或Containerd CRI Plugin来兼容CRI。。 gVisor:由谷歌推出的容器运行时沙箱(Experimental),可以通过CRI-O来兼容CRI。 参考 Kubernetes CRI and Minikube CRI-O and Alternative Runtimes in Kubernetes Docker、Containerd、RunC...:你应该知道的所有 Introducing Container Runtime Interface (CRI) in Kubernetes cri-o Kata Containers Architecture 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/cni.html":{"url":"concepts/cni.html","title":"CNI - Container Network Interface(容器网络接口)","keywords":"","body":"CNI - Container Network Interface(容器网络接口) CNI(Container Network Interface)是 CNCF 旗下的一个项目,由一组用于配置 Linux 容器的网络接口的规范和库组成,同时还包含了一些插件。CNI 仅关心容器创建时的网络分配,和当容器被删除时释放网络资源。通过此链接浏览该项目:https://github.com/containernetworking/cni。 Kubernetes 源码的 vendor/github.com/containernetworking/cni/libcni 目录中已经包含了 CNI 的代码,也就是说 kubernetes 中已经内置了 CNI。 接口定义 CNI 的接口中包括以下几个方法: type CNI interface {AddNetworkList (net *NetworkConfigList, rt *RuntimeConf) (types.Result, error) DelNetworkList (net *NetworkConfigList, rt *RuntimeConf) error AddNetwork (net *NetworkConfig, rt *RuntimeConf) (types.Result, error) DelNetwork (net *NetworkConfig, rt *RuntimeConf) error } 该接口只有四个方法,添加网络、删除网络、添加网络列表、删除网络列表。 设计考量 CNI 设计的时候考虑了以下问题: 容器运行时必须在调用任何插件之前为容器创建一个新的网络命名空间。 然后,运行时必须确定这个容器应属于哪个网络,并为每个网络确定哪些插件必须被执行。 网络配置采用 JSON 格式,可以很容易地存储在文件中。网络配置包括必填字段,如 name 和 type 以及插件(类型)。网络配置允许字段在调用之间改变值。为此,有一个可选的字段 args,必须包含不同的信息。 容器运行时必须按顺序为每个网络执行相应的插件,将容器添加到每个网络中。 在完成容器生命周期后,运行时必须以相反的顺序执行插件(相对于执行添加容器的顺序)以将容器与网络断开连接。 容器运行时不能为同一容器调用并行操作,但可以为不同的容器调用并行操作。 容器运行时必须为容器订阅 ADD 和 DEL 操作,这样 ADD 后面总是跟着相应的 DEL。 DEL 可能跟着额外的 DEL,但是,插件应该允许处理多个 DEL(即插件 DEL 应该是幂等的)。 容器必须由 ContainerID 唯一标识。存储状态的插件应该使用(网络名称,容器 ID)的主键来完成。 运行时不能调用同一个网络名称或容器 ID 执行两次 ADD(没有相应的 DEL)。换句话说,给定的容器 ID 必须只能添加到特定的网络一次。 CNI 插件 CNI 插件必须实现一个可执行文件,这个文件可以被容器管理系统(例如 rkt 或 Kubernetes)调用。 CNI 插件负责将网络接口插入容器网络命名空间(例如,veth 对的一端),并在主机上进行任何必要的改变(例如将 veth 的另一端连接到网桥)。然后将 IP 分配给接口,并通过调用适当的 IPAM 插件来设置与 “IP 地址管理” 部分一致的路由。 参数 CNI 插件必须支持以下操作: 将容器添加到网络 参数: 版本调用者正在使用的 CNI 规范(容器管理系统或调用插件)的版本。 容器 ID由运行时分配的容器的唯一明文标识符。一定不能是空的。 网络命名空间路径要添加的网络名称空间的路径,即 /proc/[pid]/ns/net 或绑定挂载 / 链接。 网络配置描述容器可以加入的网络的 JSON 文档。架构如下所述。 额外的参数这提供了一个替代机制,允许在每个容器上简单配置 CNI 插件。 容器内接口的名称这是应该分配给容器(网络命名空间)内创建的接口的名称;因此它必须符合 Linux 接口名称上的标准限制。 结果: 接口列表根据插件的不同,这可以包括沙箱(例如容器或管理程序)接口名称和 / 或主机接口名称,每个接口的硬件地址以及接口所在的沙箱(如果有的话)的详细信息。 分配给每个接口的 IP 配置分配给沙箱和 / 或主机接口的 IPv4 和 / 或 IPv6 地址,网关和路由。 DNS 信息包含 nameserver、domain、search domain 和 option 的 DNS 信息的字典。 从网络中删除容器 参数: 版本调用者正在使用的 CNI 规范(容器管理系统或调用插件)的版本。 容器 ID,如上所述。 网络命名空间路径,如上定义。 网络配置,如上所述。 额外的参数,如上所述。 上面定义的容器内的接口的名称。 所有参数应与传递给相应的添加操作的参数相同。 删除操作应释放配置的网络中提供的 containerid 拥有的所有资源。 报告版本 参数:无。 结果:插件支持的 CNI 规范版本信息。 {“cniVersion”:“0.3.1”,// 此输出使用的 CNI 规范的版本 “supportedVersions”:[“0.1.0”,“0.2.0”,“0.3.0”,“0.3.1”] // 此插件支持的 CNI 规范版本列表 } CNI 插件的详细说明请参考:CNI SPEC。 IP 分配 作为容器网络管理的一部分,CNI 插件需要为接口分配(并维护)IP 地址,并安装与该接口相关的所有必要路由。这给了 CNI 插件很大的灵活性,但也给它带来了很大的负担。众多的 CNI 插件需要编写相同的代码来支持用户需要的多种 IP 管理方案(例如 dhcp、host-local)。 为了减轻负担,使 IP 管理策略与 CNI 插件类型解耦,我们定义了 IP 地址管理插件(IPAM 插件)。CNI 插件的职责是在执行时恰当地调用 IPAM 插件。 IPAM 插件必须确定接口 IP/subnet,网关和路由,并将此信息返回到 “主” 插件来应用配置。 IPAM 插件可以通过协议(例如 dhcp)、存储在本地文件系统上的数据、网络配置文件的 “ipam” 部分或上述的组合来获得信息。 IPAM 插件 像 CNI 插件一样,调用 IPAM 插件的可执行文件。可执行文件位于预定义的路径列表中,通过 CNI_PATH 指示给 CNI 插件。 IPAM 插件必须接收所有传入 CNI 插件的相同环境变量。就像 CNI 插件一样,IPAM 插件通过 stdin 接收网络配置。 可用插件 Main:接口创建 bridge:创建网桥,并添加主机和容器到该网桥 ipvlan:在容器中添加一个 ipvlan 接口 loopback:创建一个回环接口 macvlan:创建一个新的 MAC 地址,将所有的流量转发到容器 ptp:创建 veth 对 vlan:分配一个 vlan 设备 IPAM:IP 地址分配 dhcp:在主机上运行守护程序,代表容器发出 DHCP 请求 host-local:维护分配 IP 的本地数据库 Meta:其它插件 flannel:根据 flannel 的配置文件创建接口 tuning:调整现有接口的 sysctl 参数 portmap:一个基于 iptables 的 portmapping 插件。将端口从主机的地址空间映射到容器。 参考 https://github.com/containernetworking/cni https://github.com/containernetworking/plugins Container Networking Interface Specification CNI Extension conventions 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/csi.html":{"url":"concepts/csi.html","title":"CSI - Container Storage Interface(容器存储接口)","keywords":"","body":"CSI - Container Storage Interface(容器存储接口) CSI 代表容器存储接口,CSI 试图建立一个行业标准接口的规范,借助 CSI 容器编排系统(CO)可以将任意存储系统暴露给自己的容器工作负载。有关详细信息,请查看设计方案。 csi 卷类型是一种 out-tree(即跟其它存储插件在同一个代码路径下,随 Kubernetes 的代码同时编译的) 的 CSI 卷插件,用于 Pod 与在同一节点上运行的外部 CSI 卷驱动程序交互。部署 CSI 兼容卷驱动后,用户可以使用 csi 作为卷类型来挂载驱动提供的存储。 CSI 持久化卷支持是在 Kubernetes v1.9 中引入的,作为一个 alpha 特性,必须由集群管理员明确启用。换句话说,集群管理员需要在 apiserver、controller-manager 和 kubelet 组件的 “--feature-gates =” 标志中加上 “CSIPersistentVolume = true”。 CSI 持久化卷具有以下字段可供用户指定: driver:一个字符串值,指定要使用的卷驱动程序的名称。必须少于 63 个字符,并以一个字符开头。驱动程序名称可以包含 “。”、“ - ”、“_” 或数字。 volumeHandle:一个字符串值,唯一标识从 CSI 卷插件的 CreateVolume 调用返回的卷名。随后在卷驱动程序的所有后续调用中使用卷句柄来引用该卷。 readOnly:一个可选的布尔值,指示卷是否被发布为只读。默认是 false。 使用说明 下面将介绍如何使用 CSI。 动态配置 可以通过为 CSI 创建插件 StorageClass 来支持动态配置的 CSI Storage 插件启用自动创建/删除 。 例如,以下 StorageClass 允许通过名为 com.example.team/csi-driver 的 CSI Volume Plugin 动态创建 “fast-storage” Volume。 kind: StorageClass apiVersion: storage.k8s.io/v1 metadata: name: fast-storage provisioner: com.example.team/csi-driver parameters: type: pd-ssd 要触发动态配置,请创建一个 PersistentVolumeClaim 对象。例如,下面的 PersistentVolumeClaim 可以使用上面的 StorageClass 触发动态配置。 apiVersion: v1 kind: PersistentVolumeClaim metadata: name: my-request-for-storage spec: accessModes: - ReadWriteOnce resources: requests: storage: 5Gi storageClassName: fast-storage 当动态创建 Volume 时,通过 CreateVolume 调用,将参数 type:pd-ssd 传递给 CSI 插件 com.example.team/csi-driver 。作为响应,外部 Volume 插件会创建一个新 Volume,然后自动创建一个 PersistentVolume 对象来对应前面的 PVC 。然后,Kubernetes 会将新的 PersistentVolume 对象绑定到 PersistentVolumeClaim,使其可以使用。 如果 fast-storage StorageClass 被标记为默认值,则不需要在 PersistentVolumeClaim 中包含 StorageClassName,它将被默认使用。 预配置 Volume 您可以通过手动创建一个 PersistentVolume 对象来展示现有 Volumes,从而在 Kubernetes 中暴露预先存在的 Volume。例如,暴露属于 com.example.team/csi-driver 这个 CSI 插件的 existingVolumeName Volume: apiVersion: v1 kind: PersistentVolume metadata: name: my-manually-created-pv spec: capacity: storage: 5Gi accessModes: - ReadWriteOnce persistentVolumeReclaimPolicy: Retain csi: driver: com.example.team/csi-driver volumeHandle: existingVolumeName readOnly: false 附着和挂载 您可以在任何的 pod 或者 pod 的 template 中引用绑定到 CSI volume 上的 PersistentVolumeClaim。 kind: Pod apiVersion: v1 metadata: name: my-pod spec: containers: - name: my-frontend image: dockerfile/nginx volumeMounts: - mountPath: \"/var/www/html\" name: my-csi-volume volumes: - name: my-csi-volume persistentVolumeClaim: claimName: my-request-for-storage 当一个引用了 CSI Volume 的 pod 被调度时, Kubernetes 将针对外部 CSI 插件进行相应的操作,以确保特定的 Volume 被 attached、mounted, 并且能被 pod 中的容器使用。 关于 CSI 实现的详细信息请参考设计文档。 创建 CSI 驱动 Kubernetes 尽可能少地指定 CSI Volume 驱动程序的打包和部署规范。这里记录了在 Kubernetes 上部署 CSI Volume 驱动程序的最低要求。 最低要求文件还包含概述部分,提供了在 Kubernetes 上部署任意容器化 CSI 驱动程序的建议机制。存储提供商可以运用这个机制来简化 Kubernetes 上容器式 CSI 兼容 Volume 驱动程序的部署。 作为推荐部署的一部分,Kubernetes 团队提供以下 sidecar(辅助)容器: External-attacher 可监听 Kubernetes VolumeAttachment 对象并触发 ControllerPublish 和 ControllerUnPublish 操作的 sidecar 容器,通过 CSI endpoint 触发 ; External-provisioner 监听 Kubernetes PersistentVolumeClaim 对象的 sidecar 容器,并触发对 CSI 端点的 CreateVolume 和DeleteVolume 操作; Driver-registrar(DEPRECATED) 使用 Kubelet(将来)注册 CSI 驱动程序的 sidecar 容器,并将 NodeId (通过 GetNodeID 调用检索到 CSI endpoint)添加到 Kubernetes Node API 对象的 annotation 里面。 Cluster Driver Registrar 创建 CSIDriver 这个集群范围的 CRD 对象。 Node Driver Registrar 替代 Driver-registrar。 存储供应商完全可以使用这些组件来为其插件构建 Kubernetes Deployment,同时让它们的 CSI 驱动程序完全意识不到 Kubernetes 的存在。 另外 CSI 驱动完全是由第三方存储供应商自己维护的,在 kubernetes 1.9 版本中 CSI 还处于 alpha 版本。 参考 Container Storage Interface (CSI) 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/networking.html":{"url":"concepts/networking.html","title":"Kubernetes 中的网络","keywords":"","body":"Kubernetes中的网络 Kubernetes中的网络可以说对初次接触Kubernetes或者没有网络方面经验的人来说可能是其中最难的部分。Kubernetes本身并不提供网络功能,只是把网络接口开放出来,通过插件的形式实现。 网络要解决的问题 既然Kubernetes中将容器的联网通过插件的方式来实现,那么该如何解决容器的联网问题呢? 如果您在本地单台机器上运行docker容器的话会注意到所有容器都会处在docker0网桥自动分配的一个网络IP段内(172.17.0.1/16)。该值可以通过docker启动参数--bip来设置。这样所有本地的所有的容器都拥有了一个IP地址,而且还是在一个网段内彼此就可以互相通信了。 但是Kubernetes管理的是集群,Kubernetes中的网络要解决的核心问题就是每台主机的IP地址网段划分,以及单个容器的IP地址分配。概括为: 保证每个Pod拥有一个集群内唯一的IP地址 保证不同节点的IP地址划分不会重复 保证跨节点的Pod可以互相通信 保证不同节点的Pod可以与跨节点的主机互相通信 为了解决该问题,出现了一系列开源的Kubernetes中的网络插件与方案,如: flannel calico contiv weave net kube-router cilium canal 还有很多就不一一列举了,只要实现Kubernetes官方的设计的CNI - Container Network Interface(容器网络接口)就可以自己写一个网络插件。 下面仅以当前最常用的flannel和calico插件为例解析。 Kubernetes中的网络解析——以flannel为例 Kubernetes中的网络解析——以calico为例 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/flannel.html":{"url":"concepts/flannel.html","title":"Kubernetes 中的网络解析 —— 以 flannel 为例","keywords":"","body":"Kubernetes中的网络解析——以flannel为例 我们当初使用kubernetes-vagrant-centos-cluster安装了拥有三个节点的kubernetes集群,节点的状态如下所述。 [root@node1 ~]# kubectl get nodes -o wide NAME STATUS ROLES AGE VERSION EXTERNAL-IP OS-IMAGE KERNEL-VERSION CONTAINER-RUNTIME node1 Ready 2d v1.9.1 CentOS Linux 7 (Core) 3.10.0-693.11.6.el7.x86_64 docker://1.12.6 node2 Ready 2d v1.9.1 CentOS Linux 7 (Core) 3.10.0-693.11.6.el7.x86_64 docker://1.12.6 node3 Ready 2d v1.9.1 CentOS Linux 7 (Core) 3.10.0-693.11.6.el7.x86_64 docker://1.12.6 当前Kubernetes集群中运行的所有Pod信息: [root@node1 ~]# kubectl get pods --all-namespaces -o wide NAMESPACE NAME READY STATUS RESTARTS AGE IP NODE kube-system coredns-5984fb8cbb-sjqv9 1/1 Running 0 1h 172.33.68.2 node1 kube-system coredns-5984fb8cbb-tkfrc 1/1 Running 1 1h 172.33.96.3 node3 kube-system heapster-v1.5.0-684c7f9488-z6sdz 4/4 Running 0 1h 172.33.31.3 node2 kube-system kubernetes-dashboard-6b66b8b96c-mnm2c 1/1 Running 0 1h 172.33.31.2 node2 kube-system monitoring-influxdb-grafana-v4-54b7854697-tw9cd 2/2 Running 2 1h 172.33.96.2 node3 当前etcd中的注册的宿主机的pod地址网段信息: [root@node1 ~]# etcdctl ls /kube-centos/network/subnets /kube-centos/network/subnets/172.33.68.0-24 /kube-centos/network/subnets/172.33.31.0-24 /kube-centos/network/subnets/172.33.96.0-24 而每个node上的Pod子网是根据我们在安装flannel时配置来划分的,在etcd中查看该配置: [root@node1 ~]# etcdctl get /kube-centos/network/config {\"Network\":\"172.33.0.0/16\",\"SubnetLen\":24,\"Backend\":{\"Type\":\"host-gw\"}} 我们知道Kubernetes集群内部存在三类IP,分别是: Node IP:宿主机的IP地址 Pod IP:使用网络插件创建的IP(如flannel),使跨主机的Pod可以互通 Cluster IP:虚拟IP,通过iptables规则访问服务 在安装node节点的时候,节点上的进程是按照flannel -> docker -> kubelet -> kube-proxy的顺序启动的,我们下面也会按照该顺序来讲解,flannel的网络划分和如何与docker交互,如何通过iptables访问service。 Flannel Flannel是作为一个二进制文件的方式部署在每个node上,主要实现两个功能: 为每个node分配subnet,容器将自动从该子网中获取IP地址 当有node加入到网络中时,为每个node增加路由配置 下面是使用host-gw backend的flannel网络架构图: 图 4.2.1.1:flannel网络架构(图片来自openshift) 注意:以上IP非本示例中的IP,但是不影响读者理解。 Node1上的flannel配置如下: [root@node1 ~]# cat /usr/lib/systemd/system/flanneld.service [Unit] Description=Flanneld overlay address etcd agent After=network.target After=network-online.target Wants=network-online.target After=etcd.service Before=docker.service [Service] Type=notify EnvironmentFile=/etc/sysconfig/flanneld EnvironmentFile=-/etc/sysconfig/docker-network ExecStart=/usr/bin/flanneld-start $FLANNEL_OPTIONS ExecStartPost=/usr/libexec/flannel/mk-docker-opts.sh -k DOCKER_NETWORK_OPTIONS -d /run/flannel/docker Restart=on-failure [Install] WantedBy=multi-user.target RequiredBy=docker.service 其中有两个环境变量文件的配置如下: [root@node1 ~]# cat /etc/sysconfig/flanneld # Flanneld configuration options FLANNEL_ETCD_ENDPOINTS=\"http://172.17.8.101:2379\" FLANNEL_ETCD_PREFIX=\"/kube-centos/network\" FLANNEL_OPTIONS=\"-iface=eth2\" 上面的配置文件仅供flanneld使用。 [root@node1 ~]# cat /etc/sysconfig/docker-network # /etc/sysconfig/docker-network DOCKER_NETWORK_OPTIONS= 还有一个ExecStartPost=/usr/libexec/flannel/mk-docker-opts.sh -k DOCKER_NETWORK_OPTIONS -d /run/flannel/docker,其中的/usr/libexec/flannel/mk-docker-opts.sh脚本是在flanneld启动后运行,将会生成两个环境变量配置文件: /run/flannel/docker /run/flannel/subnet.env 我们再来看下/run/flannel/docker的配置。 [root@node1 ~]# cat /run/flannel/docker DOCKER_OPT_BIP=\"--bip=172.33.68.1/24\" DOCKER_OPT_IPMASQ=\"--ip-masq=true\" DOCKER_OPT_MTU=\"--mtu=1500\" DOCKER_NETWORK_OPTIONS=\" --bip=172.33.68.1/24 --ip-masq=true --mtu=1500\" 如果你使用systemctl命令先启动flannel后启动docker的话,docker将会读取以上环境变量。 我们再来看下/run/flannel/subnet.env的配置。 [root@node1 ~]# cat /run/flannel/subnet.env FLANNEL_NETWORK=172.33.0.0/16 FLANNEL_SUBNET=172.33.68.1/24 FLANNEL_MTU=1500 FLANNEL_IPMASQ=false 以上环境变量是flannel向etcd中注册的。 Docker Node1的docker配置如下: [root@node1 ~]# cat /usr/lib/systemd/system/docker.service [Unit] Description=Docker Application Container Engine Documentation=http://docs.docker.com After=network.target rhel-push-plugin.socket registries.service Wants=docker-storage-setup.service Requires=docker-cleanup.timer [Service] Type=notify NotifyAccess=all EnvironmentFile=-/run/containers/registries.conf EnvironmentFile=-/etc/sysconfig/docker EnvironmentFile=-/etc/sysconfig/docker-storage EnvironmentFile=-/etc/sysconfig/docker-network Environment=GOTRACEBACK=crash Environment=DOCKER_HTTP_HOST_COMPAT=1 Environment=PATH=/usr/libexec/docker:/usr/bin:/usr/sbin ExecStart=/usr/bin/dockerd-current \\ --add-runtime docker-runc=/usr/libexec/docker/docker-runc-current \\ --default-runtime=docker-runc \\ --exec-opt native.cgroupdriver=systemd \\ --userland-proxy-path=/usr/libexec/docker/docker-proxy-current \\ $OPTIONS \\ $DOCKER_STORAGE_OPTIONS \\ $DOCKER_NETWORK_OPTIONS \\ $ADD_REGISTRY \\ $BLOCK_REGISTRY \\ $INSECURE_REGISTRY\\ $REGISTRIES ExecReload=/bin/kill -s HUP $MAINPID LimitNOFILE=1048576 LimitNPROC=1048576 LimitCORE=infinity TimeoutStartSec=0 Restart=on-abnormal MountFlags=slave KillMode=process [Install] WantedBy=multi-user.target 查看Node1上的docker启动参数: [root@node1 ~]# systemctl status -l docker ● docker.service - Docker Application Container Engine Loaded: loaded (/usr/lib/systemd/system/docker.service; enabled; vendor preset: disabled) Drop-In: /usr/lib/systemd/system/docker.service.d └─flannel.conf Active: active (running) since Fri 2018-02-02 22:52:43 CST; 2h 28min ago Docs: http://docs.docker.com Main PID: 4334 (dockerd-current) CGroup: /system.slice/docker.service ‣ 4334 /usr/bin/dockerd-current --add-runtime docker-runc=/usr/libexec/docker/docker-runc-current --default-runtime=docker-runc --exec-opt native.cgroupdriver=systemd --userland-proxy-path=/usr/libexec/docker/docker-proxy-current --selinux-enabled --log-driver=journald --signature-verification=false --bip=172.33.68.1/24 --ip-masq=true --mtu=1500 我们可以看到在docker在启动时有如下参数:--bip=172.33.68.1/24 --ip-masq=true --mtu=1500。上述参数flannel启动时运行的脚本生成的,通过环境变量传递过来的。 我们查看下node1宿主机上的网络接口: [root@node1 ~]# ip addr 1: lo: mtu 65536 qdisc noqueue state UNKNOWN qlen 1 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: eth0: mtu 1500 qdisc pfifo_fast state UP qlen 1000 link/ether 52:54:00:00:57:32 brd ff:ff:ff:ff:ff:ff inet 10.0.2.15/24 brd 10.0.2.255 scope global dynamic eth0 valid_lft 85095sec preferred_lft 85095sec inet6 fe80::5054:ff:fe00:5732/64 scope link valid_lft forever preferred_lft forever 3: eth1: mtu 1500 qdisc pfifo_fast state UP qlen 1000 link/ether 08:00:27:7b:0f:b1 brd ff:ff:ff:ff:ff:ff inet 172.17.8.101/24 brd 172.17.8.255 scope global eth1 valid_lft forever preferred_lft forever 4: eth2: mtu 1500 qdisc pfifo_fast state UP qlen 1000 link/ether 08:00:27:ef:25:06 brd ff:ff:ff:ff:ff:ff inet 172.30.113.231/21 brd 172.30.119.255 scope global dynamic eth2 valid_lft 85096sec preferred_lft 85096sec inet6 fe80::a00:27ff:feef:2506/64 scope link valid_lft forever preferred_lft forever 5: docker0: mtu 1500 qdisc noqueue state UP link/ether 02:42:d0:ae:80:ea brd ff:ff:ff:ff:ff:ff inet 172.33.68.1/24 scope global docker0 valid_lft forever preferred_lft forever inet6 fe80::42:d0ff:feae:80ea/64 scope link valid_lft forever preferred_lft forever 7: veth295bef2@if6: mtu 1500 qdisc noqueue master docker0 state UP link/ether 6a:72:d7:9f:29:19 brd ff:ff:ff:ff:ff:ff link-netnsid 0 inet6 fe80::6872:d7ff:fe9f:2919/64 scope link valid_lft forever preferred_lft forever 我们分类来解释下该虚拟机中的网络接口。 lo:回环网络,127.0.0.1 eth0:NAT网络,虚拟机创建时自动分配,仅可以在几台虚拟机之间访问 eth1:bridge网络,使用vagrant分配给虚拟机的地址,虚拟机之间和本地电脑都可以访问 eth2:bridge网络,使用DHCP分配,用于访问互联网的网卡 docker0:bridge网络,docker默认使用的网卡,作为该节点上所有容器的虚拟交换机 veth295bef2@if6:veth pair,连接docker0和Pod中的容器。veth pair可以理解为使用网线连接好的两个接口,把两个端口放到两个namespace中,那么这两个namespace就能打通。参考linux 网络虚拟化: network namespace 简介。 我们再看下该节点的docker上有哪些网络。 [root@node1 ~]# docker network ls NETWORK ID NAME DRIVER SCOPE 940bb75e653b bridge bridge local d94c046e105d host host local 2db7597fd546 none null local 再检查下bridge网络940bb75e653b的信息。 [root@node1 ~]# docker network inspect 940bb75e653b [ { \"Name\": \"bridge\", \"Id\": \"940bb75e653bfa10dab4cce8813c2b3ce17501e4e4935f7dc13805a61b732d2c\", \"Scope\": \"local\", \"Driver\": \"bridge\", \"EnableIPv6\": false, \"IPAM\": { \"Driver\": \"default\", \"Options\": null, \"Config\": [ { \"Subnet\": \"172.33.68.1/24\", \"Gateway\": \"172.33.68.1\" } ] }, \"Internal\": false, \"Containers\": { \"944d4aa660e30e1be9a18d30c9dcfa3b0504d1e5dbd00f3004b76582f1c9a85b\": { \"Name\": \"k8s_POD_coredns-5984fb8cbb-sjqv9_kube-system_c5a2e959-082a-11e8-b4cd-525400005732_0\", \"EndpointID\": \"7397d7282e464fc4ec5756d6b328df889cdf46134dbbe3753517e175d3844a85\", \"MacAddress\": \"02:42:ac:21:44:02\", \"IPv4Address\": \"172.33.68.2/24\", \"IPv6Address\": \"\" } }, \"Options\": { \"com.docker.network.bridge.default_bridge\": \"true\", \"com.docker.network.bridge.enable_icc\": \"true\", \"com.docker.network.bridge.enable_ip_masquerade\": \"true\", \"com.docker.network.bridge.host_binding_ipv4\": \"0.0.0.0\", \"com.docker.network.bridge.name\": \"docker0\", \"com.docker.network.driver.mtu\": \"1500\" }, \"Labels\": {} } ] 我们可以看到该网络中的Config与docker的启动配置相符。 Node1上运行的容器: [root@node1 ~]# docker ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES a37407a234dd docker.io/coredns/coredns@sha256:adf2e5b4504ef9ffa43f16010bd064273338759e92f6f616dd159115748799bc \"/coredns -conf /etc/\" About an hour ago Up About an hour k8s_coredns_coredns-5984fb8cbb-sjqv9_kube-system_c5a2e959-082a-11e8-b4cd-525400005732_0 944d4aa660e3 docker.io/openshift/origin-pod \"/usr/bin/pod\" About an hour ago Up About an hour k8s_POD_coredns-5984fb8cbb-sjqv9_kube-system_c5a2e959-082a-11e8-b4cd-525400005732_0 我们可以看到当前已经有2个容器在运行。 Node1上的路由信息: [root@node1 ~]# route -n Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface 0.0.0.0 10.0.2.2 0.0.0.0 UG 100 0 0 eth0 0.0.0.0 172.30.116.1 0.0.0.0 UG 101 0 0 eth2 10.0.2.0 0.0.0.0 255.255.255.0 U 100 0 0 eth0 172.17.8.0 0.0.0.0 255.255.255.0 U 100 0 0 eth1 172.30.112.0 0.0.0.0 255.255.248.0 U 100 0 0 eth2 172.33.68.0 0.0.0.0 255.255.255.0 U 0 0 0 docker0 172.33.96.0 172.30.118.65 255.255.255.0 UG 0 0 0 eth2 以上路由信息是由flannel添加的,当有新的节点加入到Kubernetes集群中后,每个节点上的路由表都将增加。 我们在node上来traceroute下node3上的coredns-5984fb8cbb-tkfrc容器,其IP地址是172.33.96.3,看看其路由信息。 [root@node1 ~]# traceroute 172.33.96.3 traceroute to 172.33.96.3 (172.33.96.3), 30 hops max, 60 byte packets 1 172.30.118.65 (172.30.118.65) 0.518 ms 0.367 ms 0.398 ms 2 172.33.96.3 (172.33.96.3) 0.451 ms 0.352 ms 0.223 ms 我们看到路由直接经过node3的公网IP后就到达了node3节点上的Pod。 Node1的iptables信息: [root@node1 ~]# iptables -L Chain INPUT (policy ACCEPT) target prot opt source destination KUBE-FIREWALL all -- anywhere anywhere KUBE-SERVICES all -- anywhere anywhere /* kubernetes service portals */ Chain FORWARD (policy ACCEPT) target prot opt source destination KUBE-FORWARD all -- anywhere anywhere /* kubernetes forward rules */ DOCKER-ISOLATION all -- anywhere anywhere DOCKER all -- anywhere anywhere ACCEPT all -- anywhere anywhere ctstate RELATED,ESTABLISHED ACCEPT all -- anywhere anywhere ACCEPT all -- anywhere anywhere Chain OUTPUT (policy ACCEPT) target prot opt source destination KUBE-FIREWALL all -- anywhere anywhere KUBE-SERVICES all -- anywhere anywhere /* kubernetes service portals */ Chain DOCKER (1 references) target prot opt source destination Chain DOCKER-ISOLATION (1 references) target prot opt source destination RETURN all -- anywhere anywhere Chain KUBE-FIREWALL (2 references) target prot opt source destination DROP all -- anywhere anywhere /* kubernetes firewall for dropping marked packets */ mark match 0x8000/0x8000 Chain KUBE-FORWARD (1 references) target prot opt source destination ACCEPT all -- anywhere anywhere /* kubernetes forwarding rules */ mark match 0x4000/0x4000 ACCEPT all -- 10.254.0.0/16 anywhere /* kubernetes forwarding conntrack pod source rule */ ctstate RELATED,ESTABLISHED ACCEPT all -- anywhere 10.254.0.0/16 /* kubernetes forwarding conntrack pod destination rule */ ctstate RELATED,ESTABLISHED Chain KUBE-SERVICES (2 references) target prot opt source destination 从上面的iptables中可以看到注入了很多Kuberentes service的规则。 参考 coreos/flannel - github.com linux 网络虚拟化: network namespace 简介 Linux虚拟网络设备之veth flannel host-gw network flannel - openshift.com 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/calico.html":{"url":"concepts/calico.html","title":"Kubernetes 中的网络解析 —— 以 calico 为例","keywords":"","body":"Kubernetes中的网络解析——以calico为例 Calico 原意为”有斑点的“,如果说一只猫为 calico cat 的话,就是说这是只花猫,也叫三色猫,所以 calico 的 logo 是只三色猫。 图 4.2.2.1:Calico 概念 Calico创建和管理一个扁平的三层网络(不需要overlay),每个容器会分配一个可路由的IP。由于通信时不需要解包和封包,网络性能损耗小,易于排查,且易于水平扩展。 小规模部署时可以通过BGP client直接互联,大规模下可通过指定的BGP Route Reflector来完成,这样保证所有的数据流量都是通过IP路由的方式完成互联的。 Calico基于iptables还提供了丰富而灵活的网络Policy,保证通过各个节点上的ACL来提供Workload的多租户隔离、安全组以及其他可达性限制等功能。 Calico架构 图 4.2.2.2:CRI架构-图片来自https://www.jianshu.com/p/f0177b84de66 Calico主要由Felix、etcd、BGP client、BGP Route Reflector组成。 Etcd:负责存储网络信息 BGP client:负责将Felix配置的路由信息分发到其他节点 Felix:Calico Agent,每个节点都需要运行,主要负责配置路由、配置ACLs、报告状态 BGP Route Reflector:大规模部署时需要用到,作为BGP client的中心连接点,可以避免每个节点互联 部署 运行下面的命令可以部署 calico 网络。 mkdir /etc/cni/net.d/ kubectl apply -f https://docs.projectcalico.org/v3.0/getting-started/kubernetes/installation/rbac.yaml wget https://docs.projectcalico.org/v3.0/getting-started/kubernetes/installation/hosted/calico.yaml # 修改etcd_endpoints的值和默认的192.168.0.0/16(不能和已有网段冲突) kubectl apply -f calico.yaml wget https://github.com/projectcalico/calicoctl/releases/download/v2.0.0/calicoctl mv calicoctl /usr/loca/bin && chmod +x /usr/local/bin/calicoctl export CALICO_DATASTORE_TYPE=kubernetes export CALICO_KUBECONFIG=~/.kube/config calicoctl get ippool calicoctl get node 如果安装时启用应用层策略的话还需要安装 istio,详见 Enabling application layer policy。 参考 calicoctl命令参考 - docs.projectcalico.org Calico架构 - docs.projectcalico.org 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/cilium.html":{"url":"concepts/cilium.html","title":"具备 API 感知的网络和安全性管理开源软件 Cilium","keywords":"","body":"具备 API 感知的网络和安全性管理的开源软件 Cilium Cilium 是一个纯开源软件,没有哪家公司提供商业化支持,也不是由某一公司开源,该软件用于透明地保护使用 Linux 容器管理平台(如 Docker 和 Kubernetes)部署的应用程序服务之间的网络连接。 Cilium 的基础是一种名为 BPF 的新 Linux 内核技术,它可以在 Linux 本身动态插入强大的安全可见性和控制逻辑。由于 BPF 在 Linux 内核中运行,因此可以应用和更新 Cilium 安全策略,而无需对应用程序代码或容器配置进行任何更改。 图 4.2.3.1:Cilium 基于微服务的应用程序分为小型独立服务,这些服务使用 HTTP、gRPC、Kafka 等轻量级协议通过 API 相互通信。但是,现有的 Linux 网络安全机制(例如 iptables)仅在网络和传输层(即 IP 地址和端口)上运行,并且缺乏对微服务层的可见性。 Cilium 为 Linux 容器框架(如 Docker 和 Kubernetes) 带来了 API 感知网络安全过滤。使用名为 BPF 的新 Linux 内核技术,Cilium 提供了一种基于容器 / 容器标识定义和实施网络层和应用层安全策略的简单而有效的方法。 注:Cilium 中文意思是 “纤毛 “,它十分细小而又无处不在。 BPF 柏克莱封包过滤器(Berkeley Packet Filter,缩写 BPF),是 类 Unix 系统上 数据链路层 的一种原始接口,提供原始链路层 封包 的收发,除此之外,如果网卡驱动支持 洪泛 模式,那么它可以让网卡处于此种模式,这样可以收到 网络 上的所有包,不管他们的目的地是不是所在 主机。参考 维基百科 和 eBPF 简史。 特性 以下是 Cilium 的特性。 基于身份的安全性 Cilium 可见性和安全策略基于容器编排系统的标识(例如,Kubernetes 中的 Label)。在编写安全策略、审计和故障排查时,再也不用担心网络子网或容器 IP 地址了。 卓越的性能 BPF 利用 Linux 底层的强大能力,通过提供 Linux 内核的沙盒可编程性来实现数据路径,从而提供卓越的性能。 API 协议可见性 + 安全性 传统防火墙仅根据 IP 地址和端口等网络标头查看和过滤数据包。Cilium 也可以这样做,但也可以理解并过滤单个 HTTP、gRPC 和 Kafka 请求,这些请求将微服务拼接在一起。 专为扩展而设计 Cilium 是为扩展而设计的,在部署新 pod 时不需要节点间交互,并且通过高度可扩展的键值存储进行所有协调。 为什么选择 Cilium? 现代数据中心应用程序的开发已经转向面向服务的体系结构(SOA),通常称为 微服务 ,其中大型应用程序被分成小型独立服务,这些服务使用 HTTP 等轻量级协议通过 API 相互通信。微服务应用程序往往是高度动态的,作为持续交付的一部分部署的滚动更新期间单个容器启动或销毁,应用程序扩展 / 缩小以适应负载变化。 这种向高度动态的微服务的转变过程,给确保微服务之间的连接方面提出了挑战和机遇。传统的 Linux 网络安全方法(例如 iptables)过滤 IP 地址和 TCP/UDP 端口,但 IP 地址经常在动态微服务环境中流失。容器的高度不稳定的生命周期导致这些方法难以与应用程序并排扩展,因为负载均衡表和访问控制列表要不断更新,可能增长成包含数十万条规则。出于安全目的,协议端口(例如,用于 HTTP 流量的 TCP 端口 80)不能再用于区分应用流量,因为该端口用于跨服务的各种消息。 另一个挑战是提供准确的可见性,因为传统系统使用 IP 地址作为主要识别工具,其在微服务架构中的寿命可能才仅仅几秒钟,被大大缩短。 利用 Linux BPF,Cilium 保留了透明地插入安全可视性 + 强制执行的能力,但这种方式基于服务 /pod/ 容器标识(与传统系统中的 IP 地址识别相反),并且可以根据应用层进行过滤 (例如 HTTP)。因此,通过将安全性与寻址分离,Cilium 不仅可以在高度动态的环境中应用安全策略,而且除了提供传统的第 3 层和第 4 层分割之外,还可以通过在 HTTP 层运行来提供更强的安全隔离。 。 BPF 的使用使得 Cilium 能够以高度可扩展的方式实现以上功能,即使对于大规模环境也不例外。 功能概述 透明的保护 API 能够保护现代应用程序协议,如 REST/HTTP、gRPC 和 Kafka。传统防火墙在第 3 层和第 4 层运行,在特定端口上运行的协议要么完全受信任,要么完全被阻止。Cilium 提供了过滤各个应用程序协议请求的功能,例如: 允许所有带有方法 GET 和路径 /public/.* 的 HTTP 请求。拒绝所有其他请求。 允许 service1 在 Kafka topic 上生成 topic1,service2 消费 topic1。拒绝所有其他 Kafka 消息。 要求 HTTP 标头 X-Token: [0-9]+ 出现在所有 REST 调用中。 详情请参考 7 层协议。 基于身份来保护服务间通信 现代分布式应用程序依赖于诸如容器之类的技术来促进敏捷性并按需扩展。这将导致在短时间内启动大量应用容器。典型的容器防火墙通过过滤源 IP 地址和目标端口来保护工作负载。这就要求不论在集群中的哪个位置启动容器时都要操作所有服务器上的防火墙。 为了避免受到规模限制,Cilium 为共享相同安全策略的应用程序容器组分配安全标识。然后,该标识与应用程序容器发出的所有网络数据包相关联,从而允许验证接收节点处的身份。使用键值存储执行安全身份管理。 安全访问外部服务 基于标签的安全性是集群内部访问控制的首选工具。为了保护对外部服务的访问,支持入口(ingress)和出口(egress)的传统基于 CIDR 的安全策略。这允许限制对应用程序容器的访问以及对特定 IP 范围的访问。 简单网络 一个简单的扁平第 3 层网络能够跨越多个集群连接所有应用程序容器。使用主机范围分配器可以简化 IP 分配。这意味着每个主机可以在主机之间没有任何协调的情况下分配 IP。 支持以下多节点网络模型: Overlay:基于封装的虚拟网络产生所有主机。目前 VXLAN 和 Geneve 已经完成,但可以启用 Linux 支持的所有封装格式。 何时使用此模式:此模式具有最小的基础架构和集成要求。它几乎适用于任何网络基础架构,唯一的要求是主机之间可以通过 IP 连接。 本机路由:使用 Linux 主机的常规路由表。网络必须能够路由应用程序容器的 IP 地址。 何时使用此模式:此模式适用于高级用户,需要了解底层网络基础结构。此模式适用于: 本地 IPv6 网络 与云网络路由器配合使用 如果您已经在运行路由守护进程 负载均衡 应用程序容器和外部服务之间的流量的分布式负载均衡。负载均衡使用 BPF 实现,允许几乎无限的规模,并且如果未在源主机上执行负载均衡操作,则支持直接服务器返回(DSR)。 注意:负载均衡需要启用连接跟踪。这是默认值。 监控和故障排除 可见性和故障排查是任何分布式系统运行的基础。虽然我们喜欢用 tcpdump 和 ping,它们很好用,但我们努力为故障排除提供更好的工具。包括以下工具: 使用元数据进行事件监控:当数据包被丢弃时,该工具不仅仅报告数据包的源 IP 和目标 IP,该工具还提供发送方和接收方的完整标签信息等。 策略决策跟踪:为什么丢弃数据包或拒绝请求。策略跟踪框架允许跟踪运行工作负载和基于任意标签定义的策略决策过程。 通过 Prometheus 导出指标:通过 Prometheus 导出关键指标,以便与现有仪表板集成。 集成 网络插件集成:CNI、libnetwork 容器运行时:containerd Kubernetes:NetworkPolicy、Label、Ingress、Service 日志记录:syslog、fluentd 参考 Cilium 官方网站 - cilium.io eBPF 简史 - ibm.com 网络层拦截可选项 - zhihu.com 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/cilium-concepts.html":{"url":"concepts/cilium-concepts.html","title":"Cilium 架构设计与概念解析","keywords":"","body":"Cilium架构设计与概念解析 Cilium 要求 Linux kernel 版本在 4.8.0 以上,Cilium 官方建议 kernel 版本至少在 4.9.17 以上,高版本的 Ubuntu 发行版中 Linux 内核版本一般在 4.12 以上,如使用 CentOS7 需要升级内核才能运行 Cilium。 KV 存储数据库用存储以下状态: 策略身份,Label 列表 服务身份标识 全局的服务 ID,与 VIP 相关联(可选) 封装的 VTEP(Vxlan Tunnel End Point)映射(可选) 为了简单起见,Cilium 一般跟容器编排调度器使用同一个 KV 存储数据库,例如在 Kubernetes 中使用 etcd 存储。 组成 下图是 Cilium 的组件示意图,Cilium 是位于 Linux kernel 与容器编排系统的中间层。向上可以为容器配置网络,向下可以向 Linux 内核生成 BPF 程序来控制容器的安全性和转发行为。 图 4.2.3.1.1:Cilium 组件(来自 Cilium 官网) 管理员通过 Cilium CLI 配置策略信息,这些策略信息将存储在 KV 数据库里,Cilium 使用插件(如 CNI)与容器编排调度系统交互,来实现容器间的联网和容器分配 IP 地址分配,同时 Cilium 还可以获得容器的各种元数据和流量信息,提供监控 API。 Cilium Agent Cilium Agent 作为守护进程运行在每个节点上,与容器运行时如 Docker,和容器编排系统交互如 Kubernetes。通常是使用插件的形式(如 Docker plugin)或遵从容器编排标准定义的网络接口(如 CNI)。 Cilium Agent 的功能有: 暴露 API 给运维和安全团队,可以配置容器间的通信策略。还可以通过这些 API 获取网络监控数据。 收集容器的元数据,例如 Pod 的 Label,可用于 Cilium 安全策略里的 Endpoint 识别,这个跟 Kubernetes 中的 service 里的 Endpoint 类似。 与容器管理平台的网络插件交互,实现 IPAM 的功能,用于给容器分配 IP 地址,该功能与 flannel、calico 网络插件类似。 将其有关容器标识和地址的知识与已配置的安全性和可见性策略相结合,生成高效的 BPF 程序,用于控制容器的网络转发和安全行为。 使用 clang/LLVM 将 BPF 程序编译为字节码,在容器的虚拟以太网设备中的所有数据包上执行,并将它们传递给 Linux 内核。 命令行工具 Cilium 提供了管理命令行管理工具,可以与 Cilium Agent API 交互。cilium 命令使用方式如下。 Usage: cilium [command] Available Commands: bpf 直接访问本地 BPF map cleanup 重置 agent 状态 completion bash 自动补全 config Cilium 配置选项 debuginfo 从 agent 请求可用的调试信息 endpoint 管理 endpoint identity 管理安全身份 kvstore 直接访问 kvstore map 访问 BPF map monitor 显示 BPF 程序事件 node 管理集群节点 policy 管理安全策略 prefilter 管理 XDP CIDR filter service 管理 service & loadbalancer status 显示 daemon 的状态 version 打印版本信息 详细使用情况请参考 Cilium Command Cheatsheet。 策略控制示例 使用 docker-compose 安装测试,需要先用 vagrant 启动虚拟机,使用的是 Ubuntu-17.10 的 vagrant box。在下面的示例中,Cilium 是使用 docker network plugin 的方式部署的。Cilium 的一项主要功能——为容器创建网络,使用 docker inspect 来查询使用 Cilium 网络的容器配置,可以看到 Cilium 创建的容器网络示例如下。 \"Networks\": { \"cilium-net\": { \"IPAMConfig\": null, \"Links\": null, \"Aliases\": [ \"a08e52d13a38\" ], \"NetworkID\": \"c4cc3ac444f3c494beb1355e4a9c4bc474d9a84288ceb2030513e8406cdf4e9b\", \"EndpointID\": \"2e3e4486525c20fc516d0a9d1c52f84edf9a000f3068803780e23b4c6a1ca3ed\", \"Gateway\": \"\", \"IPAddress\": \"10.15.125.240\", \"IPPrefixLen\": 32, \"IPv6Gateway\": \"f00d::a0f:0:0:1\", \"GlobalIPv6Address\": \"f00d::a0f:0:0:ed50\", \"GlobalIPv6PrefixLen\": 128, \"MacAddress\": \"\", \"DriverOpts\": null } } NetworkID:每个网络平面的唯一标识 EndpointID:每个容器/Pod 的在网络中的唯一标识 在 docker-compose 安装方式的快速开始指南中,演示了如何使用 Label 来选择容器,从而限制两个容器(应用)之间的流量访问权限的。 策略使用 JSON 格式配置,例如官方示例使用 Cilium 直接在 L3/L4 层管理容器间访问策略的方式。例如下面的策略配置具有 id=app2 标签的容器可以使用 TCP 协议、80 端口访问具有标签 id=app1 标签的容器。 [{ \"labels\": [{\"key\": \"name\", \"value\": \"l3-rule\"}], \"endpointSelector\": {\"matchLabels\":{\"id\":\"app1\"}}, \"ingress\": [{ \"fromEndpoints\": [ {\"matchLabels\":{\"id\":\"app2\"}} ], \"toPorts\": [{ \"ports\": [{\"port\": \"80\", \"protocol\": \"TCP\"}] }] }] }] 将该配置保存成 JSON 文件,在使用 cilium policy import 命令即可应用到 Cilium 网络中。 图 4.2.3.1.2:Cilium 网络配置策略 如图所示,此时 id 标签为其他值的容器就无法访问 id=app1 容器,策略配置中的 toPorts 中还可以配置 HTTP method 和 path,实现更细粒度的访问策略控制,详见 Cilium 官方文档。 参考 https://cilium.readthedocs.io/en/stable/concepts/ https://cilium.readthedocs.io/en/stable/gettingstarted/docker/ 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/objects.html":{"url":"concepts/objects.html","title":"资源对象与基本概念解析","keywords":"","body":"Objects 以下列举的内容都是 kubernetes 中的 Object,这些对象都可以在 yaml 文件中作为一种 API 类型来配置。 Pod Node Namespace Service Volume PersistentVolume Deployment Secret StatefulSet DaemonSet ServiceAccount ReplicationController ReplicaSet Job CronJob SecurityContext ResourceQuota LimitRange HorizontalPodAutoscaling Ingress ConfigMap Label CustomResourceDefinition Role ClusterRole 我将它们简单的分类为以下几种资源对象: 类别 名称 资源对象 Pod、ReplicaSet、ReplicationController、Deployment、StatefulSet、DaemonSet、Job、CronJob、HorizontalPodAutoscaling、Node、Namespace、Service、Ingress、Label、CustomResourceDefinition 存储对象 Volume、PersistentVolume、Secret、ConfigMap 策略对象 SecurityContext、ResourceQuota、LimitRange 身份对象 ServiceAccount、Role、ClusterRole 理解 kubernetes 中的对象 在 Kubernetes 系统中,Kubernetes 对象 是持久化的条目。Kubernetes 使用这些条目去表示整个集群的状态。特别地,它们描述了如下信息: 什么容器化应用在运行(以及在哪个 Node 上) 可以被应用使用的资源 关于应用如何表现的策略,比如重启策略、升级策略,以及容错策略 Kubernetes 对象是 “目标性记录” —— 一旦创建对象,Kubernetes 系统将持续工作以确保对象存在。通过创建对象,可以有效地告知 Kubernetes 系统,所需要的集群工作负载看起来是什么样子的,这就是 Kubernetes 集群的 期望状态。 与 Kubernetes 对象工作 —— 是否创建、修改,或者删除 —— 需要使用 Kubernetes API。当使用 kubectl 命令行接口时,比如,CLI 会使用必要的 Kubernetes API 调用,也可以在程序中直接使用 Kubernetes API。为了实现该目标,Kubernetes 当前提供了一个 golang 客户端库 ,其它语言库(例如Python)也正在开发中。 对象 Spec 与状态 每个 Kubernetes 对象包含两个嵌套的对象字段,它们负责管理对象的配置:对象 spec 和 对象 status。spec 必须提供,它描述了对象的 期望状态—— 希望对象所具有的特征。status 描述了对象的 实际状态,它是由 Kubernetes 系统提供和更新。在任何时刻,Kubernetes 控制平面一直处于活跃状态,管理着对象的实际状态以与我们所期望的状态相匹配。 例如,Kubernetes Deployment 对象能够表示运行在集群中的应用。当创建 Deployment 时,可能需要设置 Deployment 的 spec,以指定该应用需要有 3 个副本在运行。Kubernetes 系统读取 Deployment spec,启动我们所期望的该应用的 3 个实例 —— 更新状态以与 spec 相匹配。如果那些实例中有失败的(一种状态变更),Kubernetes 系统通过修正来响应 spec 和状态之间的不一致 —— 这种情况,启动一个新的实例来替换。 关于对象 spec、status 和 metadata 更多信息,查看 Kubernetes API Conventions。 描述 Kubernetes 对象 当创建 Kubernetes 对象时,必须提供对象的 spec,用来描述该对象的期望状态,以及关于对象的一些基本信息(例如,名称)。当使用 Kubernetes API 创建对象时(或者直接创建,或者基于kubectl),API 请求必须在请求体中包含 JSON 格式的信息。更常用的是,需要在 .yaml 文件中为 kubectl 提供这些信息。 kubectl 在执行 API 请求时,将这些信息转换成 JSON 格式。 这里有一个 .yaml 示例文件,展示了 Kubernetes Deployment 的必需字段和对象 spec: apiVersion: apps/v1beta1 kind: Deployment metadata: name: nginx-deployment spec: replicas: 3 template: metadata: labels: app: nginx spec: containers: - name: nginx image: nginx:1.7.9 ports: - containerPort: 80 一种创建 Deployment 的方式,类似上面使用 .yaml 文件,是使用 kubectl 命令行接口(CLI)中的 kubectl create 命令,传递 .yaml 作为参数。下面是一个示例: $ kubectl create -f docs/user-guide/nginx-deployment.yaml --record 输出类似如下这样: deployment \"nginx-deployment\" created 必需字段 在想要创建的 Kubernetes 对象对应的 .yaml 文件中,需要配置如下的字段: apiVersion - 创建该对象所使用的 Kubernetes API 的版本 kind - 想要创建的对象的类型 metadata - 帮助识别对象唯一性的数据,包括一个 name 字符串、UID 和可选的 namespace 也需要提供对象的 spec 字段。对象 spec 的精确格式对每个 Kubernetes 对象来说是不同的,包含了特定于该对象的嵌套字段。Kubernetes API 参考能够帮助我们找到任何我们想创建的对象的 spec 格式。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/pod-state-and-lifecycle.html":{"url":"concepts/pod-state-and-lifecycle.html","title":"Pod 状态与生命周期管理","keywords":"","body":"Pod状态与生命周期管理 该节将带领大家了解Kubernetes中的基本概念,尤其是作为Kubernetes中调度的最基本单位Pod。 本节中包括以下内容: 了解Pod的构成 Pod的生命周期 Pod中容器的启动顺序模板定义 Kubernetes中的基本组件kube-controller-manager就是用来控制Pod的状态和生命周期的,在了解各种controller之前我们有必要先了解下Pod本身和其生命周期。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/pod-overview.html":{"url":"concepts/pod-overview.html","title":"Pod 概览","keywords":"","body":"Pod 概览 本文将为您讲解 Pod 的基础概念。 理解 Pod Pod 是 kubernetes 中你可以创建和部署的最小也是最简的单位。Pod 代表着集群中运行的进程。 Pod 中封装着应用的容器(有的情况下是好几个容器),存储、独立的网络 IP,管理容器如何运行的策略选项。Pod 代表着部署的一个单位:kubernetes 中应用的一个实例,可能由一个或者多个容器组合在一起共享资源。 Docker 是 kubernetes 中最常用的容器运行时,但是 Pod 也支持其他容器运行时。 在 Kubernetes 集群中 Pod 有如下两种使用方式: 一个 Pod 中运行一个容器。“每个 Pod 中一个容器” 的模式是最常见的用法;在这种使用方式中,你可以把 Pod 想象成是单个容器的封装,kuberentes 管理的是 Pod 而不是直接管理容器。 在一个 Pod 中同时运行多个容器。一个 Pod 中也可以同时封装几个需要紧密耦合互相协作的容器,它们之间共享资源。这些在同一个 Pod 中的容器可以互相协作成为一个 service 单位 —— 一个容器共享文件,另一个 “sidecar” 容器来更新这些文件。Pod 将这些容器的存储资源作为一个实体来管理。 Kubernetes Blog 有关于 Pod 用例的详细信息,查看: The Distributed System Toolkit: Patterns for Composite Containers Container Design Patterns 每个 Pod 都是应用的一个实例。如果你想平行扩展应用的话(运行多个实例),你应该运行多个 Pod,每个 Pod 都是一个应用实例。在 Kubernetes 中,这通常被称为 replication。 Pod 中如何管理多个容器 Pod 中可以同时运行多个进程(作为容器运行)协同工作。同一个 Pod 中的容器会自动的分配到同一个 node 上。同一个 Pod 中的容器共享资源、网络环境和依赖,它们总是被同时调度。 注意在一个 Pod 中同时运行多个容器是一种比较高级的用法。只有当你的容器需要紧密配合协作的时候才考虑用这种模式。例如,你有一个容器作为 web 服务器运行,需要用到共享的 volume,有另一个 “sidecar” 容器来从远端获取资源更新这些文件,如下图所示: 图 4.4.1.1:pod diagram Pod 中可以共享两种资源:网络和存储。 网络 每个 Pod 都会被分配一个唯一的 IP 地址。Pod 中的所有容器共享网络空间,包括 IP 地址和端口。Pod 内部的容器可以使用 localhost 互相通信。Pod 中的容器与外界通信时,必须分配共享网络资源(例如使用宿主机的端口映射)。 存储 可以为一个 Pod 指定多个共享的 Volume。Pod 中的所有容器都可以访问共享的 volume。Volume 也可以用来持久化 Pod 中的存储资源,以防容器重启后文件丢失。 使用 Pod 你很少会直接在 kubernetes 中创建单个 Pod。因为 Pod 的生命周期是短暂的,用后即焚的实体。当 Pod 被创建后(不论是由你直接创建还是被其他 Controller),都会被 Kubernetes 调度到集群的 Node 上。直到 Pod 的进程终止、被删掉、因为缺少资源而被驱逐、或者 Node 故障之前这个 Pod 都会一直保持在那个 Node 上。 注意:重启 Pod 中的容器跟重启 Pod 不是一回事。Pod 只提供容器的运行环境并保持容器的运行状态,重启容器不会造成 Pod 重启。 Pod 不会自愈。如果 Pod 运行的 Node 故障,或者是调度器本身故障,这个 Pod 就会被删除。同样的,如果 Pod 所在 Node 缺少资源或者 Pod 处于维护状态,Pod 也会被驱逐。Kubernetes 使用更高级的称为 Controller 的抽象层,来管理 Pod 实例。虽然可以直接使用 Pod,但是在 Kubernetes 中通常是使用 Controller 来管理 Pod 的。 Pod 和 Controller Controller 可以创建和管理多个 Pod,提供副本管理、滚动升级和集群级别的自愈能力。例如,如果一个 Node 故障,Controller 就能自动将该节点上的 Pod 调度到其他健康的 Node 上。 包含一个或者多个 Pod 的 Controller 示例: Deployment StatefulSet DaemonSet 通常,Controller 会用你提供的 Pod Template 来创建相应的 Pod。 Pod Templates Pod 模版是包含了其他 object 的 Pod 定义,例如 Replication Controllers,Jobs 和 DaemonSets。Controller 根据 Pod 模板来创建实际的 Pod。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/pod.html":{"url":"concepts/pod.html","title":"Pod 解析","keywords":"","body":"Pod解析 Pod是kubernetes中可以创建的最小部署单元。 V1 core版本的Pod的配置模板见Pod template。 什么是Pod? Pod就像是豌豆荚一样,它由一个或者多个容器组成(例如Docker容器),它们共享容器存储、网络和容器运行配置项。Pod中的容器总是被同时调度,有共同的运行环境。你可以把单个Pod想象成是运行独立应用的“逻辑主机”——其中运行着一个或者多个紧密耦合的应用容器——在有容器之前,这些应用都是运行在几个相同的物理机或者虚拟机上。 尽管kubernetes支持多种容器运行时,但是Docker依然是最常用的运行时环境,我们可以使用Docker的术语和规则来定义Pod。 Pod中共享的环境包括Linux的namespace、cgroup和其他可能的隔绝环境,这一点跟Docker容器一致。在Pod的环境中,每个容器中可能还有更小的子隔离环境。 Pod中的容器共享IP地址和端口号,它们之间可以通过localhost互相发现。它们之间可以通过进程间通信,例如SystemV信号或者POSIX共享内存。不同Pod之间的容器具有不同的IP地址,不能直接通过IPC通信。 Pod中的容器也有访问共享volume的权限,这些volume会被定义成pod的一部分并挂载到应用容器的文件系统中。 根据Docker的结构,Pod中的容器共享namespace和volume,不支持共享PID的namespace。 就像每个应用容器,pod被认为是临时(非持久的)实体。在Pod的生命周期中讨论过,pod被创建后,被分配一个唯一的ID(UID),调度到节点上,并一致维持期望的状态直到被终结(根据重启策略)或者被删除。如果node死掉了,分配到了这个node上的pod,在经过一个超时时间后会被重新调度到其他node节点上。一个给定的pod(如UID定义的)不会被“重新调度”到新的节点上,而是被一个同样的pod取代,如果期望的话甚至可以是相同的名字,但是会有一个新的UID。 Volume跟pod有相同的生命周期(当其UID存在的时候)。当Pod因为某种原因被删除或者被新创建的相同的Pod取代,它相关的东西(例如volume)也会被销毁和再创建一个新的volume。 图 4.4.2.1:Pod示意图 一个多容器Pod,包含文件提取程序和Web服务器,该服务器使用持久卷在容器之间共享存储。 Pod的动机 管理 Pod是一个服务的多个进程的聚合单位,pod提供这种模型能够简化应用部署管理,通过提供一个更高级别的抽象的方式。Pod作为一个独立的部署单位,支持横向扩展和复制。共生(协同调度),命运共同体(例如被终结),协同复制,资源共享,依赖管理,Pod都会自动的为容器处理这些问题。 资源共享和通信 Pod中的应用可以共享网络空间(IP地址和端口),因此可以通过localhost互相发现。因此,pod中的应用必须协调端口占用。每个pod都有一个唯一的IP地址,跟物理机和其他pod都处于一个扁平的网络空间中,它们之间可以直接连通。 Pod中应用容器的hostname被设置成Pod的名字。 Pod中的应用容器可以共享volume。Volume能够保证pod重启时使用的数据不丢失。 Pod的使用 Pod也可以用于垂直应用栈(例如LAMP),这样使用的主要动机是为了支持共同调度和协调管理应用程序,例如: 内容管理系统、文件和数据加载器、本地换群管理器等。 日志和检查点备份、压缩、旋转、快照等。 数据变更观察者、日志和监控适配器、活动发布者等。 代理、桥接和适配器等。 控制器、管理器、配置器、更新器等。 通常单个pod中不会同时运行一个应用的多个实例。 详细说明请看: The Distributed System ToolKit: Patterns for Composite Containers. 其他替代选择 为什么不直接在一个容器中运行多个应用程序呢? 透明。让Pod中的容器对基础设施可见,以便基础设施能够为这些容器提供服务,例如进程管理和资源监控。这可以为用户带来极大的便利。 解耦软件依赖。每个容器都可以进行版本管理,独立的编译和发布。未来kubernetes甚至可能支持单个容器的在线升级。 使用方便。用户不必运行自己的进程管理器,还要担心错误信号传播等。 效率。因为由基础架构提供更多的职责,所以容器可以变得更加轻量级。 为什么不支持容器的亲和性的协同调度? 这种方法可以提供容器的协同定位,能够根据容器的亲和性进行调度,但是无法实现使用pod带来的大部分好处,例如资源共享,IPC,保持状态一致性和简化管理等。 Pod的持久性(或者说缺乏持久性) Pod在设计支持就不是作为持久化实体的。在调度失败、节点故障、缺少资源或者节点维护的状态下都会死掉会被驱逐。 通常,用户不需要手动直接创建Pod,而是应该使用controller(例如Deployments),即使是在创建单个Pod的情况下。Controller可以提供集群级别的自愈功能、复制和升级管理。 使用集合API作为主要的面向用户的原语在集群调度系统中相对常见,包括Borg、Marathon、Aurora和Tupperware。 Pod 原语有利于: 调度程序和控制器可插拔性 支持pod级操作,无需通过控制器API“代理”它们 将pod生命周期与控制器生命周期分离,例如用于自举(bootstrap) 控制器和服务的分离——端点控制器只是监视pod 将集群级功能与Kubelet级功能的清晰组合——Kubelet实际上是“pod控制器” 高可用性应用程序,它们可以在终止之前及在删除之前更换pod,例如在计划驱逐、镜像预拉取或实时pod迁移的情况下#3949 StatefulSet 控制器支持有状态的Pod。在1.4版本中被称为PetSet。在kubernetes之前的版本中创建有状态pod的最佳方式是创建一个replica为1的replication controller。 Pod的终止 因为Pod作为在集群的节点上运行的进程,所以在不再需要的时候能够优雅的终止掉是十分必要的(比起使用发送KILL信号这种暴力的方式)。用户需要能够发起一个删除 Pod 的请求,并且知道它们何时会被终止,是否被正确的删除。用户想终止程序时发送删除pod的请求,在pod可以被强制删除前会有一个宽限期,会发送一个TERM请求到每个容器的主进程。一旦超时,将向主进程发送KILL信号并从API server中删除。如果kubelet或者container manager在等待进程终止的过程中重启,在重启后仍然会重试完整的宽限期。 示例流程如下: 用户发送删除pod的命令,默认宽限期是30秒; 在Pod超过该宽限期后API server就会更新Pod的状态为“dead”; 在客户端命令行上显示的Pod状态为“terminating”; 跟第三步同时,当kubelet发现pod被标记为“terminating”状态时,开始停止pod进程: 如果在pod中定义了preStop hook,在停止pod前会被调用。如果在宽限期过后,preStop hook依然在运行,第二步会再增加2秒的宽限期; 向Pod中的进程发送TERM信号; 跟第三步同时,该Pod将从该service的端点列表中删除,不再是replication controller的一部分。关闭的慢的pod将继续处理load balancer转发的流量; 过了宽限期后,将向Pod中依然运行的进程发送SIGKILL信号而杀掉进程。 Kubelet会在API server中完成Pod的的删除,通过将优雅周期设置为0(立即删除)。Pod在API中消失,并且在客户端也不可见。 删除宽限期默认是30秒。 kubectl delete命令支持 —grace-period= 选项,允许用户设置自己的宽限期。如果设置为0将强制删除pod。在kubectl>=1.5版本的命令中,你必须同时使用 --force 和 --grace-period=0 来强制删除pod。 在 yaml 文件中可以通过 {{ .spec.spec.terminationGracePeriodSeconds }} 来修改此值。 强制删除Pod Pod的强制删除是通过在集群和etcd中将其定义为删除状态。当执行强制删除命令时,API server不会等待该pod所运行在节点上的kubelet确认,就会立即将该pod从API server中移除,这时就可以创建跟原pod同名的pod了。这时,在节点上的pod会被立即设置为terminating状态,不过在被强制删除之前依然有一小段优雅删除周期。 强制删除对于某些pod具有潜在危险性,请谨慎使用。使用StatefulSet pod的情况下,请参考删除StatefulSet中的pod文章。 Pod中容器的特权模式 从Kubernetes1.1版本开始,pod中的容器就可以开启privileged模式,在容器定义文件的 SecurityContext 下使用 privileged flag。 这在使用Linux的网络操作和访问设备的能力时是很有用的。容器内进程可获得近乎等同于容器外进程的权限。在不需要修改和重新编译kubelet的情况下就可以使用pod来开发节点的网络和存储插件。 如果master节点运行的是kuberentes1.1或更高版本,而node节点的版本低于1.1版本,则API server将也可以接受新的特权模式的pod,但是无法启动,pod将处于pending状态。 执行 kubectl describe pod FooPodName,可以看到为什么pod处于pending状态。输出的event列表中将显示: Error validating pod \"FooPodName\".\"FooPodNamespace\" from api, ignoring: spec.containers[0].securityContext.privileged: forbidden '(0xc2089d3248)true' 如果master节点的版本低于1.1,无法创建特权模式的pod。如果你仍然试图去创建的话,你得到如下错误: The Pod \"FooPodName\" is invalid. spec.containers[0].securityContext.privileged: forbidden '(0xc20b222db0)true' API Object Pod是kubernetes REST API中的顶级资源类型。 在kuberentes1.6的V1 core API版本中的Pod的数据结构如下图所示: 图 4.4.2.2:Pod Cheatsheet 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/init-containers.html":{"url":"concepts/init-containers.html","title":"Init 容器","keywords":"","body":"Init 容器 该特性在自 Kubernetes 1.6 版本推出 beta 版本。Init 容器可以在 PodSpec 中同应用程序的 containers 数组一起来指定。此前 beta 注解的值仍将保留,并覆盖 PodSpec 字段值。 本文讲解 Init 容器的基本概念,这是一种专用的容器,在应用程序容器启动之前运行,用来包含一些应用镜像中不存在的实用工具或安装脚本。 理解 Init 容器 Pod 能够具有多个容器,应用运行在容器里面,但是它也可能有一个或多个先于应用容器启动的 Init 容器。 Init 容器与普通的容器非常像,除了如下两点: Init 容器总是运行到成功完成为止。 每个 Init 容器都必须在下一个 Init 容器启动之前成功完成。 如果 Pod 的 Init 容器失败,Kubernetes 会不断地重启该 Pod,直到 Init 容器成功为止。然而,如果 Pod 对应的 restartPolicy 为 Never,它不会重新启动。 指定容器为 Init 容器,在 PodSpec 中添加 initContainers 字段,以 v1.Container 类型对象的 JSON 数组的形式,还有 app 的 containers 数组。 Init 容器的状态在 status.initContainerStatuses 字段中以容器状态数组的格式返回(类似 status.containerStatuses 字段)。 与普通容器的不同之处 Init 容器支持应用容器的全部字段和特性,包括资源限制、数据卷和安全设置。 然而,Init 容器对资源请求和限制的处理稍有不同,在下面 资源 处有说明。 而且 Init 容器不支持 Readiness Probe,因为它们必须在 Pod 就绪之前运行完成。 如果为一个 Pod 指定了多个 Init 容器,那些容器会按顺序一次运行一个。只有当前面的 Init 容器必须运行成功后,才可以运行下一个 Init 容器。当所有的 Init 容器运行完成后,Kubernetes 才初始化 Pod 和运行应用容器。 Init 容器能做什么? 因为 Init 容器具有与应用程序容器分离的单独镜像,所以它们的启动相关代码具有如下优势: 它们可以包含并运行实用工具,但是出于安全考虑,是不建议在应用程序容器镜像中包含这些实用工具的。 它们可以包含使用工具和定制化代码来安装,但是不能出现在应用程序镜像中。例如,创建镜像没必要 FROM 另一个镜像,只需要在安装过程中使用类似 sed、 awk、 python 或 dig 这样的工具。 应用程序镜像可以分离出创建和部署的角色,而没有必要联合它们构建一个单独的镜像。 Init 容器使用 Linux Namespace,所以相对应用程序容器来说具有不同的文件系统视图。因此,它们能够具有访问 Secret 的权限,而应用程序容器则不能。 它们必须在应用程序容器启动之前运行完成,而应用程序容器是并行运行的,所以 Init 容器能够提供了一种简单的阻塞或延迟应用容器的启动的方法,直到满足了一组先决条件。 示例 下面列举了 Init 容器的一些用途: 等待一个 Service 创建完成,通过类似如下 shell 命令: for i in {1..100}; do sleep 1; if dig myservice; then exit 0; fi; exit 1 将 Pod 注册到远程服务器,通过在命令中调用 API,类似如下: curl -X POST http://$MANAGEMENT_SERVICE_HOST:$MANAGEMENT_SERVICE_PORT/register -d 'instance=$()&ip=$()' 在启动应用容器之前等一段时间,使用类似 sleep 60 的命令。 克隆 Git 仓库到数据卷。 将配置值放到配置文件中,运行模板工具为主应用容器动态地生成配置文件。例如,在配置文件中存放 POD_IP 值,并使用 Jinja 生成主应用配置文件。 更多详细用法示例,可以在 StatefulSet 文档 和 生产环境 Pod 指南 中找到。 使用 Init 容器 下面是 Kubernetes 1.5 版本 yaml 文件,展示了一个具有 2 个 Init 容器的简单 Pod。 第一个等待 myservice 启动,第二个等待 mydb 启动。 一旦这两个 Service 都启动完成,Pod 将开始启动。 apiVersion: v1 kind: Pod metadata: name: myapp-pod labels: app: myapp annotations: pod.beta.kubernetes.io/init-containers: '[ { \"name\": \"init-myservice\", \"image\": \"busybox\", \"command\": [\"sh\", \"-c\", \"until nslookup myservice; do echo waiting for myservice; sleep 2; done;\"] }, { \"name\": \"init-mydb\", \"image\": \"busybox\", \"command\": [\"sh\", \"-c\", \"until nslookup mydb; do echo waiting for mydb; sleep 2; done;\"] } ]' spec: containers: - name: myapp-container image: busybox command: ['sh', '-c', 'echo The app is running! && sleep 3600'] 这是 Kubernetes 1.6 版本的新语法,尽管老的 annotation 语法仍然可以使用。我们已经把 Init 容器的声明移到 spec 中: apiVersion: v1 kind: Pod metadata: name: myapp-pod labels: app: myapp spec: containers: - name: myapp-container image: busybox command: ['sh', '-c', 'echo The app is running! && sleep 3600'] initContainers: - name: init-myservice image: busybox command: ['sh', '-c', 'until nslookup myservice; do echo waiting for myservice; sleep 2; done;'] - name: init-mydb image: busybox command: ['sh', '-c', 'until nslookup mydb; do echo waiting for mydb; sleep 2; done;'] 注意:版本兼容性问题 1.5 版本的语法在 1.6 和 1.7 版本中仍然可以使用,但是我们推荐使用 1.6 版本的新语法。Kubernetes 1.8 以后的版本只支持新语法。在 Kubernetes 1.6 版本中,Init 容器在 API 中新建了一个字段。 虽然期望使用 beta 版本的 annotation,但在未来发行版将会被废弃掉。 下面的 YAML 文件展示了 mydb 和 myservice 两个 Service: kind: Service apiVersion: v1 metadata: name: myservice spec: ports: - protocol: TCP port: 80 targetPort: 9376 --- kind: Service apiVersion: v1 metadata: name: mydb spec: ports: - protocol: TCP port: 80 targetPort: 9377 这个 Pod 可以使用下面的命令进行启动和调试: $ kubectl create -f myapp.yaml pod \"myapp-pod\" created $ kubectl get -f myapp.yaml NAME READY STATUS RESTARTS AGE myapp-pod 0/1 Init:0/2 0 6m $ kubectl describe -f myapp.yaml Name: myapp-pod Namespace: default [...] Labels: app=myapp Status: Pending [...] Init Containers: init-myservice: [...] State: Running [...] init-mydb: [...] State: Waiting Reason: PodInitializing Ready: False [...] Containers: myapp-container: [...] State: Waiting Reason: PodInitializing Ready: False [...] Events: FirstSeen LastSeen Count From SubObjectPath Type Reason Message --------- -------- ----- ---- ------------- -------- ------ ------- 16s 16s 1 {default-scheduler } Normal Scheduled Successfully assigned myapp-pod to 172.17.4.201 16s 16s 1 {kubelet 172.17.4.201} spec.initContainers{init-myservice} Normal Pulling pulling image \"busybox\" 13s 13s 1 {kubelet 172.17.4.201} spec.initContainers{init-myservice} Normal Pulled Successfully pulled image \"busybox\" 13s 13s 1 {kubelet 172.17.4.201} spec.initContainers{init-myservice} Normal Created Created container with docker id 5ced34a04634; Security:[seccomp=unconfined] 13s 13s 1 {kubelet 172.17.4.201} spec.initContainers{init-myservice} Normal Started Started container with docker id 5ced34a04634 $ kubectl logs myapp-pod -c init-myservice # Inspect the first init container $ kubectl logs myapp-pod -c init-mydb # Inspect the second init container 一旦我们启动了 mydb 和 myservice 这两个 Service,我们能够看到 Init 容器完成,并且 myapp-pod 被创建: $ kubectl create -f services.yaml service \"myservice\" created service \"mydb\" created $ kubectl get -f myapp.yaml NAME READY STATUS RESTARTS AGE myapp-pod 1/1 Running 0 9m 这个例子非常简单,但是应该能够为我们创建自己的 Init 容器提供一些启发。 具体行为 在 Pod 启动过程中,Init 容器会按顺序在网络和数据卷初始化之后启动。每个容器必须在下一个容器启动之前成功退出。如果由于运行时或失败退出,将导致容器启动失败,它会根据 Pod 的 restartPolicy 指定的策略进行重试。然而,如果 Pod 的 restartPolicy 设置为 Always,Init 容器失败时会使用 RestartPolicy 策略。 在所有的 Init 容器没有成功之前,Pod 将不会变成 Ready 状态。Init 容器的端口将不会在 Service 中进行聚集。 正在初始化中的 Pod 处于 Pending 状态,但应该会将 Initializing 状态设置为 true。 如果 Pod 重启,所有 Init 容器必须重新执行。 对 Init 容器 spec 的修改被限制在容器 image 字段,修改其他字段都不会生效。更改 Init 容器的 image 字段,等价于重启该 Pod。 因为 Init 容器可能会被重启、重试或者重新执行,所以 Init 容器的代码应该是幂等的。特别地当写到 EmptyDirs 文件中的代码,应该对输出文件可能已经存在做好准备。 Init 容器具有应用容器的所有字段。除了 readinessProbe,因为 Init 容器无法定义不同于完成(completion)的就绪(readiness)之外的其他状态。这会在验证过程中强制执行。 在 Pod 上使用 activeDeadlineSeconds,在容器上使用 livenessProbe,这样能够避免 Init 容器一直失败。 这就为 Init 容器活跃设置了一个期限。 在 Pod 中的每个 app 和 Init 容器的名称必须唯一;与任何其它容器共享同一个名称,会在验证时抛出错误。 资源 为 Init 容器指定顺序和执行逻辑,下面对资源使用的规则将被应用: 在所有 Init 容器上定义的,任何特殊资源请求或限制的最大值,是 有效初始请求/限制 Pod 对资源的有效请求/限制要高于: 所有应用容器对某个资源的请求/限制之和 对某个资源的有效初始请求/限制 基于有效请求/限制完成调度,这意味着 Init 容器能够为初始化预留资源,这些资源在 Pod 生命周期过程中并没有被使用。 Pod 的 有效 QoS 层,是 Init 容器和应用容器相同的 QoS 层。 基于有效 Pod 请求和限制来应用配额和限制。Pod 级别的 cgroups 是基于有效 Pod 请求和限制,和调度器相同。 Pod 重启的原因 Pod 重启,会导致 Init 容器重新执行,主要有如下几个原因: 用户更新 PodSpec 导致 Init 容器镜像发生改变。应用容器镜像的变更只会重启应用容器。 Pod 基础设施容器被重启。这不多见,但某些具有 root 权限可访问 Node 的人可能会这样做。 当 restartPolicy 设置为 Always,Pod 中所有容器会终止,强制重启,由于垃圾收集导致 Init 容器完整的记录丢失。 支持与兼容性 API Server 版本为 1.6 或更高版本的集群,通过使用 spec.initContainers 字段来支持 Init 容器。之前的版本可以使用 alpha 和 beta 注解支持 Init 容器。spec.initContainers 字段也被加入到 alpha 和 beta 注解中,所以 Kubernetes 1.3.0 版本或更高版本可以执行 Init 容器,并且 1.6 版本的 API Server 能够安全地回退到 1.5.x 版本,而不会使已创建的 Pod 失去 Init 容器的功能。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/pause-container.html":{"url":"concepts/pause-container.html","title":"Pause 容器","keywords":"","body":"Pause容器 Pause容器,又叫Infra容器,本文将探究该容器的作用与原理。 我们知道在kubelet的配置中有这样一个参数: KUBELET_POD_INFRA_CONTAINER=--pod-infra-container-image=registry.access.redhat.com/rhel7/pod-infrastructure:latest 上面是openshift中的配置参数,kubernetes中默认的配置参数是: KUBELET_POD_INFRA_CONTAINER=--pod-infra-container-image=gcr.io/google_containers/pause-amd64:3.0 Pause容器,是可以自己来定义,官方使用的gcr.io/google_containers/pause-amd64:3.0容器的代码见Github,使用C语言编写。 Pause容器特点 镜像非常小,目前在700KB左右 永远处于Pause(暂停)状态 Pause容器背景 像 Pod 这样一个东西,本身是一个逻辑概念。那在机器上,它究竟是怎么实现的呢?这就是我们要解释的一个问题。 既然说 Pod 要解决这个问题,核心就在于如何让一个 Pod 里的多个容器之间最高效的共享某些资源和数据。 因为容器之间原本是被 Linux Namespace 和 cgroups 隔开的,所以现在实际要解决的是怎么去打破这个隔离,然后共享某些事情和某些信息。这就是 Pod 的设计要解决的核心问题所在。 所以说具体的解法分为两个部分:网络和存储。 Pause容器就是为解决Pod中的网络问题而生的。 Pause容器实现 Pod 里的多个容器怎么去共享网络?下面是个例子: 比如说现在有一个 Pod,其中包含了一个容器 A 和一个容器 B,它们两个就要共享 Network Namespace。在 Kubernetes 里的解法是这样的:它会在每个 Pod 里,额外起一个 Infra container 小容器来共享整个 Pod 的 Network Namespace。 Infra container 是一个非常小的镜像,大概 700KB 左右,是一个C语言写的、永远处于“暂停”状态的容器。由于有了这样一个 Infra container 之后,其他所有容器都会通过 Join Namespace 的方式加入到 Infra container 的 Network Namespace 中。 所以说一个 Pod 里面的所有容器,它们看到的网络视图是完全一样的。即:它们看到的网络设备、IP地址、Mac地址等等,跟网络相关的信息,其实全是一份,这一份都来自于 Pod 第一次创建的这个 Infra container。这就是 Pod 解决网络共享的一个解法。 在 Pod 里面,一定有一个 IP 地址,是这个 Pod 的 Network Namespace 对应的地址,也是这个 Infra container 的 IP 地址。所以大家看到的都是一份,而其他所有网络资源,都是一个 Pod 一份,并且被 Pod 中的所有容器共享。这就是 Pod 的网络实现方式。 由于需要有一个相当于说中间的容器存在,所以整个 Pod 里面,必然是 Infra container 第一个启动。并且整个 Pod 的生命周期是等同于 Infra container 的生命周期的,与容器 A 和 B 是无关的。这也是为什么在 Kubernetes 里面,它是允许去单独更新 Pod 里的某一个镜像的,即:做这个操作,整个 Pod 不会重建,也不会重启,这是非常重要的一个设计。 Pause容器的作用 我们检查node节点的时候会发现每个node上都运行了很多的pause容器,例如如下。 $ docker ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES 2c7d50f1a7be docker.io/jimmysong/heapster-grafana-amd64@sha256:d663759b3de86cf62e64a43b021f133c383e8f7b0dc2bdd78115bc95db371c9a \"/run.sh\" 3 hours ago Up 3 hours k8s_grafana_monitoring-influxdb-grafana-v4-5697c6b59-76zqs_kube-system_5788a3c5-29c0-11e8-9e88-525400005732_0 5df93dea877a docker.io/jimmysong/heapster-influxdb-amd64@sha256:a217008b68cb49e8f038c4eeb6029261f02adca81d8eae8c5c01d030361274b8 \"influxd --config ...\" 3 hours ago Up 3 hours k8s_influxdb_monitoring-influxdb-grafana-v4-5697c6b59-76zqs_kube-system_5788a3c5-29c0-11e8-9e88-525400005732_0 9cec6c0ef583 jimmysong/pause-amd64:3.0 \"/pause\" 3 hours ago Up 3 hours k8s_POD_monitoring-influxdb-grafana-v4-5697c6b59-76zqs_kube-system_5788a3c5-29c0-11e8-9e88-525400005732_0 54d06e30a4c7 docker.io/jimmysong/kubernetes-dashboard-amd64@sha256:668710d034c4209f8fa9a342db6d8be72b6cb5f1f3f696cee2379b8512330be4 \"/dashboard --inse...\" 3 hours ago Up 3 hours k8s_kubernetes-dashboard_kubernetes-dashboard-65486f5fdf-lshl7_kube-system_27c414a1-29c0-11e8-9e88-525400005732_0 5a5ef33b0d58 jimmysong/pause-amd64:3.0 \"/pause\" 3 hours ago Up 3 hours k8s_POD_kubernetes-dashboard-65486f5fdf-lshl7_kube-system_27c414a1-29c0-11e8-9e88-525400005732_0 kubernetes中的pause容器主要为每个业务容器提供以下功能: 在pod中担任Linux命名空间共享的基础; 启用pid命名空间,开启init进程。 在The Almighty Pause Container这篇文章中做出了详细的说明,pause容器的作用可以从这个例子中看出,首先见下图: 图 4.4.4.1:Pause容器 我们首先在节点上运行一个pause容器。 docker run -d --name pause -p 8880:80 jimmysong/pause-amd64:3.0 然后再运行一个nginx容器,nginx将为localhost:2368创建一个代理。 $ cat > nginx.conff error_log stderr; events { worker_connections 1024; } http { access_log /dev/stdout combined; server { listen 80 default_server; server_name example.com www.example.com; location / { proxy_pass http://127.0.0.1:2368; } } } EOF $ docker run -d --name nginx -v `pwd`/nginx.conf:/etc/nginx/nginx.conf --net=container:pause --ipc=container:pause --pid=container:pause nginx 然后再为ghost创建一个应用容器,这是一款博客软件。 $ docker run -d --name ghost --net=container:pause --ipc=container:pause --pid=container:pause ghost 现在访问http://localhost:8880/就可以看到ghost博客的界面了。 解析 pause容器将内部的80端口映射到宿主机的8880端口,pause容器在宿主机上设置好了网络namespace后,nginx容器加入到该网络namespace中,我们看到nginx容器启动的时候指定了--net=container:pause,ghost容器同样加入到了该网络namespace中,这样三个容器就共享了网络,互相之间就可以使用localhost直接通信,--ipc=contianer:pause --pid=container:pause就是三个容器处于同一个namespace中,init进程为pause,这时我们进入到ghost容器中查看进程情况。 # ps aux USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND root 1 0.0 0.0 1024 4 ? Ss 13:49 0:00 /pause root 5 0.0 0.1 32432 5736 ? Ss 13:51 0:00 nginx: master p systemd+ 9 0.0 0.0 32980 3304 ? S 13:51 0:00 nginx: worker p node 10 0.3 2.0 1254200 83788 ? Ssl 13:53 0:03 node current/in root 79 0.1 0.0 4336 812 pts/0 Ss 14:09 0:00 sh root 87 0.0 0.0 17500 2080 pts/0 R+ 14:10 0:00 ps aux 在ghost容器中同时可以看到pause和nginx容器的进程,并且pause容器的PID是1。而在kubernetes中容器的PID=1的进程即为容器本身的业务进程。 参考 The Almighty Pause Container Kubernetes之Pause容器 CNCF&Aliyun云原生课程 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/pod-security-policy.html":{"url":"concepts/pod-security-policy.html","title":"Pod 安全策略","keywords":"","body":"Pod 安全策略 PodSecurityPolicy 类型的对象能够控制,是否可以向 Pod 发送请求,该 Pod 能够影响被应用到 Pod 和容器的 SecurityContext。 查看 Pod 安全策略建议 获取更多信息。 什么是 Pod 安全策略? Pod 安全策略 是集群级别的资源,它能够控制 Pod 运行的行为,以及它具有访问什么的能力。 PodSecurityPolicy对象定义了一组条件,指示 Pod 必须按系统所能接受的顺序运行。 它们允许管理员控制如下方面: 控制面 字段名称 已授权容器的运行 privileged 为容器添加默认的一组能力 defaultAddCapabilities 为容器去掉某些能力 requiredDropCapabilities 容器能够请求添加某些能力 allowedCapabilities 控制卷类型的使用 volumes 主机网络的使用 hostNetwork 主机端口的使用 hostPorts 主机 PID namespace 的使用 hostPID 主机 IPC namespace 的使用 hostIPC 主机路径的使用 allowedHostPaths 容器的 SELinux 上下文 seLinux 用户 ID runAsUser 配置允许的补充组 supplementalGroups 分配拥有 Pod 数据卷的 FSGroup fsGroup 必须使用一个只读的 root 文件系统 readOnlyRootFilesystem Pod 安全策略 由设置和策略组成,它们能够控制 Pod 访问的安全特征。这些设置分为如下三类: 基于布尔值控制:这种类型的字段默认为最严格限制的值。 基于被允许的值集合控制:这种类型的字段会与这组值进行对比,以确认值被允许。 基于策略控制:设置项通过一种策略提供的机制来生成该值,这种机制能够确保指定的值落在被允许的这组值中。 RunAsUser MustRunAs - 必须配置一个 range。使用该范围内的第一个值作为默认值。验证是否不在配置的该范围内。 MustRunAsNonRoot - 要求提交的 Pod 具有非零 runAsUser 值,或在镜像中定义了 USER 环境变量。不提供默认值。 RunAsAny - 没有提供默认值。允许指定任何 runAsUser 。 SELinux MustRunAs - 如果没有使用预分配的值,必须配置 seLinuxOptions。默认使用 seLinuxOptions。验证 seLinuxOptions。 RunAsAny - 没有提供默认值。允许任意指定的 seLinuxOptions ID。 SupplementalGroups MustRunAs - 至少需要指定一个范围。默认使用第一个范围的最小值。验证所有范围的值。 RunAsAny - 没有提供默认值。允许任意指定的 supplementalGroups ID。 FSGroup MustRunAs - 至少需要指定一个范围。默认使用第一个范围的最小值。验证在第一个范围内的第一个 ID。 RunAsAny - 没有提供默认值。允许任意指定的 fsGroup ID。 控制卷 通过设置 PSP 卷字段,能够控制具体卷类型的使用。当创建一个卷的时候,与该字段相关的已定义卷可以允许设置如下值: azureFile azureDisk flocker flexVolume hostPath emptyDir gcePersistentDisk awsElasticBlockStore gitRepo secret nfs iscsi glusterfs persistentVolumeClaim rbd cinder cephFS downwardAPI fc configMap vsphereVolume quobyte photonPersistentDisk projected portworxVolume scaleIO storageos * (allow all volumes) 对新的 PSP,推荐允许的卷的最小集合包括:configMap、downwardAPI、emptyDir、persistentVolumeClaim、secret 和 projected。 主机网络 HostPorts, 默认为 empty。HostPortRange 列表通过 min(包含) and max(包含) 来定义,指定了被允许的主机端口。 允许的主机路径 AllowedHostPaths 是一个被允许的主机路径前缀的白名单。空值表示所有的主机路径都可以使用。 许可 包含 PodSecurityPolicy 的 许可控制,允许控制集群资源的创建和修改,基于这些资源在集群范围内被许可的能力。 许可使用如下的方式为 Pod 创建最终的安全上下文: 检索所有可用的 PSP。 生成在请求中没有指定的安全上下文设置的字段值。 基于可用的策略,验证最终的设置。 如果某个策略能够匹配上,该 Pod 就被接受。如果请求与 PSP 不匹配,则 Pod 被拒绝。 Pod 必须基于 PSP 验证每个字段。 创建 Pod 安全策略 下面是一个 Pod 安全策略的例子,所有字段的设置都被允许: apiVersion: extensions/v1beta1 kind: PodSecurityPolicy metadata: name: permissive spec: seLinux: rule: RunAsAny supplementalGroups: rule: RunAsAny runAsUser: rule: RunAsAny fsGroup: rule: RunAsAny hostPorts: - min: 8000 max: 8080 volumes: - '*' 下载示例文件可以创建该策略,然后执行如下命令: $ kubectl create -f ./psp.yaml podsecuritypolicy \"permissive\" created 获取 Pod 安全策略列表 获取已存在策略列表,使用 kubectl get: $ kubectl get psp NAME PRIV CAPS SELINUX RUNASUSER FSGROUP SUPGROUP READONLYROOTFS VOLUMES permissive false [] RunAsAny RunAsAny RunAsAny RunAsAny false [*] privileged true [] RunAsAny RunAsAny RunAsAny RunAsAny false [*] restricted false [] RunAsAny MustRunAsNonRoot RunAsAny RunAsAny false [emptyDir secret downwardAPI configMap persistentVolumeClaim projected] 修改 Pod 安全策略 通过交互方式修改策略,使用 kubectl edit: $ kubectl edit psp permissive 该命令将打开一个默认文本编辑器,在这里能够修改策略。 删除 Pod 安全策略 一旦不再需要一个策略,很容易通过 kubectl 删除它: $ kubectl delete psp permissive podsecuritypolicy \"permissive\" deleted 启用 Pod 安全策略 为了能够在集群中使用 Pod 安全策略,必须确保如下: 启用 API 类型 extensions/v1beta1/podsecuritypolicy(仅对 1.6 之前的版本) 启用许可控制器 PodSecurityPolicy 定义自己的策略 使用 RBAC 在 Kubernetes 1.5 或更新版本,可以使用 PodSecurityPolicy 来控制,对基于用户角色和组的已授权容器的访问。访问不同的 PodSecurityPolicy 对象,可以基于认证来控制。基于 Deployment、ReplicaSet 等创建的 Pod,限制访问 PodSecurityPolicy 对象,Controller Manager 必须基于安全 API 端口运行,并且不能够具有超级用户权限。 PodSecurityPolicy 认证使用所有可用的策略,包括创建 Pod 的用户,Pod 上指定的服务账户(service acount)。当 Pod 基于 Deployment、ReplicaSet 创建时,它是创建 Pod 的 Controller Manager,所以如果基于非安全 API 端口运行,允许所有的 PodSecurityPolicy 对象,并且不能够有效地实现细分权限。用户访问给定的 PSP 策略有效,仅当是直接部署 Pod 的情况。当直接部署 Pod 时,应用 PodSecurityPolicy 控制基于角色和组的已授权容器的访问 。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/pod-lifecycle.html":{"url":"concepts/pod-lifecycle.html","title":"Pod 的生命周期","keywords":"","body":"Pod 的生命周期 本文讲解的是 Kubernetes 中 Pod 的生命周期,包括生命周期的不同阶段、存活和就绪探针、重启策略等。 Pod phase Pod 的 status 字段是一个 PodStatus 对象,PodStatus中有一个 phase 字段。 Pod 的相位(phase)是 Pod 在其生命周期中的简单宏观概述。该字段并不是对容器或 Pod 的综合汇总,也不是为了做为综合状态机。 Pod 相位的数量和含义是严格指定的。除了本文档中列举的状态外,不应该再假定 Pod 有其他的 phase 值。 下面是 phase 可能的值: 挂起(Pending):Pod 已被 Kubernetes 系统接受,但有一个或者多个容器镜像尚未创建。等待时间包括调度 Pod 的时间和通过网络下载镜像的时间,这可能需要花点时间。 运行中(Running):该 Pod 已经绑定到了一个节点上,Pod 中所有的容器都已被创建。至少有一个容器正在运行,或者正处于启动或重启状态。 成功(Succeeded):Pod 中的所有容器都被成功终止,并且不会再重启。 失败(Failed):Pod 中的所有容器都已终止了,并且至少有一个容器是因为失败终止。也就是说,容器以非0状态退出或者被系统终止。 未知(Unknown):因为某些原因无法取得 Pod 的状态,通常是因为与 Pod 所在主机通信失败。 下图是Pod的生命周期示意图,从图中可以看到Pod状态的变化。 图 4.4.6.1:Pod的生命周期示意图(图片来自网络) Pod 状态 Pod 有一个 PodStatus 对象,其中包含一个 PodCondition 数组。 PodCondition 数组的每个元素都有一个 type 字段和一个 status 字段。type 字段是字符串,可能的值有 PodScheduled、Ready、Initialized、Unschedulable和ContainersReady。status 字段是一个字符串,可能的值有 True、False 和 Unknown。 容器探针 探针是由 kubelet 对容器执行的定期诊断。要执行诊断,kubelet 调用由容器实现的 Handler。有三种类型的处理程序: ExecAction:在容器内执行指定命令。如果命令退出时返回码为 0 则认为诊断成功。 TCPSocketAction:对指定端口上的容器的 IP 地址进行 TCP 检查。如果端口打开,则诊断被认为是成功的。 HTTPGetAction:对指定的端口和路径上的容器的 IP 地址执行 HTTP Get 请求。如果响应的状态码大于等于200 且小于 400,则诊断被认为是成功的。 每次探测都将获得以下三种结果之一: 成功:容器通过了诊断。 失败:容器未通过诊断。 未知:诊断失败,因此不会采取任何行动。 Kubelet 可以选择是否执行在容器上运行的两种探针执行和做出反应: livenessProbe:指示容器是否正在运行。如果存活探测失败,则 kubelet 会杀死容器,并且容器将受到其 重启策略 的影响。如果容器不提供存活探针,则默认状态为 Success。 readinessProbe:指示容器是否准备好服务请求。如果就绪探测失败,端点控制器将从与 Pod 匹配的所有 Service 的端点中删除该 Pod 的 IP 地址。初始延迟之前的就绪状态默认为 Failure。如果容器不提供就绪探针,则默认状态为 Success。 该什么时候使用存活(liveness)和就绪(readiness)探针? 如果容器中的进程能够在遇到问题或不健康的情况下自行崩溃,则不一定需要存活探针; kubelet 将根据 Pod 的restartPolicy 自动执行正确的操作。 如果您希望容器在探测失败时被杀死并重新启动,那么请指定一个存活探针,并指定restartPolicy 为 Always 或 OnFailure。 如果要仅在探测成功时才开始向 Pod 发送流量,请指定就绪探针。在这种情况下,就绪探针可能与存活探针相同,但是 spec 中的就绪探针的存在意味着 Pod 将在没有接收到任何流量的情况下启动,并且只有在探针探测成功后才开始接收流量。 如果您希望容器能够自行维护,您可以指定一个就绪探针,该探针检查与存活探针不同的端点。 请注意,如果您只想在 Pod 被删除时能够排除请求,则不一定需要使用就绪探针;在删除 Pod 时,Pod 会自动将自身置于未完成状态,无论就绪探针是否存在。当等待 Pod 中的容器停止时,Pod 仍处于未完成状态。 readinessGates 自 Kubernetes 1.14(该版本 readinessGates GA,在1.11 版本是为 alpha)起默认支持 Pod 就绪检测机制扩展。 应用程序可以向 PodStatus 注入额外的反馈或信号:Pod readiness。要使用这个功能,请在 PodSpec 中设置 readinessGates 来指定 kubelet 评估 Pod readiness 的附加条件列表。 Readiness gates 由 Pod 的 status.condition 字段的当前状态决定。如果 Kubernetes 在 Pod 的 status.conditions 字段中找不到这样的条件,则该条件的状态默认为 \"False\"。 下面是一个例子。 kind: Pod ... spec: readinessGates: - conditionType: \"www.example.com/feature-1\" status: conditions: - type: Ready # 内置的 Pod 状态 status: \"False\" lastProbeTime: null lastTransitionTime: 2018-01-01T00:00:00Z - type: \"www.example.com/feature-1\" # 附加的额外的 Pod 状态 status: \"False\" lastProbeTime: null lastTransitionTime: 2018-01-01T00:00:00Z containerStatuses: - containerID: docker://abcd... ready: true ... 您添加的 Pod 条件的名称必须符合 Kubernetes 的 label key 格式。 只有到 Pod 中的所有容器状态都是 Ready,且 Pod 附加的额外状态检测的 readinessGates 条件也是 Ready 的时候,Pod 的状态才是 Ready。 Pod 和容器状态 有关 Pod 容器状态的详细信息,请参阅 PodStatus 和 ContainerStatus。请注意,报告的 Pod 状态信息取决于当前的 ContainerState。 重启策略 PodSpec 中有一个 restartPolicy 字段,可能的值为 Always、OnFailure 和 Never。默认为 Always。 restartPolicy 适用于 Pod 中的所有容器。restartPolicy 仅指通过同一节点上的 kubelet 重新启动容器。失败的容器由 kubelet 以五分钟为上限的指数退避延迟(10秒,20秒,40秒...)重新启动,并在成功执行十分钟后重置。如 Pod 文档 中所述,一旦绑定到一个节点,Pod 将永远不会重新绑定到另一个节点。 Pod 的生命 一般来说,Pod 不会消失,直到人为销毁他们。这可能是一个人或控制器。这个规则的唯一例外是成功或失败的 phase 超过一段时间(由 master 确定)的Pod将过期并被自动销毁。 有三种可用的控制器: 使用 Job 运行预期会终止的 Pod,例如批量计算。Job 仅适用于重启策略为 OnFailure 或 Never 的 Pod。 对预期不会终止的 Pod 使用 ReplicationController、ReplicaSet 和 Deployment ,例如 Web 服务器。 ReplicationController 仅适用于具有 restartPolicy 为 Always 的 Pod。 提供特定于机器的系统服务,使用 DaemonSet 为每台机器运行一个 Pod 。 所有这三种类型的控制器都包含一个 PodTemplate。建议创建适当的控制器,让它们来创建 Pod,而不是直接自己创建 Pod。这是因为单独的 Pod 在机器故障的情况下没有办法自动复原,而控制器却可以。 如果节点死亡或与集群的其余部分断开连接,则 Kubernetes 将应用一个策略将丢失节点上的所有 Pod 的 phase 设置为 Failed。 示例 高级 liveness 探针示例 存活探针由 kubelet 来执行,因此所有的请求都在 kubelet 的网络命名空间中进行。 apiVersion: v1 kind: Pod metadata: labels: test: liveness name: liveness-http spec: containers: - args: - /server image: k8s.gcr.io/liveness livenessProbe: httpGet: # when \"host\" is not defined, \"PodIP\" will be used # host: my-host # when \"scheme\" is not defined, \"HTTP\" scheme will be used. Only \"HTTP\" and \"HTTPS\" are allowed # scheme: HTTPS path: /healthz port: 8080 httpHeaders: - name: X-Custom-Header value: Awesome initialDelaySeconds: 15 timeoutSeconds: 1 name: liveness 状态示例 Pod 中只有一个容器并且正在运行。容器成功退出。 记录完成事件。 如果 restartPolicy 为: Always:重启容器;Pod phase 仍为 Running。 OnFailure:Pod phase 变成 Succeeded。 Never:Pod phase 变成 Succeeded。 Pod 中只有一个容器并且正在运行。容器退出失败。 记录失败事件。 如果 restartPolicy 为: Always:重启容器;Pod phase 仍为 Running。 OnFailure:重启容器;Pod phase 仍为 Running。 Never:Pod phase 变成 Failed。 Pod 中有两个容器并且正在运行。容器1退出失败。 记录失败事件。 如果 restartPolicy 为: Always:重启容器;Pod phase 仍为 Running。 OnFailure:重启容器;Pod phase 仍为 Running。 Never:不重启容器;Pod phase 仍为 Running。 如果有容器1没有处于运行状态,并且容器2退出: 记录失败事件。 如果 restartPolicy 为: Always:重启容器;Pod phase 仍为 Running。 OnFailure:重启容器;Pod phase 仍为 Running。 Never:Pod phase 变成 Failed。 Pod 中只有一个容器并处于运行状态。容器运行时内存超出限制: 容器以失败状态终止。 记录 OOM 事件。 如果 restartPolicy 为: Always:重启容器;Pod phase 仍为 Running。 OnFailure:重启容器;Pod phase 仍为 Running。 Never: 记录失败事件;Pod phase 仍为 Failed。 Pod 正在运行,磁盘故障: 杀掉所有容器。 记录适当事件。 Pod phase 变成 Failed。 如果使用控制器来运行,Pod 将在别处重建。 Pod 正在运行,其节点被分段。 节点控制器等待直到超时。 节点控制器将 Pod phase 设置为 Failed。 如果是用控制器来运行,Pod 将在别处重建。 参考 Pod lifecycle - kubernetes.io 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/pod-hook.html":{"url":"concepts/pod-hook.html","title":"Pod Hook","keywords":"","body":"Pod hook Pod hook(钩子)是由 Kubernetes 管理的 kubelet 发起的,当容器中的进程启动前或者容器中的进程终止之前运行,这是包含在容器的生命周期之中。可以同时为 Pod 中的所有容器都配置 hook。 Hook 的类型包括两种: exec:执行一段命令 HTTP:发送 HTTP 请求。 参考下面的配置: apiVersion: v1 kind: Pod metadata: name: lifecycle-demo spec: containers: - name: lifecycle-demo-container image: nginx lifecycle: postStart: exec: command: [\"/bin/sh\", \"-c\", \"echo Hello from the postStart handler> /usr/share/message\"] preStop: exec: command: [\"/usr/sbin/nginx\",\"-s\",\"quit\"] 在容器创建之后,容器的 Entrypoint 执行之前,这时候 Pod 已经被调度到某台 node 上,被某个 kubelet 管理了,这时候 kubelet 会调用 postStart 操作,该操作跟容器的启动命令是在同步执行的,也就是说在 postStart 操作执行完成之前,kubelet 会锁住容器,不让应用程序的进程启动,只有在 postStart 操作完成之后容器的状态才会被设置成为 RUNNING。 如果 postStart 或者 preStop hook 失败,将会终止容器。 调试 hook Hook 调用的日志没有暴露给 Pod 的 event,所以只能通过 describe 命令来获取,如果有错误将可以看到 FailedPostStartHook 或 FailedPreStopHook 这样的 event。 参考 Attach Handlers to Container Lifecycle Events Container Lifecycle Hooks 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/pod-preset.html":{"url":"concepts/pod-preset.html","title":"Pod Preset","keywords":"","body":"Pod Preset 注意:PodPreset 资源对象只有 kubernetes 1.8 以上版本才支持。 Preset 就是预设,有时候想要让一批容器在启动的时候就注入一些信息,比如 secret、volume、volume mount 和环境变量,而又不想一个一个的改这些 Pod 的 template,这时候就可以用到 PodPreset 这个资源对象了。 本页是关于 PodPreset 的概述,该对象用来在 Pod 创建的时候向 Pod 中注入某些特定信息。该信息可以包括 secret、volume、volume mount 和环境变量。 理解 Pod Preset Pod Preset 是用来在 Pod 被创建的时候向其中注入额外的运行时需求的 API 资源。 您可以使用 label selector 来指定为哪些 Pod 应用 Pod Preset。 使用 Pod Preset 使得 pod 模板的作者可以不必为每个 Pod 明确提供所有信息。这样一来,pod 模板的作者就不需要知道关于该服务的所有细节。 关于该背景的更多信息,请参阅 PodPreset 的设计方案。 如何工作 Kubernetes 提供了一个准入控制器(PodPreset),当其启用时,Pod Preset 会将应用创建请求传入到该控制器上。当有 Pod 创建请求发生时,系统将执行以下操作: 检索所有可用的 PodPresets。 检查 PodPreset 标签选择器上的标签,看看其是否能够匹配正在创建的 Pod 上的标签。 尝试将由 PodPreset 定义的各种资源合并到正在创建的 Pod 中。 出现错误时,在该 Pod 上引发记录合并错误的事件,PodPreset 不会注入任何资源到创建的 Pod 中。 注释刚生成的修改过的 Pod spec,以表明它已被 PodPreset 修改过。注释的格式为 podpreset.admission.kubernetes.io/podpreset-\": \"\"。 每个 Pod 可以匹配零个或多个 Pod Prestet;并且每个 PodPreset 可以应用于零个或多个 Pod。 PodPreset 应用于一个或多个 Pod 时,Kubernetes 会修改 Pod Spec。对于 Env、EnvFrom 和 VolumeMounts 的更改,Kubernetes 修改 Pod 中所有容器的容器 spec;对于 Volume 的更改,Kubernetes 修改 Pod Spec。 注意:Pod Preset 可以在适当的时候修改 Pod spec 中的 spec.containers 字段。Pod Preset 中的资源定义将不会应用于 initContainers 字段。 禁用特定 Pod 的 Pod Preset 在某些情况下,您可能不希望 Pod 被任何 Pod Preset 所改变。在这些情况下,您可以在 Pod 的 Pod Spec 中添加注释:podpreset.admission.kubernetes.io/exclude:\"true\"。 启用 Pod Preset 为了在群集中使用 Pod Preset,您必须确保以下内容: 您已启用 settings.k8s.io/v1alpha1/podpreset API 类型。例如,可以通过在 API server 的 --runtime-config 选项中包含 settings.k8s.io/v1alpha1=true 来完成此操作。 您已启用 PodPreset 准入控制器。 一种方法是将 PodPreset 包含在为 API server 指定的 --admission-control 选项值中。 您已经在要使用的命名空间中通过创建 PodPreset 对象来定义 PodPreset。 更多资料 使用 PodPreset 向 Pod 中注入数据 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/pod-disruption-budget.html":{"url":"concepts/pod-disruption-budget.html","title":"Pod 中断与 PDB(Pod 中断预算)","keywords":"","body":"Pod中断与PDB(Pod中断预算) 这篇文档适用于要构建高可用应用程序的所有者,因此他们需要了解 Pod 可能发生什么类型的中断。也适用于要执行自动集群操作的集群管理员,如升级和集群自动扩容。 自愿中断和非自愿中断 Pod 不会消失,直到有人(人类或控制器)将其销毁,或者当出现不可避免的硬件或系统软件错误。 我们把这些不可避免的情况称为应用的非自愿性中断。例如: 后端节点物理机的硬件故障 集群管理员错误地删除虚拟机(实例) 云提供商或管理程序故障使虚拟机消失 内核恐慌(kernel panic) 节点由于集群网络分区而从集群中消失 由于节点资源不足而将容器逐出 除资源不足的情况外,大多数用户应该都熟悉以下这些情况;它们不是特定于 Kubernetes 的。 我们称这些情况为”自愿中断“。包括由应用程序所有者发起的操作和由集群管理员发起的操作。典型的应用程序所有者操作包括: 删除管理该 pod 的 Deployment 或其他控制器 更新了 Deployment 的 pod 模板导致 pod 重启 直接删除 pod(意外删除) 集群管理员操作包括: 排空(drain)节点进行修复或升级。 从集群中排空节点以缩小集群。 从节点中移除一个 pod,以允许其他 pod 使用该节点。 这些操作可能由集群管理员直接执行,也可能由集群管理员或集群托管提供商自动执行。 询问您的集群管理员或咨询您的云提供商或发行文档,以确定是否为您的集群启用了任何自动中断源。如果没有启用,您可以跳过创建 Pod Disruption Budget(Pod 中断预算)。 处理中断 以下是一些减轻非自愿性中断的方法: 确保您的 pod 请求所需的资源。 如果您需要更高的可用性,请复制您的应用程序。 (了解有关运行复制的无状态和有状态应用程序的信息。) 为了在运行复制应用程序时获得更高的可用性,请跨机架(使用反亲和性)或跨区域(如果使用多区域集群)分布应用程序。 自愿中断的频率各不相同。在 Kubernetes 集群上,根本没有自愿的中断。但是,您的集群管理员或托管提供商可能会运行一些导致自愿中断的附加服务。例如,节点软件更新可能导致自愿更新。另外,集群(节点)自动缩放的某些实现可能会导致碎片整理和紧缩节点的自愿中断。您的集群管理员或主机提供商应该已经记录了期望的自愿中断级别(如果有的话)。 Kubernetes 提供的功能可以满足在频繁地自动中断的同时运行高可用的应用程序。我们称之为“中断预算”。 中断预算的工作原理 应用程序所有者可以为每个应用程序创建一个 PodDisruptionBudget 对象(PDB)。 PDB 将限制在同一时间自愿中断的复制应用程序中宕机的 Pod 的数量。例如,基于定额的应用程序希望确保运行的副本数量永远不会低于仲裁所需的数量。Web 前端可能希望确保提供负载的副本的数量永远不会低于总数的某个百分比。 集群管理器和托管提供商应使用遵循 Pod Disruption Budgets 的工具,方法是调用Eviction API而不是直接删除 Pod。例如 kubectl drain 命令和 Kubernetes-on-GCE 集群升级脚本(cluster/gce/upgrade.sh)。 当集群管理员想要排空节点时,可以使用 kubectl drain 命令。该命令会试图驱逐机器上的所有 pod。驱逐请求可能会暂时被拒绝,并且该工具会定期重试所有失败的请求,直到所有的 pod 都被终止,或者直到达到配置的超时时间。 PDB 指定应用程序可以容忍的副本的数量,相对于应该有多少副本。例如,具有 spec.replicas:5 的 Deployment 在任何给定的时间都应该有 5 个 Pod。如果其 PDB 允许在某一时刻有 4 个副本,那么驱逐 API 将只允许仅有一个而不是两个 Pod 自愿中断。 使用标签选择器来指定应用程序的一组 pod,这与应用程序的控制器(Deployment、StatefulSet 等)使用的相同。 Pod 控制器的 .spec.replicas 计算“预期的” pod 数量。使用对象的 .metadata.ownerReferences 值从控制器获取。 PDB 不能阻止非自愿中断的发生,但是它们确实会影响预算。 由于应用程序的滚动升级而被删除或不可用的 Pod 确实会计入中断预算,但控制器(如 Deployment 和 StatefulSet)在进行滚动升级时不受 PDB 的限制——在应用程序更新期间的故障处理是在控制器的规格(spec)中配置(了解更新 Deployment)。 使用驱逐 API 驱逐 pod 时,pod 会被优雅地终止(请参阅 PodSpec 中的 terminationGracePeriodSeconds)。 PDB 示例 假设集群有3个节点,node-1 到 node-3。集群中运行了一些应用,其中一个应用有3个副本,分别是 pod-a、pod-b 和 pod-c。另外,还有一个与它相关的不具有 PDB 的 pod,我们称为之为 pod-x。最初,所有 Pod 的分布如下: node-1 node-2 node-3 pod-a available pod-b available pod-c available pod-x available 所有的3个 pod 都是 Deployment 中的一部分,并且它们共同拥有一个 PDB,要求至少有3个 pod 中的2个始终处于可用状态。 例如,假设集群管理员想要重启系统,升级内核版本来修复内核中的错误。集群管理员首先使用 kubectl drain 命令尝试排除 node-1。该工具试图驱逐 pod-a 和 pod-x。这立即成功。两个 Pod 同时进入终止状态。这时的集群处于这种状态: node-1 draining node-2 node-3 pod-a terminating pod-b available pod-c available pod-x terminating Deployment 注意到其中有一个 pod 处于正在终止,因此会创建了一个 pod-d 来替换。由于 node-1 被封锁(cordon),它落在另一个节点上。同时其它控制器也创建了 pod-y 作为 pod-x 的替代品。 (注意:对于 StatefulSet,pod-a 将被称为 pod-1,需要在替换之前完全终止,替代它的也称为 pod-1,但是具有不同的 UID,可以创建。否则,示例也适用于 StatefulSet。) 当前集群的状态如下: node-1 draining node-2 node-3 pod-a terminating pod-b available pod-c available pod-x terminating pod-d starting pod-y 在某一时刻,pod 被终止,集群看起来像下面这样子: node-1 drained node-2 node-3 pod-b available pod-c available pod-d starting pod-y 此时,如果一个急躁的集群管理员试图排空(drain)node-2 或 node-3,drain 命令将被阻塞,因为对于 Deployment 只有2个可用的 pod,并且其 PDB 至少需要2个。经过一段时间,pod-d 变得可用。 node-1 drained node-2 node-3 pod-b available pod-c available pod-d available pod-y 现在,集群管理员尝试排空 node-2。drain 命令将尝试按照某种顺序驱逐两个 pod,假设先是 pod-b,然后再 pod-d。它将成功驱逐 pod-b。但是,当它试图驱逐 pod-d 时,将被拒绝,因为这样对 Deployment 来说将只剩下一个可用的 pod。 Deployment 将创建一个名为 pod-e 的 pod-b 的替代品。但是,集群中没有足够的资源来安排 pod-e。那么,drain 命令就会被阻塞。集群最终可能是这种状态: node-1 drained node-2 drained node-3 no node pod-c available pod-e pending pod-d available pod-y 此时,集群管理员需要向集群中添加回一个节点以继续升级操作。 您可以看到 Kubernetes 如何改变中断发生的速率,根据: 应用程序需要多少副本 正常关闭实例需要多长时间 启动新实例需要多长时间 控制器的类型 集群的资源能力 分离集群所有者和应用程序所有者角色 将集群管理者和应用程序所有者视为彼此知识有限的独立角色通常是很有用的。这种责任分离在这些情况下可能是有意义的: 当有许多应用程序团队共享一个 Kubernetes 集群,并且有自然的专业角色 使用第三方工具或服务来自动化集群管理 Pod Disruption Budget(Pod 中断预算) 通过在角色之间提供接口来支持这种角色分离。 如果您的组织中没有这样的职责分离,则可能不需要使用 Pod 中断预算。 如何在集群上执行中断操作 如果您是集群管理员,要对集群的所有节点执行中断操作,例如节点或系统软件升级,则可以使用以下选择: 在升级期间接受停机时间。 故障转移到另一个完整的副本集群。 没有停机时间,但是对于重复的节点和人工协调成本可能是昂贵的。 编写可容忍中断的应用程序和使用 PDB。 没有停机时间。 最小的资源重复。 允许更多的集群管理自动化。 编写可容忍中断的应用程序是很棘手的,但对于可容忍自愿中断,和支持自动调整以容忍非自愿中断,两者在工作上有大量的重叠。 参考 Disruptions - kubernetes.io 通过配置Pod Disruption Budget(Pod 中断预算)来执行保护应用程序的步骤。 了解更多关于排空节点的信息。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/cluster.html":{"url":"concepts/cluster.html","title":"集群资源管理","keywords":"","body":"集群信息 为了管理异构和不同配置的主机,为了便于 Pod 的运维管理,Kubernetes 中提供了很多集群管理的配置和管理功能,通过 namespace 划分的空间,通过为 node 节点创建label和 taint 用于 pod 的调度等。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/node.html":{"url":"concepts/node.html","title":"Node","keywords":"","body":"Node Node 是 Kubernetes 集群的工作节点,可以是物理机也可以是虚拟机。 Node 的状态 Node 包括如下状态信息: Address HostName:可以被 kubelet 中的 --hostname-override 参数替代。 ExternalIP:可以被集群外部路由到的 IP 地址。 InternalIP:集群内部使用的 IP,集群外部无法访问。 Condition OutOfDisk:磁盘空间不足时为 True Ready:Node controller 40 秒内没有收到 node 的状态报告为 Unknown,健康为 True,否则为 False。 MemoryPressure:当 node 有内存压力时为 True,否则为 False。 DiskPressure:当 node 有磁盘压力时为 True,否则为 False。 Capacity CPU 内存 可运行的最大 Pod 个数 Info:节点的一些版本信息,如 OS、kubernetes、docker 等 Node 管理 禁止 Pod 调度到该节点上。 kubectl cordon 驱逐该节点上的所有 Pod。 kubectl drain 该命令会删除该节点上的所有 Pod(DaemonSet 除外),在其他 node 上重新启动它们,通常该节点需要维护时使用该命令。直接使用该命令会自动调用kubectl cordon 命令。当该节点维护完成,启动了 kubelet 后,再使用kubectl uncordon 即可将该节点添加到 kubernetes 集群中。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/namespace.html":{"url":"concepts/namespace.html","title":"Namespace","keywords":"","body":"Namespace 在一个 Kubernetes 集群中可以使用 namespace 创建多个 “虚拟集群”,这些 namespace 之间可以完全隔离,也可以通过某种方式,让一个 namespace 中的 service 可以访问到其他的 namespace 中的服务,我们 在 CentOS 中部署 kubernetes1.6 集群 的时候就用到了好几个跨越 namespace 的服务,比如 Traefik ingress 和 kube-systemnamespace 下的 service 就可以为整个集群提供服务,这些都需要通过 RBAC 定义集群级别的角色来实现。 哪些情况下适合使用多个 namespace 因为 namespace 可以提供独立的命名空间,因此可以实现部分的环境隔离。当你的项目和人员众多的时候可以考虑根据项目属性,例如生产、测试、开发划分不同的 namespace。 Namespace 使用 获取集群中有哪些 namespace kubectl get ns 集群中默认会有 default 和 kube-system 这两个 namespace。 在执行 kubectl 命令时可以使用 -n 指定操作的 namespace。 用户的普通应用默认是在 default 下,与集群管理相关的为整个集群提供服务的应用一般部署在 kube-system 的 namespace 下,例如我们在安装 kubernetes 集群时部署的 kubedns、heapseter、EFK 等都是在这个 namespace 下面。 另外,并不是所有的资源对象都会对应 namespace,node 和 persistentVolume 就不属于任何 namespace。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/label.html":{"url":"concepts/label.html","title":"Label","keywords":"","body":"Label Label是附着到object上(例如Pod)的键值对。可以在创建object的时候指定,也可以在object创建后随时指定。Labels的值对系统本身并没有什么含义,只是对用户才有意义。 \"labels\": { \"key1\" : \"value1\", \"key2\" : \"value2\" } Kubernetes最终将对labels最终索引和反向索引用来优化查询和watch,在UI和命令行中会对它们排序。不要在label中使用大型、非标识的结构化数据,记录这样的数据应该用annotation。 动机 Label能够将组织架构映射到系统架构上(就像是康威定律),这样能够更便于微服务的管理,你可以给object打上如下类型的label: \"release\" : \"stable\", \"release\" : \"canary\" \"environment\" : \"dev\", \"environment\" : \"qa\", \"environment\" : \"production\" \"tier\" : \"frontend\", \"tier\" : \"backend\", \"tier\" : \"cache\" \"partition\" : \"customerA\", \"partition\" : \"customerB\" \"track\" : \"daily\", \"track\" : \"weekly\" \"team\" : \"teamA\",\"team:\" : \"teamB\" 语法和字符集 Label key的组成: 不得超过63个字符 可以使用前缀,使用/分隔,前缀必须是DNS子域,不得超过253个字符,系统中的自动化组件创建的label必须指定前缀,kubernetes.io/由kubernetes保留 起始必须是字母(大小写都可以)或数字,中间可以有连字符、下划线和点 Label value的组成: 不得超过63个字符 起始必须是字母(大小写都可以)或数字,中间可以有连字符、下划线和点 Label selector Label不是唯一的,很多object可能有相同的label。 通过label selector,客户端/用户可以指定一个object集合,通过label selector对object的集合进行操作。 Label selector有两种类型: equality-based :可以使用=、==、!=操作符,可以使用逗号分隔多个表达式 set-based :可以使用in、notin、!操作符,另外还可以没有操作符,直接写出某个label的key,表示过滤有某个key的object而不管该key的value是何值,!表示没有该label的object 示例 $ kubectl get pods -l environment=production,tier=frontend $ kubectl get pods -l 'environment in (production),tier in (frontend)' $ kubectl get pods -l 'environment in (production, qa)' $ kubectl get pods -l 'environment,environment notin (frontend)' 在API object中设置label selector 在service、replicationcontroller等object中有对pod的label selector,使用方法只能使用等于操作,例如: selector: component: redis 在Job、Deployment、ReplicaSet和DaemonSet这些object中,支持set-based的过滤,例如: selector: matchLabels: component: redis matchExpressions: - {key: tier, operator: In, values: [cache]} - {key: environment, operator: NotIn, values: [dev]} 如Service通过label selector将同一类型的pod作为一个服务expose出来。 图 4.5.3.1:label示意图 另外在node affinity和pod affinity中的label selector的语法又有些许不同,示例如下: affinity: nodeAffinity: requiredDuringSchedulingIgnoredDuringExecution: nodeSelectorTerms: - matchExpressions: - key: kubernetes.io/e2e-az-name operator: In values: - e2e-az1 - e2e-az2 preferredDuringSchedulingIgnoredDuringExecution: - weight: 1 preference: matchExpressions: - key: another-node-label-key operator: In values: - another-node-label-value 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/annotation.html":{"url":"concepts/annotation.html","title":"Annotation","keywords":"","body":"Annotation Annotation,顾名思义,就是注解。Annotation 可以将 Kubernetes 资源对象关联到任意的非标识性元数据。使用客户端(如工具和库)可以检索到这些元数据。 关联元数据到对象 Label 和 Annotation 都可以将元数据关联到 Kubernetes 资源对象。Label 主要用于选择对象,可以挑选出满足特定条件的对象。相比之下,annotation 不能用于标识及选择对象。annotation 中的元数据可多可少,可以是结构化的或非结构化的,也可以包含 label 中不允许出现的字符。 Annotation 和 label 一样都是 key/value 键值对映射结构: json\"annotations\": {\"key1\":\"value1\",\"key2\":\"value2\"} 以下列出了一些可以记录在 annotation 中的对象信息: 声明配置层管理的字段。使用 annotation 关联这类字段可以用于区分以下几种配置来源:客户端或服务器设置的默认值,自动生成的字段或自动生成的 auto-scaling 和 auto-sizing 系统配置的字段。 创建信息、版本信息或镜像信息。例如时间戳、版本号、git 分支、PR 序号、镜像哈希值以及仓库地址。 记录日志、监控、分析或审计存储仓库的指针 可以用于 debug 的客户端(库或工具)信息,例如名称、版本和创建信息。 用户信息,以及工具或系统来源信息、例如来自非 Kubernetes 生态的相关对象的 URL 信息。 轻量级部署工具元数据,例如配置或检查点。 负责人的电话或联系方式,或能找到相关信息的目录条目信息,例如团队网站。 如果不使用 annotation,您也可以将以上类型的信息存放在外部数据库或目录中,但这样做不利于创建用于部署、管理、内部检查的共享工具和客户端库。 示例 如 Istio 的 Deployment 配置中就使用到了 annotation: apiVersion: extensions/v1beta1 kind: Deployment metadata: name: istio-manager spec: replicas: 1 template: metadata: annotations: alpha.istio.io/sidecar: ignore labels: istio: manager spec: serviceAccountName: istio-manager-service-account containers: - name: discovery image: harbor-001.jimmysong.io/library/manager:0.1.5 imagePullPolicy: Always args: [\"discovery\", \"-v\", \"2\"] ports: - containerPort: 8080 env: - name: POD_NAMESPACE valueFrom: fieldRef: apiVersion: v1 fieldPath: metadata.namespace - name: apiserver image: harbor-001.jimmysong.io/library/manager:0.1.5 imagePullPolicy: Always args: [\"apiserver\", \"-v\", \"2\"] ports: - containerPort: 8081 env: - name: POD_NAMESPACE valueFrom: fieldRef: apiVersion: v1 fieldPath: metadata.namespace alpha.istio.io/sidecar 注解就是用来控制是否自动向 pod 中注入 sidecar 的。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/taint-and-toleration.html":{"url":"concepts/taint-and-toleration.html","title":"Taint 和 Toleration(污点和容忍)","keywords":"","body":"Taint 和 Toleration(污点和容忍) Taint(污点)和 Toleration(容忍)可以作用于 node 和 pod 上,其目的是优化 pod 在集群间的调度,这跟节点亲和性类似,只不过它们作用的方式相反,具有 taint 的 node 和 pod 是互斥关系,而具有节点亲和性关系的 node 和 pod 是相吸的。另外还有可以给 node 节点设置 label,通过给 pod 设置 nodeSelector 将 pod 调度到具有匹配标签的节点上。 Taint 和 toleration 相互配合,可以用来避免 pod 被分配到不合适的节点上。每个节点上都可以应用一个或多个 taint ,这表示对于那些不能容忍这些 taint 的 pod,是不会被该节点接受的。如果将 toleration 应用于 pod 上,则表示这些 pod 可以(但不要求)被调度到具有相应 taint 的节点上。 示例 以下分别以为 node 设置 taint 和为 pod 设置 toleration 为例。 为 node 设置 taint 为 node1 设置 taint: kubectl taint nodes node1 key1=value1:NoSchedule kubectl taint nodes node1 key1=value1:NoExecute kubectl taint nodes node1 key2=value2:NoSchedule 删除上面的 taint: kubectl taint nodes node1 key1:NoSchedule- kubectl taint nodes node1 key1:NoExecute- kubectl taint nodes node1 key2:NoSchedule- 查看 node1 上的 taint: kubectl describe nodes node1 为 pod 设置 toleration 只要在 pod 的 spec 中设置 tolerations 字段即可,可以有多个 key,如下所示: tolerations: - key: \"key1\" operator: \"Equal\" value: \"value1\" effect: \"NoSchedule\" - key: \"key1\" operator: \"Equal\" value: \"value1\" effect: \"NoExecute\" - key: \"node.alpha.kubernetes.io/unreachable\" operator: \"Exists\" effect: \"NoExecute\" tolerationSeconds: 6000 value 的值可以为 NoSchedule、PreferNoSchedule 或 NoExecute。 tolerationSeconds 是当 pod 需要被驱逐时,可以继续在 node 上运行的时间。 详细使用方法请参考官方文档。 参考 Taints and Tolerations - kuberentes.io 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/garbage-collection.html":{"url":"concepts/garbage-collection.html","title":"垃圾收集","keywords":"","body":"垃圾收集 Kubernetes 垃圾收集器的角色是删除指定的对象,这些对象曾经有但以后不再拥有 Owner 了。 注意:垃圾收集是 beta 特性,在 Kubernetes 1.4 及以上版本默认启用。 Owner 和 Dependent 一些 Kubernetes 对象是其它一些的 Owner。例如,一个 ReplicaSet 是一组 Pod 的 Owner。具有 Owner 的对象被称为是 Owner 的 Dependent。每个 Dependent 对象具有一个指向其所属对象的 metadata.ownerReferences 字段。 有时,Kubernetes 会自动设置 ownerReference 的值。例如,当创建一个 ReplicaSet 时,Kubernetes 自动设置 ReplicaSet 中每个 Pod 的 ownerReference 字段值。在 1.6 版本,Kubernetes 会自动为一些对象设置 ownerReference 的值,这些对象是由 ReplicationController、ReplicaSet、StatefulSet、DaemonSet 和 Deployment 所创建或管理。 也可以通过手动设置 ownerReference 的值,来指定 Owner 和 Dependent 之间的关系。 这有一个配置文件,表示一个具有 3 个 Pod 的 ReplicaSet: apiVersion: extensions/v1beta1 kind: ReplicaSet metadata: name: my-repset spec: replicas: 3 selector: matchLabels: pod-is-for: garbage-collection-example template: metadata: labels: pod-is-for: garbage-collection-example spec: containers: - name: nginx image: nginx 如果创建该 ReplicaSet,然后查看 Pod 的 metadata 字段,能够看到 OwnerReferences 字段: kubectl create -f https://k8s.io/docs/concepts/abstractions/controllers/my-repset.yaml kubectl get pods --output=yaml 输出显示了 Pod 的 Owner 是名为 my-repset 的 ReplicaSet: apiVersion: v1 kind: Pod metadata: ... ownerReferences: - apiVersion: extensions/v1beta1 controller: true blockOwnerDeletion: true kind: ReplicaSet name: my-repset uid: d9607e19-f88f-11e6-a518-42010a800195 ... 控制垃圾收集器删除 Dependent 当删除对象时,可以指定是否该对象的 Dependent 也自动删除掉。自动删除 Dependent 也称为 级联删除。Kubernetes 中有两种 级联删除 的模式:background 模式和 foreground 模式。 如果删除对象时,不自动删除它的 Dependent,这些 Dependent 被称作是原对象的 孤儿。 Background 级联删除 在 background 级联删除 模式下,Kubernetes 会立即删除 Owner 对象,然后垃圾收集器会在后台删除这些 Dependent。 Foreground 级联删除 在 foreground 级联删除 模式下,根对象首先进入 “删除中” 状态。在 “删除中” 状态会有如下的情况: 对象仍然可以通过 REST API 可见 会设置对象的 deletionTimestamp 字段 对象的 metadata.finalizers 字段包含了值 “foregroundDeletion” 一旦被设置为 “删除中” 状态,垃圾收集器会删除对象的所有 Dependent。垃圾收集器删除了所有 “Blocking” 的 Dependent(对象的 ownerReference.blockOwnerDeletion=true)之后,它会删除 Owner 对象。 注意,在 “foreground 删除” 模式下,Dependent 只有通过 ownerReference.blockOwnerDeletion 才能阻止删除 Owner 对象。在 Kubernetes 1.7 版本中将增加 admission controller,基于 Owner 对象上的删除权限来控制用户去设置 blockOwnerDeletion 的值为 true,所以未授权的 Dependent 不能够延迟 Owner 对象的删除。 如果一个对象的ownerReferences 字段被一个 Controller(例如 Deployment 或 ReplicaSet)设置,blockOwnerDeletion 会被自动设置,没必要手动修改这个字段。 设置级联删除策略 通过为 Owner 对象设置 deleteOptions.propagationPolicy 字段,可以控制级联删除策略。可能的取值包括:“orphan”、“Foreground” 或 “Background”。 对很多 Controller 资源,包括 ReplicationController、ReplicaSet、StatefulSet、DaemonSet 和 Deployment,默认的垃圾收集策略是 orphan。因此,除非指定其它的垃圾收集策略,否则所有 Dependent 对象使用的都是 orphan 策略。 注意:本段所指的默认值是指 REST API 的默认值,并非 kubectl 命令的默认值,kubectl 默认为级联删除,后面会讲到。 下面是一个在后台删除 Dependent 对象的例子: kubectl proxy --port=8080 curl -X DELETE localhost:8080/apis/extensions/v1beta1/namespaces/default/replicasets/my-repset \\ -d '{\"kind\":\"DeleteOptions\",\"apiVersion\":\"v1\",\"propagationPolicy\":\"Background\"}' \\ -H \"Content-Type: application/json\" 下面是一个在前台删除 Dependent 对象的例子: kubectl proxy --port=8080 curl -X DELETE localhost:8080/apis/extensions/v1beta1/namespaces/default/replicasets/my-repset \\ -d '{\"kind\":\"DeleteOptions\",\"apiVersion\":\"v1\",\"propagationPolicy\":\"Foreground\"}' \\ -H \"Content-Type: application/json\" 下面是一个孤儿 Dependent 的例子: kubectl proxy --port=8080 curl -X DELETE localhost:8080/apis/extensions/v1beta1/namespaces/default/replicasets/my-repset \\ -d '{\"kind\":\"DeleteOptions\",\"apiVersion\":\"v1\",\"propagationPolicy\":\"Orphan\"}' \\ -H \"Content-Type: application/json\" kubectl 也支持级联删除。 通过设置 --cascade 为 true,可以使用 kubectl 自动删除 Dependent 对象。设置 --cascade 为 false,会使 Dependent 对象成为孤儿 Dependent 对象。--cascade 的默认值是 true。 下面是一个例子,使一个 ReplicaSet 的 Dependent 对象成为孤儿 Dependent: kubectl delete replicaset my-repset --cascade=false 已知的问题 1.7 版本,垃圾收集不支持 自定义资源,比如那些通过 CustomResourceDefinition 新增,或者通过 API server 聚集而成的资源对象。 其它已知的问题。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/controllers.html":{"url":"concepts/controllers.html","title":"控制器","keywords":"","body":"控制器 Kubernetes 中内建了很多 controller(控制器),这些相当于一个状态机,用来控制 Pod 的具体状态和行为。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/deployment.html":{"url":"concepts/deployment.html","title":"Deployment","keywords":"","body":"Deployment Deployment 为 Pod 和 ReplicaSet 提供了一个声明式定义(declarative)方法,用来替代以前的 ReplicationController 来方便的管理应用。典型的应用场景包括: 定义 Deployment 来创建 Pod 和 ReplicaSet 滚动升级和回滚应用 扩容和缩容 暂停和继续 Deployment 比如一个简单的 nginx 应用可以定义为: apiVersion: extensions/v1beta1 kind: Deployment metadata: name: nginx-deployment spec: replicas: 3 template: metadata: labels: app: nginx spec: containers: - name: nginx image: nginx:1.7.9 ports: - containerPort: 80 扩容: kubectl scale deployment nginx-deployment --replicas 10 如果集群支持 horizontal pod autoscaling 的话,还可以为 Deployment 设置自动扩展: kubectl autoscale deployment nginx-deployment --min=10 --max=15 --cpu-percent=80 更新镜像也比较简单: kubectl set image deployment/nginx-deployment nginx=nginx:1.9.1 回滚: kubectl rollout undo deployment/nginx-deployment Deployment 结构示意图 图 4.6.1.1:kubernetes deployment cheatsheet Deployment 概念详细解析 本文翻译自 kubernetes 官方文档:https://kubernetes.io/docs/concepts/workloads/controllers/deployment 根据 2017 年 5 月 10 日的 Commit 8481c02 翻译。 Deployment 是什么? Deployment 为 Pod 和 Replica Set(下一代 Replication Controller)提供声明式更新。 您只需要在 Deployment 中描述您想要的目标状态是什么,Deployment controller 就会帮您将 Pod 和 ReplicaSet 的实际状态改变到您的目标状态。您可以定义一个全新的 Deployment 来创建 ReplicaSet 或者删除已有的 Deployment 并创建一个新的来替换。 注意:您不该手动管理由 Deployment 创建的 ReplicaSet,否则您就篡越了 Deployment controller 的职责!下文罗列了 Deployment 对象中已经覆盖了所有的用例。如果未有覆盖您所有需要的用例,请直接在 Kubernetes 的代码库中提 issue。 典型的用例如下: 使用 Deployment 来创建 ReplicaSet。ReplicaSet 在后台创建 pod。检查启动状态,看它是成功还是失败。 然后,通过更新 Deployment 的 PodTemplateSpec 字段来声明 Pod 的新状态。这会创建一个新的 ReplicaSet,Deployment 会按照控制的速率将 pod 从旧的 ReplicaSet 移动到新的 ReplicaSet 中。 如果当前状态不稳定,回滚到之前的 Deployment revision。每次回滚都会更新 Deployment 的 revision。 扩容 Deployment 以满足更高的负载。 暂停 Deployment 来应用 PodTemplateSpec 的多个修复,然后恢复上线。 根据 Deployment 的状态判断上线是否 hang 住了。 清除旧的不必要的 ReplicaSet。 创建 Deployment 下面是一个 Deployment 示例,它创建了一个 ReplicaSet 来启动 3 个 nginx pod。 下载示例文件并执行命令: $ kubectl create -f https://kubernetes.io/docs/user-guide/nginx-deployment.yaml --record deployment \"nginx-deployment\" created 将 kubectl 的--record的 flag 设置为true 可以在 annotation 中记录当前命令创建或者升级了该资源。这在未来会很有用,例如,查看在每个 Deployment revision 中执行了哪些命令。 然后立即执行 get 将获得如下结果: $ kubectl get deployments NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE nginx-deployment 3 0 0 0 1s 输出结果表明我们希望的 repalica 数是 3(根据 deployment 中的.spec.replicas配置)当前 replica 数(.status.replicas)是 0, 最新的 replica 数(.status.updatedReplicas)是 0,可用的 replica 数(.status.availableReplicas)是 0。 过几秒后再执行 get 命令,将获得如下输出: $ kubectl get deployments NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE nginx-deployment 3 3 3 3 18s 我们可以看到 Deployment 已经创建了 3 个 replica,所有的 replica 都已经是最新的了(包含最新的 pod template),可用的(根据 Deployment 中的.spec.minReadySeconds声明,处于已就绪状态的 pod 的最少个数)。执行kubectl get rs和kubectl get pods会显示 Replica Set(RS)和 Pod 已创建。 $ kubectl get rs NAME DESIRED CURRENT READY AGE nginx-deployment-2035384211 3 3 0 18s 您可能会注意到 ReplicaSet 的名字总是-。 $ kubectl get pods --show-labels NAME READY STATUS RESTARTS AGE LABELS nginx-deployment-2035384211-7ci7o 1/1 Running 0 18s app=nginx,pod-template-hash=2035384211 nginx-deployment-2035384211-kzszj 1/1 Running 0 18s app=nginx,pod-template-hash=2035384211 nginx-deployment-2035384211-qqcnn 1/1 Running 0 18s app=nginx,pod-template-hash=2035384211 刚创建的 Replica Set 将保证总是有 3 个 nginx 的 pod 存在。 注意: 您必须在 Deployment 中的 selector 指定正确的 pod template label(在该示例中是 app = nginx),不要跟其他的 controller 的 selector 中指定的 pod template label 搞混了(包括 Deployment、Replica Set、Replication Controller 等)。Kubernetes 本身并不会阻止您任意指定 pod template label,但是如果您真的这么做了,这些 controller 之间会相互打架,并可能导致不正确的行为。 Pod-template-hash label 注意:这个 label 不是用户指定的! 注意上面示例输出中的 pod label 里的 pod-template-hash label。当 Deployment 创建或者接管 ReplicaSet 时,Deployment controller 会自动为 Pod 添加 pod-template-hash label。这样做的目的是防止 Deployment 的子 ReplicaSet 的 pod 名字重复。通过将 ReplicaSet 的 PodTemplate 进行哈希散列,使用生成的哈希值作为 label 的值,并添加到 ReplicaSet selector 里、 pod template label 和 ReplicaSet 管理中的 Pod 上。 更新 Deployment 注意:Deployment 的 rollout 当且仅当 Deployment 的 pod template(例如 .spec.template)中的 label 更新或者镜像更改时被触发。其他更新,例如扩容 Deployment 不会触发 rollout。 假如我们现在想要让 nginx pod 使用 nginx:1.9.1 的镜像来代替原来的 nginx:1.7.9 的镜像。 $ kubectl set image deployment/nginx-deployment nginx=nginx:1.9.1 deployment \"nginx-deployment\" image updated 我们可以使用edit命令来编辑 Deployment,修改.spec.template.spec.containers [0].image,将nginx:1.7.9改写成nginx:1.9.1。 $ kubectl edit deployment/nginx-deployment deployment \"nginx-deployment\" edited 查看 rollout 的状态,只要执行: $ kubectl rollout status deployment/nginx-deployment Waiting for rollout to finish: 2 out of 3 new replicas have been updated... deployment \"nginx-deployment\" successfully rolled out Rollout 成功后,getDeployment: $ kubectl get deployments NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE nginx-deployment 3 3 3 3 36s UP-TO-DATE 的 replica 的数目已经达到了配置中要求的数目。 CURRENT 的 replica 数表示 Deployment 管理的 replica 数量,AVAILABLE 的 replica 数是当前可用的 replica 数量。 我们通过执行 kubectl get rs 可以看到 Deployment 更新了 Pod,通过创建一个新的 ReplicaSet 并扩容了 3 个 replica,同时将原来的 ReplicaSet 缩容到了 0 个 replica。 $ kubectl get rs NAME DESIRED CURRENT READY AGE nginx-deployment-1564180365 3 3 0 6s nginx-deployment-2035384211 0 0 0 36s 执行get pods只会看到当前的新的 pod: $ kubectl get pods NAME READY STATUS RESTARTS AGE nginx-deployment-1564180365-khku8 1/1 Running 0 14s nginx-deployment-1564180365-nacti 1/1 Running 0 14s nginx-deployment-1564180365-z9gth 1/1 Running 0 14s 下次更新这些 pod 的时候,只需要更新 Deployment 中的 pod 的 template 即可。 Deployment 可以保证在升级时只有一定数量的 Pod 是 down 的。默认的,它会确保至少有比期望的 Pod 数量少一个是 up 状态(最多一个不可用)。 Deployment 同时也可以确保只创建出超过期望数量的一定数量的 Pod。默认的,它会确保最多比期望的 Pod 数量多一个的 Pod 是 up 的(最多 1 个 surge )。 在未来的 Kuberentes 版本中,将从 1-1 变成 25%-25%。 例如,如果您自己看下上面的 Deployment,您会发现,开始创建一个新的 Pod,然后删除一些旧的 Pod 再创建一个新的。当新的 Pod 创建出来之前不会杀掉旧的 Pod。这样能够确保可用的 Pod 数量至少有 2 个,Pod 的总数最多 4 个。 $ kubectl describe deployments Name: nginx-deployment Namespace: default CreationTimestamp: Tue, 15 Mar 2016 12:01:06 -0700 Labels: app=nginx Selector: app=nginx Replicas: 3 updated | 3 total | 3 available | 0 unavailable StrategyType: RollingUpdate MinReadySeconds: 0 RollingUpdateStrategy: 1 max unavailable, 1 max surge OldReplicaSets: NewReplicaSet: nginx-deployment-1564180365 (3/3 replicas created) Events: FirstSeen LastSeen Count From SubobjectPath Type Reason Message --------- -------- ----- ---- ------------- -------- ------ ------- 36s 36s 1 {deployment-controller} Normal ScalingReplicaSet Scaled up replica set nginx-deployment-2035384211 to 3 23s 23s 1 {deployment-controller} Normal ScalingReplicaSet Scaled up replica set nginx-deployment-1564180365 to 1 23s 23s 1 {deployment-controller} Normal ScalingReplicaSet Scaled down replica set nginx-deployment-2035384211 to 2 23s 23s 1 {deployment-controller} Normal ScalingReplicaSet Scaled up replica set nginx-deployment-1564180365 to 2 21s 21s 1 {deployment-controller} Normal ScalingReplicaSet Scaled down replica set nginx-deployment-2035384211 to 0 21s 21s 1 {deployment-controller} Normal ScalingReplicaSet Scaled up replica set nginx-deployment-1564180365 to 3 我们可以看到当我们刚开始创建这个 Deployment 的时候,创建了一个 ReplicaSet(nginx-deployment-2035384211),并直接扩容到了 3 个 replica。 当我们更新这个 Deployment 的时候,它会创建一个新的 ReplicaSet(nginx-deployment-1564180365),将它扩容到 1 个 replica,然后缩容原先的 ReplicaSet 到 2 个 replica,此时满足至少 2 个 Pod 是可用状态,同一时刻最多有 4 个 Pod 处于创建的状态。 接着继续使用相同的 rolling update 策略扩容新的 ReplicaSet 和缩容旧的 ReplicaSet。最终,将会在新的 ReplicaSet 中有 3 个可用的 replica,旧的 ReplicaSet 的 replica 数目变成 0。 Rollover(多个 rollout 并行) 每当 Deployment controller 观测到有新的 deployment 被创建时,如果没有已存在的 ReplicaSet 来创建期望个数的 Pod 的话,就会创建出一个新的 ReplicaSet 来做这件事。已存在的 ReplicaSet 控制 label 与 .spec.selector 匹配但是 template 跟 .spec.template 不匹配的 Pod 缩容。最终,新的 ReplicaSet 将会扩容出 .spec.replicas 指定数目的 Pod,旧的 ReplicaSet 会缩容到 0。 如果您更新了一个的已存在并正在进行中的 Deployment,每次更新 Deployment 都会创建一个新的 ReplicaSet 并扩容它,同时回滚之前扩容的 ReplicaSet —— 将它添加到旧的 ReplicaSet 列表中,开始缩容。 例如,假如您创建了一个有 5 个 niginx:1.7.9 replica 的 Deployment,但是当还只有 3 个 nginx:1.7.9 的 replica 创建出来的时候您就开始更新含有 5 个 nginx:1.9.1 replica 的 Deployment。在这种情况下,Deployment 会立即杀掉已创建的 3 个 nginx:1.7.9 的 Pod,并开始创建 nginx:1.9.1 的 Pod。它不会等到所有的 5 个 nginx:1.7.9 的 Pod 都创建完成后才开始改变航道。 Label selector 更新 我们通常不鼓励更新 label selector,我们建议事先规划好您的 selector。 任何情况下,只要您想要执行 label selector 的更新,请一定要谨慎并确认您已经预料到所有可能因此导致的后果。 增添 selector 需要同时在 Deployment 的 spec 中更新新的 label,否则将返回校验错误。此更改是不可覆盖的,这意味着新的 selector 不会选择使用旧 selector 创建的 ReplicaSet 和 Pod,从而导致所有旧版本的 ReplicaSet 都被丢弃,并创建新的 ReplicaSet。 更新 selector,即更改 selector key 的当前值,将导致跟增添 selector 同样的后果。 删除 selector,即删除 Deployment selector 中的已有的 key,不需要对 Pod template label 做任何更改,现有的 ReplicaSet 也不会成为孤儿,但是请注意,删除的 label 仍然存在于现有的 Pod 和 ReplicaSet 中。 回退 Deployment 有时候您可能想回退一个 Deployment,例如,当 Deployment 不稳定时,比如一直 crash looping。 默认情况下,kubernetes 会在系统中保存前两次的 Deployment 的 rollout 历史记录,以便您可以随时回退(您可以修改 revision history limit 来更改保存的 revision 数)。 注意:只要 Deployment 的 rollout 被触发就会创建一个 revision。也就是说当且仅当 Deployment 的 Pod template(如 .spec.template)被更改,例如更新 template 中的 label 和容器镜像时,就会创建出一个新的 revision。 其他的更新,比如扩容 Deployment 不会创建 revision—— 因此我们可以很方便的手动或者自动扩容。这意味着当您回退到历史 revision 时,只有 Deployment 中的 Pod template 部分才会回退。 假设我们在更新 Deployment 的时候犯了一个拼写错误,将镜像的名字写成了 nginx:1.91,而正确的名字应该是 nginx:1.9.1: $ kubectl set image deployment/nginx-deployment nginx=nginx:1.91 deployment \"nginx-deployment\" image updated Rollout 将会卡住。 $ kubectl rollout status deployments nginx-deployment Waiting for rollout to finish: 2 out of 3 new replicas have been updated... 按住 Ctrl-C 停止上面的 rollout 状态监控。 您会看到旧的 replica(nginx-deployment-1564180365 和 nginx-deployment-2035384211)和新的 replica (nginx-deployment-3066724191)数目都是 2 个。 $ kubectl get rs NAME DESIRED CURRENT READY AGE nginx-deployment-1564180365 2 2 0 25s nginx-deployment-2035384211 0 0 0 36s nginx-deployment-3066724191 2 2 2 6s 看下创建 Pod,您会看到有两个新的 ReplicaSet 创建的 Pod 处于 ImagePullBackOff 状态,循环拉取镜像。 $ kubectl get pods NAME READY STATUS RESTARTS AGE nginx-deployment-1564180365-70iae 1/1 Running 0 25s nginx-deployment-1564180365-jbqqo 1/1 Running 0 25s nginx-deployment-3066724191-08mng 0/1 ImagePullBackOff 0 6s nginx-deployment-3066724191-eocby 0/1 ImagePullBackOff 0 6s 注意,Deployment controller 会自动停止坏的 rollout,并停止扩容新的 ReplicaSet。 $ kubectl describe deployment Name: nginx-deployment Namespace: default CreationTimestamp: Tue, 15 Mar 2016 14:48:04 -0700 Labels: app=nginx Selector: app=nginx Replicas: 2 updated | 3 total | 2 available | 2 unavailable StrategyType: RollingUpdate MinReadySeconds: 0 RollingUpdateStrategy: 1 max unavailable, 1 max surge OldReplicaSets: nginx-deployment-1564180365 (2/2 replicas created) NewReplicaSet: nginx-deployment-3066724191 (2/2 replicas created) Events: FirstSeen LastSeen Count From SubobjectPath Type Reason Message --------- -------- ----- ---- ------------- -------- ------ ------- 1m 1m 1 {deployment-controller} Normal ScalingReplicaSet Scaled up replica set nginx-deployment-2035384211 to 3 22s 22s 1 {deployment-controller} Normal ScalingReplicaSet Scaled up replica set nginx-deployment-1564180365 to 1 22s 22s 1 {deployment-controller} Normal ScalingReplicaSet Scaled down replica set nginx-deployment-2035384211 to 2 22s 22s 1 {deployment-controller} Normal ScalingReplicaSet Scaled up replica set nginx-deployment-1564180365 to 2 21s 21s 1 {deployment-controller} Normal ScalingReplicaSet Scaled down replica set nginx-deployment-2035384211 to 0 21s 21s 1 {deployment-controller} Normal ScalingReplicaSet Scaled up replica set nginx-deployment-1564180365 to 3 13s 13s 1 {deployment-controller} Normal ScalingReplicaSet Scaled up replica set nginx-deployment-3066724191 to 1 13s 13s 1 {deployment-controller} Normal ScalingReplicaSet Scaled down replica set nginx-deployment-1564180365 to 2 13s 13s 1 {deployment-controller} Normal ScalingReplicaSet Scaled up replica set nginx-deployment-3066724191 to 2 为了修复这个问题,我们需要回退到稳定的 Deployment revision。 检查 Deployment 升级的历史记录 首先,检查下 Deployment 的 revision: $ kubectl rollout history deployment/nginx-deployment deployments \"nginx-deployment\": REVISION CHANGE-CAUSE 1 kubectl create -f https://kubernetes.io/docs/user-guide/nginx-deployment.yaml--record 2 kubectl set image deployment/nginx-deployment nginx=nginx:1.9.1 3 kubectl set image deployment/nginx-deployment nginx=nginx:1.91 因为我们创建 Deployment 的时候使用了--record 参数可以记录命令,我们可以很方便的查看每次 revision 的变化。 查看单个 revision 的详细信息: $ kubectl rollout history deployment/nginx-deployment --revision=2 deployments \"nginx-deployment\" revision 2 Labels: app=nginx pod-template-hash=1159050644 Annotations: kubernetes.io/change-cause=kubectl set image deployment/nginx-deployment nginx=nginx:1.9.1 Containers: nginx: Image: nginx:1.9.1 Port: 80/TCP QoS Tier: cpu: BestEffort memory: BestEffort Environment Variables: No volumes. 回退到历史版本 现在,我们可以决定回退当前的 rollout 到之前的版本: $ kubectl rollout undo deployment/nginx-deployment deployment \"nginx-deployment\" rolled back 也可以使用--revision参数指定某个历史版本: $ kubectl rollout undo deployment/nginx-deployment --to-revision=2 deployment \"nginx-deployment\" rolled back 该 Deployment 现在已经回退到了先前的稳定版本。如您所见,Deployment controller 产生了一个回退到 revison 2 的DeploymentRollback的 event。 $ kubectl get deployment NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE nginx-deployment 3 3 3 3 30m $ kubectl describe deployment Name: nginx-deployment Namespace: default CreationTimestamp: Tue, 15 Mar 2016 14:48:04 -0700 Labels: app=nginx Selector: app=nginx Replicas: 3 updated | 3 total | 3 available | 0 unavailable StrategyType: RollingUpdate MinReadySeconds: 0 RollingUpdateStrategy: 1 max unavailable, 1 max surge OldReplicaSets: NewReplicaSet: nginx-deployment-1564180365 (3/3 replicas created) Events: FirstSeen LastSeen Count From SubobjectPath Type Reason Message --------- -------- ----- ---- ------------- -------- ------ ------- 30m 30m 1 {deployment-controller} Normal ScalingReplicaSet Scaled up replica set nginx-deployment-2035384211 to 3 29m 29m 1 {deployment-controller} Normal ScalingReplicaSet Scaled up replica set nginx-deployment-1564180365 to 1 29m 29m 1 {deployment-controller} Normal ScalingReplicaSet Scaled down replica set nginx-deployment-2035384211 to 2 29m 29m 1 {deployment-controller} Normal ScalingReplicaSet Scaled up replica set nginx-deployment-1564180365 to 2 29m 29m 1 {deployment-controller} Normal ScalingReplicaSet Scaled down replica set nginx-deployment-2035384211 to 0 29m 29m 1 {deployment-controller} Normal ScalingReplicaSet Scaled up replica set nginx-deployment-3066724191 to 2 29m 29m 1 {deployment-controller} Normal ScalingReplicaSet Scaled up replica set nginx-deployment-3066724191 to 1 29m 29m 1 {deployment-controller} Normal ScalingReplicaSet Scaled down replica set nginx-deployment-1564180365 to 2 2m 2m 1 {deployment-controller} Normal ScalingReplicaSet Scaled down replica set nginx-deployment-3066724191 to 0 2m 2m 1 {deployment-controller} Normal DeploymentRollback Rolled back deployment \"nginx-deployment\" to revision 2 29m 2m 2 {deployment-controller} Normal ScalingReplicaSet Scaled up replica set nginx-deployment-1564180365 to 3 清理 Policy 您可以通过设置 .spec.revisonHistoryLimit 项来指定 deployment 最多保留多少 revision 历史记录。默认的会保留所有的 revision;如果将该项设置为 0,Deployment 就不允许回退了。 Deployment 扩容 您可以使用以下命令扩容 Deployment: $ kubectl scale deployment nginx-deployment --replicas 10 deployment \"nginx-deployment\" scaled 假设您的集群中启用了 horizontal pod autoscaling,您可以给 Deployment 设置一个 autoscaler,基于当前 Pod 的 CPU 利用率选择最少和最多的 Pod 数。 $ kubectl autoscale deployment nginx-deployment --min=10 --max=15 --cpu-percent=80 deployment \"nginx-deployment\" autoscaled 比例扩容 RollingUpdate Deployment 支持同时运行一个应用的多个版本。或者 autoscaler 扩 容 RollingUpdate Deployment 的时候,正在中途的 rollout(进行中或者已经暂停的),为了降低风险,Deployment controller 将会平衡已存在的活动中的 ReplicaSet(有 Pod 的 ReplicaSet)和新加入的 replica。这被称为比例扩容。 例如,您正在运行中含有 10 个 replica 的 Deployment。maxSurge=3,maxUnavailable=2。 $ kubectl get deploy NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE nginx-deployment 10 10 10 10 50s 您更新了一个镜像,而在集群内部无法解析。 $ kubectl set image deploy/nginx-deployment nginx=nginx:sometag deployment \"nginx-deployment\" image updated 镜像更新启动了一个包含 ReplicaSet nginx-deployment-1989198191 的新的 rollout,但是它被阻塞了,因为我们上面提到的 maxUnavailable。 $ kubectl get rs NAME DESIRED CURRENT READY AGE nginx-deployment-1989198191 5 5 0 9s nginx-deployment-618515232 8 8 8 1m 然后发起了一个新的 Deployment 扩容请求。autoscaler 将 Deployment 的 repllica 数目增加到了 15 个。Deployment controller 需要判断在哪里增加这 5 个新的 replica。如果我们没有谁用比例扩容,所有的 5 个 replica 都会加到一个新的 ReplicaSet 中。如果使用比例扩容,新添加的 replica 将传播到所有的 ReplicaSet 中。大的部分加入 replica 数最多的 ReplicaSet 中,小的部分加入到 replica 数少的 ReplciaSet 中。0 个 replica 的 ReplicaSet 不会被扩容。 在我们上面的例子中,3 个 replica 将添加到旧的 ReplicaSet 中,2 个 replica 将添加到新的 ReplicaSet 中。rollout 进程最终会将所有的 replica 移动到新的 ReplicaSet 中,假设新的 replica 成为健康状态。 $ kubectl get deploy NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE nginx-deployment 15 18 7 8 7m $ kubectl get rs NAME DESIRED CURRENT READY AGE nginx-deployment-1989198191 7 7 0 7m nginx-deployment-618515232 11 11 11 7m 删除 autoscale kubectl get hpa kubectl delete hpa ${name of hpa} 暂停和恢复 Deployment 您可以在发出一次或多次更新前暂停一个 Deployment,然后再恢复它。这样您就能在 Deployment 暂停期间进行多次修复工作,而不会发出不必要的 rollout。 例如使用刚刚创建 Deployment: $ kubectl get deploy NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE nginx 3 3 3 3 1m [mkargaki@dhcp129-211 kubernetes]$ kubectl get rs NAME DESIRED CURRENT READY AGE nginx-2142116321 3 3 3 1m 使用以下命令暂停 Deployment: $ kubectl rollout pause deployment/nginx-deployment deployment \"nginx-deployment\" paused 然后更新 Deplyment 中的镜像: $ kubectl set image deploy/nginx nginx=nginx:1.9.1 deployment \"nginx-deployment\" image updated 注意新的 rollout 启动了: $ kubectl rollout history deploy/nginx deployments \"nginx\" REVISION CHANGE-CAUSE 1 $ kubectl get rs NAME DESIRED CURRENT READY AGE nginx-2142116321 3 3 3 2m 您可以进行任意多次更新,例如更新使用的资源: $ kubectl set resources deployment nginx -c=nginx --limits=cpu=200m,memory=512Mi deployment \"nginx\" resource requirements updated Deployment 暂停前的初始状态将继续它的功能,而不会对 Deployment 的更新产生任何影响,只要 Deployment 是暂停的。 最后,恢复这个 Deployment,观察完成更新的 ReplicaSet 已经创建出来了: $ kubectl rollout resume deploy nginx deployment \"nginx\" resumed $ KUBECTL get rs -w NAME DESIRED CURRENT READY AGE nginx-2142116321 2 2 2 2m nginx-3926361531 2 2 0 6s nginx-3926361531 2 2 1 18s nginx-2142116321 1 2 2 2m nginx-2142116321 1 2 2 2m nginx-3926361531 3 2 1 18s nginx-3926361531 3 2 1 18s nginx-2142116321 1 1 1 2m nginx-3926361531 3 3 1 18s nginx-3926361531 3 3 2 19s nginx-2142116321 0 1 1 2m nginx-2142116321 0 1 1 2m nginx-2142116321 0 0 0 2m nginx-3926361531 3 3 3 20s ^C $ KUBECTL get rs NAME DESIRED CURRENT READY AGE nginx-2142116321 0 0 0 2m nginx-3926361531 3 3 3 28s 注意:在恢复 Deployment 之前您无法回退一个已经暂停的 Deployment。 Deployment 状态 Deployment 在生命周期中有多种状态。在创建一个新的 ReplicaSet 的时候它可以是 progressing 状态, complete 状态,或者 fail to progress 状态。 进行中的 Deployment Kubernetes 将执行过下列任务之一的 Deployment 标记为 progressing 状态: Deployment 正在创建新的 ReplicaSet 过程中。 Deployment 正在扩容一个已有的 ReplicaSet。 Deployment 正在缩容一个已有的 ReplicaSet。 有新的可用的 pod 出现。 您可以使用 kubectl rollout status 命令监控 Deployment 的进度。 完成的 Deployment Kubernetes 将包括以下特性的 Deployment 标记为 complete 状态: Deployment 最小可用。最小可用意味着 Deployment 的可用 replica 个数等于或者超过 Deployment 策略中的期望个数。 所有与该 Deployment 相关的 replica 都被更新到了您指定版本,也就说更新完成。 该 Deployment 中没有旧的 Pod 存在。 您可以用 kubectl rollout status 命令查看 Deployment 是否完成。如果 rollout 成功完成,kubectl rollout status 将返回一个 0 值的 Exit Code。 $ kubectl rollout status deploy/nginx Waiting for rollout to finish: 2 of 3 updated replicas are available... deployment \"nginx\" successfully rolled out $ echo $? 0 失败的 Deployment 您的 Deployment 在尝试部署新的 ReplicaSet 的时候可能卡住,永远也不会完成。这可能是因为以下几个因素引起的: 无效的引用 不可读的 probe failure 镜像拉取错误 权限不够 范围限制 程序运行时配置错误 探测这种情况的一种方式是,在您的 Deployment spec 中指定 spec.progressDeadlineSeconds。spec.progressDeadlineSeconds 表示 Deployment controller 等待多少秒才能确定(通过 Deployment status)Deployment 进程是卡住的。 下面的 kubectl 命令设置 progressDeadlineSeconds 使 controller 在 Deployment 在进度卡住 10 分钟后报告: $ kubectl patch deployment/nginx-deployment -p '{\"spec\":{\"progressDeadlineSeconds\":600}}' \"nginx-deployment\" patched 当超过截止时间后,Deployment controller 会在 Deployment 的status.conditions 中增加一条 DeploymentCondition,它包括如下属性: Type=Progressing Status=False Reason=ProgressDeadlineExceeded 注意:kubernetes 除了报告 Reason=ProgressDeadlineExceeded 状态信息外不会对卡住的 Deployment 做任何操作。更高层次的协调器可以利用它并采取相应行动,例如,回滚 Deployment 到之前的版本。 注意:如果您暂停了一个 Deployment,在暂停的这段时间内 kubernetnes 不会检查您指定的 deadline。您可以在 Deployment 的 rollout 途中安全的暂停它,然后再恢复它,这不会触发超过 deadline 的状态。 您可能在使用 Deployment 的时候遇到一些短暂的错误,这些可能是由于您设置了太短的 timeout,也有可能是因为各种其他错误导致的短暂错误。例如,假设您使用了无效的引用。当您 Describe Deployment 的时候可能会注意到如下信息: $ kubectl describe deployment nginx-deployment Conditions: Type Status Reason ---- ------ ------ Available True MinimumReplicasAvailable Progressing True ReplicaSetUpdated ReplicaFailure True FailedCreate 执行kubectl get deployment nginx-deployment -o yaml,Deployement 的状态可能看起来像这个样子: status: availableReplicas: 2 conditions: - lastTransitionTime: 2016-10-04T12:25:39Z lastUpdateTime: 2016-10-04T12:25:39Z message: Replica set \"nginx-deployment-4262182780\" is progressing. reason: ReplicaSetUpdated status: \"True\" type: Progressing - lastTransitionTime: 2016-10-04T12:25:42Z lastUpdateTime: 2016-10-04T12:25:42Z message: Deployment has minimum availability. reason: MinimumReplicasAvailable status: \"True\" type: Available - lastTransitionTime: 2016-10-04T12:25:39Z lastUpdateTime: 2016-10-04T12:25:39Z message: 'Error creating: pods \"nginx-deployment-4262182780-\" is forbidden: exceeded quota: object-counts, requested: pods=1, used: pods=3, limited: pods=2' reason: FailedCreate status: \"True\" type: ReplicaFailure observedGeneration: 3 replicas: 2 unavailableReplicas: 2 最终,一旦超过 Deployment 进程的 deadline,kubernetes 会更新状态和导致 Progressing 状态的原因: Conditions: Type Status Reason ---- ------ ------ Available True MinimumReplicasAvailable Progressing False ProgressDeadlineExceeded ReplicaFailure True FailedCreate 您可以通过缩容 Deployment 的方式解决配额不足的问题,或者增加您的 namespace 的配额。如果您满足了配额条件后,Deployment controller 就会完成您的 Deployment rollout,您将看到 Deployment 的状态更新为成功状态(Status=True并且Reason=NewReplicaSetAvailable)。 Conditions: Type Status Reason ---- ------ ------ Available True MinimumReplicasAvailable Progressing True NewReplicaSetAvailable Type=Available、 Status=True 意味着您的 Deployment 有最小可用性。 最小可用性是在 Deployment 策略中指定的参数。Type=Progressing 、 Status=True 意味着您的 Deployment 或者在部署过程中,或者已经成功部署,达到了期望的最少的可用 replica 数量(查看特定状态的 Reason—— 在我们的例子中 Reason=NewReplicaSetAvailable 意味着 Deployment 已经完成)。 您可以使用 kubectl rollout status 命令查看 Deployment 进程是否失败。当 Deployment 过程超过了 deadline,kubectl rollout status 将返回非 0 的 exit code。 $ kubectl rollout status deploy/nginx Waiting for rollout to finish: 2 out of 3 new replicas have been updated... error: deployment \"nginx\" exceeded its progress deadline $ echo $? 1 操作失败的 Deployment 所有对完成的 Deployment 的操作都适用于失败的 Deployment。您可以对它扩 / 缩容,回退到历史版本,您甚至可以多次暂停它来应用 Deployment pod template。 清理 Policy 您可以设置 Deployment 中的 .spec.revisionHistoryLimit 项来指定保留多少旧的 ReplicaSet。 余下的将在后台被当作垃圾收集。默认的,所有的 revision 历史就都会被保留。在未来的版本中,将会更改为 2。 注意:将该值设置为 0,将导致所有的 Deployment 历史记录都会被清除,该 Deployment 就无法再回退了。 用例 金丝雀 Deployment 如果您想要使用 Deployment 对部分用户或服务器发布 release,您可以创建多个 Deployment,每个 Deployment 对应一个 release,参照 managing resources 中对金丝雀模式的描述。 编写 Deployment Spec 在所有的 Kubernetes 配置中,Deployment 也需要 apiVersion,kind 和 metadata 这些配置项。配置文件的通用使用说明查看 部署应用,配置容器,和使用 kubectl 管理资源文档。 Pod Template .spec.template 是 .spec 中唯一要求的字段。 .spec.template 是 pod template. 它跟 Pod 有一模一样的 schema,除了它是嵌套的并且不需要 apiVersion 和 kind 字段。 另外为了划分 Pod 的范围,Deployment 中的 pod template 必须指定适当的 label(不要跟其他 controller 重复了,参考 selector)和适当的重启策略。 .spec.template.spec.restartPolicy 可以设置为 Always , 如果不指定的话这就是默认配置。 Replicas .spec.replicas 是可以选字段,指定期望的 pod 数量,默认是 1。 Selector .spec.selector 是可选字段,用来指定 label selector ,圈定 Deployment 管理的 pod 范围。 如果被指定, .spec.selector 必须匹配 .spec.template.metadata.labels,否则它将被 API 拒绝。如果 .spec.selector 没有被指定, .spec.selector.matchLabels 默认是 .spec.template.metadata.labels。 在 Pod 的 template 跟 .spec.template 不同或者数量超过了 .spec.replicas 规定的数量的情况下,Deployment 会杀掉 label 跟 selector 不同的 Pod。 注意:您不应该再创建其他 label 跟这个 selector 匹配的 pod,或者通过其他 Deployment,或者通过其他 Controller,例如 ReplicaSet 和 ReplicationController。否则该 Deployment 会被把它们当成都是自己创建的。Kubernetes 不会阻止您这么做。 如果您有多个 controller 使用了重复的 selector,controller 们就会互相打架并导致不正确的行为。 策略 .spec.strategy 指定新的 Pod 替换旧的 Pod 的策略。 .spec.strategy.type 可以是 \"Recreate\" 或者是 \"RollingUpdate\"。\"RollingUpdate\" 是默认值。 Recreate Deployment .spec.strategy.type==Recreate 时,在创建出新的 Pod 之前会先杀掉所有已存在的 Pod。 Rolling Update Deployment .spec.strategy.type==RollingUpdate 时,Deployment 使用 rolling update 的方式更新 Pod 。您可以指定 maxUnavailable 和 maxSurge 来控制 rolling update 进程。 Max Unavailable .spec.strategy.rollingUpdate.maxUnavailable 是可选配置项,用来指定在升级过程中不可用 Pod 的最大数量。该值可以是一个绝对值(例如 5),也可以是期望 Pod 数量的百分比(例如 10%)。通过计算百分比的绝对值向下取整。如果 .spec.strategy.rollingUpdate.maxSurge 为 0 时,这个值不可以为 0。默认值是 1。 例如,该值设置成 30%,启动 rolling update 后旧的 ReplicatSet 将会立即缩容到期望的 Pod 数量的 70%。新的 Pod ready 后,随着新的 ReplicaSet 的扩容,旧的 ReplicaSet 会进一步缩容,确保在升级的所有时刻可以用的 Pod 数量至少是期望 Pod 数量的 70%。 Max Surge .spec.strategy.rollingUpdate.maxSurge 是可选配置项,用来指定可以超过期望的 Pod 数量的最大个数。该值可以是一个绝对值(例如 5)或者是期望的 Pod 数量的百分比(例如 10%)。当 MaxUnavailable 为 0 时该值不可以为 0。通过百分比计算的绝对值向上取整。默认值是 1。 例如,该值设置成 30%,启动 rolling update 后新的 ReplicatSet 将会立即扩容,新老 Pod 的总数不能超过期望的 Pod 数量的 130%。旧的 Pod 被杀掉后,新的 ReplicaSet 将继续扩容,旧的 ReplicaSet 会进一步缩容,确保在升级的所有时刻所有的 Pod 数量和不会超过期望 Pod 数量的 130%。 Progress Deadline Seconds .spec.progressDeadlineSeconds 是可选配置项,用来指定在系统报告 Deployment 的 failed progressing —— 表现为 resource 的状态中 type=Progressing、Status=False、 Reason=ProgressDeadlineExceeded 前可以等待的 Deployment 进行的秒数。Deployment controller 会继续重试该 Deployment。未来,在实现了自动回滚后, deployment controller 在观察到这种状态时就会自动回滚。 如果设置该参数,该值必须大于 .spec.minReadySeconds。 Min Ready Seconds .spec.minReadySeconds 是一个可选配置项,用来指定没有任何容器 crash 的 Pod 并被认为是可用状态的最小秒数。默认是 0(Pod 在 ready 后就会被认为是可用状态)。进一步了解什么什么后 Pod 会被认为是 ready 状态,参阅 Container Probes。 Rollback To .spec.rollbackTo 是一个可以选配置项,用来配置 Deployment 回退的配置。设置该参数将触发回退操作,每次回退完成后,该值就会被清除。 Revision .spec.rollbackTo.revision 是一个可选配置项,用来指定回退到的 revision。默认是 0,意味着回退到上一个 revision。 Revision History Limit Deployment revision history 存储在它控制的 ReplicaSets 中。 .spec.revisionHistoryLimit 是一个可选配置项,用来指定可以保留的旧的 ReplicaSet 数量。该理想值取决于心 Deployment 的频率和稳定性。如果该值没有设置的话,默认所有旧的 Replicaset 或会被保留,将资源存储在 etcd 中,是用 kubectl get rs 查看输出。每个 Deployment 的该配置都保存在 ReplicaSet 中,然而,一旦您删除的旧的 RepelicaSet,您的 Deployment 就无法再回退到那个 revison 了。 如果您将该值设置为 0,所有具有 0 个 replica 的 ReplicaSet 都会被删除。在这种情况下,新的 Deployment rollout 无法撤销,因为 revision history 都被清理掉了。 Paused .spec.paused 是可以可选配置项,boolean 值。用来指定暂停和恢复 Deployment。Paused 和没有 paused 的 Deployment 之间的唯一区别就是,所有对 paused deployment 中的 PodTemplateSpec 的修改都不会触发新的 rollout。Deployment 被创建之后默认是非 paused。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/statefulset.html":{"url":"concepts/statefulset.html","title":"StatefulSet","keywords":"","body":"StatefulSet StatefulSet 作为 Controller 为 Pod 提供唯一的标识。它可以保证部署和 scale 的顺序。 使用案例参考:kubernetes contrib - statefulsets,其中包含zookeeper和kakfa的statefulset设置和使用说明。 StatefulSet是为了解决有状态服务的问题(对应Deployments和ReplicaSets是为无状态服务而设计),其应用场景包括: 稳定的持久化存储,即Pod重新调度后还是能访问到相同的持久化数据,基于PVC来实现 稳定的网络标志,即Pod重新调度后其PodName和HostName不变,基于Headless Service(即没有Cluster IP的Service)来实现 有序部署,有序扩展,即Pod是有顺序的,在部署或者扩展的时候要依据定义的顺序依次依次进行(即从0到N-1,在下一个Pod运行之前所有之前的Pod必须都是Running和Ready状态),基于init containers来实现 有序收缩,有序删除(即从N-1到0) 从上面的应用场景可以发现,StatefulSet由以下几个部分组成: 用于定义网络标志(DNS domain)的Headless Service 用于创建PersistentVolumes的volumeClaimTemplates 定义具体应用的StatefulSet StatefulSet中每个Pod的DNS格式为statefulSetName-{0..N-1}.serviceName.namespace.svc.cluster.local,其中 serviceName为Headless Service的名字 0..N-1为Pod所在的序号,从0开始到N-1 statefulSetName为StatefulSet的名字 namespace为服务所在的namespace,Headless Servic和StatefulSet必须在相同的namespace .cluster.local为Cluster Domain 使用 StatefulSet StatefulSet 适用于有以下某个或多个需求的应用: 稳定,唯一的网络标志。 稳定,持久化存储。 有序,优雅地部署和 scale。 有序,优雅地删除和终止。 有序,自动的滚动升级。 在上文中,稳定是 Pod (重新)调度中持久性的代名词。 如果应用程序不需要任何稳定的标识符、有序部署、删除和 scale,则应该使用提供一组无状态副本的 controller 来部署应用程序,例如 Deployment 或 ReplicaSet 可能更适合您的无状态需求。 限制 StatefulSet 是 beta 资源,Kubernetes 1.5 以前版本不支持。 对于所有的 alpha/beta 的资源,您都可以通过在 apiserver 中设置 --runtime-config 选项来禁用。 给定 Pod 的存储必须由 PersistentVolume Provisioner 根据请求的 storage class 进行配置,或由管理员预先配置。 删除或 scale StatefulSet 将不会删除与 StatefulSet 相关联的 volume。 这样做是为了确保数据安全性,这通常比自动清除所有相关 StatefulSet 资源更有价值。 StatefulSets 目前要求 Headless Service 负责 Pod 的网络身份。 您有责任创建此服务。 组件 下面的示例中描述了 StatefulSet 中的组件。 一个名为 nginx 的 headless service,用于控制网络域。 一个名为 web 的 StatefulSet,它的 Spec 中指定在有 3 个运行 nginx 容器的 Pod。 volumeClaimTemplates 使用 PersistentVolume Provisioner 提供的 PersistentVolumes 作为稳定存储。 apiVersion: v1 kind: Service metadata: name: nginx labels: app: nginx spec: ports: - port: 80 name: web clusterIP: None selector: app: nginx --- apiVersion: apps/v1beta1 kind: StatefulSet metadata: name: web spec: serviceName: \"nginx\" replicas: 3 template: metadata: labels: app: nginx spec: terminationGracePeriodSeconds: 10 containers: - name: nginx image: gcr.io/google_containers/nginx-slim:0.8 ports: - containerPort: 80 name: web volumeMounts: - name: www mountPath: /usr/share/nginx/html volumeClaimTemplates: - metadata: name: www annotations: volume.beta.kubernetes.io/storage-class: anything spec: accessModes: [ \"ReadWriteOnce\" ] resources: requests: storage: 1Gi Pod 身份 StatefulSet Pod 具有唯一的身份,包括序数,稳定的网络身份和稳定的存储。 身份绑定到 Pod 上,不管它(重新)调度到哪个节点上。 序数 对于一个有 N 个副本的 StatefulSet,每个副本都会被指定一个整数序数,在 [0,N)之间,且唯一。 稳定的网络 ID StatefulSet 中的每个 Pod 从 StatefulSet 的名称和 Pod 的序数派生其主机名。构造的主机名的模式是$(statefulset名称)-$(序数)。 上面的例子将创建三个名为web-0,web-1,web-2的 Pod。 StatefulSet 可以使用 Headless Service 来控制其 Pod 的域。此服务管理的域的格式为:$(服务名称).$(namespace).svc.cluster.local,其中 “cluster.local” 是集群域。 在创建每个Pod时,它将获取一个匹配的 DNS 子域,采用以下形式:$(pod 名称).$(管理服务域),其中管理服务由 StatefulSet 上的 serviceName 字段定义。 以下是 Cluster Domain,服务名称,StatefulSet 名称以及如何影响 StatefulSet 的 Pod 的 DNS 名称的一些示例。 Cluster Domain Service (ns/name) StatefulSet (ns/name) StatefulSet Domain Pod DNS Pod Hostname cluster.local default/nginx default/web nginx.default.svc.cluster.local web-{0..N-1}.nginx.default.svc.cluster.local web-{0..N-1} cluster.local foo/nginx foo/web nginx.foo.svc.cluster.local web-{0..N-1}.nginx.foo.svc.cluster.local web-{0..N-1} kube.local foo/nginx foo/web nginx.foo.svc.kube.local web-{0..N-1}.nginx.foo.svc.kube.local web-{0..N-1} 注意 Cluster Domain 将被设置成 cluster.local 除非进行了其他配置。 稳定存储 Kubernetes 为每个 VolumeClaimTemplate 创建一个 PersistentVolume。上面的 nginx 的例子中,每个 Pod 将具有一个由 anything 存储类创建的 1 GB 存储的 PersistentVolume。当该 Pod (重新)调度到节点上,volumeMounts 将挂载与 PersistentVolume Claim 相关联的 PersistentVolume。请注意,与 PersistentVolume Claim 相关联的 PersistentVolume 在 产出 Pod 或 StatefulSet 的时候不会被删除。这必须手动完成。 部署和 Scale 保证 对于有 N 个副本的 StatefulSet,Pod 将按照 {0..N-1} 的顺序被创建和部署。 当 删除 Pod 的时候,将按照逆序来终结,从{N-1..0} 对 Pod 执行 scale 操作之前,它所有的前任必须处于 Running 和 Ready 状态。 在终止 Pod 前,它所有的继任者必须处于完全关闭状态。 不应该将 StatefulSet 的 pod.Spec.TerminationGracePeriodSeconds 设置为 0。这样是不安全的且强烈不建议您这样做。进一步解释,请参阅 强制删除 StatefulSet Pod。 上面的 nginx 示例创建后,3 个 Pod 将按照如下顺序创建 web-0,web-1,web-2。在 web-0 处于 运行并就绪 状态之前,web-1 将不会被部署,同样当 web-1 处于运行并就绪状态之前 web-2也不会被部署。如果在 web-1 运行并就绪后,web-2 启动之前, web-0 失败了,web-2 将不会启动,直到 web-0 成功重启并处于运行并就绪状态。 如果用户通过修补 StatefulSet 来 scale 部署的示例,以使 replicas=1,则 web-2 将首先被终止。 在 web-2 完全关闭和删除之前,web-1 不会被终止。 如果 web-0 在 web-2 终止并且完全关闭之后,但是在 web-1 终止之前失败,则 web-1 将不会终止,除非 web-0 正在运行并准备就绪。 Pod 管理策略 在 Kubernetes 1.7 和之后版本,StatefulSet 允许您放开顺序保证,同时通过 .spec.podManagementPolicy 字段保证身份的唯一性。 OrderedReady Pod 管理 StatefulSet 中默认使用的是 OrderedReady pod 管理。它实现了 如上 所述的行为。 并行 Pod 管理 Parallel pod 管理告诉 StatefulSet controller 并行的启动和终止 Pod,在启动和终止其他 Pod 之前不会等待 Pod 变成 运行并就绪或完全终止状态。 更新策略 在 kubernetes 1.7 和以上版本中,StatefulSet 的 .spec.updateStrategy 字段允许您配置和禁用 StatefulSet 中的容器、label、resource request/limit、annotation 的滚动更新。 删除 OnDelete 更新策略实现了遗留(1.6和以前)的行为。 当 spec.updateStrategy 未指定时,这是默认策略。 当StatefulSet 的 .spec.updateStrategy.type 设置为 OnDelete 时,StatefulSet 控制器将不会自动更新 StatefulSet 中的 Pod。 用户必须手动删除 Pod 以使控制器创建新的 Pod,以反映对StatefulSet的 .spec.template 进行的修改。 滚动更新 RollingUpdate 更新策略在 StatefulSet 中实现 Pod 的自动滚动更新。 当StatefulSet的 .spec.updateStrategy.type 设置为 RollingUpdate 时,StatefulSet 控制器将在 StatefulSet 中删除并重新创建每个 Pod。 它将以与 Pod 终止相同的顺序进行(从最大的序数到最小的序数),每次更新一个 Pod。 在更新其前身之前,它将等待正在更新的 Pod 状态变成正在运行并就绪。 分区 可以通过指定 .spec.updateStrategy.rollingUpdate.partition 来对 RollingUpdate 更新策略进行分区。如果指定了分区,则当 StatefulSet 的 .spec.template 更新时,具有大于或等于分区序数的所有 Pod 将被更新。具有小于分区的序数的所有 Pod 将不会被更新,即使删除它们也将被重新创建。如果 StatefulSet 的 .spec.updateStrategy.rollingUpdate.partition 大于其 .spec.replicas,则其 .spec.template 的更新将不会传播到 Pod。 在大多数情况下,您不需要使用分区,但如果您想要进行分阶段更新,使用金丝雀发布或执行分阶段发布,它们将非常有用。 简单示例 以一个简单的nginx服务web.yaml为例: --- apiVersion: v1 kind: Service metadata: name: nginx labels: app: nginx spec: ports: - port: 80 name: web clusterIP: None selector: app: nginx --- apiVersion: apps/v1beta1 kind: StatefulSet metadata: name: web spec: serviceName: \"nginx\" replicas: 2 template: metadata: labels: app: nginx spec: containers: - name: nginx image: gcr.io/google_containers/nginx-slim:0.8 ports: - containerPort: 80 name: web volumeMounts: - name: www mountPath: /usr/share/nginx/html volumeClaimTemplates: - metadata: name: www annotations: volume.alpha.kubernetes.io/storage-class: anything spec: accessModes: [ \"ReadWriteOnce\" ] resources: requests: storage: 1Gi $ kubectl create -f web.yaml service \"nginx\" created statefulset \"web\" created # 查看创建的headless service和statefulset $ kubectl get service nginx NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE nginx None 80/TCP 1m $ kubectl get statefulset web NAME DESIRED CURRENT AGE web 2 2 2m # 根据volumeClaimTemplates自动创建PVC(在GCE中会自动创建kubernetes.io/gce-pd类型的volume) $ kubectl get pvc NAME STATUS VOLUME CAPACITY ACCESSMODES AGE www-web-0 Bound pvc-d064a004-d8d4-11e6-b521-42010a800002 1Gi RWO 16s www-web-1 Bound pvc-d06a3946-d8d4-11e6-b521-42010a800002 1Gi RWO 16s # 查看创建的Pod,他们都是有序的 $ kubectl get pods -l app=nginx NAME READY STATUS RESTARTS AGE web-0 1/1 Running 0 5m web-1 1/1 Running 0 4m # 使用nslookup查看这些Pod的DNS $ kubectl run -i --tty --image busybox dns-test --restart=Never --rm /bin/sh / # nslookup web-0.nginx Server: 10.0.0.10 Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local Name: web-0.nginx Address 1: 10.244.2.10 / # nslookup web-1.nginx Server: 10.0.0.10 Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local Name: web-1.nginx Address 1: 10.244.3.12 / # nslookup web-0.nginx.default.svc.cluster.local Server: 10.0.0.10 Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local Name: web-0.nginx.default.svc.cluster.local Address 1: 10.244.2.10 还可以进行其他的操作 # 扩容 $ kubectl scale statefulset web --replicas=5 # 缩容 $ kubectl patch statefulset web -p '{\"spec\":{\"replicas\":3}}' # 镜像更新(目前还不支持直接更新image,需要patch来间接实现) $ kubectl patch statefulset web --type='json' -p='[{\"op\": \"replace\", \"path\": \"/spec/template/spec/containers/0/image\", \"value\":\"gcr.io/google_containers/nginx-slim:0.7\"}]' # 删除StatefulSet和Headless Service $ kubectl delete statefulset web $ kubectl delete service nginx # StatefulSet删除后PVC还会保留着,数据不再使用的话也需要删除 $ kubectl delete pvc www-web-0 www-web-1 zookeeper 另外一个更能说明StatefulSet强大功能的示例为zookeeper.yaml,这个例子仅为讲解,实际可用的配置请使用 https://github.com/kubernetes/contrib/tree/master/statefulsets 中的配置。 --- apiVersion: v1 kind: Service metadata: name: zk-headless labels: app: zk-headless spec: ports: - port: 2888 name: server - port: 3888 name: leader-election clusterIP: None selector: app: zk --- apiVersion: v1 kind: ConfigMap metadata: name: zk-config data: ensemble: \"zk-0;zk-1;zk-2\" jvm.heap: \"2G\" tick: \"2000\" init: \"10\" sync: \"5\" client.cnxns: \"60\" snap.retain: \"3\" purge.interval: \"1\" --- apiVersion: policy/v1beta1 kind: PodDisruptionBudget metadata: name: zk-budget spec: selector: matchLabels: app: zk minAvailable: 2 --- apiVersion: apps/v1beta1 kind: StatefulSet metadata: name: zk spec: serviceName: zk-headless replicas: 3 template: metadata: labels: app: zk annotations: pod.alpha.kubernetes.io/initialized: \"true\" scheduler.alpha.kubernetes.io/affinity: > { \"podAntiAffinity\": { \"requiredDuringSchedulingRequiredDuringExecution\": [{ \"labelSelector\": { \"matchExpressions\": [{ \"key\": \"app\", \"operator\": \"In\", \"values\": [\"zk-headless\"] }] }, \"topologyKey\": \"kubernetes.io/hostname\" }] } } spec: containers: - name: k8szk imagePullPolicy: Always image: gcr.io/google_samples/k8szk:v1 resources: requests: memory: \"4Gi\" cpu: \"1\" ports: - containerPort: 2181 name: client - containerPort: 2888 name: server - containerPort: 3888 name: leader-election env: - name : ZK_ENSEMBLE valueFrom: configMapKeyRef: name: zk-config key: ensemble - name : ZK_HEAP_SIZE valueFrom: configMapKeyRef: name: zk-config key: jvm.heap - name : ZK_TICK_TIME valueFrom: configMapKeyRef: name: zk-config key: tick - name : ZK_INIT_LIMIT valueFrom: configMapKeyRef: name: zk-config key: init - name : ZK_SYNC_LIMIT valueFrom: configMapKeyRef: name: zk-config key: tick - name : ZK_MAX_CLIENT_CNXNS valueFrom: configMapKeyRef: name: zk-config key: client.cnxns - name: ZK_SNAP_RETAIN_COUNT valueFrom: configMapKeyRef: name: zk-config key: snap.retain - name: ZK_PURGE_INTERVAL valueFrom: configMapKeyRef: name: zk-config key: purge.interval - name: ZK_CLIENT_PORT value: \"2181\" - name: ZK_SERVER_PORT value: \"2888\" - name: ZK_ELECTION_PORT value: \"3888\" command: - sh - -c - zkGenConfig.sh && zkServer.sh start-foreground readinessProbe: exec: command: - \"zkOk.sh\" initialDelaySeconds: 15 timeoutSeconds: 5 livenessProbe: exec: command: - \"zkOk.sh\" initialDelaySeconds: 15 timeoutSeconds: 5 volumeMounts: - name: datadir mountPath: /var/lib/zookeeper securityContext: runAsUser: 1000 fsGroup: 1000 volumeClaimTemplates: - metadata: name: datadir annotations: volume.alpha.kubernetes.io/storage-class: anything spec: accessModes: [ \"ReadWriteOnce\" ] resources: requests: storage: 20Gi kubectl create -f zookeeper.yaml 详细的使用说明见zookeeper stateful application。 关于StatefulSet的更多示例请参阅 github.com/kubernetes/contrib - statefulsets,其中包括了zookeeper和kafka。 集群外部访问StatefulSet的Pod 我们设想一下这样的场景:在kubernetes集群外部调试StatefulSet中有序的Pod,那么如何访问这些的pod呢? 方法是为pod设置label,然后用kubectl expose将其以NodePort的方式暴露到集群外部,以上面的zookeeper的例子来说明,下面使用命令的方式来暴露其中的两个zookeeper节点,也可以写一个serivce配置yaml文件。 kubectl label pod zk-0 zkInst=0 kubectl label pod zk-1 zkInst=1 kubectl expose po zk-0 --port=2181 --target-port=2181 --name=zk-0 --selector=zkInst=0 --type=NodePort kubectl expose po zk-1 --port=2181 --target-port=2181 --name=zk-1 --selector=zkInst=1 --type=NodePort 这样在kubernetes集群外部就可以根据pod所在的主机所映射的端口来访问了。 查看zk-0这个service可以看到如下结果: NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE zk-0 10.254.98.14 2181:31693/TCP 5m 集群外部就可以使用所有的node中的任何一个IP:31693来访问这个zookeeper实例。 参考 https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/ kubernetes contrib - statefulsets 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/daemonset.html":{"url":"concepts/daemonset.html","title":"DaemonSet","keywords":"","body":"DaemonSet 本文将为您介绍 DaemonSet 的基本概念。 什么是 DaemonSet? DaemonSet 确保全部(或者一些)Node 上运行一个 Pod 的副本。当有 Node 加入集群时,也会为他们新增一个 Pod 。当有 Node 从集群移除时,这些 Pod 也会被回收。删除 DaemonSet 将会删除它创建的所有 Pod。 使用 DaemonSet 的一些典型用法: 运行集群存储 daemon,例如在每个 Node 上运行 glusterd、ceph。 在每个 Node 上运行日志收集 daemon,例如fluentd、logstash。 在每个 Node 上运行监控 daemon,例如 Prometheus Node Exporter、collectd、Datadog 代理、New Relic 代理,或 Ganglia gmond。 一个简单的用法是,在所有的 Node 上都存在一个 DaemonSet,将被作为每种类型的 daemon 使用。 一个稍微复杂的用法可能是,对单独的每种类型的 daemon 使用多个 DaemonSet,但具有不同的标志,和/或对不同硬件类型具有不同的内存、CPU要求。 编写 DaemonSet Spec 必需字段 和其它所有 Kubernetes 配置一样,DaemonSet 需要 apiVersion、kind 和 metadata字段。有关配置文件的通用信息,详见文档 部署应用、配置容器 和资源管理。 DaemonSet 也需要一个 .spec配置段。 Pod 模板 .spec 唯一必需的字段是 .spec.template。 .spec.template 是一个 Pod 模板。 它与 Pod 具有相同的 schema,除了它是嵌套的,而且不具有 apiVersion 或 kind 字段。 Pod 除了必须字段外,在 DaemonSet 中的 Pod 模板必须指定合理的标签(查看 pod selector)。 在 DaemonSet 中的 Pod 模板必需具有一个值为 Always 的 RestartPolicy,或者未指定它的值,默认是 Always。 Pod Selector .spec.selector 字段表示 Pod Selector,它与 Job 或其它资源的 .spec.selector 的原理是相同的。 spec.selector 表示一个对象,它由如下两个字段组成: matchLabels - 与 ReplicationController 的 .spec.selector 的原理相同。 matchExpressions - 允许构建更加复杂的 Selector,可以通过指定 key、value 列表,以及与 key 和 value 列表的相关的操作符。 当上述两个字段都指定时,结果表示的是 AND 关系。 如果指定了 .spec.selector,必须与 .spec.template.metadata.labels 相匹配。如果没有指定,它们默认是等价的。如果与它们配置的不匹配,则会被 API 拒绝。 如果 Pod 的 label 与 selector 匹配,或者直接基于其它的 DaemonSet、或者 Controller(例如 ReplicationController),也不可以创建任何 Pod。 否则 DaemonSet Controller 将认为那些 Pod 是它创建的。Kubernetes 不会阻止这样做。一个场景是,可能希望在一个具有不同值的、用来测试用的 Node 上手动创建 Pod。 仅在相同的 Node 上运行 Pod 如果指定了 .spec.template.spec.nodeSelector,DaemonSet Controller 将在能够匹配上 Node Selector 的 Node 上创建 Pod。 类似这种情况,可以指定 .spec.template.spec.affinity,然后 DaemonSet Controller 将在能够匹配上 Node Affinity 的 Node 上创建 Pod。 如果根本就没有指定,则 DaemonSet Controller 将在所有 Node 上创建 Pod。 如何调度 Daemon Pod 正常情况下,Pod 运行在哪个机器上是由 Kubernetes 调度器进行选择的。然而,由 Daemon Controller 创建的 Pod 已经确定了在哪个机器上(Pod 创建时指定了 .spec.nodeName),因此: DaemonSet Controller 并不关心一个 Node 的 unschedulable 字段。 DaemonSet Controller 可以创建 Pod,即使调度器还没有被启动,这对集群启动是非常有帮助的。 Daemon Pod 关心 Taint 和 Toleration,它们会为没有指定 tolerationSeconds 的 node.alpha.kubernetes.io/notReady 和 node.alpha.kubernetes.io/unreachable 的 Taint,而创建具有 NoExecute 的 Toleration。这确保了当 alpha 特性的 TaintBasedEvictions 被启用,当 Node 出现故障,比如网络分区,这时它们将不会被清除掉(当 TaintBasedEvictions 特性没有启用,在这些场景下也不会被清除,但会因为 NodeController 的硬编码行为而被清除,Toleration 是不会的)。 与 Daemon Pod 通信 与 DaemonSet 中的 Pod 进行通信,几种可能的模式如下: Push:配置 DaemonSet 中的 Pod 向其它 Service 发送更新,例如统计数据库。它们没有客户端。 NodeIP 和已知端口:DaemonSet 中的 Pod 可以使用 hostPort,从而可以通过 Node IP 访问到 Pod。客户端能通过某种方法知道 Node IP 列表,并且基于此也可以知道端口。 DNS:创建具有相同 Pod Selector 的 Headless Service,然后通过使用 endpoints 资源或从 DNS 检索到多个 A 记录来发现 DaemonSet。 Service:创建具有相同 Pod Selector 的 Service,并使用该 Service 访问到某个随机 Node 上的 daemon。(没有办法访问到特定 Node) 更新 DaemonSet 如果修改了 Node Label,DaemonSet 将立刻向新匹配上的 Node 添加 Pod,同时删除新近无法匹配上的 Node 上的 Pod。 可以修改 DaemonSet 创建的 Pod。然而,不允许对 Pod 的所有字段进行更新。当下次 Node(即使具有相同的名称)被创建时,DaemonSet Controller 还会使用最初的模板。 可以删除一个 DaemonSet。如果使用 kubectl 并指定 --cascade=false 选项,则 Pod 将被保留在 Node 上。然后可以创建具有不同模板的新 DaemonSet。具有不同模板的新 DaemonSet 将鞥能够通过 Label 匹配识别所有已经存在的 Pod。它不会修改或删除它们,即使是错误匹配了 Pod 模板。通过删除 Pod 或者 删除 Node,可以强制创建新的 Pod。 在 Kubernetes 1.6 或以后版本,可以在 DaemonSet 上 执行滚动升级。 init 脚本 很可能通过直接在一个 Node 上启动 daemon 进程(例如,使用 init、upstartd、或 systemd)。这非常好,然而基于 DaemonSet 来运行这些进程有如下一些好处: 像对待应用程序一样,具备为 daemon 提供监控和管理日志的能力。 为 daemon 和应用程序使用相同的配置语言和工具(如 Pod 模板、kubectl)。 Kubernetes 未来版本可能会支持对 DaemonSet 创建 Pod 与 Node升级工作流进行集成。 在资源受限的容器中运行 daemon,能够增加 daemon 和应用容器的隔离性。然而这也实现了在容器中运行 daemon,但却不能在 Pod 中运行(例如,直接基于 Docker 启动)。 裸 Pod 可能要直接创建 Pod,同时指定其运行在特定的 Node 上。 然而,DaemonSet 替换了由于任何原因被删除或终止的 Pod,例如 Node 失败、例行节点维护,比如内核升级。由于这个原因,我们应该使用 DaemonSet 而不是单独创建 Pod。 静态 Pod 很可能,通过在一个指定目录下编写文件来创建 Pod,该目录受 Kubelet 所监视。这些 Pod 被称为 静态 Pod。 不像 DaemonSet,静态 Pod 不受 kubectl 和 其它 Kubernetes API 客户端管理。静态 Pod 不依赖于 apiserver,这使得它们在集群启动的情况下非常有用。 而且,未来静态 Pod 可能会被废弃掉。 Replication Controller DaemonSet 与 Replication Controller 非常类似,它们都能创建 Pod,这些 Pod 都具有不期望被终止的进程(例如,Web 服务器、存储服务器)。 为无状态的 Service 使用 Replication Controller,像 frontend,实现对副本的数量进行扩缩容、平滑升级,比之于精确控制 Pod 运行在某个主机上要重要得多。需要 Pod 副本总是运行在全部或特定主机上,并需要先于其他 Pod 启动,当这被认为非常重要时,应该使用 Daemon Controller。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/replicaset.html":{"url":"concepts/replicaset.html","title":"ReplicationController 和 ReplicaSet","keywords":"","body":"ReplicationController 和 ReplicaSet ReplicationController 用来确保容器应用的副本数始终保持在用户定义的副本数,即如果有容器异常退出,会自动创建新的 Pod 来替代;而如果异常多出来的容器也会自动回收。 在新版本的 Kubernetes 中建议使用 ReplicaSet 来取代 ReplicationController。ReplicaSet 跟 ReplicationController 没有本质的不同,只是名字不一样,并且 ReplicaSet 支持集合式的 selector。 虽然 ReplicaSet 可以独立使用,但一般还是建议使用 Deployment 来自动管理 ReplicaSet,这样就无需担心跟其他机制的不兼容问题(比如 ReplicaSet 不支持 rolling-update 但 Deployment 支持)。 ReplicaSet 示例: apiVersion: extensions/v1beta1 kind: ReplicaSet metadata: name: frontend # these labels can be applied automatically # from the labels in the pod template if not set # labels: # app: guestbook # tier: frontend spec: # this replicas value is default # modify it according to your case replicas: 3 # selector can be applied automatically # from the labels in the pod template if not set, # but we are specifying the selector here to # demonstrate its usage. selector: matchLabels: tier: frontend matchExpressions: - {key: tier, operator: In, values: [frontend]} template: metadata: labels: app: guestbook tier: frontend spec: containers: - name: php-redis image: gcr.io/google_samples/gb-frontend:v3 resources: requests: cpu: 100m memory: 100Mi env: - name: GET_HOSTS_FROM value: dns # If your cluster config does not include a dns service, then to # instead access environment variables to find service host # info, comment out the 'value: dns' line above, and uncomment the # line below. # value: env ports: - containerPort: 80 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/job.html":{"url":"concepts/job.html","title":"Job","keywords":"","body":"Job Job负责批处理任务,即仅执行一次的任务,它保证批处理任务的一个或多个Pod成功结束。 Job Spec格式 spec.template格式同Pod RestartPolicy仅支持Never或OnFailure 单个Pod时,默认Pod成功运行后Job即结束 .spec.completions标志Job结束需要成功运行的Pod个数,默认为1 .spec.parallelism标志并行运行的Pod的个数,默认为1 spec.activeDeadlineSeconds标志失败Pod的重试最大时间,超过这个时间不会继续重试 一个简单的例子: apiVersion: batch/v1 kind: Job metadata: name: pi spec: template: metadata: name: pi spec: containers: - name: pi image: perl command: [\"perl\", \"-Mbignum=bpi\", \"-wle\", \"print bpi(2000)\"] restartPolicy: Never $ kubectl create -f ./job.yaml job \"pi\" created $ pods=$(kubectl get pods --selector=job-name=pi --output=jsonpath={.items..metadata.name}) $ kubectl logs $pods -c pi 3.141592653589793238462643383279502... Bare Pods 所谓Bare Pods是指直接用PodSpec来创建的Pod(即不在ReplicaSets或者ReplicationController的管理之下的Pods)。这些Pod在Node重启后不会自动重启,但Job则会创建新的Pod继续任务。所以,推荐使用Job来替代Bare Pods,即便是应用只需要一个Pod。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/cronjob.html":{"url":"concepts/cronjob.html","title":"CronJob","keywords":"","body":"CronJob Cron Job 管理基于时间的 Job,即: 在给定时间点只运行一次 周期性地在给定时间点运行 一个 CronJob 对象类似于 crontab (cron table)文件中的一行。它根据指定的预定计划周期性地运行一个 Job,格式可以参考 Cron 。 前提条件 当前使用的 Kubernetes 集群,版本 >= 1.8(对 CronJob)。对于先前版本的集群,版本 为集群开启或关闭 API 版本 获取更多信息)时,通过传递选项 --runtime-config=batch/v2alpha1=true 可以开启 batch/v2alpha1 API。 典型的用法如下所示: 在给定的时间点调度 Job 运行 创建周期性运行的 Job,例如:数据库备份、发送邮件。 CronJob Spec .spec.schedule:调度,必需字段,指定任务运行周期,格式同 Cron .spec.jobTemplate:Job 模板,必需字段,指定需要运行的任务,格式同 Job .spec.startingDeadlineSeconds :启动 Job 的期限(秒级别),该字段是可选的。如果因为任何原因而错过了被调度的时间,那么错过执行时间的 Job 将被认为是失败的。如果没有指定,则没有期限 .spec.concurrencyPolicy:并发策略,该字段也是可选的。它指定了如何处理被 Cron Job 创建的 Job 的并发执行。只允许指定下面策略中的一种: Allow(默认):允许并发运行 Job Forbid:禁止并发运行,如果前一个还没有完成,则直接跳过下一个 Replace:取消当前正在运行的 Job,用一个新的来替换 注意,当前策略只能应用于同一个 Cron Job 创建的 Job。如果存在多个 Cron Job,它们创建的 Job 之间总是允许并发运行。 .spec.suspend :挂起,该字段也是可选的。如果设置为 true,后续所有执行都会被挂起。它对已经开始执行的 Job 不起作用。默认值为 false。 .spec.successfulJobsHistoryLimit 和 .spec.failedJobsHistoryLimit :历史限制,是可选的字段。它们指定了可以保留多少完成和失败的 Job。 默认情况下,它们分别设置为 3 和 1。设置限制的值为 0,相关类型的 Job 完成后将不会被保留。 apiVersion: batch/v1beta1 kind: CronJob metadata: name: hello spec: schedule: \"*/1 * * * *\" jobTemplate: spec: template: spec: containers: - name: hello image: busybox args: - /bin/sh - -c - date; echo Hello from the Kubernetes cluster restartPolicy: OnFailure $ kubectl create -f cronjob.yaml cronjob \"hello\" created 当然,也可以用kubectl run来创建一个CronJob: kubectl run hello --schedule=\"*/1 * * * *\" --restart=OnFailure --image=busybox -- /bin/sh -c \"date; echo Hello from the Kubernetes cluster\" $ kubectl get cronjob NAME SCHEDULE SUSPEND ACTIVE LAST-SCHEDULE hello */1 * * * * False 0 $ kubectl get jobs NAME DESIRED SUCCESSFUL AGE hello-1202039034 1 1 49s $ pods=$(kubectl get pods --selector=job-name=hello-1202039034 --output=jsonpath={.items..metadata.name}) $ kubectl logs $pods Mon Aug 29 21:34:09 UTC 2016 Hello from the Kubernetes cluster # 注意,删除 cronjob 的时候不会自动删除 job,这些 job 可以用 kubectl delete job 来删除 $ kubectl delete cronjob hello cronjob \"hello\" deleted Cron Job 限制 Cron Job 在每次调度运行时间内 大概 会创建一个 Job 对象。我们之所以说 大概 ,是因为在特定的环境下可能会创建两个 Job,或者一个 Job 都没创建。我们尝试少发生这种情况,但却不能完全避免。因此,创建 Job 操作应该是 幂等的。 Job 根据它所创建的 Pod 的并行度,负责重试创建 Pod,并就决定这一组 Pod 的成功或失败。Cron Job 根本就不会去检查 Pod。 删除 Cron Job 一旦不再需要 Cron Job,简单地可以使用 kubectl 命令删除它: $ kubectl delete cronjob hello cronjob \"hello\" deleted 这将会终止正在创建的 Job。然而,运行中的 Job 将不会被终止,不会删除 Job 或 它们的 Pod。为了清理那些 Job 和 Pod,需要列出该 Cron Job 创建的全部 Job,然后删除它们: $ kubectl get jobs NAME DESIRED SUCCESSFUL AGE hello-1201907962 1 1 11m hello-1202039034 1 1 8m ... $ kubectl delete jobs hello-1201907962 hello-1202039034 ... job \"hello-1201907962\" deleted job \"hello-1202039034\" deleted ... 一旦 Job 被删除,由 Job 创建的 Pod 也会被删除。注意,所有由名称为 “hello” 的 Cron Job 创建的 Job 会以前缀字符串 “hello-” 进行命名。如果想要删除当前 Namespace 中的所有 Job,可以通过命令 kubectl delete jobs --all 立刻删除它们。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/horizontal-pod-autoscaling.html":{"url":"concepts/horizontal-pod-autoscaling.html","title":"Horizontal Pod Autoscaling","keywords":"","body":"Horizontal Pod Autoscaling 应用的资源使用率通常都有高峰和低谷的时候,如何削峰填谷,提高集群的整体资源利用率,让service中的Pod个数自动调整呢?这就有赖于Horizontal Pod Autoscaling了,顾名思义,使Pod水平自动缩放。这个Object(跟Pod、Deployment一样都是API resource)也是最能体现kubernetes之于传统运维价值的地方,不再需要手动扩容了,终于实现自动化了,还可以自定义指标,没准未来还可以通过人工智能自动进化呢! HPA属于Kubernetes中的autoscaling SIG(Special Interest Group),其下有两个feature: Arbitrary/Custom Metrics in the Horizontal Pod Autoscaler#117 Monitoring Pipeline Metrics HPA API #118 Kubernetes自1.2版本引入HPA机制,到1.6版本之前一直是通过kubelet来获取监控指标来判断是否需要扩缩容,1.6版本之后必须通过API server、Heapseter或者kube-aggregator来获取监控指标。 对于1.6以前版本中开启自定义HPA请参考Kubernetes autoscaling based on custom metrics without using a host port。 HPA解析 Horizontal Pod Autoscaling仅适用于Deployment和ReplicaSet,在v1版本中仅支持根据Pod的CPU利用率扩缩容,在v1alpha版本中,支持根据内存和用户自定义的metric扩缩容。 如果你不想看下面的文章可以直接看下面的示例图,组件交互、组件的配置、命令示例,都画在图上了。 Horizontal Pod Autoscaling由API server和controller共同实现。 图 4.6.7.1:horizontal-pod-autoscaler Metrics支持 在不同版本的API中,HPA autoscale时可以根据以下指标来判断: autoscaling/v1 CPU autoscaling/v1alpha1 内存 自定义metrics kubernetes1.6起支持自定义metrics,但是必须在kube-controller-manager中配置如下两项: --horizontal-pod-autoscaler-use-rest-clients=true --api-server指向kube-aggregator,也可以使用heapster来实现,通过在启动heapster的时候指定--api-server=true。查看kubernetes metrics 多种metrics组合 HPA会根据每个metric的值计算出scale的值,并将最大的那个值作为扩容的最终结果。 使用kubectl管理 Horizontal Pod Autoscaling作为API resource也可以像Pod、Deployment一样使用kubeclt命令管理,使用方法跟它们一样,资源名称为hpa。 kubectl create hpa kubectl get hpa kubectl describe hpa kubectl delete hpa 有一点不同的是,可以直接使用kubectl autoscale直接通过命令行的方式创建Horizontal Pod Autoscaler。 用法如下: kubectl autoscale (-f FILENAME | TYPE NAME | TYPE/NAME) [--min=MINPODS] --max=MAXPODS [--cpu-percent=CPU] [flags] [options] 举个例子: kubectl autoscale deployment foo --min=2 --max=5 --cpu-percent=80 为Deployment foo创建 一个autoscaler,当Pod的CPU利用率达到80%的时候,RC的replica数在2到5之间。 注意 :如果为ReplicaSet创建HPA的话,无法使用rolling update,但是对于Deployment来说是可以的,因为Deployment在执行rolling update的时候会自动创建新的ReplicationController。 什么是 Horizontal Pod Autoscaling? 利用 Horizontal Pod Autoscaling,kubernetes 能够根据监测到的 CPU 利用率(或者在 alpha 版本中支持的应用提供的 metric)自动的扩容 replication controller,deployment 和 replica set。 Horizontal Pod Autoscaler 作为 kubernetes API resource 和 controller 的实现。Resource 确定 controller 的行为。Controller 会根据监测到用户指定的目标的 CPU 利用率周期性得调整 replication controller 或 deployment 的 replica 数量。 Horizontal Pod Autoscaler 如何工作? Horizontal Pod Autoscaler 由一个控制循环实现,循环周期由 controller manager 中的 --horizontal-pod-autoscaler-sync-period 标志指定(默认是 30 秒)。 在每个周期内,controller manager 会查询 HorizontalPodAutoscaler 中定义的 metric 的资源利用率。Controller manager 从 resource metric API(每个 pod 的 resource metric)或者自定义 metric API(所有的metric)中获取 metric。 每个 Pod 的 resource metric(例如 CPU),controller 通过 resource metric API 获取 HorizontalPodAutoscaler 中定义的每个 Pod 中的 metric。然后,如果设置了目标利用率,controller 计算利用的值与每个 Pod 的容器里的 resource request 值的百分比。如果设置了目标原始值,将直接使用该原始 metric 值。然后 controller 计算所有目标 Pod 的利用率或原始值(取决于所指定的目标类型)的平均值,产生一个用于缩放所需 replica 数量的比率。 请注意,如果某些 Pod 的容器没有设置相关的 resource request ,则不会定义 Pod 的 CPU 利用率,并且 Aucoscaler 也不会对该 metric 采取任何操作。 对于每个 Pod 自定义的 metric,controller 功能类似于每个 Pod 的 resource metric,只是它使用原始值而不是利用率值。 对于 object metric,获取单个度量(描述有问题的对象),并与目标值进行比较,以产生如上所述的比率。 HorizontalPodAutoscaler 控制器可以以两种不同的方式获取 metric :直接的 Heapster 访问和 REST 客户端访问。 当使用直接的 Heapster 访问时,HorizontalPodAutoscaler 直接通过 API 服务器的服务代理子资源查询 Heapster。需要在集群上部署 Heapster 并在 kube-system namespace 中运行。 Autoscaler 访问相应的 replication controller,deployment 或 replica set 来缩放子资源。 Scale 是一个允许您动态设置副本数并检查其当前状态的接口。 API Object Horizontal Pod Autoscaler 是 kubernetes 的 autoscaling API 组中的 API 资源。当前的稳定版本中,只支持 CPU 自动扩缩容,可以在autoscaling/v1 API 版本中找到。 在 alpha 版本中支持根据内存和自定义 metric 扩缩容,可以在autoscaling/v2alpha1 中找到。autoscaling/v2alpha1 中引入的新字段在autoscaling/v1 中是做为 annotation 而保存的。 在 kubectl 中支持 Horizontal Pod Autoscaling Horizontal Pod Autoscaler 和其他的所有 API 资源一样,通过 kubectl 以标准的方式支持。 我们可以使用kubectl create命令创建一个新的 autoscaler。 我们可以使用kubectl get hpa列出所有的 autoscaler,使用kubectl describe hpa获取其详细信息。 最后我们可以使用kubectl delete hpa删除 autoscaler。 另外,可以使用kubectl autoscale命令,很轻易的就可以创建一个 Horizontal Pod Autoscaler。 例如,执行kubectl autoscale rc foo —min=2 —max=5 —cpu-percent=80命令将为 replication controller foo 创建一个 autoscaler,目标的 CPU 利用率是80%,replica 的数量介于 2 和 5 之间。 滚动更新期间的自动扩缩容 目前在Kubernetes中,可以通过直接管理 replication controller 或使用 deployment 对象来执行 滚动更新,该 deployment 对象为您管理基础 replication controller。 Horizontal Pod Autoscaler 仅支持后一种方法:Horizontal Pod Autoscaler 被绑定到 deployment 对象,它设置 deployment 对象的大小,deployment 负责设置底层 replication controller 的大小。 Horizontal Pod Autoscaler 不能使用直接操作 replication controller 进行滚动更新,即不能将 Horizontal Pod Autoscaler 绑定到 replication controller,并进行滚动更新(例如使用kubectl rolling-update)。 这不行的原因是,当滚动更新创建一个新的 replication controller 时,Horizontal Pod Autoscaler 将不会绑定到新的 replication controller 上。 支持多个 metric Kubernetes 1.6 中增加了支持基于多个 metric 的扩缩容。您可以使用autoscaling/v2alpha1 API 版本来为 Horizontal Pod Autoscaler 指定多个 metric。然后 Horizontal Pod Autoscaler controller 将权衡每一个 metric,并根据该 metric 提议一个新的 scale。在所有提议里最大的那个 scale 将作为最终的 scale。 支持自定义 metric 注意: Kubernetes 1.2 根据特定于应用程序的 metric ,通过使用特殊注释的方式,增加了对缩放的 alpha 支持。 在 Kubernetes 1.6中删除了对这些注释的支持,有利于autoscaling/v2alpha1 API。 虽然旧的收集自定义 metric 的旧方法仍然可用,但是这些 metric 将不可供 Horizontal Pod Autoscaler 使用,并且用于指定要缩放的自定义 metric 的以前的注释也不在受 Horizontal Pod Autoscaler 认可。 Kubernetes 1.6增加了在 Horizontal Pod Autoscale r中使用自定义 metric 的支持。 您可以为autoscaling/v2alpha1 API 中使用的 Horizontal Pod Autoscaler 添加自定义 metric 。 Kubernetes 然后查询新的自定义 metric API 来获取相应自定义 metric 的值。 前提条件 为了在 Horizontal Pod Autoscaler 中使用自定义 metric,您必须在您集群的 controller manager 中将 --horizontal-pod-autoscaler-use-rest-clients 标志设置为 true。然后,您必须通过将 controller manager 的目标 API server 设置为 API server aggregator(使用--apiserver标志),配置您的 controller manager 通过 API server aggregator 与API server 通信。 Resource metric API和自定义 metric API 也必须向 API server aggregator 注册,并且必须由集群上运行的 API server 提供。 您可以使用 Heapster 实现 resource metric API,方法是将 --api-server 标志设置为 true 并运行 Heapster。 单独的组件必须提供自定义 metric API(有关自定义metric API的更多信息,可从 k8s.io/metrics repository 获得)。 参考 HPA说明:https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/ HPA详解:https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/ 自定义metrics开发:https://github.com/kubernetes/metrics 1.7版本的kubernetes中启用自定义HPA:Configure Kubernetes Autoscaling With Custom Metrics in Kubernetes 1.7 - Bitnami 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/custom-metrics-hpa.html":{"url":"concepts/custom-metrics-hpa.html","title":"自定义指标 HPA","keywords":"","body":"自定义指标HPA Kubernetes中不仅支持CPU、内存为指标的HPA,还支持自定义指标的HPA,例如QPS。 本文中使用的yaml文件见manifests/HPA。 设置自定义指标 kubernetes1.6 在kubernetes1.6集群中配置自定义指标的HPA的说明已废弃。 在设置定义指标HPA之前需要先进行如下配置: 将heapster的启动参数 --api-server 设置为 true 启用custom metric API 将kube-controller-manager的启动参数中--horizontal-pod-autoscaler-use-rest-clients设置为true,并指定--master为API server地址,如--master=http://172.20.0.113:8080 在kubernetes1.5以前很容易设置,参考1.6以前版本的kubernetes中开启自定义HPA,而在1.6中因为取消了原来的annotation方式设置custom metric,只能通过API server和kube-aggregator来获取custom metric,因为只有两种方式来设置了,一是直接通过API server获取heapster的metrics,二是部署kube-aggragator来实现。 我们将在kubernetes1.8版本的kubernetes中,使用聚合的API server来实现自定义指标的HPA。 kuberentes1.7+ 确认您的kubernetes版本在1.7或以上,修改以下配置: 将kube-controller-manager的启动参数中--horizontal-pod-autoscaler-use-rest-clients设置为true,并指定--master为API server地址,如--master=http://172.20.0.113:8080 修改kube-apiserver的配置文件apiserver,增加一条配置--requestheader-client-ca-file=/etc/kubernetes/ssl/ca.pem --requestheader-allowed-names=aggregator --requestheader-extra-headers-prefix=X-Remote-Extra- --requestheader-group-headers=X-Remote-Group --requestheader-username-headers=X-Remote-User --proxy-client-cert-file=/etc/kubernetes/ssl/kubernetes.pem --proxy-client-key-file=/etc/kubernetes/ssl/kubernetes-key.pem,用来配置aggregator的CA证书。 已经内置了apiregistration.k8s.io/v1beta1 API,可以直接定义APIService,如: apiVersion: apiregistration.k8s.io/v1 kind: APIService metadata: name: v1.custom-metrics.metrics.k8s.io spec: insecureSkipTLSVerify: true group: custom-metrics.metrics.k8s.io groupPriorityMinimum: 1000 versionPriority: 5 service: name: api namespace: custom-metrics version: v1alpha1 部署Prometheus 使用prometheus-operator.yaml文件部署Prometheus operator。 注意:将镜像修改为你自己的镜像仓库地址。 这产生一个自定义的API:http://172.20.0.113:8080/apis/custom-metrics.metrics.k8s.io/v1alpha1,可以通过浏览器访问,还可以使用下面的命令可以检查该API: $ kubectl get --raw=apis/custom-metrics.metrics.k8s.io/v1alpha1 {\"kind\":\"APIResourceList\",\"apiVersion\":\"v1\",\"groupVersion\":\"custom-metrics.metrics.k8s.io/v1alpha1\",\"resources\":[{\"name\":\"jobs.batch/http_requests\",\"singularName\":\"\",\"namespaced\":true,\"kind\":\"MetricValueList\",\"verbs\":[\"get\"]},{\"name\":\"namespaces/http_requests\",\"singularName\":\"\",\"namespaced\":false,\"kind\":\"MetricValueList\",\"verbs\":[\"get\"]},{\"name\":\"jobs.batch/up\",\"singularName\":\"\",\"namespaced\":true,\"kind\":\"MetricValueList\",\"verbs\":[\"get\"]},{\"name\":\"pods/up\",\"singularName\":\"\",\"namespaced\":true,\"kind\":\"MetricValueList\",\"verbs\":[\"get\"]},{\"name\":\"services/scrape_samples_scraped\",\"singularName\":\"\",\"namespaced\":true,\"kind\":\"MetricValueList\",\"verbs\":[\"get\"]},{\"name\":\"namespaces/scrape_samples_scraped\",\"singularName\":\"\",\"namespaced\":false,\"kind\":\"MetricValueList\",\"verbs\":[\"get\"]},{\"name\":\"pods/scrape_duration_seconds\",\"singularName\":\"\",\"namespaced\":true,\"kind\":\"MetricValueList\",\"verbs\":[\"get\"]},{\"name\":\"services/scrape_duration_seconds\",\"singularName\":\"\",\"namespaced\":true,\"kind\":\"MetricValueList\",\"verbs\":[\"get\"]},{\"name\":\"pods/http_requests\",\"singularName\":\"\",\"namespaced\":true,\"kind\":\"MetricValueList\",\"verbs\":[\"get\"]},{\"name\":\"pods/scrape_samples_post_metric_relabeling\",\"singularName\":\"\",\"namespaced\":true,\"kind\":\"MetricValueList\",\"verbs\":[\"get\"]},{\"name\":\"jobs.batch/scrape_samples_scraped\",\"singularName\":\"\",\"namespaced\":true,\"kind\":\"MetricValueList\",\"verbs\":[\"get\"]},{\"name\":\"jobs.batch/scrape_duration_seconds\",\"singularName\":\"\",\"namespaced\":true,\"kind\":\"MetricValueList\",\"verbs\":[\"get\"]},{\"name\":\"namespaces/scrape_duration_seconds\",\"singularName\":\"\",\"namespaced\":false,\"kind\":\"MetricValueList\",\"verbs\":[\"get\"]},{\"name\":\"namespaces/scrape_samples_post_metric_relabeling\",\"singularName\":\"\",\"namespaced\":false,\"kind\":\"MetricValueList\",\"verbs\":[\"get\"]},{\"name\":\"services/scrape_samples_post_metric_relabeling\",\"singularName\":\"\",\"namespaced\":true,\"kind\":\"MetricValueList\",\"verbs\":[\"get\"]},{\"name\":\"services/up\",\"singularName\":\"\",\"namespaced\":true,\"kind\":\"MetricValueList\",\"verbs\":[\"get\"]},{\"name\":\"pods/scrape_samples_scraped\",\"singularName\":\"\",\"namespaced\":true,\"kind\":\"MetricValueList\",\"verbs\":[\"get\"]},{\"name\":\"services/http_requests\",\"singularName\":\"\",\"namespaced\":true,\"kind\":\"MetricValueList\",\"verbs\":[\"get\"]},{\"name\":\"jobs.batch/scrape_samples_post_metric_relabeling\",\"singularName\":\"\",\"namespaced\":true,\"kind\":\"MetricValueList\",\"verbs\":[\"get\"]},{\"name\":\"namespaces/up\",\"singularName\":\"\",\"namespaced\":false,\"kind\":\"MetricValueList\",\"verbs\":[\"get\"]}]} 参考 1.6以前版本的kubernetes中开启自定义HPA 1.7版本的kubernetes中启用自定义HPA Horizontal Pod Autoscaler Walkthrough Kubernetes 1.8: Now with 100% Daily Value of Custom Metrics Arbitrary/Custom Metrics in the Horizontal Pod Autoscaler#117 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/admission-controller.html":{"url":"concepts/admission-controller.html","title":"准入控制器(Admission Controller)","keywords":"","body":"准入控制器(Admission Controller) 准入控制器(Admission Controller)位于 API Server 中,在对象被持久化之前,准入控制器拦截对 API Server 的请求,一般用来做身份验证和授权。其中包含两个特殊的控制器:MutatingAdmissionWebhook 和 ValidatingAdmissionWebhook。分别作为配置的变异和验证准入控制 webhook。 变更(Mutating)准入控制:修改请求的对象 验证(Validating)准入控制:验证请求的对象 准入控制器是在 API Server 的启动参数重配置的。一个准入控制器可能属于以上两者中的一种,也可能两者都属于。当请求到达 API Server 的时候首先执行变更准入控制,然后再执行验证准入控制。 我们在部署 Kubernetes 集群的时候都会默认开启一系列准入控制器,如果没有设置这些准入控制器的话可以说你的 Kubernetes 集群就是在裸奔,应该只有集群管理员可以修改集群的准入控制器。 例如我会默认开启如下的准入控制器。 --admission-control=ServiceAccount,NamespaceLifecycle,NamespaceExists,LimitRanger,ResourceQuota,MutatingAdmissionWebhook,ValidatingAdmissionWebhook 准入控制器列表 Kubernetes 目前支持的准入控制器有: AlwaysPullImages:此准入控制器修改每个 Pod 的时候都强制重新拉取镜像。 DefaultStorageClass:此准入控制器观察创建PersistentVolumeClaim时不请求任何特定存储类的对象,并自动向其添加默认存储类。这样,用户就不需要关注特殊存储类而获得默认存储类。 DefaultTolerationSeconds:此准入控制器将Pod的容忍时间notready:NoExecute和unreachable:NoExecute 默认设置为5分钟。 DenyEscalatingExec:此准入控制器将拒绝exec 和附加命令到以允许访问宿主机的升级了权限运行的pod。 EventRateLimit (alpha):此准入控制器缓解了 API Server 被事件请求淹没的问题,限制时间速率。 ExtendedResourceToleration:此插件有助于创建具有扩展资源的专用节点。 ImagePolicyWebhook:此准入控制器允许后端判断镜像拉取策略,例如配置镜像仓库的密钥。 Initializers (alpha):Pod初始化的准入控制器,详情请参考动态准入控制。 LimitPodHardAntiAffinityTopology:此准入控制器拒绝任何在 requiredDuringSchedulingRequiredDuringExecution 的 AntiAffinity 字段中定义除了kubernetes.io/hostname 之外的拓扑关键字的 pod 。 LimitRanger:此准入控制器将确保所有资源请求不会超过 namespace 的 LimitRange。 MutatingAdmissionWebhook (1.9版本中为beta):该准入控制器调用与请求匹配的任何变更 webhook。匹配的 webhook是串行调用的;如果需要,每个人都可以修改对象。 NamespaceAutoProvision:此准入控制器检查命名空间资源上的所有传入请求,并检查引用的命名空间是否存在。如果不存在就创建一个命名空间。 NamespaceExists:此许可控制器检查除 Namespace 其自身之外的命名空间资源上的所有请求。如果请求引用的命名空间不存在,则拒绝该请求。 NamespaceLifecycle:此准入控制器强制执行正在终止的命令空间中不能创建新对象,并确保Namespace拒绝不存在的请求。此准入控制器还防止缺失三个系统保留的命名空间default、kube-system、kube-public。 NodeRestriction:该准入控制器限制了 kubelet 可以修改的Node和Pod对象。 OwnerReferencesPermissionEnforcement:此准入控制器保护对metadata.ownerReferences对象的访问,以便只有对该对象具有“删除”权限的用户才能对其进行更改。 PodNodeSelector:此准入控制器通过读取命名空间注释和全局配置来限制可在命名空间内使用的节点选择器。 PodPreset:此准入控制器注入一个pod,其中包含匹配的PodPreset中指定的字段,详细信息见Pod Preset。 PodSecurityPolicy:此准入控制器用于创建和修改pod,并根据请求的安全上下文和可用的Pod安全策略确定是否应该允许它。 PodTolerationRestriction:此准入控制器首先验证容器的容忍度与其命名空间的容忍度之间是否存在冲突,并在存在冲突时拒绝该容器请求。 Priority:此控制器使用priorityClassName字段并填充优先级的整数值。如果未找到优先级,则拒绝Pod。 ResourceQuota:此准入控制器将观察传入请求并确保它不违反命名空间的ResourceQuota对象中列举的任何约束。 SecurityContextDeny:此准入控制器将拒绝任何试图设置某些升级的SecurityContext字段的pod 。 ServiceAccount:此准入控制器实现serviceAccounts的自动化。 用中的存储对象保护:该StorageObjectInUseProtection插件将kubernetes.io/pvc-protection或kubernetes.io/pv-protection终结器添加到新创建的持久卷声明(PVC)或持久卷(PV)。在用户删除PVC或PV的情况下,PVC或PV不会被移除,直到PVC或PV保护控制器从PVC或PV中移除终结器。有关更多详细信息,请参阅使用中的存储对象保护。 ValidatingAdmissionWebhook(1.8版本中为alpha;1.9版本中为beta):该准入控制器调用与请求匹配的任何验证webhook。匹配的webhooks是并行调用的;如果其中任何一个拒绝请求,则请求失败。 推荐配置 Kubernetes 1.10+ 对于Kubernetes 1.10及更高版本,我们建议使用--enable-admission-plugins标志运行以下一组准入控制器(顺序无关紧要)。 注意: --admission-control在1.10中已弃用并替换为--enable-admission-plugins。 --enable-admission-plugins=NamespaceLifecycle,LimitRanger,ServiceAccount,DefaultStorageClass,DefaultTolerationSeconds,MutatingAdmissionWebhook,ValidatingAdmissionWebhook,ResourceQuota 对于Kubernetes 1.9及更早版本,我们建议使用--admission-control标志(顺序有关)运行以下一组许可控制器。 Kubernetes 1.9 --admission-control=NamespaceLifecycle,LimitRanger,ServiceAccount,DefaultStorageClass,DefaultTolerationSeconds,MutatingAdmissionWebhook,ValidatingAdmissionWebhook,ResourceQuota 值得重申的是,在1.9中,这些发生在变更阶段和验证阶段,并且例如ResourceQuota在验证阶段运行,因此是运行的最后一个准入控制器。 MutatingAdmissionWebhook在此列表中出现在它之前,因为它在变更阶段运行。 对于早期版本,没有验证准入控制器和变更准入控制器的概念,并且准入控制器以指定的确切顺序运行。 Kubernetes 1.6 - 1.8 --admission-control=NamespaceLifecycle,LimitRanger,ServiceAccount,PersistentVolumeLabel,DefaultStorageClass,ResourceQuota,DefaultTolerationSeconds 参考 Using Admission Controllers - kubernetes.io 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/service-discovery.html":{"url":"concepts/service-discovery.html","title":"服务发现","keywords":"","body":"服务发现 Kubernetes中为了实现服务实例间的负载均衡和不同服务间的服务发现,创造了Serivce对象,同时又为从集群外部访问集群创建了Ingress对象。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/service.html":{"url":"concepts/service.html","title":"Service","keywords":"","body":"Service Kubernetes Pod 是有生命周期的,它们可以被创建,也可以被销毁,然而一旦被销毁生命就永远结束。 通过 ReplicationController 能够动态地创建和销毁 Pod。 每个 Pod 都会获取它自己的 IP 地址,即使这些 IP 地址不总是稳定可依赖的。这会导致一个问题:在 Kubernetes 集群中,如果一组 Pod(称为 backend)为其它 Pod (称为 frontend)提供服务,那么那些 frontend 该如何发现,并连接到这组 Pod 中的哪些 backend 呢? 关于 Service Kubernetes Service 定义了这样一种抽象:一个 Pod 的逻辑分组,一种可以访问它们的策略 —— 通常称为微服务。这一组 Pod 能够被 Service 访问到,通常是通过 Label Selector(查看下面了解,为什么可能需要没有 selector 的 Service)实现的。 举个例子,考虑一个图片处理 backend,它运行了3个副本。这些副本是可互换的 —— frontend 不需要关心它们调用了哪个 backend 副本。然而组成这一组 backend 程序的 Pod 实际上可能会发生变化,frontend 客户端不应该也没必要知道,而且也不需要跟踪这一组 backend 的状态。Service 定义的抽象能够解耦这种关联。 对 Kubernetes 集群中的应用,Kubernetes 提供了简单的 Endpoints API,只要 Service 中的一组 Pod 发生变更,应用程序就会被更新。对非 Kubernetes 集群中的应用,Kubernetes 提供了基于 VIP 的网桥的方式访问 Service,再由 Service 重定向到 backend Pod。 定义 Service 一个 Service 在 Kubernetes 中是一个 REST 对象,和 Pod 类似。 像所有的 REST 对象一样, Service 定义可以基于 POST 方式,请求 apiserver 创建新的实例。 例如,假定有一组 Pod,它们对外暴露了 9376 端口,同时还被打上 \"app=MyApp\" 标签。 kind: Service apiVersion: v1 metadata: name: my-service spec: selector: app: MyApp ports: - protocol: TCP port: 80 targetPort: 9376 上述配置将创建一个名称为 “my-service” 的 Service 对象,它会将请求代理到使用 TCP 端口 9376,并且具有标签 \"app=MyApp\" 的 Pod 上。这个 Service 将被指派一个 IP 地址(通常称为 “Cluster IP”),它会被服务的代理使用(见下面)。该 Service 的 selector 将会持续评估,处理结果将被 POST 到一个名称为 “my-service” 的 Endpoints 对象上。 需要注意的是, Service 能够将一个接收端口映射到任意的 targetPort。默认情况下,targetPort 将被设置为与 port 字段相同的值。更有趣的是,targetPort 可以是一个字符串,引用了 backend Pod 的一个端口的名称。但是,实际指派给该端口名称的端口号,在每个 backend Pod 中可能并不相同。对于部署和设计 Service ,这种方式会提供更大的灵活性。例如,可以在 backend 软件下一个版本中,修改 Pod 暴露的端口,并不会中断客户端的调用。 Kubernetes Service 支持 TCP 和 UDP 协议,默认 TCP 协议。 没有 selector 的 Service Service 抽象了该如何访问 Kubernetes Pod,但也能够抽象其它类型的 backend,例如: 希望在生产环境中使用外部的数据库集群,但测试环境使用自己的数据库。 希望服务指向另一个 Namespace 中或其它集群中的服务。 正在将工作负载转移到 Kubernetes 集群,和运行在 Kubernetes 集群之外的 backend。 在任何这些场景中,都能够定义没有 selector 的 Service : kind: Service apiVersion: v1 metadata: name: my-service spec: ports: - protocol: TCP port: 80 targetPort: 9376 由于这个 Service 没有 selector,就不会创建相关的 Endpoints 对象。可以手动将 Service 映射到指定的 Endpoints: kind: Endpoints apiVersion: v1 metadata: name: my-service subsets: - addresses: - ip: 1.2.3.4 ports: - port: 9376 注意:Endpoint IP 地址不能是 loopback(127.0.0.0/8)、 link-local(169.254.0.0/16)、或者 link-local 多播(224.0.0.0/24)。 访问没有 selector 的 Service,与有 selector 的 Service 的原理相同。请求将被路由到用户定义的 Endpoint(该示例中为 1.2.3.4:9376)。 ExternalName Service 是 Service 的特例,它没有 selector,也没有定义任何的端口和 Endpoint。相反地,对于运行在集群外部的服务,它通过返回该外部服务的别名这种方式来提供服务。 kind: Service apiVersion: v1 metadata: name: my-service namespace: prod spec: type: ExternalName externalName: my.database.example.com 当查询主机 my-service.prod.svc.CLUSTER时,集群的 DNS 服务将返回一个值为 my.database.example.com 的 CNAME 记录。访问这个服务的工作方式与其它的相同,唯一不同的是重定向发生在 DNS 层,而且不会进行代理或转发。如果后续决定要将数据库迁移到 Kubernetes 集群中,可以启动对应的 Pod,增加合适的 Selector 或 Endpoint,修改 Service 的 type。 VIP 和 Service 代理 在 Kubernetes 集群中,每个 Node 运行一个 kube-proxy 进程。kube-proxy 负责为 Service 实现了一种 VIP(虚拟 IP)的形式,而不是 ExternalName 的形式。 在 Kubernetes v1.0 版本,代理完全在 userspace,Service 是 “4层”(TCP/UDP over IP)概念。 在 Kubernetes v1.1 版本,新增了 iptables 代理,但并不是默认的运行模式。新增了 Ingress API(beta 版),用来表示 “7层”(HTTP)服务。 从 Kubernetes v1.2 起,默认就是 iptables 代理。 在 Kubernetes v1.8.0-beta.0 中,添加了ipvs代理。 userspace 代理模式 这种模式,kube-proxy 会监视 Kubernetes master 对 Service 对象和 Endpoints 对象的添加和移除。 对每个 Service,它会在本地 Node 上打开一个端口(随机选择)。 任何连接到“代理端口”的请求,都会被代理到 Service 的backend Pods 中的某个上面(如 Endpoints 所报告的一样)。 使用哪个 backend Pod,是基于 Service 的 SessionAffinity 来确定的。 最后,它安装 iptables 规则,捕获到达该 Service 的 clusterIP(是虚拟 IP)和 Port 的请求,并重定向到代理端口,代理端口再代理请求到 backend Pod。 网络返回的结果是,任何到达 Service 的 IP:Port 的请求,都会被代理到一个合适的 backend,不需要客户端知道关于 Kubernetes、Service、或 Pod 的任何信息。 默认的策略是,通过 round-robin 算法来选择 backend Pod。 实现基于客户端 IP 的会话亲和性,可以通过设置 service.spec.sessionAffinity 的值为 \"ClientIP\" (默认值为 \"None\")。 图 4.7.1.1:userspace代理模式下Service概览图 iptables 代理模式 这种模式,kube-proxy 会监视 Kubernetes master 对 Service 对象和 Endpoints 对象的添加和移除。 对每个 Service,它会安装 iptables 规则,从而捕获到达该 Service 的 clusterIP(虚拟 IP)和端口的请求,进而将请求重定向到 Service 的一组 backend 中的某个上面。对于每个 Endpoints 对象,它也会安装 iptables 规则,这个规则会选择一个 backend Pod。 默认的策略是,随机选择一个 backend。实现基于客户端 IP 的会话亲和性,可以将 service.spec.sessionAffinity 的值设置为 \"ClientIP\" (默认值为 \"None\")。 和 userspace 代理类似,网络返回的结果是,任何到达 Service 的 IP:Port 的请求,都会被代理到一个合适的 backend,不需要客户端知道关于 Kubernetes、Service、或 Pod 的任何信息。 这应该比 userspace 代理更快、更可靠。然而,不像 userspace 代理,如果初始选择的 Pod 没有响应,iptables 代理不能自动地重试另一个 Pod,所以它需要依赖 readiness probes。 图 4.7.1.2:iptables代理模式下Service概览图 ipvs 代理模式 这种模式,kube-proxy会监视Kubernetes Service对象和Endpoints,调用netlink接口以相应地创建ipvs规则并定期与Kubernetes Service对象和Endpoints对象同步ipvs规则,以确保ipvs状态与期望一致。访问服务时,流量将被重定向到其中一个后端Pod。 与iptables类似,ipvs基于netfilter 的 hook 功能,但使用哈希表作为底层数据结构并在内核空间中工作。这意味着ipvs可以更快地重定向流量,并且在同步代理规则时具有更好的性能。此外,ipvs为负载均衡算法提供了更多选项,例如: rr:轮询调度 lc:最小连接数 dh:目标哈希 sh:源哈希 sed:最短期望延迟 nq: 不排队调度 注意: ipvs模式假定在运行kube-proxy之前在节点上都已经安装了IPVS内核模块。当kube-proxy以ipvs代理模式启动时,kube-proxy将验证节点上是否安装了IPVS模块,如果未安装,则kube-proxy将回退到iptables代理模式。 图 4.7.1.3:ipvs代理模式下Service概览图 多端口 Service 很多 Service 需要暴露多个端口。对于这种情况,Kubernetes 支持在 Service 对象中定义多个端口。 当使用多个端口时,必须给出所有的端口的名称,这样 Endpoint 就不会产生歧义,例如: kind: Service apiVersion: v1 metadata: name: my-service spec: selector: app: MyApp ports: - name: http protocol: TCP port: 80 targetPort: 9376 - name: https protocol: TCP port: 443 targetPort: 9377 选择自己的 IP 地址 在 Service 创建的请求中,可以通过设置 spec.clusterIP 字段来指定自己的集群 IP 地址。 比如,希望替换一个已经存在的 DNS 条目,或者遗留系统已经配置了一个固定的 IP 且很难重新配置。 用户选择的 IP 地址必须合法,并且这个 IP 地址在 service-cluster-ip-range CIDR 范围内,这对 API Server 来说是通过一个标识来指定的。 如果 IP 地址不合法,API Server 会返回 HTTP 状态码 422,表示值不合法。 为何不使用 round-robin DNS? 一个不时出现的问题是,为什么我们都使用 VIP 的方式,而不使用标准的 round-robin DNS,有如下几个原因: 长久以来,DNS 库都没能认真对待 DNS TTL、缓存域名查询结果 很多应用只查询一次 DNS 并缓存了结果 就算应用和库能够正确查询解析,每个客户端反复重解析造成的负载也是非常难以管理的 我们尽力阻止用户做那些对他们没有好处的事情,如果很多人都来问这个问题,我们可能会选择实现它。 服务发现 Kubernetes 支持2种基本的服务发现模式 —— 环境变量和 DNS。 环境变量 当 Pod 运行在 Node 上,kubelet 会为每个活跃的 Service 添加一组环境变量。 它同时支持 Docker links 兼容 变量(查看 makeLinkVariables)、简单的 {SVCNAME}_SERVICE_HOST 和 {SVCNAME}_SERVICE_PORT 变量,这里 Service 的名称需大写,横线被转换成下划线。 举个例子,一个名称为 \"redis-master\" 的 Service 暴露了 TCP 端口 6379,同时给它分配了 Cluster IP 地址 10.0.0.11,这个 Service 生成了如下环境变量: REDIS_MASTER_SERVICE_HOST=10.0.0.11 REDIS_MASTER_SERVICE_PORT=6379 REDIS_MASTER_PORT=tcp://10.0.0.11:6379 REDIS_MASTER_PORT_6379_TCP=tcp://10.0.0.11:6379 REDIS_MASTER_PORT_6379_TCP_PROTO=tcp REDIS_MASTER_PORT_6379_TCP_PORT=6379 REDIS_MASTER_PORT_6379_TCP_ADDR=10.0.0.11 这意味着需要有顺序的要求 —— Pod 想要访问的任何 Service 必须在 Pod 自己之前被创建,否则这些环境变量就不会被赋值。DNS 并没有这个限制。 DNS 一个可选(尽管强烈推荐)集群插件 是 DNS 服务器。 DNS 服务器监视着创建新 Service 的 Kubernetes API,从而为每一个 Service 创建一组 DNS 记录。如果整个集群的 DNS 一直被启用,那么所有的 Pod 应该能够自动对 Service 进行名称解析。 例如,有一个名称为 \"my-service\" 的 Service,它在 Kubernetes 集群中名为 \"my-ns\" 的 Namespace 中,为 \"my-service.my-ns\" 创建了一条 DNS 记录。 在名称为 \"my-ns\" 的 Namespace 中的 Pod 应该能够简单地通过名称查询找到 \"my-service\"。在另一个 Namespace 中的 Pod 必须限定名称为 \"my-service.my-ns\"。这些名称查询的结果是 Cluster IP。 Kubernetes 也支持对端口名称的 DNS SRV(Service)记录。如果名称为 \"my-service.my-ns\" 的 Service 有一个名为 \"http\" 的 TCP 端口,可以对 \"_http._tcp.my-service.my-ns\" 执行 DNS SRV 查询,得到 \"http\" 的端口号。 Kubernetes DNS 服务器是唯一的一种能够访问 ExternalName 类型的 Service 的方式。 更多信息可以查看 DNS Pod 和 Service。 Headless Service 有时不需要或不想要负载均衡,以及单独的 Service IP。遇到这种情况,可以通过指定 Cluster IP(spec.clusterIP)的值为 \"None\" 来创建 Headless Service。 这个选项允许开发人员自由寻找他们自己的方式,从而降低与 Kubernetes 系统的耦合性。应用仍然可以使用一种自注册的模式和适配器,对其它需要发现机制的系统能够很容易地基于这个 API 来构建。 对这类 Service 并不会分配 Cluster IP,kube-proxy 不会处理它们,而且平台也不会为它们进行负载均衡和路由。DNS 如何实现自动配置,依赖于 Service 是否定义了 selector。 配置 Selector 对定义了 selector 的 Headless Service,Endpoint 控制器在 API 中创建了 Endpoints 记录,并且修改 DNS 配置返回 A 记录(地址),通过这个地址直接到达 Service 的后端 Pod 上。 不配置 Selector 对没有定义 selector 的 Headless Service,Endpoint 控制器不会创建 Endpoints 记录。 然而 DNS 系统会查找和配置,无论是: ExternalName 类型 Service 的 CNAME 记录 记录:与 Service 共享一个名称的任何 Endpoints,以及所有其它类型 发布服务 —— 服务类型 对一些应用(如 Frontend)的某些部分,可能希望通过外部(Kubernetes 集群外部)IP 地址暴露 Service。 Kubernetes ServiceTypes 允许指定一个需要的类型的 Service,默认是 ClusterIP 类型。 Type 的取值以及行为如下: ClusterIP:通过集群的内部 IP 暴露服务,选择该值,服务只能够在集群内部可以访问,这也是默认的 ServiceType。 NodePort:通过每个 Node 上的 IP 和静态端口(NodePort)暴露服务。NodePort 服务会路由到 ClusterIP 服务,这个 ClusterIP 服务会自动创建。通过请求 :,可以从集群的外部访问一个 NodePort 服务。 LoadBalancer:使用云提供商的负载均衡器,可以向外部暴露服务。外部的负载均衡器可以路由到 NodePort 服务和 ClusterIP 服务。 ExternalName:通过返回 CNAME 和它的值,可以将服务映射到 externalName 字段的内容(例如, foo.bar.example.com)。 没有任何类型代理被创建,这只有 Kubernetes 1.7 或更高版本的 kube-dns 才支持。 NodePort 类型 如果设置 type 的值为 \"NodePort\",Kubernetes master 将从给定的配置范围内(默认:30000-32767)分配端口,每个 Node 将从该端口(每个 Node 上的同一端口)代理到 Service。该端口将通过 Service 的 spec.ports[*].nodePort 字段被指定。 如果需要指定的端口号,可以配置 nodePort 的值,系统将分配这个端口,否则调用 API 将会失败(比如,需要关心端口冲突的可能性)。 这可以让开发人员自由地安装他们自己的负载均衡器,并配置 Kubernetes 不能完全支持的环境参数,或者直接暴露一个或多个 Node 的 IP 地址。 需要注意的是,Service 将能够通过 :spec.ports[*].nodePort 和 spec.clusterIp:spec.ports[*].port 而对外可见。 LoadBalancer 类型 使用支持外部负载均衡器的云提供商的服务,设置 type 的值为 \"LoadBalancer\",将为 Service 提供负载均衡器。负载均衡器是异步创建的,关于被提供的负载均衡器的信息将会通过 Service 的 status.loadBalancer 字段被发布出去。 kind: Service apiVersion: v1 metadata: name: my-service spec: selector: app: MyApp ports: - protocol: TCP port: 80 targetPort: 9376 nodePort: 30061 clusterIP: 10.0.171.239 loadBalancerIP: 78.11.24.19 type: LoadBalancer status: loadBalancer: ingress: - ip: 146.148.47.155 来自外部负载均衡器的流量将直接打到 backend Pod 上,不过实际它们是如何工作的,这要依赖于云提供商。 在这些情况下,将根据用户设置的 loadBalancerIP 来创建负载均衡器。 某些云提供商允许设置 loadBalancerIP。如果没有设置 loadBalancerIP,将会给负载均衡器指派一个临时 IP。 如果设置了 loadBalancerIP,但云提供商并不支持这种特性,那么设置的 loadBalancerIP 值将会被忽略掉。 AWS 内部负载均衡器 在混合云环境中,有时从虚拟私有云(VPC)环境中的服务路由流量是非常有必要的。 可以通过在 Service 中增加 annotation 来实现,如下所示: [...] metadata: name: my-service annotations: service.beta.kubernetes.io/aws-load-balancer-internal: 0.0.0.0/0 [...] 在水平分割的 DNS 环境中,需要两个 Service 来将外部和内部的流量路由到 Endpoint 上。 AWS SSL 支持 对运行在 AWS 上部分支持 SSL 的集群,从 1.3 版本开始,可以为 LoadBalancer 类型的 Service 增加两个 annotation: metadata: name: my-service annotations: service.beta.kubernetes.io/aws-load-balancer-ssl-cert: arn:aws:acm:us-east-1:123456789012:certificate/12345678-1234-1234-1234-123456789012 第一个 annotation 指定了使用的证书。它可以是第三方发行商发行的证书,这个证书或者被上传到 IAM,或者由 AWS 的证书管理器创建。 metadata: name: my-service annotations: service.beta.kubernetes.io/aws-load-balancer-backend-protocol: (https|http|ssl|tcp) 第二个 annotation 指定了 Pod 使用的协议。 对于 HTTPS 和 SSL,ELB 将期望该 Pod 基于加密的连接来认证自身。 HTTP 和 HTTPS 将选择7层代理:ELB 将中断与用户的连接,当转发请求时,会解析 Header 信息并添加上用户的 IP 地址(Pod 将只能在连接的另一端看到该 IP 地址)。 TCP 和 SSL 将选择4层代理:ELB 将转发流量,并不修改 Header 信息。 外部 IP 如果外部的 IP 路由到集群中一个或多个 Node 上,Kubernetes Service 会被暴露给这些 externalIPs。通过外部 IP(作为目的 IP 地址)进入到集群,打到 Service 的端口上的流量,将会被路由到 Service 的 Endpoint 上。externalIPs 不会被 Kubernetes 管理,它属于集群管理员的职责范畴。 根据 Service 的规定,externalIPs 可以同任意的 ServiceType 来一起指定。在下面的例子中,my-service 可以在 80.11.12.10:80(外部 IP:端口)上被客户端访问。 kind: Service apiVersion: v1 metadata: name: my-service spec: selector: app: MyApp ports: - name: http protocol: TCP port: 80 targetPort: 9376 externalIPs: - 80.11.12.10 不足之处 为 VIP 使用 userspace 代理,将只适合小型到中型规模的集群,不能够扩展到上千 Service 的大型集群。查看 最初设计方案 获取更多细节。 使用 userspace 代理,隐藏了访问 Service 的数据包的源 IP 地址。这使得一些类型的防火墙无法起作用。iptables 代理不会隐藏 Kubernetes 集群内部的 IP 地址,但却要求客户端请求必须通过一个负载均衡器或 Node 端口。 Type 字段支持嵌套功能 —— 每一层需要添加到上一层里面。不会严格要求所有云提供商(例如,GCE 就没必要为了使一个 LoadBalancer 能工作而分配一个 NodePort,但是 AWS 需要 ),但当前 API 是强制要求的。 未来工作 未来我们能预见到,代理策略可能会变得比简单的 round-robin 均衡策略有更多细微的差别,比如 master 选举或分片。我们也能想到,某些 Service 将具有 “真正” 的负载均衡器,这种情况下 VIP 将简化数据包的传输。 我们打算为 L7(HTTP)Service 改进我们对它的支持。 我们打算为 Service 实现更加灵活的请求进入模式,这些 Service 包含当前 ClusterIP、NodePort 和 LoadBalancer 模式,或者更多。 VIP 的那些骇人听闻的细节 对很多想使用 Service 的人来说,前面的信息应该足够了。然而,有很多内部原理性的内容,还是值去理解的。 避免冲突 Kubernetes 最主要的哲学之一,是用户不应该暴露那些能够导致他们操作失败、但又不是他们的过错的场景。这种场景下,让我们来看一下网络端口 —— 用户不应该必须选择一个端口号,而且该端口还有可能与其他用户的冲突。这就是说,在彼此隔离状态下仍然会出现失败。 为了使用户能够为他们的 Service 选择一个端口号,我们必须确保不能有2个 Service 发生冲突。我们可以通过为每个 Service 分配它们自己的 IP 地址来实现。 为了保证每个 Service 被分配到一个唯一的 IP,需要一个内部的分配器能够原子地更新 etcd 中的一个全局分配映射表,这个更新操作要先于创建每一个 Service。 为了使 Service 能够获取到 IP,这个映射表对象必须在注册中心存在,否则创建 Service 将会失败,指示一个 IP 不能被分配。 一个后台 Controller 的职责是创建映射表(从 Kubernetes 的旧版本迁移过来,旧版本中是通过在内存中加锁的方式实现),并检查由于管理员干预和清除任意 IP 造成的不合理分配,这些 IP 被分配了但当前没有 Service 使用它们。 IP 和 VIP 不像 Pod 的 IP 地址,它实际路由到一个固定的目的地,Service 的 IP 实际上不能通过单个主机来进行应答。相反,我们使用 iptables(Linux 中的数据包处理逻辑)来定义一个虚拟IP地址(VIP),它可以根据需要透明地进行重定向。当客户端连接到 VIP 时,它们的流量会自动地传输到一个合适的 Endpoint。环境变量和 DNS,实际上会根据 Service 的 VIP 和端口来进行填充。 Userspace 作为一个例子,考虑前面提到的图片处理应用程序。 当创建 backend Service 时,Kubernetes master 会给它指派一个虚拟 IP 地址,比如 10.0.0.1。假设 Service 的端口是 1234,该 Service 会被集群中所有的 kube-proxy 实例观察到。当代理看到一个新的 Service, 它会打开一个新的端口,建立一个从该 VIP 重定向到新端口的 iptables,并开始接收请求连接。 当一个客户端连接到一个 VIP,iptables 规则开始起作用,它会重定向该数据包到 Service代理 的端口。Service代理 选择一个 backend,并将客户端的流量代理到 backend 上。 这意味着 Service 的所有者能够选择任何他们想使用的端口,而不存在冲突的风险。客户端可以简单地连接到一个 IP 和端口,而不需要知道实际访问了哪些 Pod。 Iptables 再次考虑前面提到的图片处理应用程序。 当创建 backend Service 时,Kubernetes master 会给它指派一个虚拟 IP 地址,比如 10.0.0.1。假设 Service 的端口是 1234,该 Service 会被集群中所有的 kube-proxy 实例观察到。当代理看到一个新的 Service, 它会安装一系列的 iptables 规则,从 VIP 重定向到 per-Service 规则。该 per-Service 规则连接到 per-Endpoint 规则,该 per-Endpoint 规则会重定向(目标 NAT)到 backend。 当一个客户端连接到一个 VIP,iptables 规则开始起作用。一个 backend 会被选择(或者根据会话亲和性,或者随机),数据包被重定向到这个 backend。 不像 userspace 代理,数据包从来不拷贝到用户空间,kube-proxy 不是必须为该 VIP 工作而运行,并且客户端 IP 是不可更改的。 当流量打到 Node 的端口上,或通过负载均衡器,会执行相同的基本流程,但是在那些案例中客户端 IP 是可以更改的。 API 对象 在 Kubernetes REST API 中,Service 是 top-level 资源。 更多信息 使用 Service 连接 Frontend 到 Backend 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/ingress.html":{"url":"concepts/ingress.html","title":"Ingress","keywords":"","body":"Ingress解析 Ingress 是从Kubernetes集群外部访问集群内部服务的入口,这篇文章部分译自Kubernetes官方文档Ingress Resource,后面的章节会讲到使用Traefik来做Ingress controller,文章末尾给出了几个相关链接。 术语 在本篇文章中你将会看到一些在其他地方被交叉使用的术语,为了防止产生歧义,我们首先来澄清下。 节点:Kubernetes集群中的一台物理机或者虚拟机。 集群:位于Internet防火墙后的节点,这是kubernetes管理的主要计算资源。 边界路由器:为集群强制执行防火墙策略的路由器。 这可能是由云提供商或物理硬件管理的网关。 集群网络:一组逻辑或物理链接,可根据Kubernetes网络模型实现群集内的通信。 集群网络的实现包括Overlay模型的 flannel 和基于SDN的OVS。 服务:使用标签选择器标识一组pod成为的Kubernetes服务。 除非另有说明,否则服务假定在集群网络内仅可通过虚拟IP访问。 什么是Ingress? 通常情况下,service和pod仅可在集群内部网络中通过IP地址访问。所有到达边界路由器的流量或被丢弃或被转发到其他地方。从概念上讲,可能像下面这样: internet | ------------ [ Services ] Ingress是授权入站连接到达集群服务的规则集合。 internet | [ Ingress ] --|-----|-- [ Services ] 你可以给Ingress配置提供外部可访问的URL、负载均衡、SSL、基于名称的虚拟主机等。用户通过POST Ingress资源到API server的方式来请求ingress。 Ingress controller负责实现Ingress,通常使用负载平衡器,它还可以配置边界路由和其他前端,这有助于以HA方式处理流量。 先决条件 在使用Ingress resource之前,有必要先了解下面几件事情。Ingress是beta版本的resource,在kubernetes1.1之前还没有。你需要一个Ingress Controller来实现Ingress,单纯的创建一个Ingress没有任何意义。 GCE/GKE会在master节点上部署一个ingress controller。你可以在一个pod中部署任意个自定义的ingress controller。你必须正确地annotate每个ingress,比如 运行多个ingress controller 和 关闭glbc。 确定你已经阅读了Ingress controller的 beta版本限制。在非GCE/GKE的环境中,你需要在pod中部署一个controller。 Ingress Resource 最简化的Ingress配置: 1: apiVersion: extensions/v1beta1 2: kind: Ingress 3: metadata: 4: name: test-ingress 5: spec: 6: rules: 7: - http: 8: paths: 9: - path: /testpath 10: backend: 11: serviceName: test 12: servicePort: 80 如果你没有配置Ingress controller就将其POST到API server不会有任何用处 配置说明 1-4行:跟Kubernetes的其他配置一样,ingress的配置也需要apiVersion,kind和metadata字段。配置文件的详细说明请查看部署应用, 配置容器和使用resources。 5-7行: Ingress spec 中包含配置一个loadbalancer或proxy server的所有信息。最重要的是,它包含了一个匹配所有入站请求的规则列表。目前ingress只支持http规则。 8-9行:每条http规则包含以下信息:一个host配置项(比如for.bar.com,在这个例子中默认是*),path列表(比如:/testpath),每个path都关联一个backend(比如test:80)。在loadbalancer将流量转发到backend之前,所有的入站请求都要先匹配host和path。 10-12行:正如 services doc中描述的那样,backend是一个service:port的组合。Ingress的流量被转发到它所匹配的backend。 全局参数:为了简单起见,Ingress示例中没有全局参数,请参阅资源完整定义的api参考。 在所有请求都不能跟spec中的path匹配的情况下,请求被发送到Ingress controller的默认后端,可以指定全局缺省backend。 Ingress controllers 为了使Ingress正常工作,集群中必须运行Ingress controller。 这与其他类型的控制器不同,其他类型的控制器通常作为kube-controller-manager二进制文件的一部分运行,在集群启动时自动启动。 你需要选择最适合自己集群的Ingress controller或者自己实现一个。 kubernetes当前支持并维护GCE和nginx两种controller. F5(公司)支持并维护 F5 BIG-IP Controller for Kubernetes. Kong 同时支持并维护社区版与企业版的 Kong Ingress Controller for Kubernetes. Traefik 是功能齐全的 ingress controller(Let’s Encrypt, secrets, http2, websocket…), Containous 也对其提供商业支持。 Istio 使用CRD Gateway来控制Ingress流量。 在你开始前 以下文档描述了Ingress资源中公开的一组跨平台功能。 理想情况下,所有的Ingress controller都应该符合这个规范,但是我们还没有实现。 GCE和nginx控制器的文档分别在这里和这里。如果您使用F5 BIG-IP controller, 请参看这里. 确保您查看控制器特定的文档,以便您了解每个文档的注意事项。 Ingress类型 单Service Ingress Kubernetes中已经存在一些概念可以暴露单个service(查看替代方案),但是你仍然可以通过Ingress来实现,通过指定一个没有rule的默认backend的方式。 ingress.yaml定义文件: apiVersion: extensions/v1beta1 kind: Ingress metadata: name: test-ingress spec: backend: serviceName: testsvc servicePort: 80 使用kubectl create -f命令创建,然后查看ingress: $ kubectl get ing NAME RULE BACKEND ADDRESS test-ingress - testsvc:80 107.178.254.228 107.178.254.228就是Ingress controller为了实现Ingress而分配的IP地址。RULE列表示所有发送给该IP的流量都被转发到了BACKEND所列的Kubernetes service上。 简单展开 如前面描述的那样,kubernetes pod中的IP只在集群网络内部可见,我们需要在边界设置一个东西,让它能够接收ingress的流量并将它们转发到正确的端点上。这个东西一般是高可用的loadbalancer。使用Ingress能够允许你将loadbalancer的个数降低到最少,例如,假如你想要创建这样的一个设置: foo.bar.com -> 178.91.123.132 -> / foo s1:80 / bar s2:80 你需要一个这样的ingress: apiVersion: extensions/v1beta1 kind: Ingress metadata: name: test spec: rules: - host: foo.bar.com http: paths: - path: /foo backend: serviceName: s1 servicePort: 80 - path: /bar backend: serviceName: s2 servicePort: 80 使用kubectl create -f创建完ingress后: $ kubectl get ing NAME RULE BACKEND ADDRESS test - foo.bar.com /foo s1:80 /bar s2:80 只要服务(s1,s2)存在,Ingress controller就会将提供一个满足该Ingress的特定loadbalancer实现。 这一步完成后,您将在Ingress的最后一列看到loadbalancer的地址。 基于名称的虚拟主机 Name-based的虚拟主机在同一个IP地址下拥有多个主机名。 foo.bar.com --| |-> foo.bar.com s1:80 | 178.91.123.132 | bar.foo.com --| |-> bar.foo.com s2:80 下面这个ingress说明基于Host header的后端loadbalancer的路由请求: apiVersion: extensions/v1beta1 kind: Ingress metadata: name: test spec: rules: - host: foo.bar.com http: paths: - backend: serviceName: s1 servicePort: 80 - host: bar.foo.com http: paths: - backend: serviceName: s2 servicePort: 80 默认backend:一个没有rule的ingress,如前面章节中所示,所有流量都将发送到一个默认backend。你可以用该技巧通知loadbalancer如何找到你网站的404页面,通过制定一些列rule和一个默认backend的方式。如果请求header中的host不能跟ingress中的host匹配,并且/或请求的URL不能与任何一个path匹配,则流量将路由到你的默认backend。 TLS 你可以通过指定包含TLS私钥和证书的secret来加密Ingress。 目前,Ingress仅支持单个TLS端口443,并假定TLS termination。 如果Ingress中的TLS配置部分指定了不同的主机,则它们将根据通过SNI TLS扩展指定的主机名(假如Ingress controller支持SNI)在多个相同端口上进行复用。 TLS secret中必须包含名为tls.crt和tls.key的密钥,这里面包含了用于TLS的证书和私钥,例如: apiVersion: v1 data: tls.crt: base64 encoded cert tls.key: base64 encoded key kind: Secret metadata: name: testsecret namespace: default type: Opaque 在Ingress中引用这个secret将通知Ingress controller使用TLS加密从将客户端到loadbalancer的channel: apiVersion: extensions/v1beta1 kind: Ingress metadata: name: no-rules-map spec: tls: - secretName: testsecret backend: serviceName: s1 servicePort: 80 请注意,各种Ingress controller支持的TLS功能之间存在差距。 请参阅有关nginx,GCE或任何其他平台特定Ingress controller的文档,以了解TLS在你的环境中的工作原理。 Ingress controller启动时附带一些适用于所有Ingress的负载平衡策略设置,例如负载均衡算法,后端权重方案等。更高级的负载平衡概念(例如持久会话,动态权重)尚未在Ingress中公开。 你仍然可以通过service loadbalancer获取这些功能。 随着时间的推移,我们计划将适用于跨平台的负载平衡模式加入到Ingress资源中。 还值得注意的是,尽管健康检查不直接通过Ingress公开,但Kubernetes中存在并行概念,例如准备探查,可以使你达成相同的最终结果。 请查看特定控制器的文档,以了解他们如何处理健康检查(nginx,GCE)。 更新Ingress 假如你想要向已有的ingress中增加一个新的Host,你可以编辑和更新该ingress: $ kubectl get ing NAME RULE BACKEND ADDRESS test - 178.91.123.132 foo.bar.com /foo s1:80 $ kubectl edit ing test 这会弹出一个包含已有的yaml文件的编辑器,修改它,增加新的Host配置。 spec: rules: - host: foo.bar.com http: paths: - backend: serviceName: s1 servicePort: 80 path: /foo - host: bar.baz.com http: paths: - backend: serviceName: s2 servicePort: 80 path: /foo .. 保存它会更新API server中的资源,这会触发ingress controller重新配置loadbalancer。 $ kubectl get ing NAME RULE BACKEND ADDRESS test - 178.91.123.132 foo.bar.com /foo s1:80 bar.baz.com /foo s2:80 在一个修改过的ingress yaml文件上调用kubectl replace -f命令一样可以达到同样的效果。 跨可用域故障 在不同云供应商之间,跨故障域的流量传播技术有所不同。 有关详细信息,请查看相关Ingress controller的文档。 有关在federation集群中部署Ingress的详细信息,请参阅federation文档。 未来计划 多样化的HTTPS/TLS模型支持(如SNI,re-encryption) 通过声明来请求IP或者主机名 结合L4和L7 Ingress 更多的Ingress controller 请跟踪L7和Ingress的proposal,了解有关资源演进的更多细节,以及Ingress repository,了解有关各种Ingress controller演进的更多详细信息。 替代方案 你可以通过很多种方式暴露service而不必直接使用ingress: 使用Service.Type=LoadBalancer 使用Service.Type=NodePort 使用Port Proxy 部署一个Service loadbalancer 这允许你在多个service之间共享单个IP,并通过Service Annotations实现更高级的负载平衡。 参考 Kubernetes Ingress Resource 使用NGINX Plus负载均衡Kubernetes服务 使用 NGINX 和 NGINX Plus 的 Ingress Controller 进行 Kubernetes 的负载均衡 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/traefik-ingress-controller.html":{"url":"concepts/traefik-ingress-controller.html","title":"Traefik Ingress Controller","keywords":"","body":"Traefik Ingress Controller 我们在前面部署了 Traefik 作为Ingress Controller,如果集群外部直接访问Kubenretes内部服务的话,可以直接创建Ingress如下所示: apiVersion: extensions/v1beta1 kind: Ingress metadata: name: traefik-ingress namespace: default spec: rules: - host: traefik.nginx.io http: paths: - path: / backend: serviceName: my-nginx servicePort: 80 Traefik Ingress Controller 当我们处于迁移应用到kuberentes上的阶段时,可能有部分服务实例不在kubernetes上,服务的路由使用nginx配置,这时处于nginx和ingress共存的状态。参考下面的配置: apiVersion: extensions/v1beta1 kind: Ingress metadata: name: td-ingress namespace: default annotations: traefik.frontend.rule.type: PathPrefixStrip kubernetes.io/ingress.class: traefik spec: rules: - host: \"*.jimmysong.io\" http: paths: - path: /docGenerate backend: serviceName: td-sdmk-docgenerate servicePort: 80 注意annotation的配置: traefik.frontend.rule.type: PathPrefixStrip:表示将截掉URL中的path kubernetes.io/ingress.class:表示使用的ingress类型 在nginx中增加配置: upstream docGenerate { server 172.20.0.119:80; keepalive 200; } 172.20.0.119是我们的边缘节点的VIP,见边缘节点配置。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/kubernetes-service-api.html":{"url":"concepts/kubernetes-service-api.html","title":"Kubernetes Service API","keywords":"","body":"Kubernetes Service API 除了直接使用 Service 和 Ingress 之外,Kubernetes 社区还发起了 Service API 项目,这是一个 CRD,可以帮助我们将 Kubernetes 中的服务暴露到集群外。 Service API 是一个由 SIG-NETWORK 管理的开源项目。该项目的目标是在 Kubernetes 生态系统中发展服务网络 API。Service API 提供了暴露 Kubernetes 应用的接口 ——Service、Ingress 等。你可以在 Service API 的官网 了解更多。 该 API 在 Istio 中也被应用,用于将 Kubernetes 中的服务暴露到服务网格之外。 目标 Service API 旨在通过提供表现性的、可扩展的、面向角色的接口来改善服务网络,这些接口由许多厂商实现,并得到了业界的广泛支持。 Service API 是一个 API 资源的集合 —— 服务、GatewayClass、Gateway、HTTPRoute、TCPRoute 等。使用这些资源共同为各种网络用例建模。 下图中展示的是 Kubernetes 集群中四层和七层的网络配置。从图中可以看到通过将这些资源对象分离,可以实现配置上的解耦,由不同角色的人员来管理。 图 4.7.3.1:Kubernetes Service API 简介 Service API 相较于 Ingress 做了哪些改进? 更具表现力 Service API 表达了更多的核心功能,比如基于头的匹配、流量加权和其他功能,而这些功能在 Ingress 中只能通过自定义方式实现。 更具扩展性 Service API 允许在 API 的各个层次上链接自定义资源。这就允许在 API 结构的适当位置进行更精细的定制。 面向角色 它们被分离成不同的 API 资源,这些资源映射到 Kubernetes 上运行应用程序的常见角色。 通用性 这不是一种改进,而是应该保持不变。正如 Ingress 是一个具有众多实现的通用规范一样,Service API 被设计成一个由许多实现支持的可移植规范。 共享网关 它们允许独立的路由资源绑定到同一个网关,从而实现负载均衡器和 VIP 的共享。这允许团队安全地共享基础设施,而不需要直接协调。 类型化后端引用 通过类型化后端引用,Routes 可以引用 Kubernetes 服务,也可以引用任何一种被设计为 Gateway 后端的 Kubernetes 资源。 跨命名空间引用 跨越不同 Namespaces 的路由可以绑定到网关。这样,尽管对工作负载进行了命名空间划分,但仍可共享网络基础设施。 类 GatewayClasses 将负载均衡实现的类型形式化。这些类使用户可以很容易和明确地了解资源模型本身有什么样的能力。 参考 Kubernetes Service APIs - kubernetes-sigs.github.io 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/service-api-overview.html":{"url":"concepts/service-api-overview.html","title":"Service API 简介","keywords":"","body":"Service API 简介 在了解了 Service API 的 目的 后,接下来我们再看下它的资源模型、请求流程、TLS 配置及扩展点等。 角色 Service API 开发者为其使用场景定义四类角色: 基础设施提供方:如 AWS、GKE 等 集群运维:管理整个集群的计算、存储、网络、安全等 应用程序开发者:为自己开发的应用负责,管理应用的健壮性 应用管理员:不是所有的公司都有,通常在一些复杂系统中会有专门的应用管理员 资源模型 注意:资源最初将作为 CRD 存在于 networking.x-k8s.io API 组中。未限定的资源名称将隐含在该 API 组中。 Service API 的资源模型中,主要有三种类型的对象: GatewayClass:定义了一组具有共同配置和行为的网关。 Gateway:请求一个点,在这个点上,流量可以被翻译到集群内的服务。 Route:描述了通过 Gateway 而来的流量如何映射到服务。 GatewayClass GatewayClass 定义了一组共享共同配置和行为的 Gateway,每个 GatewayClass 由一个控制器处理,但控制器可以处理多个 GatewayClass。 GatewayClass 是一个集群范围的资源。必须至少定义一个 GatewayClass,Gateway 才能够生效。实现 Gateway API 的控制器通过关联的 GatewayClass 资源来实现,用户可以在自己的 Gateway 中引用该资源。 这类似于 Ingress 的 IngressClass 和 PersistentVolumes 的 StorageClass。在 Ingress v1beta1 中,最接近 GatewayClass 的是 ingress-class 注解,而在 IngressV1 中,最接近的类似物是 IngressClass 对象。 Gateway Gateway 描述了如何将流量翻译到集群内的服务。也就是说,它定义了一个方法,将流量从不了解 Kubernetes 的地方翻译到了解 Kubernetes 的地方。例如,由云负载均衡器、集群内代理或外部硬件负载均衡器发送到 Kubernetes 服务的流量。虽然许多用例的客户端流量源自集群的 \"外部\",但这并不强求。 Gateway 定义了对实现 GatewayClass 配置和行为合同的特定负载均衡器配置的请求。该资源可以由运维人员直接创建,也可以由处理 GatewayClass 的控制器创建。 由于 Gateway 规范捕获了用户意图,它可能不包含规范中所有属性的完整规范。例如,用户可以省略地址、端口、TLS 设置等字段。这使得管理 GatewayClass 的控制器可以为用户提供这些设置,从而使规范更加可移植。这种行为将通过 GatewayClass 状态对象来明确。 一个 Gateway 可以包含一个或多个 Route 引用,这些 Route 引用的作用是将一个子集的流量引导到一个特定的服务上。 {HTTP,TCP,Foo} Route Route 对象定义了特定协议的规则,用于将请求从 Gateway 映射到 Kubernetes 服务。 HTTPRoute 和 TCPRoute 是目前唯一已定义的 Route 对象。未来可能会添加其他特定协议的 Route 对象。 BackendPolicy BackendPolicy 提供了一种配置 Gateway 和后端之间连接的方法。在这个 API 中,后端是指路由可以转发流量的任何资源。后端的一个常见例子是 Service。这个级别的配置目前仅限于 TLS,但将来会扩展到支持更高级的策略,如健康检查。 一些后端配置可能会根据针对后端的 Route 而有所不同。在这些情况下,配置字段将放在 Route 上,而不是 BackendPolicy 上。有关该资源未来可能配置的更多信息,请参考相关的 GitHub issue。 路由绑定 当 Route 绑定到 Gateway 时,代表应用在 Gateway 上的配置,配置了底层的负载均衡器或代理。哪些 Route 如何绑定到 Gateway 是由资源本身控制的。Route 和 Gateway 资源具有内置的控制,以允许或限制它们之间如何相互选择。这对于强制执行组织政策以确定 Route 如何暴露以及在哪些 Gateway 上暴露非常有用。看下下面的例子。 一个 Kubernetes 集群管理员在 Infra 命名空间中部署了一个名为 shared-gw 的 Gateway,供不同的应用团队使用,以便将其应用暴露在集群之外。团队 A 和团队 B(分别在命名空间 \"A\" 和 \"B\" 中)将他们的 Route 绑定到这个 Gateway。它们互不相识,只要它们的 Route 规则互不冲突,就可以继续隔离运行。团队 C 有特殊的网络需求(可能是性能、安全或关键性),他们需要一个专门的 Gateway 来代理他们的应用到集群外。团队 C 在 \"C\" 命名空间中部署了自己的 Gateway specialive-gw,该 Gateway 只能由 \"C\" 命名空间中的应用使用。 不同命名空间及 Gateway 与 Route 的绑定关系如下图所示。 图 4.7.3.1.1:路由绑定示意图 在如何将路由与网关绑定以实现不同的组织政策和责任范围方面,有很大的灵活性。下面是网关和路由之间可能的对应关系: 一对一:网关和路由可以由一个所有者部署和使用,并具有一对一的关系。团队 C 就是一个例子。 一对多:一个网关可以有许多路由与之绑定,这些路由由来自不同命名空间的不同团队所拥有。团队 A 和 B 就是这样的一个例子。 多对一:路由也可以绑定到多个网关,允许一个路由同时控制不同 IP、负载均衡器或网络上的应用暴露。 总之,网关选择路由,路由控制它们的暴露。当网关选择一个允许自己暴露的路由时,那么该路由将与网关绑定。当路由与网关绑定时,意味着它们的集体路由规则被配置在了由该网关管理的底层负载均衡器或代理服务器上。因此,网关是一个网络数据平面的逻辑表示,可以通过路由进行配置。 路由选择 Gateway 根据 Route 元数据,特别是 Route 资源的种类、命名空间和标签来选择 Route。Route 实际上被绑定到 Gateway 中的特定监听器上,因此每个监听器都有一个 listener.routes 字段,它通过以下一个或多个标准来选择 Route。 Label:Gateway 可以通过资源上存在的标签来选择 Route(类似于 Service 通过 Pod 标签选择 Pod 的方式)。 Kind:网关监听器只能选择单一类型的路由资源。可以是 HTTPRoute、TCPRoute 或自定义 Route 类型。 Namespace:Gateway 还可以通过 namespaces.from 字段控制可以从哪些 Namespace、 Route 中选择。它支持三种可能的值。 SameNamespace 是默认选项。只有与该网关相同的命名空间中的路由才会被选择。 All 将选择来自所有命名空间的 Route。 Selector 意味着该网关将选择由 Namespace 标签选择器选择的 Namespace 子集的 Route。当使用 Selector 时,那么 listeners.route.namespaces.selector 字段可用于指定标签选择器。All 或 SameNamespace 不支持该字段。 下面的 Gateway 将在集群中的所有 Namespace 中选择 expose: prod-web-gw 的所有 HTTPRoute 资源。 kind: Gateway ... spec: listeners: - routes: kind: HTTPRoute selector: matchLabels: expose: prod-web-gw namespaces: from: All 路由暴露 路由可以决定它们如何通过网关暴露。gateways.allow 字段支持三个值。 All:如果没有指定,则是默认值。这使得所有的 Route 标签和 Namespace 选择器都绑定在网关上。 SameNamespace 只允许该路由与来自同一 Namespace 的网关绑定。 FromList 允许指定一个明确的网关列表,以便路由与之绑定。 下面的 my-route Route 只选择 foo-namespace 中的 foo-gateway,而不能与其他 Gateway 绑定。注意,foo-gateway 与 my-route 在不同的 Namespace 中。如果 foo-gateway 允许跨 Namespace 绑定,并且也选择了这个 Route,那么 my-route 就会与之绑定。 kind: HTTPRoute metadata: name: my-route namespace: bar-namespace spec: gateways: allow: FromList gatewayRefs: - name: foo-gateway namespace: foo-namespace 请注意,网关和路由的绑定是双向的。这意味着两个资源必须相互选择才能绑定。如果一个Gateway的Route标签选择器不匹配任何现有的Route,那么即使Route的spec.gateways.allow = All,也不会有任何东西与之绑定。同样,如果一个Route引用了一个特定的Gateway,但该Gateway没有选择Route的Namespace,那么它们也不会绑定。只有当两个资源相互选择时,才会发生绑定。 从资源规范中可能并不总是能明显看出哪些网关和路由是绑定的,但可以通过资源状态来确定绑定。路由状态将列出路由所绑定的所有网关以及绑定的任何相关条件。 组合类型 GatewayClass、Gateway、xRoute 和 Service 的组合将定义一个可实现的负载均衡器。下图说明了不同资源之间的关系。 图 4.7.3.1.2:Service API 流程图 请求流程 使用反向代理实现的网关的一个典型的客户端 / 网关 API 请求流程是: 客户端向 http://foo.example.com 发出请求。 DNS 将该名称解析为网关地址。 反向代理在 Listener 上接收请求,并使用 Host 头 来匹配 HTTPRoute。 可选地,反向代理可以根据 HTTPRoute 的匹配规则执行请求头和 / 或路径匹配。 可选地,反向代理可以根据 HTTPRoute 的过滤规则修改请求,即添加 / 删除头。 最后,反向代理可以根据 HTTPRoute 的 forwardTo 规则,将请求转发到集群中的一个或多个对象,即 Service。 TLS 配置 TLS 配置在 Gateway 监听器上。此外,对于某些自助服务用例,TLS 证书可以配置在路由对象上。 扩展点 API 中提供了一些扩展点,以灵活处理大量通用 API 无法处理的用例。 以下是 API 中扩展点的摘要。 XRouteMatch.ExtensionRef:这个扩展点应该用来扩展特定核心 Route 的匹配语义。这是一个实验性的扩展点,未来会根据反馈进行迭代。 XForwardTo.BackendRef:这个扩展点应该用于将流量转发到核心 Kubernetes 服务资源以外的网络端点。例如 S3 bucket、Lambda 函数、文件服务器等。 HTTPRouteFilter:HTTPRoute 为这一 API 类型提供了一种方法,可以钩入 HTTP 请求的请求 / 响应生命周期。 自定义路由:如果上述扩展点都不能满足用例的需求,实现者可以选择为目前 API 中不支持的协议创建自定义路由资源。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/authentication-and-permission.html":{"url":"concepts/authentication-and-permission.html","title":"身份与权限控制","keywords":"","body":"身份与权限认证 Kubernetes 中提供了良好的多租户认证管理机制,如 RBAC、ServiceAccount 还有各种 Policy 等。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/serviceaccount.html":{"url":"concepts/serviceaccount.html","title":"ServiceAccount","keywords":"","body":"Service Account Service Account为Pod中的进程提供身份信息。 注意:本文是关于 Service Account 的用户指南,管理指南另见 Service Account 的集群管理指南 。 本文档描述的关于 Service Account 的行为只有当您按照 Kubernetes 项目建议的方式搭建起集群的情况下才有效。您的集群管理员可能在您的集群中有自定义配置,这种情况下该文档可能并不适用。 当您(真人用户)访问集群(例如使用kubectl命令)时,apiserver 会将您认证为一个特定的 User Account(目前通常是admin,除非您的系统管理员自定义了集群配置)。Pod 容器中的进程也可以与 apiserver 联系。 当它们在联系 apiserver 的时候,它们会被认证为一个特定的 Service Account(例如default)。 使用默认的 Service Account 访问 API server 当您创建 pod 的时候,如果您没有指定一个 service account,系统会自动得在与该pod 相同的 namespace 下为其指派一个default service account。如果您获取刚创建的 pod 的原始 json 或 yaml 信息(例如使用kubectl get pods/podename -o yaml命令),您将看到spec.serviceAccountName字段已经被设置为 default。 您可以在 pod 中使用自动挂载的 service account 凭证来访问 API,如 Accessing the Cluster 中所描述。 Service account 是否能够取得访问 API 的许可取决于您使用的 授权插件和策略。 在 1.6 以上版本中,您可以选择取消为 service account 自动挂载 API 凭证,只需在 service account 中设置 automountServiceAccountToken: false: apiVersion: v1 kind: ServiceAccount metadata: name: build-robot automountServiceAccountToken: false ... 在 1.6 以上版本中,您也可以选择只取消单个 pod 的 API 凭证自动挂载: apiVersion: v1 kind: Pod metadata: name: my-pod spec: serviceAccountName: build-robot automountServiceAccountToken: false ... 如果在 pod 和 service account 中同时设置了 automountServiceAccountToken , pod 设置中的优先级更高。 使用多个Service Account 每个 namespace 中都有一个默认的叫做 default 的 service account 资源。 您可以使用以下命令列出 namespace 下的所有 serviceAccount 资源。 $ kubectl get serviceAccounts NAME SECRETS AGE default 1 1d 您可以像这样创建一个 ServiceAccount 对象: $ cat > /tmp/serviceaccount.yaml 如果您看到如下的 service account 对象的完整输出信息: $ kubectl get serviceaccounts/build-robot -o yaml apiVersion: v1 kind: ServiceAccount metadata: creationTimestamp: 2015-06-16T00:12:59Z name: build-robot namespace: default resourceVersion: \"272500\" selfLink: /api/v1/namespaces/default/serviceaccounts/build-robot uid: 721ab723-13bc-11e5-aec2-42010af0021e secrets: - name: build-robot-token-bvbk5 然后您将看到有一个 token 已经被自动创建,并被 service account 引用。 您可以使用授权插件来 设置 service account 的权限 。 设置非默认的 service account,只需要在 pod 的spec.serviceAccountName 字段中将name设置为您想要用的 service account 名字即可。 在 pod 创建之初 service account 就必须已经存在,否则创建将被拒绝。 您不能更新已创建的 pod 的 service account。 您可以清理 service account,如下所示: $ kubectl delete serviceaccount/build-robot 手动创建 service account 的 API token 假设我们已经有了一个如上文提到的名为 ”build-robot“ 的 service account,我们手动创建一个新的 secret。 $ cat > /tmp/build-robot-secret.yaml 现在您可以确认下新创建的 secret 取代了 “build-robot” 这个 service account 原来的 API token。 所有已不存在的 service account 的 token 将被 token controller 清理掉。 $ kubectl describe secrets/build-robot-secret Name: build-robot-secret Namespace: default Labels: Annotations: kubernetes.io/service-account.name=build-robot,kubernetes.io/service-account.uid=870ef2a5-35cf-11e5-8d06-005056b45392 Type: kubernetes.io/service-account-token Data ==== ca.crt: 1220 bytes token: ... namespace: 7 bytes 注意:该内容中的token被省略了。 为 service account 添加 ImagePullSecret 首先,创建一个 imagePullSecret,详见这里。 然后,确认已创建。如: $ kubectl get secrets myregistrykey NAME TYPE DATA AGE myregistrykey kubernetes.io/.dockerconfigjson 1 1d 然后,修改 namespace 中的默认 service account 使用该 secret 作为 imagePullSecret。 kubectl patch serviceaccount default -p '{\"imagePullSecrets\": [{\"name\": \"myregistrykey\"}]}' Vi 交互过程中需要手动编辑: $ kubectl get serviceaccounts default -o yaml > ./sa.yaml $ cat sa.yaml apiVersion: v1 kind: ServiceAccount metadata: creationTimestamp: 2015-08-07T22:02:39Z name: default namespace: default resourceVersion: \"243024\" selfLink: /api/v1/namespaces/default/serviceaccounts/default uid: 052fb0f4-3d50-11e5-b066-42010af0d7b6 secrets: - name: default-token-uudge $ vi sa.yaml [editor session not shown] [delete line with key \"resourceVersion\"] [add lines with \"imagePullSecret:\"] $ cat sa.yaml apiVersion: v1 kind: ServiceAccount metadata: creationTimestamp: 2015-08-07T22:02:39Z name: default namespace: default selfLink: /api/v1/namespaces/default/serviceaccounts/default uid: 052fb0f4-3d50-11e5-b066-42010af0d7b6 secrets: - name: default-token-uudge imagePullSecrets: - name: myregistrykey $ kubectl replace serviceaccount default -f ./sa.yaml serviceaccounts/default 现在,所有当前 namespace 中新创建的 pod 的 spec 中都会增加如下内容: spec: imagePullSecrets: - name: myregistrykey 参考 Configure Service Accounts for Pods 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/rbac.html":{"url":"concepts/rbac.html","title":"RBAC—— 基于角色的访问控制","keywords":"","body":"RBAC—— 基于角色的访问控制 基于角色的访问控制(Role-Based Access Control, 即”RBAC”)使用”rbac.authorization.k8s.io” API Group 实现授权决策,允许管理员通过 Kubernetes API 动态配置策略。 截至 Kubernetes 1.6,RBAC 模式处于 beta 版本。 要启用 RBAC,请使用 --authorization-mode=RBAC 启动 API Server。 API 概述 本节将介绍 RBAC API 所定义的四种顶级类型。用户可以像使用其他 Kubernetes API 资源一样 (例如通过 kubectl、API 调用等)与这些资源进行交互。例如,命令 kubectl create -f (resource).yml 可以被用于以下所有的例子,当然,读者在尝试前可能需要先阅读以下相关章节的内容。 Role 与 ClusterRole 在 RBAC API 中,一个角色包含了一套表示一组权限的规则。 权限以纯粹的累加形式累积(没有” 否定” 的规则)。 角色可以由命名空间(namespace)内的 Role 对象定义,而整个 Kubernetes 集群范围内有效的角色则通过 ClusterRole 对象实现。 一个 Role 对象只能用于授予对某一单一命名空间中资源的访问权限。 以下示例描述了”default” 命名空间中的一个 Role 对象的定义,用于授予对 pod 的读访问权限: kind: Role apiVersion: rbac.authorization.k8s.io/v1beta1 metadata: namespace: default name: pod-reader rules: - apiGroups: [\"\"] # 空字符串\"\" 表明使用 core API group resources: [\"pods\"] verbs: [\"get\", \"watch\", \"list\"] ClusterRole 对象可以授予与 Role 对象相同的权限,但由于它们属于集群范围对象, 也可以使用它们授予对以下几种资源的访问权限: 集群范围资源(例如节点,即 node) 非资源类型 endpoint(例如”/healthz”) 跨所有命名空间的命名空间范围资源(例如 pod,需要运行命令 kubectl get pods --all-namespaces 来查询集群中所有的 pod) 下面示例中的 ClusterRole 定义可用于授予用户对某一特定命名空间,或者所有命名空间中的 secret(取决于其 绑定 方式)的读访问权限: kind: ClusterRole apiVersion: rbac.authorization.k8s.io/v1beta1 metadata: # 鉴于 ClusterRole 是集群范围对象,所以这里不需要定义 \"namespace\" 字段 name: secret-reader rules: - apiGroups: [\"\"] resources: [\"secrets\"] verbs: [\"get\", \"watch\", \"list\"] RoleBinding 与 ClusterRoleBinding 角色绑定将一个角色中定义的各种权限授予一个或者一组用户。 角色绑定包含了一组相关主体(即 subject, 包括用户 ——User、用户组 ——Group、或者服务账户 ——Service Account)以及对被授予角色的引用。 在命名空间中可以通过 RoleBinding 对象授予权限,而集群范围的权限授予则通过 ClusterRoleBinding 对象完成。 RoleBinding 可以引用在同一命名空间内定义的 Role 对象。 下面示例中定义的 RoleBinding 对象在”default” 命名空间中将”pod-reader” 角色授予用户”jane”。 这一授权将允许用户”jane” 从”default” 命名空间中读取 pod。 以下角色绑定定义将允许用户 \"jane\" 从 \"default\" 命名空间中读取 pod。 kind: RoleBinding apiVersion: rbac.authorization.k8s.io/v1beta1 metadata: name: read-pods namespace: default subjects: - kind: User name: jane apiGroup: rbac.authorization.k8s.io roleRef: kind: Role name: pod-reader apiGroup: rbac.authorization.k8s.io RoleBinding 对象也可以引用一个 ClusterRole 对象用于在 RoleBinding 所在的命名空间内授予用户对所引用的 ClusterRole 中 定义的命名空间资源的访问权限。这一点允许管理员在整个集群范围内首先定义一组通用的角色,然后再在不同的命名空间中复用这些角色。 例如,尽管下面示例中的 RoleBinding 引用的是一个 ClusterRole 对象,但是用户”dave”(即角色绑定主体)还是只能读取”development” 命名空间中的 secret(即 RoleBinding 所在的命名空间)。 # 以下角色绑定允许用户 \"dave\" 读取 \"development\" 命名空间中的 secret。 kind: RoleBinding apiVersion: rbac.authorization.k8s.io/v1beta1 metadata: name: read-secrets namespace: development # 这里表明仅授权读取 \"development\" 命名空间中的资源。 subjects: - kind: User name: dave apiGroup: rbac.authorization.k8s.io roleRef: kind: ClusterRole name: secret-reader apiGroup: rbac.authorization.k8s.io 最后,可以使用ClusterRoleBinding在集群级别和所有命名空间中授予权限。下面示例中所定义的ClusterRoleBinding允许在用户组”manager” 中的任何用户都可以读取集群中任何命名空间中的 secret。 以下 ClusterRoleBinding 对象允许在用户组 \"manager\" 中的任何用户都可以读取集群中任何命名空间中的 secret。 kind: ClusterRoleBinding apiVersion: rbac.authorization.k8s.io/v1beta1 metadata: name: read-secrets-global subjects: - kind: Group name: manager apiGroup: rbac.authorization.k8s.io roleRef: kind: ClusterRole name: secret-reader apiGroup: rbac.authorization.k8s.io 对资源的引用 大多数资源由代表其名字的字符串表示,例如”pods”,就像它们出现在相关 API endpoint 的 URL 中一样。然而,有一些 Kubernetes API 还 包含了” 子资源”,比如 pod 的 logs。在 Kubernetes 中,pod logs endpoint 的 URL 格式为: GET /api/v1/namespaces/{namespace}/pods/{name}/log 在这种情况下,”pods” 是命名空间资源,而”log” 是 pods 的子资源。为了在 RBAC 角色中表示出这一点,我们需要使用斜线来划分资源 与子资源。如果需要角色绑定主体读取 pods 以及 pod log,您需要定义以下角色: kind: Role apiVersion: rbac.authorization.k8s.io/v1beta1 metadata: namespace: default name: pod-and-pod-logs-reader rules: - apiGroups: [\"\"] resources: [\"pods\", \"pods/log\"] verbs: [\"get\", \"list\"] 通过resourceNames列表,角色可以针对不同种类的请求根据资源名引用资源实例。当指定了resourceNames列表时,不同动作 种类的请求的权限,如使用”get”、”delete”、”update” 以及”patch” 等动词的请求,将被限定到资源列表中所包含的资源实例上。 例如,如果需要限定一个角色绑定主体只能”get” 或者”update” 一个 configmap 时,您可以定义以下角色: kind: Role apiVersion: rbac.authorization.k8s.io/v1beta1 metadata: namespace: default name: configmap-updater rules: - apiGroups: [\"\"] resources: [\"configmap\"] resourceNames: [\"my-configmap\"] verbs: [\"update\", \"get\"] 值得注意的是,如果设置了resourceNames,则请求所使用的动词不能是 list、watch、create 或者 deletecollection。 由于资源名不会出现在 create、list、watch 和 deletecollection 等 API 请求的 URL 中,所以这些请求动词不会被设置了resourceNames的规则所允许,因为规则中的resourceNames 部分不会匹配这些请求。 一些角色定义的例子 在以下示例中,我们仅截取展示了 rules 部分的定义。 允许读取 core API Group 中定义的资源”pods”: rules: - apiGroups: [\"\"] resources: [\"pods\"] verbs: [\"get\", \"list\", \"watch\"] 允许读写在”extensions” 和”apps” API Group 中定义的”deployments”: rules: - apiGroups: [\"extensions\", \"apps\"] resources: [\"deployments\"] verbs: [\"get\", \"list\", \"watch\", \"create\", \"update\", \"patch\", \"delete\"] 允许读取”pods” 以及读写”jobs”: rules: - apiGroups: [\"\"] resources: [\"pods\"] verbs: [\"get\", \"list\", \"watch\"] - apiGroups: [\"batch\", \"extensions\"] resources: [\"jobs\"] verbs: [\"get\", \"list\", \"watch\", \"create\", \"update\", \"patch\", \"delete\"] 允许读取一个名为”my-config” 的ConfigMap实例(需要将其通过RoleBinding绑定从而限制针对某一个命名空间中定义的一个ConfigMap实例的访问): rules: - apiGroups: [\"\"] resources: [\"configmaps\"] resourceNames: [\"my-config\"] verbs: [\"get\"] 允许读取 core API Group 中的”nodes” 资源(由于Node是集群级别资源,所以此ClusterRole定义需要与一个ClusterRoleBinding绑定才能有效): rules: - apiGroups: [\"\"] resources: [\"nodes\"] verbs: [\"get\", \"list\", \"watch\"] 允许对非资源 endpoint “/healthz” 及其所有子路径的”GET” 和”POST” 请求(此ClusterRole定义需要与一个ClusterRoleBinding绑定才能有效): rules: - nonResourceURLs: [\"/healthz\", \"/healthz/*\"] # 在非资源 URL 中,'*' 代表后缀通配符 verbs: [\"get\", \"post\"] 对角色绑定主体(Subject)的引用RoleBinding或者ClusterRoleBinding 将角色绑定到 角色绑定主体(Subject)。 角色绑定主体可以是用户组(Group)、用户(User)或者服务账户(Service Accounts)。 用户由字符串表示。可以是纯粹的用户名,例如”alice”、电子邮件风格的名字,如 “bob@example.com” 或者是用字符串表示的数字 id。由 Kubernetes 管理员配置 认证模块 以产生所需格式的用户名。对于用户名,RBAC 授权系统不要求任何特定的格式。然而,前缀 system: 是 为 Kubernetes 系统使用而保留的,所以管理员应该确保用户名不会意外地包含这个前缀。 Kubernetes 中的用户组信息由授权模块提供。用户组与用户一样由字符串表示。Kubernetes 对用户组 字符串没有格式要求,但前缀 system: 同样是被系统保留的。 服务账户 拥有包含 system:serviceaccount: 前缀的用户名,并属于拥有 system:serviceaccounts: 前缀的用户组。 角色绑定的一些例子 以下示例中,仅截取展示了 RoleBinding 的 subjects 字段。 一个名为”alice@example.com” 的用户: subjects: - kind: User name: \"alice@example.com\" apiGroup: rbac.authorization.k8s.io 一个名为”frontend-admins” 的用户组: subjects: - kind: Group name: \"frontend-admins\" apiGroup: rbac.authorization.k8s.io kube-system 命名空间中的默认服务账户: subjects: - kind: ServiceAccount name: default namespace: kube-system 名为”qa” 命名空间中的所有服务账户: subjects: - kind: Group name: system:serviceaccounts:qa apiGroup: rbac.authorization.k8s.io ```在集群中的所有服务账户: ```yaml subjects: - kind: Group name: system:serviceaccounts apiGroup: rbac.authorization.k8s.io 所有认证过的用户(version 1.5+): subjects: - kind: Group name: system:authenticated apiGroup: rbac.authorization.k8s.io ```所有未认证的用户(version 1.5+): ```yaml subjects: - kind: Group name: system:unauthenticated apiGroup: rbac.authorization.k8s.io 所有用户(version 1.5+): subjects: - kind: Group name: system:authenticated apiGroup: rbac.authorization.k8s.io - kind: Group name: system:unauthenticated apiGroup: rbac.authorization.k8s.io 默认角色与默认角色绑定 API Server 会创建一组默认的 ClusterRole 和 ClusterRoleBinding 对象。 这些默认对象中有许多包含 system: 前缀,表明这些资源由 Kubernetes 基础组件” 拥有”。 对这些资源的修改可能导致非功能性集群(non-functional cluster)。一个例子是 system:node ClusterRole 对象。 这个角色定义了 kubelets 的权限。如果这个角色被修改,可能会导致 kubelets 无法正常工作。 所有默认的 ClusterRole 和 ClusterRoleBinding 对象都会被标记为 kubernetes.io/bootstrapping=rbac-defaults。 自动更新 每次启动时,API Server 都会更新默认 ClusterRole 所缺乏的各种权限,并更新默认 ClusterRoleBinding 所缺乏的各个角色绑定主体。 这种自动更新机制允许集群修复一些意外的修改。由于权限和角色绑定主体在新的 Kubernetes 释出版本中可能变化,这也能够保证角色和角色 绑定始终保持是最新的。 如果需要禁用自动更新,请将默认 ClusterRole 以及 ClusterRoleBinding 的 rbac.authorization.kubernetes.io/autoupdate 设置成为 false。 请注意,缺乏默认权限和角色绑定主体可能会导致非功能性集群问题。 自 Kubernetes 1.6 + 起,当集群 RBAC 授权器(RBAC Authorizer)处于开启状态时,可以启用自动更新功能. 发现类角色 默认 ClusterRole 默认 ClusterRoleBinding 描述 system:basic-user system:authenticated and system:unauthenticatedgroups 允许用户只读访问有关自己的基本信息。 system:discovery system:authenticated and system:unauthenticatedgroups 允许只读访问 API discovery endpoints, 用于在 API 级别进行发现和协商。 面向用户的角色 一些默认角色并不包含 system: 前缀,它们是面向用户的角色。 这些角色包含超级用户角色(cluster-admin),即旨在利用 ClusterRoleBinding(cluster-status)在集群范围内授权的角色, 以及那些使用 RoleBinding(admin、edit 和 view)在特定命名空间中授权的角色。 默认 ClusterRole 默认 ClusterRoleBinding 描述 cluster-admin system:masters group 超级用户权限,允许对任何资源执行任何操作。 在 ClusterRoleBinding 中使用时,可以完全控制集群和所有命名空间中的所有资源。 在 RoleBinding 中使用时,可以完全控制 RoleBinding 所在命名空间中的所有资源,包括命名空间自己。 admin None 管理员权限,利用 RoleBinding 在某一命名空间内部授予。 在 RoleBinding 中使用时,允许针对命名空间内大部分资源的读写访问, 包括在命名空间内创建角色与角色绑定的能力。 但不允许对资源配额(resource quota)或者命名空间本身的写访问。 edit None 允许对某一个命名空间内大部分对象的读写访问,但不允许查看或者修改角色或者角色绑定。 view None 允许对某一个命名空间内大部分对象的只读访问。 不允许查看角色或者角色绑定。 由于可扩散性等原因,不允许查看 secret 资源。 Core Component Roles 核心组件角色 默认 ClusterRole 默认 ClusterRoleBinding 描述 system:kube-scheduler system:kube-scheduler user 允许访问 kube-scheduler 组件所需要的资源。 system:kube-controller-manager system:kube-controller-manager user 允许访问 kube-controller-manager 组件所需要的资源。 单个控制循环所需要的权限请参阅 控制器(controller)角色. system:node system:nodes group (deprecated in 1.7) 允许对 kubelet 组件所需要的资源的访问,包括读取所有 secret 和对所有 pod 的写访问。 自 Kubernetes 1.7 开始,相比较于这个角色,更推荐使用 Node authorizer 以及 NodeRestriction admission plugin, 并允许根据调度运行在节点上的 pod 授予 kubelets API 访问的权限。 自 Kubernetes 1.7 开始,当启用 Node 授权模式时,对 system:nodes 用户组的绑定将不会被自动创建。 system:node-proxier system:kube-proxy user 允许对 kube-proxy 组件所需要资源的访问。 其它组件角色 默认 ClusterRole 默认 ClusterRoleBinding 描述 system:auth-delegator None 允许委托认证和授权检查。 通常由附加 API Server 用于统一认证和授权。 system:heapster None Heapster 组件的角色。 system:kube-aggregator None kube-aggregator 组件的角色。 system:kube-dns kube-dns service account in the kube-systemnamespace kube-dns 组件的角色。 system:node-bootstrapper None 允许对执行 Kubelet TLS 引导(Kubelet TLS bootstrapping) 所需要资源的访问. system:node-problem-detector None node-problem-detector 组件的角色。 system:persistent-volume-provisioner None 允许对大部分动态存储卷创建组件(dynamic volume provisioner)所需要资源的访问。 控制器(Controller)角色 Kubernetes controller manager 负责运行核心控制循环。 当使用 --use-service-account-credentials 选项运行 controller manager 时,每个控制循环都将使用单独的服务账户启动。 而每个控制循环都存在对应的角色,前缀名为 system:controller:。 如果不使用 --use-service-account-credentials 选项时,controller manager 将会使用自己的凭证运行所有控制循环,而这些凭证必须被授予相关的角色。 这些角色包括: system:controller:attachdetach-controller system:controller:certificate-controller system:controller:cronjob-controller system:controller:daemon-set-controller system:controller:deployment-controller system:controller:disruption-controller system:controller:endpoint-controller system:controller:generic-garbage-collector system:controller:horizontal-pod-autoscaler system:controller:job-controller system:controller:namespace-controller system:controller:node-controller system:controller:persistent-volume-binder system:controller:pod-garbage-collector system:controller:replicaset-controller system:controller:replication-controller system:controller:resourcequota-controller system:controller:route-controller system:controller:service-account-controller system:controller:service-controller system:controller:statefulset-controller system:controller:ttl-controller 初始化与预防权限升级 RBAC API 会阻止用户通过编辑角色或者角色绑定来升级权限。 由于这一点是在 API 级别实现的,所以在 RBAC 授权器(RBAC authorizer)未启用的状态下依然可以正常工作。 用户只有在拥有了角色所包含的所有权限的条件下才能创建/更新一个角色,这些操作还必须在角色所处的相同范围内进行(对于 ClusterRole 来说是集群范围,对于 Role 来说是在与角色相同的命名空间或者集群范围)。 例如,如果用户”user-1” 没有权限读取集群范围内的 secret 列表,那么他也不能创建包含这种权限的 ClusterRole。为了能够让用户创建/更新角色,需要: 授予用户一个角色以允许他们根据需要创建/更新 Role 或者 ClusterRole 对象。 授予用户一个角色包含他们在 Role 或者 ClusterRole 中所能够设置的所有权限。如果用户尝试创建或者修改 Role 或者 ClusterRole 以设置那些他们未被授权的权限时,这些 API 请求将被禁止。 用户只有在拥有所引用的角色中包含的所有权限时才可以创建/更新角色绑定(这些操作也必须在角色绑定所处的相同范围内进行) 或者 用户被明确授权可以在所引用的角色上执行绑定操作。 例如,如果用户”user-1” 没有权限读取集群范围内的 secret 列表,那么他将不能创建 ClusterRole 来引用那些授予了此项权限的角色。为了能够让用户创建/更新角色绑定,需要: 授予用户一个角色以允许他们根据需要创建/更新 RoleBinding 或者 ClusterRoleBinding 对象。 授予用户绑定某一特定角色所需要的权限: 隐式地,通过授予用户所有所引用的角色中所包含的权限 显式地,通过授予用户在特定 Role(或者 ClusterRole)对象上执行 bind 操作的权限 例如,下面例子中的 ClusterRole 和 RoleBinding 将允许用户”user-1” 授予其它用户”user-1-namespace” 命名空间内的 admin、edit 和 view 等角色和角色绑定。 apiVersion: rbac.authorization.k8s.io/v1beta1 kind: ClusterRole metadata: name: role-grantor rules: - apiGroups: [\"rbac.authorization.k8s.io\"] resources: [\"rolebindings\"] verbs: [\"create\"] - apiGroups: [\"rbac.authorization.k8s.io\"] resources: [\"clusterroles\"] verbs: [\"bind\"] resourceNames: [\"admin\",\"edit\",\"view\"] --- apiVersion: rbac.authorization.k8s.io/v1beta1 kind: RoleBinding metadata: name: role-grantor-binding namespace: user-1-namespace roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: role-grantor subjects: - apiGroup: rbac.authorization.k8s.io kind: User name: user-1 当初始化第一个角色和角色绑定时,初始用户需要能够授予他们尚未拥有的权限。 初始化初始角色和角色绑定时需要: 使用包含 system:masters 用户组的凭证,该用户组通过默认绑定绑定到 cluster-admin 超级用户角色。 如果您的 API Server 在运行时启用了非安全端口(--insecure-port),您也可以通过这个没有施行认证或者授权的端口发送角色或者角色绑定请求。 一些命令行工具 有两个 kubectl 命令可以用于在命名空间内或者整个集群内授予角色。 kubectl create rolebinding 在某一特定命名空间内授予 Role 或者 ClusterRole。示例如下: 在名为”acme” 的命名空间中将 admin ClusterRole 授予用户”bob”: kubectl create rolebinding bob-admin-binding --clusterrole=admin --user=bob --namespace=acme 在名为”acme” 的命名空间中将 view ClusterRole 授予服务账户”myapp”: kubectl create rolebinding myapp-view-binding --clusterrole=view --serviceaccount=acme:myapp --namespace=acme kubectl create clusterrolebinding 在整个集群中授予 ClusterRole,包括所有命名空间。示例如下: 在整个集群范围内将 cluster-admin ClusterRole 授予用户”root”: kubectl create clusterrolebinding root-cluster-admin-binding --clusterrole=cluster-admin --user=root 在整个集群范围内将 system:node ClusterRole 授予用户”kubelet”: kubectl create clusterrolebinding kubelet-node-binding --clusterrole=system:node --user=kubelet 在整个集群范围内将 view ClusterRole 授予命名空间”acme” 内的服务账户”myapp”: kubectl create clusterrolebinding myapp-view-binding --clusterrole=view --serviceaccount=acme:myapp 请参阅 CLI 帮助文档以获得上述命令的详细用法 服务账户(Service Account)权限 默认的 RBAC 策略将授予控制平面组件(control-plane component)、节点(node)和控制器(controller)一组范围受限的权限, 但对于”kube-system” 命名空间以外的服务账户,则 不授予任何权限 (超出授予所有认证用户的发现权限)。 这一点允许您根据需要向特定服务账号授予特定权限。 细粒度的角色绑定将提供更好的安全性,但需要更多精力管理。 更粗粒度的授权可能授予服务账号不需要的 API 访问权限(甚至导致潜在授权扩散),但更易于管理。 从最安全到最不安全可以排序以下方法: 对某一特定应用程序的服务账户授予角色(最佳实践) 要求应用程序在其 pod 规范(pod spec)中指定 serviceAccountName 字段,并且要创建相应服务账户(例如通过 API、应用程序清单或者命令 kubectl create serviceaccount 等)。 例如,在”my-namespace” 命名空间中授予服务账户”my-sa” 只读权限: kubectl create rolebinding my-sa-view \\ --clusterrole=view \\ --serviceaccount=my-namespace:my-sa \\ --namespace=my-namespace 在某一命名空间中授予”default” 服务账号一个角色 如果一个应用程序没有在其 pod 规范中指定 serviceAccountName,它将默认使用”default” 服务账号。 注意:授予”default” 服务账号的权限将可用于命名空间内任何没有指定 serviceAccountName 的 pod。 下面的例子将在”my-namespace” 命名空间内授予”default” 服务账号只读权限: kubectl create rolebinding default-view \\ --clusterrole=view \\ --serviceaccount=my-namespace:default \\ --namespace=my-namespace 目前,许多 加载项(addon) 作为”kube-system” 命名空间中的”default” 服务帐户运行。 要允许这些加载项使用超级用户访问权限,请将 cluster-admin 权限授予”kube-system” 命名空间中的”default” 服务帐户。 注意:启用上述操作意味着”kube-system” 命名空间将包含允许超级用户访问 API 的秘钥。 kubectl create clusterrolebinding add-on-cluster-admin \\ --clusterrole=cluster-admin \\ --serviceaccount=kube-system:default 为命名空间中所有的服务账号授予角色 如果您希望命名空间内的所有应用程序都拥有同一个角色,无论它们使用什么服务账户,您可以为该命名空间的服务账户用户组授予角色。 下面的例子将授予”my-namespace” 命名空间中的所有服务账户只读权限: kubectl create rolebinding serviceaccounts-view \\ --clusterrole=view \\ --group=system:serviceaccounts:my-namespace \\ --namespace=my-namespace 对集群范围内的所有服务账户授予一个受限角色(不鼓励) 如果您不想管理每个命名空间的权限,则可以将集群范围角色授予所有服务帐户。 下面的例子将所有命名空间中的只读权限授予集群中的所有服务账户: kubectl create clusterrolebinding serviceaccounts-view \\ --clusterrole=view \\ --group=system:serviceaccounts 授予超级用户访问权限给集群范围内的所有服务帐户(强烈不鼓励) 如果您根本不关心权限分块,您可以对所有服务账户授予超级用户访问权限。 警告:这种做法将允许任何具有读取权限的用户访问 secret 或者通过创建一个容器的方式来访问超级用户的凭据。 kubectl create clusterrolebinding serviceaccounts-cluster-admin \\ --clusterrole=cluster-admin \\ --group=system:serviceaccounts 从版本 1.5 升级 在 Kubernetes 1.6 之前,许多部署使用非常宽泛的 ABAC 策略,包括授予对所有服务帐户的完整 API 访问权限。 默认的 RBAC 策略将授予控制平面组件(control-plane components)、节点(nodes)和控制器(controller)一组范围受限的权限, 但对于”kube-system” 命名空间以外的服务账户,则 不授予任何权限(超出授予所有认证用户的发现权限)。 虽然安全性更高,但这可能会影响到期望自动接收 API 权限的现有工作负载。 以下是管理此转换的两种方法: 并行授权器(authorizer) 同时运行 RBAC 和 ABAC 授权器,并包括旧版 ABAC 策略: --authorization-mode=RBAC,ABAC --authorization-policy-file=mypolicy.jsonl RBAC 授权器将尝试首先授权请求。如果 RBAC 授权器拒绝 API 请求,则 ABAC 授权器将被运行。这意味着 RBAC 策略 或者 ABAC 策略所允许的任何请求都是可通过的。 当以日志级别为 2 或更高(--v = 2)运行时,您可以在 API Server 日志中看到 RBAC 拒绝请求信息(以 RBAC DENY: 为前缀)。 您可以使用该信息来确定哪些角色需要授予哪些用户,用户组或服务帐户。 一旦 授予服务帐户角色,并且服务器日志中没有 RBAC 拒绝消息的工作负载正在运行,您可以删除 ABAC 授权器。 宽泛的 RBAC 权限 您可以使用 RBAC 角色绑定来复制一个宽泛的策略。 警告:以下政策略允许所有服务帐户作为集群管理员。 运行在容器中的任何应用程序都会自动接收服务帐户凭据,并且可以对 API 执行任何操作,包括查看 secret 和修改权限。 因此,并不推荐使用这种策略。 kubectl create clusterrolebinding permissive-binding \\ --clusterrole=cluster-admin \\ --user=admin \\ --user=kubelet \\ --group=system:serviceaccounts 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/network-policy.html":{"url":"concepts/network-policy.html","title":"NetworkPolicy","keywords":"","body":"Network Policy 网络策略说明一组 Pod 之间是如何被允许互相通信,以及如何与其它网络 Endpoint 进行通信。 NetworkPolicy 资源使用标签来选择 Pod,并定义了一些规则,这些规则指明允许什么流量进入到选中的 Pod 上。关于 Network Policy 的详细用法请参考 Kubernetes 官网。 Network Policy 的作用对象是 Pod,也可以应用到 Namespace 和集群的 Ingress、Egress 流量。Network Policy 是作用在 L3/4 层的,即限制的是对 IP 地址和端口的访问,如果需要对应用层做访问限制需要使用如 Istio 这类 Service Mesh。 前提条件 网络策略通过网络插件来实现,所以必须使用一种支持 NetworkPolicy 的网络方案(如 calico)—— 非 Controller 创建的资源,是不起作用的。 隔离的与未隔离的 Pod 默认 Pod 是未隔离的,它们可以从任何的源接收请求。 具有一个可以选择 Pod 的网络策略后,Pod 就会变成隔离的。 一旦 Namespace 中配置的网络策略能够选择一个特定的 Pod,这个 Pod 将拒绝任何该网络策略不允许的连接。(Namespace 中其它未被网络策略选中的 Pod 将继续接收所有流量) NetworkPolicy 资源 下面是一个 NetworkPolicy 的例子: apiVersion: networking.k8s.io/v1 kind: NetworkPolicy metadata: name: test-network-policy namespace: default spec: podSelector: matchLabels: role: db policyTypes: - Ingress - Egress ingress: - from: - ipBlock: cidr: 172.17.0.0/16 except: - 172.17.1.0/24 - namespaceSelector: matchLabels: project: myproject - podSelector: matchLabels: role: frontend ports: - protocol: TCP port: 6379 egress: - to: - ipBlock: cidr: 10.0.0.0/24 ports: - protocol: TCP port: 5978 将上面配置 POST 到 API Server 将不起任何作用,除非选择的网络方案支持网络策略。 必选字段:像所有其它 Kubernetes 配置一样, NetworkPolicy 需要 apiVersion、kind 和 metadata 这三个字段,关于如何使用配置文件的基本信息,可以查看 这里。 spec:NetworkPolicy spec 具有在给定 Namespace 中定义特定网络的全部信息。 podSelector:每个 NetworkPolicy 包含一个 podSelector,它可以选择一组应用了网络策略的 Pod。由于 NetworkPolicy 当前只支持定义 ingress 规则,这个 podSelector 实际上为该策略定义了一组 “目标Pod”。示例中的策略选择了标签为 “role=db” 的 Pod。一个空的 podSelector 选择了该 Namespace 中的所有 Pod。 ingress:每个NetworkPolicy 包含了一个白名单 ingress 规则列表。每个规则只允许能够匹配上 from 和 ports配置段的流量。示例策略包含了单个规则,它从这两个源中匹配在单个端口上的流量,第一个是通过namespaceSelector 指定的,第二个是通过 podSelector 指定的。 egress:每个NetworkPolicy 包含了一个白名单 ingress 规则列表。每个规则只允许能够匹配上 to 和 ports配置段的流量。示例策略包含了单个规则,它匹配目的地 10.0.0.0/24 单个端口的流量。 因此,上面示例的 NetworkPolicy: 在 “default” Namespace中 隔离了标签 “role=db” 的 Pod(如果他们还没有被隔离) 在 “default” Namespace中,允许任何具有 “role=frontend” 的 Pod,IP 范围在 172.17.0.0–172.17.0.255 和 172.17.2.0–172.17.255.255(整个 172.17.0.0/16 段, 172.17.1.0/24 除外)连接到标签为 “role=db” 的 Pod 的 TCP 端口 6379 允许在 Namespace 中任何具有标签 “project=myproject” ,IP范围在10.0.0.0/24段的 Pod,连接到 “default” Namespace 中标签为 “role=db” 的 Pod 的 TCP 端口 5978 查看 NetworkPolicy 入门指南给出的更进一步的例子。 默认策略 通过创建一个可以选择所有 Pod 但不允许任何流量的 NetworkPolicy,你可以为一个 Namespace 创建一个 “默认的” 隔离策略,如下所示: apiVersion: networking.k8s.io/v1 kind: NetworkPolicy metadata: name: default-deny spec: podSelector: 这确保了即使是没有被任何 NetworkPolicy 选中的 Pod,将仍然是被隔离的。 可选地,在 Namespace 中,如果你想允许所有的流量进入到所有的 Pod(即使已经添加了某些策略,使一些 Pod 被处理为 “隔离的”),你可以通过创建一个策略来显式地指定允许所有流量: apiVersion: networking.k8s.io/v1 kind: NetworkPolicy metadata: name: allow-all spec: podSelector: ingress: - {} 参考 Network Policies - k8smeetup.github.io Network Policies - kubernetes.io 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/storage.html":{"url":"concepts/storage.html","title":"存储","keywords":"","body":"存储 为了管理存储,Kubernetes提供了Secret用于管理敏感信息,ConfigMap存储配置,Volume、PV、PVC、StorageClass等用来管理存储卷。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/secret.html":{"url":"concepts/secret.html","title":"Secret","keywords":"","body":"Secret Secret解决了密码、token、密钥等敏感数据的配置问题,而不需要把这些敏感数据暴露到镜像或者Pod Spec中。Secret可以以Volume或者环境变量的方式使用。 Secret有三种类型: Service Account :用来访问Kubernetes API,由Kubernetes自动创建,并且会自动挂载到Pod的/run/secrets/kubernetes.io/serviceaccount目录中; Opaque :base64编码格式的Secret,用来存储密码、密钥等; kubernetes.io/dockerconfigjson :用来存储私有docker registry的认证信息。 Opaque Secret Opaque类型的数据是一个map类型,要求value是base64编码格式: $ echo -n \"admin\" | base64 YWRtaW4= $ echo -n \"1f2d1e2e67df\" | base64 MWYyZDFlMmU2N2Rm secrets.yml apiVersion: v1 kind: Secret metadata: name: mysecret type: Opaque data: password: MWYyZDFlMmU2N2Rm username: YWRtaW4= 接着,就可以创建secret了:kubectl create -f secrets.yml。 创建好secret之后,有两种方式来使用它: 以Volume方式 以环境变量方式 将Secret挂载到Volume中 apiVersion: v1 kind: Pod metadata: labels: name: db name: db spec: volumes: - name: secrets secret: secretName: mysecret containers: - image: gcr.io/my_project_id/pg:v1 name: db volumeMounts: - name: secrets mountPath: \"/etc/secrets\" readOnly: true ports: - name: cp containerPort: 5432 hostPort: 5432 将Secret导出到环境变量中 apiVersion: extensions/v1beta1 kind: Deployment metadata: name: wordpress-deployment spec: replicas: 2 strategy: type: RollingUpdate template: metadata: labels: app: wordpress visualize: \"true\" spec: containers: - name: \"wordpress\" image: \"wordpress\" ports: - containerPort: 80 env: - name: WORDPRESS_DB_USER valueFrom: secretKeyRef: name: mysecret key: username - name: WORDPRESS_DB_PASSWORD valueFrom: secretKeyRef: name: mysecret key: password kubernetes.io/dockerconfigjson 可以直接用kubectl命令来创建用于docker registry认证的secret: $ kubectl create secret docker-registry myregistrykey --docker-server=DOCKER_REGISTRY_SERVER --docker-username=DOCKER_USER --docker-password=DOCKER_PASSWORD --docker-email=DOCKER_EMAIL secret \"myregistrykey\" created. 也可以直接读取~/.docker/config.json的内容来创建: $ cat ~/.docker/config.json | base64 $ cat > myregistrykey.yaml 在创建Pod的时候,通过imagePullSecrets来引用刚创建的myregistrykey: apiVersion: v1 kind: Pod metadata: name: foo spec: containers: - name: foo image: janedoe/awesomeapp:v1 imagePullSecrets: - name: myregistrykey Service Account Service Account用来访问Kubernetes API,由Kubernetes自动创建,并且会自动挂载到Pod的/run/secrets/kubernetes.io/serviceaccount目录中。 $ kubectl run nginx --image nginx deployment \"nginx\" created $ kubectl get pods NAME READY STATUS RESTARTS AGE nginx-3137573019-md1u2 1/1 Running 0 13s $ kubectl exec nginx-3137573019-md1u2 ls /run/secrets/kubernetes.io/serviceaccount ca.crt namespace token 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/configmap.html":{"url":"concepts/configmap.html","title":"ConfigMap","keywords":"","body":"ConfigMap 其实ConfigMap功能在Kubernetes1.2版本的时候就有了,许多应用程序会从配置文件、命令行参数或环境变量中读取配置信息。这些配置信息需要与docker image解耦,你总不能每修改一个配置就重做一个image吧?ConfigMap API给我们提供了向容器中注入配置信息的机制,ConfigMap可以被用来保存单个属性,也可以用来保存整个配置文件或者JSON二进制大对象。 ConfigMap概览 ConfigMap API资源用来保存key-value pair配置数据,这个数据可以在pods里使用,或者被用来为像controller一样的系统组件存储配置数据。虽然ConfigMap跟Secrets类似,但是ConfigMap更方便的处理不含敏感信息的字符串。 注意:ConfigMaps不是属性配置文件的替代品。ConfigMaps只是作为多个properties文件的引用。你可以把它理解为Linux系统中的/etc目录,专门用来存储配置文件的目录。下面举个例子,使用ConfigMap配置来创建Kubernetes Volumes,ConfigMap中的每个data项都会成为一个新文件。 kind: ConfigMap apiVersion: v1 metadata: creationTimestamp: 2016-02-18T19:14:38Z name: example-config namespace: default data: example.property.1: hello example.property.2: world example.property.file: |- property.1=value-1 property.2=value-2 property.3=value-3 data一栏包括了配置数据,ConfigMap可以被用来保存单个属性,也可以用来保存一个配置文件。 配置数据可以通过很多种方式在Pods里被使用。ConfigMaps可以被用来: 设置环境变量的值 在容器里设置命令行参数 在数据卷里面创建config文件 用户和系统组件两者都可以在ConfigMap里面存储配置数据。 其实不用看下面的文章,直接从kubectl create configmap -h的帮助信息中就可以对ConfigMap究竟如何创建略知一二了。 Examples: # Create a new configmap named my-config based on folder bar kubectl create configmap my-config --from-file=path/to/bar # Create a new configmap named my-config with specified keys instead of file basenames on disk kubectl create configmap my-config --from-file=key1=/path/to/bar/file1.txt --from-file=key2=/path/to/bar/file2.txt # Create a new configmap named my-config with key1=config1 and key2=config2 kubectl create configmap my-config --from-literal=key1=config1 --from-literal=key2=config2 创建ConfigMaps 可以使用该命令,用给定值、文件或目录来创建ConfigMap。 kubectl create configmap 使用目录创建 比如我们已经有了一些配置文件,其中包含了我们想要设置的ConfigMap的值: $ ls docs/user-guide/configmap/kubectl/ game.properties ui.properties $ cat docs/user-guide/configmap/kubectl/game.properties enemies=aliens lives=3 enemies.cheat=true enemies.cheat.level=noGoodRotten secret.code.passphrase=UUDDLRLRBABAS secret.code.allowed=true secret.code.lives=30 $ cat docs/user-guide/configmap/kubectl/ui.properties color.good=purple color.bad=yellow allow.textmode=true how.nice.to.look=fairlyNice 使用下面的命令可以创建一个包含目录中所有文件的ConfigMap。 $ kubectl create configmap game-config --from-file=docs/user-guide/configmap/kubectl —from-file指定在目录下的所有文件都会被用在ConfigMap里面创建一个键值对,键的名字就是文件名,值就是文件的内容。 让我们来看一下这个命令创建的ConfigMap: $ kubectl describe configmaps game-config Name: game-config Namespace: default Labels: Annotations: Data ==== game.properties: 158 bytes ui.properties: 83 bytes 我们可以看到那两个key是从kubectl指定的目录中的文件名。这些key的内容可能会很大,所以在kubectl describe的输出中,只能够看到键的名字和他们的大小。 如果想要看到键的值的话,可以使用kubectl get: $ kubectl get configmaps game-config -o yaml 我们以yaml格式输出配置。 apiVersion: v1 data: game.properties: | enemies=aliens lives=3 enemies.cheat=true enemies.cheat.level=noGoodRotten secret.code.passphrase=UUDDLRLRBABAS secret.code.allowed=true secret.code.lives=30 ui.properties: | color.good=purple color.bad=yellow allow.textmode=true how.nice.to.look=fairlyNice kind: ConfigMap metadata: creationTimestamp: 2016-02-18T18:34:05Z name: game-config namespace: default resourceVersion: \"407\" selfLink: /api/v1/namespaces/default/configmaps/game-config uid: 30944725-d66e-11e5-8cd0-68f728db1985 使用文件创建 刚才使用目录创建的时候我们—from-file指定的是一个目录,只要指定为一个文件就可以从单个文件中创建ConfigMap。 $ kubectl create configmap game-config-2 --from-file=docs/user-guide/configmap/kubectl/game.properties $ kubectl get configmaps game-config-2 -o yaml apiVersion: v1 data: game-special-key: | enemies=aliens lives=3 enemies.cheat=true enemies.cheat.level=noGoodRotten secret.code.passphrase=UUDDLRLRBABAS secret.code.allowed=true secret.code.lives=30 kind: ConfigMap metadata: creationTimestamp: 2016-02-18T18:54:22Z name: game-config-3 namespace: default resourceVersion: \"530\" selfLink: /api/v1/namespaces/default/configmaps/game-config-3 uid: 05f8da22-d671-11e5-8cd0-68f728db1985 —from-file这个参数可以使用多次,你可以使用两次分别指定上个实例中的那两个配置文件,效果就跟指定整个目录是一样的。 使用字面值创建 使用文字值创建,利用—from-literal参数传递配置信息,该参数可以使用多次,格式如下; $ kubectl create configmap special-config --from-literal=special.how=very --from-literal=special.type=charm $ kubectl get configmaps special-config -o yaml apiVersion: v1 data: special.how: very special.type: charm kind: ConfigMap metadata: creationTimestamp: 2016-02-18T19:14:38Z name: special-config namespace: default resourceVersion: \"651\" selfLink: /api/v1/namespaces/default/configmaps/special-config uid: dadce046-d673-11e5-8cd0-68f728db1985 Pod中使用ConfigMap 使用ConfigMap来替代环境变量 ConfigMap可以被用来填入环境变量。看下下面的ConfigMap。 apiVersion: v1 kind: ConfigMap metadata: name: special-config namespace: default data: special.how: very special.type: charm apiVersion: v1 kind: ConfigMap metadata: name: env-config namespace: default data: log_level: INFO 我们可以在Pod中这样使用ConfigMap: apiVersion: v1 kind: Pod metadata: name: dapi-test-pod spec: containers: - name: test-container image: gcr.io/google_containers/busybox command: [ \"/bin/sh\", \"-c\", \"env\" ] env: - name: SPECIAL_LEVEL_KEY valueFrom: configMapKeyRef: name: special-config key: special.how - name: SPECIAL_TYPE_KEY valueFrom: configMapKeyRef: name: special-config key: special.type envFrom: - configMapRef: name: env-config restartPolicy: Never 这个Pod运行后会输出如下几行: SPECIAL_LEVEL_KEY=very SPECIAL_TYPE_KEY=charm log_level=INFO 用ConfigMap设置命令行参数 ConfigMap也可以被使用来设置容器中的命令或者参数值。它使用的是Kubernetes的$(VAR_NAME)替换语法。我们看下下面这个ConfigMap。 apiVersion: v1 kind: ConfigMap metadata: name: special-config namespace: default data: special.how: very special.type: charm 为了将ConfigMap中的值注入到命令行的参数里面,我们还要像前面那个例子一样使用环境变量替换语法${VAR_NAME)。(其实这个东西就是给Docker容器设置环境变量,以前我创建镜像的时候经常这么玩,通过docker run的时候指定-e参数修改镜像里的环境变量,然后docker的CMD命令再利用该$(VAR_NAME)通过sed来修改配置文件或者作为命令行启动参数。) apiVersion: v1 kind: Pod metadata: name: dapi-test-pod spec: containers: - name: test-container image: gcr.io/google_containers/busybox command: [ \"/bin/sh\", \"-c\", \"echo $(SPECIAL_LEVEL_KEY) $(SPECIAL_TYPE_KEY)\" ] env: - name: SPECIAL_LEVEL_KEY valueFrom: configMapKeyRef: name: special-config key: special.how - name: SPECIAL_TYPE_KEY valueFrom: configMapKeyRef: name: special-config key: special.type restartPolicy: Never 运行这个Pod后会输出: very charm 通过数据卷插件使用ConfigMap ConfigMap也可以在数据卷里面被使用。还是这个ConfigMap。 apiVersion: v1 kind: ConfigMap metadata: name: special-config namespace: default data: special.how: very special.type: charm 在数据卷里面使用这个ConfigMap,有不同的选项。最基本的就是将文件填入数据卷,在这个文件中,键就是文件名,键值就是文件内容: apiVersion: v1 kind: Pod metadata: name: dapi-test-pod spec: containers: - name: test-container image: gcr.io/google_containers/busybox command: [ \"/bin/sh\", \"-c\", \"cat /etc/config/special.how\" ] volumeMounts: - name: config-volume mountPath: /etc/config volumes: - name: config-volume configMap: name: special-config restartPolicy: Never 运行这个Pod的输出是very。 我们也可以在ConfigMap值被映射的数据卷里控制路径。 apiVersion: v1 kind: Pod metadata: name: dapi-test-pod spec: containers: - name: test-container image: gcr.io/google_containers/busybox command: [ \"/bin/sh\",\"-c\",\"cat /etc/config/path/to/special-key\" ] volumeMounts: - name: config-volume mountPath: /etc/config volumes: - name: config-volume configMap: name: special-config items: - key: special.how path: path/to/special-key restartPolicy: Never 运行这个Pod后的结果是very。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/configmap-hot-update.html":{"url":"concepts/configmap-hot-update.html","title":"ConfigMap 的热更新","keywords":"","body":"ConfigMap的热更新 ConfigMap是用来存储配置文件的kubernetes资源对象,所有的配置内容都存储在etcd中,下文主要是探究 ConfigMap 的创建和更新流程,以及对 ConfigMap 更新后容器内挂载的内容是否同步更新的测试。 测试示例 假设我们在 default namespace 下有一个名为 nginx-config 的 ConfigMap,可以使用 kubectl命令来获取: $ kubectl get configmap nginx-config NAME DATA AGE nginx-config 1 99d 获取该ConfigMap的内容。 kubectl get configmap nginx-config -o yaml apiVersion: v1 data: nginx.conf: |- worker_processes 1; events { worker_connections 1024; } http { sendfile on; server { listen 80; # a test endpoint that returns http 200s location / { proxy_pass http://httpstat.us/200; proxy_set_header X-Real-IP $remote_addr; } } server { listen 80; server_name api.hello.world; location / { proxy_pass http://l5d.default.svc.cluster.local; proxy_set_header Host $host; proxy_set_header Connection \"\"; proxy_http_version 1.1; more_clear_input_headers 'l5d-ctx-*' 'l5d-dtab' 'l5d-sample'; } } server { listen 80; server_name www.hello.world; location / { # allow 'employees' to perform dtab overrides if ($cookie_special_employee_cookie != \"letmein\") { more_clear_input_headers 'l5d-ctx-*' 'l5d-dtab' 'l5d-sample'; } # add a dtab override to get people to our beta, world-v2 set $xheader \"\"; if ($cookie_special_employee_cookie ~* \"dogfood\") { set $xheader \"/host/world => /srv/world-v2;\"; } proxy_set_header 'l5d-dtab' $xheader; proxy_pass http://l5d.default.svc.cluster.local; proxy_set_header Host $host; proxy_set_header Connection \"\"; proxy_http_version 1.1; } } } kind: ConfigMap metadata: creationTimestamp: 2017-08-01T06:53:17Z name: nginx-config namespace: default resourceVersion: \"14925806\" selfLink: /api/v1/namespaces/default/configmaps/nginx-config uid: 18d70527-7686-11e7-bfbd-8af1e3a7c5bd ConfigMap中的内容是存储到etcd中的,然后查询etcd: ETCDCTL_API=3 etcdctl get /registry/configmaps/default/nginx-config -w json|python -m json.tool 注意使用 v3 版本的 etcdctl API,下面是输出结果: { \"count\": 1, \"header\": { \"cluster_id\": 12091028579527406772, \"member_id\": 16557816780141026208, \"raft_term\": 36, \"revision\": 29258723 }, \"kvs\": [ { \"create_revision\": 14925806, \"key\": \"L3JlZ2lzdHJ5L2NvbmZpZ21hcHMvZGVmYXVsdC9uZ2lueC1jb25maWc=\", \"mod_revision\": 14925806, \"value\": \"azhzAAoPCgJ2MRIJQ29uZmlnTWFwEqQMClQKDG5naW54LWNvbmZpZxIAGgdkZWZhdWx0IgAqJDE4ZDcwNTI3LTc2ODYtMTFlNy1iZmJkLThhZjFlM2E3YzViZDIAOABCCwjdyoDMBRC5ss54egASywsKCm5naW54LmNvbmYSvAt3b3JrZXJfcHJvY2Vzc2VzIDE7CgpldmVudHMgeyB3b3JrZXJfY29ubmVjdGlvbnMgMTAyNDsgfQoKaHR0cCB7CiAgICBzZW5kZmlsZSBvbjsKCiAgICBzZXJ2ZXIgewogICAgICAgIGxpc3RlbiA4MDsKCiAgICAgICAgIyBhIHRlc3QgZW5kcG9pbnQgdGhhdCByZXR1cm5zIGh0dHAgMjAwcwogICAgICAgIGxvY2F0aW9uIC8gewogICAgICAgICAgICBwcm94eV9wYXNzIGh0dHA6Ly9odHRwc3RhdC51cy8yMDA7CiAgICAgICAgICAgIHByb3h5X3NldF9oZWFkZXIgIFgtUmVhbC1JUCAgJHJlbW90ZV9hZGRyOwogICAgICAgIH0KICAgIH0KCiAgICBzZXJ2ZXIgewoKICAgICAgICBsaXN0ZW4gODA7CiAgICAgICAgc2VydmVyX25hbWUgYXBpLmhlbGxvLndvcmxkOwoKICAgICAgICBsb2NhdGlvbiAvIHsKICAgICAgICAgICAgcHJveHlfcGFzcyBodHRwOi8vbDVkLmRlZmF1bHQuc3ZjLmNsdXN0ZXIubG9jYWw7CiAgICAgICAgICAgIHByb3h5X3NldF9oZWFkZXIgSG9zdCAkaG9zdDsKICAgICAgICAgICAgcHJveHlfc2V0X2hlYWRlciBDb25uZWN0aW9uICIiOwogICAgICAgICAgICBwcm94eV9odHRwX3ZlcnNpb24gMS4xOwoKICAgICAgICAgICAgbW9yZV9jbGVhcl9pbnB1dF9oZWFkZXJzICdsNWQtY3R4LSonICdsNWQtZHRhYicgJ2w1ZC1zYW1wbGUnOwogICAgICAgIH0KICAgIH0KCiAgICBzZXJ2ZXIgewoKICAgICAgICBsaXN0ZW4gODA7CiAgICAgICAgc2VydmVyX25hbWUgd3d3LmhlbGxvLndvcmxkOwoKICAgICAgICBsb2NhdGlvbiAvIHsKCgogICAgICAgICAgICAjIGFsbG93ICdlbXBsb3llZXMnIHRvIHBlcmZvcm0gZHRhYiBvdmVycmlkZXMKICAgICAgICAgICAgaWYgKCRjb29raWVfc3BlY2lhbF9lbXBsb3llZV9jb29raWUgIT0gImxldG1laW4iKSB7CiAgICAgICAgICAgICAgbW9yZV9jbGVhcl9pbnB1dF9oZWFkZXJzICdsNWQtY3R4LSonICdsNWQtZHRhYicgJ2w1ZC1zYW1wbGUnOwogICAgICAgICAgICB9CgogICAgICAgICAgICAjIGFkZCBhIGR0YWIgb3ZlcnJpZGUgdG8gZ2V0IHBlb3BsZSB0byBvdXIgYmV0YSwgd29ybGQtdjIKICAgICAgICAgICAgc2V0ICR4aGVhZGVyICIiOwoKICAgICAgICAgICAgaWYgKCRjb29raWVfc3BlY2lhbF9lbXBsb3llZV9jb29raWUgfiogImRvZ2Zvb2QiKSB7CiAgICAgICAgICAgICAgc2V0ICR4aGVhZGVyICIvaG9zdC93b3JsZCA9PiAvc3J2L3dvcmxkLXYyOyI7CiAgICAgICAgICAgIH0KCiAgICAgICAgICAgIHByb3h5X3NldF9oZWFkZXIgJ2w1ZC1kdGFiJyAkeGhlYWRlcjsKCgogICAgICAgICAgICBwcm94eV9wYXNzIGh0dHA6Ly9sNWQuZGVmYXVsdC5zdmMuY2x1c3Rlci5sb2NhbDsKICAgICAgICAgICAgcHJveHlfc2V0X2hlYWRlciBIb3N0ICRob3N0OwogICAgICAgICAgICBwcm94eV9zZXRfaGVhZGVyIENvbm5lY3Rpb24gIiI7CiAgICAgICAgICAgIHByb3h5X2h0dHBfdmVyc2lvbiAxLjE7CiAgICAgICAgfQogICAgfQp9GgAiAA==\", \"version\": 1 } ] } 其中的value就是 nginx.conf 配置文件的内容。 可以使用base64解码查看具体值,关于etcdctl的使用请参考使用etcdctl访问kuberentes数据。 代码 ConfigMap 结构体的定义: // ConfigMap holds configuration data for pods to consume. type ConfigMap struct { metav1.TypeMeta `json:\",inline\"` // Standard object's metadata. // More info: http://releases.k8s.io/HEAD/docs/devel/api-conventions.md#metadata // +optional metav1.ObjectMeta `json:\"metadata,omitempty\" protobuf:\"bytes,1,opt,name=metadata\"` // Data contains the configuration data. // Each key must be a valid DNS_SUBDOMAIN with an optional leading dot. // +optional Data map[string]string `json:\"data,omitempty\" protobuf:\"bytes,2,rep,name=data\"` } 在 staging/src/k8s.io/client-go/kubernetes/typed/core/v1/configmap.go 中ConfigMap 的接口定义: // ConfigMapInterface has methods to work with ConfigMap resources. type ConfigMapInterface interface { Create(*v1.ConfigMap) (*v1.ConfigMap, error) Update(*v1.ConfigMap) (*v1.ConfigMap, error) Delete(name string, options *meta_v1.DeleteOptions) error DeleteCollection(options *meta_v1.DeleteOptions, listOptions meta_v1.ListOptions) error Get(name string, options meta_v1.GetOptions) (*v1.ConfigMap, error) List(opts meta_v1.ListOptions) (*v1.ConfigMapList, error) Watch(opts meta_v1.ListOptions) (watch.Interface, error) Patch(name string, pt types.PatchType, data []byte, subresources ...string) (result *v1.ConfigMap, err error) ConfigMapExpansion } 在 staging/src/k8s.io/client-go/kubernetes/typed/core/v1/configmap.go 中创建 ConfigMap 的方法如下: // Create takes the representation of a configMap and creates it. Returns the server's representation of the configMap, and an error, if there is any. func (c *configMaps) Create(configMap *v1.ConfigMap) (result *v1.ConfigMap, err error) { result = &v1.ConfigMap{} err = c.client.Post(). Namespace(c.ns). Resource(\"configmaps\"). Body(configMap). Do(). Into(result) return } 通过 RESTful 请求在 etcd 中存储 ConfigMap 的配置,该方法中设置了资源对象的 namespace 和 HTTP 请求中的 body,执行后将请求结果保存到 result 中返回给调用者。 注意 Body 的结构 // Body makes the request use obj as the body. Optional. // If obj is a string, try to read a file of that name. // If obj is a []byte, send it directly. // If obj is an io.Reader, use it directly. // If obj is a runtime.Object, marshal it correctly, and set Content-Type header. // If obj is a runtime.Object and nil, do nothing. // Otherwise, set an error. 创建 ConfigMap RESTful 请求中的的 Body 中包含 ObjectMeta 和 namespace。 HTTP 请求中的结构体: // Request allows for building up a request to a server in a chained fashion. // Any errors are stored until the end of your call, so you only have to // check once. type Request struct { // required client HTTPClient verb string baseURL *url.URL content ContentConfig serializers Serializers // generic components accessible via method setters pathPrefix string subpath string params url.Values headers http.Header // structural elements of the request that are part of the Kubernetes API conventions namespace string namespaceSet bool resource string resourceName string subresource string timeout time.Duration // output err error body io.Reader // This is only used for per-request timeouts, deadlines, and cancellations. ctx context.Context backoffMgr BackoffManager throttle flowcontrol.RateLimiter } 测试 分别测试使用 ConfigMap 挂载 Env 和 Volume 的情况。 更新使用ConfigMap挂载的Env 使用下面的配置创建 nginx 容器测试更新 ConfigMap 后容器内的环境变量是否也跟着更新。 apiVersion: extensions/v1beta1 kind: Deployment metadata: name: my-nginx spec: replicas: 1 template: metadata: labels: run: my-nginx spec: containers: - name: my-nginx image: harbor-001.jimmysong.io/library/nginx:1.9 ports: - containerPort: 80 envFrom: - configMapRef: name: env-config --- apiVersion: v1 kind: ConfigMap metadata: name: env-config namespace: default data: log_level: INFO 获取环境变量的值 $ kubectl exec `kubectl get pods -l run=my-nginx -o=name|cut -d \"/\" -f2` env|grep log_level log_level=INFO 修改 ConfigMap $ kubectl edit configmap env-config 修改 log_level 的值为 DEBUG。 再次查看环境变量的值。 $ kubectl exec `kubectl get pods -l run=my-nginx -o=name|cut -d \"/\" -f2` env|grep log_level log_level=INFO 实践证明修改 ConfigMap 无法更新容器中已注入的环境变量信息。 更新使用ConfigMap挂载的Volume 使用下面的配置创建 nginx 容器测试更新 ConfigMap 后容器内挂载的文件是否也跟着更新。 apiVersion: extensions/v1beta1 kind: Deployment metadata: name: my-nginx spec: replicas: 1 template: metadata: labels: run: my-nginx spec: containers: - name: my-nginx image: harbor-001.jimmysong.io/library/nginx:1.9 ports: - containerPort: 80 volumeMounts: - name: config-volume mountPath: /etc/config volumes: - name: config-volume configMap: name: special-config --- apiVersion: v1 kind: ConfigMap metadata: name: special-config namespace: default data: log_level: INFO $ kubectl exec `kubectl get pods -l run=my-nginx -o=name|cut -d \"/\" -f2` cat /etc/config/log_level INFO 修改 ConfigMap $ kubectl edit configmap special-config 修改 log_level 的值为 DEBUG。 等待大概10秒钟时间,再次查看环境变量的值。 $ kubectl exec `kubectl get pods -l run=my-nginx -o=name|cut -d \"/\" -f2` cat /tmp/log_level DEBUG 我们可以看到使用 ConfigMap 方式挂载的 Volume 的文件中的内容已经变成了 DEBUG。 Known Issue: 如果使用ConfigMap的subPath挂载为Container的Volume,Kubernetes不会做自动热更新: https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#mounted-configmaps-are-updated-automatically ConfigMap 更新后滚动更新 Pod 更新 ConfigMap 目前并不会触发相关 Pod 的滚动更新,可以通过修改 pod annotations 的方式强制触发滚动更新。 $ kubectl patch deployment my-nginx --patch '{\"spec\": {\"template\": {\"metadata\": {\"annotations\": {\"version/config\": \"20180411\" }}}}}' 这个例子里我们在 .spec.template.metadata.annotations 中添加 version/config,每次通过修改 version/config 来触发滚动更新。 总结 更新 ConfigMap 后: 使用该 ConfigMap 挂载的 Env 不会同步更新 使用该 ConfigMap 挂载的 Volume 中的数据需要一段时间(实测大概10秒)才能同步更新 ENV 是在容器启动的时候注入的,启动之后 kubernetes 就不会再改变环境变量的值,且同一个 namespace 中的 pod 的环境变量是不断累加的,参考 Kubernetes中的服务发现与docker容器间的环境变量传递源码探究。为了更新容器中使用 ConfigMap 挂载的配置,需要通过滚动更新 pod 的方式来强制重新挂载 ConfigMap。 参考 Kubernetes 1.7 security in practice ConfigMap | kubernetes handbook - jimmysong.io 创建高可用ectd集群 | Kubernetes handbook - jimmysong.io Kubernetes中的服务发现与docker容器间的环境变量传递源码探究 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/volume.html":{"url":"concepts/volume.html","title":"Volume","keywords":"","body":"Volume 容器磁盘上的文件的生命周期是短暂的,这就使得在容器中运行重要应用时会出现一些问题。首先,当容器崩溃时,kubelet 会重启它,但是容器中的文件将丢失——容器以干净的状态(镜像最初的状态)重新启动。其次,在 Pod 中同时运行多个容器时,这些容器之间通常需要共享文件。Kubernetes 中的 Volume 抽象就很好的解决了这些问题。 建议先熟悉 pod。 背景 Docker 中也有一个 volume 的概念,尽管它稍微宽松一些,管理也很少。在 Docker 中,卷就像是磁盘或是另一个容器中的一个目录。它的生命周期不受管理,直到最近才有了 local-disk-backed 卷。Docker 现在提供了卷驱动程序,但是功能还非常有限(例如Docker1.7只允许每个容器使用一个卷驱动,并且无法给卷传递参数)。 另一方面,Kubernetes 中的卷有明确的寿命——与封装它的 Pod 相同。所以,卷的生命比 Pod 中的所有容器都长,当这个容器重启时数据仍然得以保存。当然,当 Pod 不再存在时,卷也将不复存在。也许更重要的是,Kubernetes 支持多种类型的卷,Pod 可以同时使用任意数量的卷。 卷的核心是目录,可能还包含了一些数据,可以通过 pod 中的容器来访问。该目录是如何形成的、支持该目录的介质以及其内容取决于所使用的特定卷类型。 要使用卷,需要为 pod 指定为卷(spec.volumes 字段)以及将它挂载到容器的位置(spec.containers.volumeMounts 字段)。 容器中的进程看到的是由其 Docker 镜像和卷组成的文件系统视图。Docker 镜像位于文件系统层次结构的根目录,任何卷都被挂载在镜像的指定路径中。卷无法挂载到其他卷上或与其他卷有硬连接。Pod 中的每个容器都必须独立指定每个卷的挂载位置。 卷的类型 Kubernetes 支持以下类型的卷: awsElasticBlockStore azureDisk azureFile cephfs csi downwardAPI emptyDir fc (fibre channel) flocker gcePersistentDisk gitRepo glusterfs hostPath iscsi local nfs persistentVolumeClaim projected portworxVolume quobyte rbd scaleIO secret storageos vsphereVolume 我们欢迎额外贡献。 awsElasticBlockStore awsElasticBlockStore 卷将Amazon Web Services(AWS)EBS Volume 挂载到您的容器中。与 emptyDir 类型会在删除 Pod 时被清除不同,EBS 卷的的内容会保留下来,仅仅是被卸载。这意味着 EBS 卷可以预先填充数据,并且可以在数据包之间“切换”数据。 重要提示:您必须使用 aws ec2 create-volume 或 AWS API 创建 EBS 卷,才能使用它。 使用 awsElasticBlockStore 卷时有一些限制: 运行 Pod 的节点必须是 AWS EC2 实例 这些实例需要与 EBS 卷位于相同的区域和可用区域 EBS 仅支持卷和 EC2 实例的一对一的挂载 创建 EBS 卷 在 pod 中使用的 EBS 卷之前,您需要先创建它。 aws ec2 create-volume --availability-zone=eu-west-1a --size=10 --volume-type=gp2 确保区域与您启动集群的区域相匹配(并且检查大小和 EBS 卷类型是否适合您的使用!) AWS EBS 示例配置 apiVersion: v1 kind: Pod metadata: name: test-ebs spec: containers: - image: k8s.gcr.io/test-webserver name: test-container volumeMounts: - mountPath: /test-ebs name: test-volume volumes: - name: test-volume # This AWS EBS volume must already exist. awsElasticBlockStore: volumeID: fsType: ext4 azureDisk AzureDisk 用于将 Microsoft Azure Data Disk 挂载到 Pod 中。 azureFile azureFile 用于将 Microsoft Azure File Volume(SMB 2.1 和 3.0)挂载到 Pod 中。 cephfs cephfs 卷允许将现有的 CephFS 卷挂载到您的容器中。不像 emptyDir,当删除 Pod 时被删除,cephfs 卷的内容将被保留,卷仅仅是被卸载。这意味着 CephFS 卷可以预先填充数据,并且可以在数据包之间“切换”数据。 CephFS 可以被多个写设备同时挂载。 重要提示:您必须先拥有自己的 Ceph 服务器,然后才能使用它。 csi CSI 代表容器存储接口,CSI 试图建立一个行业标准接口的规范,借助 CSI 容器编排系统(CO)可以将任意存储系统暴露给自己的容器工作负载。有关详细信息,请查看设计方案。 csi 卷类型是一种 in-tree 的 CSI 卷插件,用于 Pod 与在同一节点上运行的外部 CSI 卷驱动程序交互。部署 CSI 兼容卷驱动后,用户可以使用 csi 作为卷类型来挂载驱动提供的存储。 CSI 持久化卷支持是在 Kubernetes v1.9 中引入的,作为一个 alpha 特性,必须由集群管理员明确启用。换句话说,集群管理员需要在 apiserver、controller-manager 和 kubelet 组件的 “--feature-gates =” 标志中加上 “CSIPersistentVolume = true”。 CSI 持久化卷具有以下字段可供用户指定: driver:一个字符串值,指定要使用的卷驱动程序的名称。必须少于 63 个字符,并以一个字符开头。驱动程序名称可以包含 “.”、“- ”、“_” 或数字。 volumeHandle:一个字符串值,唯一标识从 CSI 卷插件的 CreateVolume 调用返回的卷名。随后在卷驱动程序的所有后续调用中使用卷句柄来引用该卷。 readOnly:一个可选的布尔值,指示卷是否被发布为只读。默认是 false。 downwardAPI downwardAPI 卷用于使向下 API 数据(downward API data)对应用程序可用。它挂载一个目录,并将请求的数据写入纯文本文件。 参考 downwardAPI 卷示例查看详细信息。 emptyDir 当 Pod 被分配给节点时,首先创建 emptyDir 卷,并且只要该 Pod 在该节点上运行,该卷就会存在。正如卷的名字所述,它最初是空的。Pod 中的容器可以读取和写入 emptyDir 卷中的相同文件,尽管该卷可以挂载到每个容器中的相同或不同路径上。当出于任何原因从节点中删除 Pod 时,emptyDir 中的数据将被永久删除。 注意:容器崩溃不会从节点中移除 pod,因此 emptyDir 卷中的数据在容器崩溃时是安全的。 emptyDir 的用法有: 暂存空间,例如用于基于磁盘的合并排序 用作长时间计算崩溃恢复时的检查点 Web服务器容器提供数据时,保存内容管理器容器提取的文件 Pod 示例 apiVersion: v1 kind: Pod metadata: name: test-pd spec: containers: - image: k8s.gcr.io/test-webserver name: test-container volumeMounts: - mountPath: /cache name: cache-volume volumes: - name: cache-volume emptyDir: {} fc (fibre channel) fc 卷允许将现有的 fc 卷挂载到 pod 中。您可以使用卷配置中的 targetWWN 参数指定单个或多个目标全球通用名称(World Wide Name)。如果指定了多个 WWN,则 targetWWN 期望这些 WWN 来自多路径连接。 重要提示:您必须配置 FC SAN 区域划分,并预先将这些 LUN(卷)分配并屏蔽到目标 WWN,以便 Kubernetes 主机可以访问它们。 参考 FC 示例获取详细信息。 flocker Flocker 是一款开源的集群容器数据卷管理器。它提供了由各种存储后端支持的数据卷的管理和编排。 flocker 允许将 Flocker 数据集挂载到 pod 中。如果数据集在 Flocker 中不存在,则需要先使用 Flocker CLI 或使用 Flocker API 创建数据集。如果数据集已经存在,它将被 Flocker 重新连接到 pod 被调度的节点上。这意味着数据可以根据需要在数据包之间“切换”。 重要提示:您必须先运行自己的 Flocker 安装程序才能使用它。 参考 Flocker 示例获取更多详细信息。 gcePersistentDisk gcePersistentDisk 卷将 Google Compute Engine(GCE)Persistent Disk 挂载到您的容器中。与删除 Pod 时删除的 emptyDir 不同,PD 的内容被保留,只是卸载了卷。这意味着 PD 可以预先填充数据,并且数据可以在 Pod 之间“切换”。 重要提示:您必须先使用 gcloud 或 GCE API 或 UI 创建一个 PD,然后才能使用它。 使用 gcePersistentDisk 时有一些限制: 运行 Pod 的节点必须是 GCE 虚拟机 那些虚拟机需要在与 PD 一样在 GCE 项目和区域中 PD 的一个特点是它们可以同时被多个用户以只读方式挂载。这意味着您可以预先使用您的数据集填充 PD,然后根据需要给多个 Pod 中并行提供。不幸的是,只能由单个消费者以读写模式挂载 PD,而不允许同时写入。 在由 ReplicationController 控制的 pod 上使用 PD 将会失败,除非 PD 是只读的或者副本数是 0 或 1。 创建 PD 在您在 pod 中使用 GCE PD 之前,需要先创建它。 gcloud compute disks create --size=500GB --zone=us-central1-a my-data-disk Pod 示例 apiVersion: v1 kind: Pod metadata: name: test-pd spec: containers: - image: k8s.gcr.io/test-webserver name: test-container volumeMounts: - mountPath: /test-pd name: test-volume volumes: - name: test-volume # This GCE PD must already exist. gcePersistentDisk: pdName: my-data-disk fsType: ext4 gitRepo gitRepo 卷是一个可以演示卷插件功能的示例。它会挂载一个空目录并将 git 存储库克隆到您的容器中。将来,这样的卷可能会转移到一个更加分离的模型,而不是为每个这样的用例扩展 Kubernetes API。 下面是 gitRepo 卷示例: apiVersion: v1 kind: Pod metadata: name: server spec: containers: - image: nginx name: nginx volumeMounts: - mountPath: /mypath name: git-volume volumes: - name: git-volume gitRepo: repository: \"git@somewhere:me/my-git-repository.git\" revision: \"22f1d8406d464b0c0874075539c1f2e96c253775\" glusterfs glusterfs 卷允许将 Glusterfs(一个开放源代码的网络文件系统)卷挂载到您的集群中。与删除 Pod 时删除的 emptyDir 不同,glusterfs 卷的内容将被保留,而卷仅仅被卸载。这意味着 glusterfs 卷可以预先填充数据,并且可以在数据包之间“切换”数据。 GlusterFS 可以同时由多个写入挂载。 重要提示:您必须先自行安装 GlusterFS,才能使用它。 hostPath hostPath 卷将主机节点的文件系统中的文件或目录挂载到集群中。该功能大多数 Pod 都用不到,但它为某些应用程序提供了一个强大的解决方法。 例如,hostPath 的用途如下: 运行需要访问 Docker 内部的容器;使用 /var/lib/docker 的 hostPath 在容器中运行 cAdvisor;使用 /dev/cgroups 的 hostPath 允许 pod 指定给定的 hostPath 是否应该在 pod 运行之前存在,是否应该创建,以及它应该以什么形式存在 除了所需的 path 属性之外,用户还可以为 hostPath 卷指定 type。 type 字段支持以下值: 值 行为 空字符串(默认)用于向后兼容,这意味着在挂载 hostPath 卷之前不会执行任何检查。 DirectoryOrCreate 如果在给定的路径上没有任何东西存在,那么将根据需要在那里创建一个空目录,权限设置为 0755,与 Kubelet 具有相同的组和所有权。 Directory 给定的路径下必须存在目录 FileOrCreate 如果在给定的路径上没有任何东西存在,那么会根据需要创建一个空文件,权限设置为 0644,与 Kubelet 具有相同的组和所有权。 File 给定的路径下必须存在文件 Socket 给定的路径下必须存在 UNIX 套接字 CharDevice 给定的路径下必须存在字符设备 BlockDevice 给定的路径下必须存在块设备 使用这种卷类型是请注意,因为: 由于每个节点上的文件都不同,具有相同配置(例如从 podTemplate 创建的)的 pod 在不同节点上的行为可能会有所不同 当 Kubernetes 按照计划添加资源感知调度时,将无法考虑 hostPath 使用的资源 在底层主机上创建的文件或目录只能由 root 写入。您需要在特权容器中以 root 身份运行进程,或修改主机上的文件权限以便写入 hostPath 卷 Pod 示例 apiVersion: v1 kind: Pod metadata: name: test-pd spec: containers: - image: k8s.gcr.io/test-webserver name: test-container volumeMounts: - mountPath: /test-pd name: test-volume volumes: - name: test-volume hostPath: # directory location on host path: /data # this field is optional type: Directory iscsi iscsi 卷允许将现有的 iSCSI(SCSI over IP)卷挂载到容器中。不像 emptyDir,删除 Pod 时 iscsi 卷的内容将被保留,卷仅仅是被卸载。这意味着 iscsi 卷可以预先填充数据,并且这些数据可以在 pod 之间“切换”。 重要提示:必须先创建自己的 iSCSI 服务器,然后才能使用它。 iSCSI 的一个特点是它可以同时被多个用户以只读方式安装。这意味着您可以预先使用您的数据集填充卷,然后根据需要向多个额 pod 同时提供。不幸的是,iSCSI 卷只能由单个使用者以读写模式挂载——不允许同时写入。 local 这个 alpha 功能要求启用 PersistentLocalVolumes feature gate。 注意:从 1.9 开始,VolumeScheduling feature gate 也必须启用。 local 卷表示挂载的本地存储设备,如磁盘、分区或目录。 本地卷只能用作静态创建的 PersistentVolume。 与 HostPath 卷相比,local 卷可以以持久的方式使用,而无需手动将 pod 调度到节点上,因为系统会通过查看 PersistentVolume 上的节点关联性来了解卷的节点约束。 但是,local 卷仍然受底层节点的可用性影响,并不适用于所有应用程序。 以下是使用 local 卷的示例 PersistentVolume 规范: apiVersion: v1 kind: PersistentVolume metadata: name: example-pv annotations: \"volume.alpha.kubernetes.io/node-affinity\": '{ \"requiredDuringSchedulingIgnoredDuringExecution\": { \"nodeSelectorTerms\": [ { \"matchExpressions\": [ { \"key\": \"kubernetes.io/hostname\", \"operator\": \"In\", \"values\": [\"example-node\"] } ]} ]} }' spec: capacity: storage: 100Gi accessModes: - ReadWriteOnce persistentVolumeReclaimPolicy: Delete storageClassName: local-storage local: path: /mnt/disks/ssd1 注意:本地 PersistentVolume 清理和删除需要手动干预,无外部提供程序。 从 1.9 开始,本地卷绑定可以被延迟,直到通过具有 StorageClass 中的 WaitForFirstConsumer 设置为volumeBindingMode 的 pod 开始调度。请参阅示例。延迟卷绑定可确保卷绑定决策也可以使用任何其他节点约束(例如节点资源需求,节点选择器,pod 亲和性和 pod 反亲和性)进行评估。 有关 local 卷类型的详细信息,请参见本地持久化存储用户指南。 nfs nfs 卷允许将现有的 NFS(网络文件系统)共享挂载到您的容器中。不像 emptyDir,当删除 Pod 时,nfs 卷的内容被保留,卷仅仅是被卸载。这意味着 NFS 卷可以预填充数据,并且可以在 pod 之间“切换”数据。 NFS 可以被多个写入者同时挂载。 重要提示:您必须先拥有自己的 NFS 服务器才能使用它,然后才能使用它。 有关更多详细信息,请参见 NFS 示例。 persistentVolumeClaim persistentVolumeClaim 卷用于将 PersistentVolume 挂载到容器中。PersistentVolumes 是在用户不知道特定云环境的细节的情况下“声明”持久化存储(例如 GCE PersistentDisk 或 iSCSI 卷)的一种方式。 有关更多详细信息,请参阅 PersistentVolumes 示例。 projected projected 卷将几个现有的卷源映射到同一个目录中。 目前,可以映射以下类型的卷来源: secret downwardAPI configMap 所有来源都必须在与 pod 相同的命名空间中。 带有 secret、downward API 和 configmap 的 pod apiVersion: v1 kind: Pod metadata: name: volume-test spec: containers: - name: container-test image: busybox volumeMounts: - name: all-in-one mountPath: \"/projected-volume\" readOnly: true volumes: - name: all-in-one projected: sources: - secret: name: mysecret items: - key: username path: my-group/my-username - downwardAPI: items: - path: \"labels\" fieldRef: fieldPath: metadata.labels - path: \"cpu_limit\" resourceFieldRef: containerName: container-test resource: limits.cpu - configMap: name: myconfigmap items: - key: config path: my-group/my-config 使用非默认权限模式设置多个 secret 的示例 pod apiVersion: v1 kind: Pod metadata: name: volume-test spec: containers: - name: container-test image: busybox volumeMounts: - name: all-in-one mountPath: \"/projected-volume\" readOnly: true volumes: - name: all-in-one projected: sources: - secret: name: mysecret items: - key: username path: my-group/my-username - secret: name: mysecret2 items: - key: password path: my-group/my-password mode: 511 每个映射的卷来源在 sources 下的规格中列出。除了以下两个例外,参数几乎相同: 对于 secret,secretName 字段已经被更改为 name 以与 ConfigMap 命名一致。 defaultMode 只能在映射级别指定,而不能针对每个卷源指定。但是,如上所述,您可以明确设置每个映射的 mode。 portworxVolume portworxVolume 是一个与 Kubernetes 一起,以超融合模式运行的弹性块存储层。Portwork 指纹存储在服务器中,基于功能的分层,以及跨多个服务器聚合容量。 Portworx 在虚拟机或裸机 Linux 节点上运行。 portworxVolume 可以通过 Kubernetes 动态创建,也可以在 Kubernetes pod 中预先设置和引用。 以下是一个引用预先配置的 PortworxVolume 的示例 pod: apiVersion: v1 kind: Pod metadata: name: test-portworx-volume-pod spec: containers: - image: k8s.gcr.io/test-webserver name: test-container volumeMounts: - mountPath: /mnt name: pxvol volumes: - name: pxvol # This Portworx volume must already exist. portworxVolume: volumeID: \"pxvol\" fsType: \"\" 重要提示:在 pod 中使用之前,请确保您有一个名为 pxvol 的现有 PortworxVolume。 quobyte quobyte 卷允许将现有的 Quobyte 卷挂载到容器中。 重要提示:您必须先创建自己的 Quobyte 安装程序,然后才能使用它。 rbd rbd 卷允许将 Rados Block Device 卷挂载到容器中。不像 emptyDir,删除 Pod 时 rbd卷的内容被保留,卷仅仅被卸载。这意味着 RBD 卷可以预先填充数据,并且可以在 pod 之间“切换”数据。 重要提示:您必须先自行安装 Ceph,然后才能使用 RBD。 RBD 的一个特点是它可以同时为多个用户以只读方式挂载。这意味着可以预先使用您的数据集填充卷,然后根据需要同时为多个 pod 并行提供。不幸的是,RBD 卷只能由单个用户以读写模式安装——不允许同时写入。 scaleIO ScaleIO 是一个基于软件的存储平台,可以使用现有的硬件来创建可扩展的共享块网络存储集群。scaleIO 卷插件允许已部署的 pod 访问现有的 ScaleIO 卷(或者它可以为持久性卷声明动态调配新卷,请参阅 ScaleIO 持久卷)。 重要提示:您必须有一个已经配置好的 ScaleIO 集群,并和创建的卷一同运行,然后才能使用它们。 以下是使用 ScaleIO 的示例 pod 配置: apiVersion: v1 kind: Pod metadata: name: pod-0 spec: containers: - image: k8s.gcr.io/test-webserver name: pod-0 volumeMounts: - mountPath: /test-pd name: vol-0 volumes: - name: vol-0 scaleIO: gateway: https://localhost:443/api system: scaleio protectionDomain: sd0 storagePool: sp1 volumeName: vol-0 secretRef: name: sio-secret fsType: xfs 有关更多详细信息,请参阅 ScaleIO 示例。 secret secret 卷用于将敏感信息(如密码)传递到 pod。您可以将 secret 存储在 Kubernetes API 中,并将它们挂载为文件,以供 Pod 使用,而无需直接连接到 Kubernetes。 secret 卷由 tmpfs(一个 RAM 支持的文件系统)支持,所以它们永远不会写入非易失性存储器。 重要提示:您必须先在 Kubernetes API 中创建一个 secret,然后才能使用它。 storageOS storageos 卷允许将现有的 StorageOS 卷挂载到容器中。 StorageOS 在 Kubernetes 环境中以容器方式运行,使本地或附加存储可以从 Kubernetes 集群中的任何节点访问。可以复制数据以防止节点故障。精简配置和压缩可以提高利用率并降低成本。 StorageOS 的核心是为容器提供块存储,可以通过文件系统访问。 StorageOS 容器需要 64 位 Linux,没有额外的依赖关系。可以使用免费的开发者许可证。 重要提示:您必须在每个要访问 StorageOS 卷的节点上运行 StorageOS 容器,或者为该池提供存储容量。相关的安装说明,请参阅 StorageOS文档。 apiVersion: v1 kind: Pod metadata: labels: name: redis role: master name: test-storageos-redis spec: containers: - name: master image: kubernetes/redis:v1 env: - name: MASTER value: \"true\" ports: - containerPort: 6379 volumeMounts: - mountPath: /redis-master-data name: redis-data volumes: - name: redis-data storageos: # The `redis-vol01` volume must already exist within StorageOS in the `default` namespace. volumeName: redis-vol01 fsType: ext4 vsphereVolume 先决条件:配置了 vSphere Cloud Provider 的 Kubernetes。有关云提供商的配置,请参阅 vSphere 入门指南。 vsphereVolume 用于将 vSphere VMDK 卷挂载到 Pod 中。卷的内容在卸载时会被保留。支持 VMFS 和 VSAN 数据存储。 重要提示:在 Pod 中使用它之前,您必须使用以下一种方法创建 VMDK。 创建 VMDK 卷 选择以下方法之一来创建 VMDK。 首先进入 ESX,然后使用以下命令创建一个 VMDK: vmkfstools -c 2G /vmfs/volumes/DatastoreName/volumes/myDisk.vmdk 使用下列命令创建一个 VMDK: vmware-vdiskmanager -c -t 0 -s 40GB -a lsilogic myDisk.vmdk vSphere VMDK 示例配置 apiVersion: v1 kind: Pod metadata: name: test-vmdk spec: containers: - image: k8s.gcr.io/test-webserver name: test-container volumeMounts: - mountPath: /test-vmdk name: test-volume volumes: - name: test-volume # This VMDK volume must already exist. vsphereVolume: volumePath: \"[DatastoreName] volumes/myDisk\" fsType: ext4 更多的例子可以在这里找到。 使用 subPath 有时,在单个容器中共享一个卷用于多个用途是有用的。volumeMounts.subPath 属性可用于在引用的卷内而不是其根目录中指定子路径。 下面是一个使用单个共享卷的 LAMP 堆栈(Linux Apache Mysql PHP)的示例。 HTML 内容被映射到它的 html 目录,数据库将被存储在它的 mysql 目录中: apiVersion: v1 kind: Pod metadata: name: my-lamp-site spec: containers: - name: mysql image: mysql env: - name: MYSQL_ROOT_PASSWORD value: \"rootpasswd\" volumeMounts: - mountPath: /var/lib/mysql name: site-data subPath: mysql - name: php image: php:7.0-apache volumeMounts: - mountPath: /var/www/html name: site-data subPath: html volumes: - name: site-data persistentVolumeClaim: claimName: my-lamp-site-data 资源 emptyDir 卷的存储介质(磁盘、SSD 等)由保存在 kubelet 根目录的文件系统的介质(通常是 /var/lib/kubelet)决定。 emptyDir 或 hostPath 卷可占用多少空间并没有限制,容器之间或 Pod 之间也没有隔离。 在将来,我们预计 emptyDir 和 hostPath 卷将能够使用 resource 规范请求一定的空间,并选择要使用的介质,适用于具有多种媒体类型的集群。 Out-of-Tree 卷插件 除了之前列出的卷类型之外,存储供应商可以创建自定义插件而不将其添加到 Kubernetes 存储库中。可以通过使用 FlexVolume 插件来实现。 FlexVolume使用户能够将供应商卷挂载到容器中。供应商插件是使用驱动程序实现的,该驱动程序支持由 FlexVolume API定义的一系列卷命令。驱动程序必须安装在每个节点的预定义卷插件路径中。 挂载传播 注意:挂载传播是 Kubernetes 1.8 中的一个 alpha 特性,在将来的版本中可能会重新设计甚至删除。 挂载传播允许将由容器挂载的卷共享到同一个 Pod 中的其他容器上,甚至是同一节点上的其他 Pod。 如果禁用 MountPropagation 功能,则不会传播 pod 中的卷挂载。也就是说,容器按照 Linux内核文档中所述的 private 挂载传播运行。 要启用此功能,请在 --feature-gates 命令行选项中指定 MountPropagation = true。启用时,容器的 volumeMounts 字段有一个新的 mountPropagation 子字段。它的值为: HostToContainer:此卷挂载将接收所有后续挂载到此卷或其任何子目录的挂载。这是 MountPropagation 功能启用时的默认模式。 同样的,如果任何带有 Bidirectional 挂载传播的 pod 挂载到同一个卷上,带有 HostToContainer 挂载传播的容器将会看到它。 该模式等同于Linux内核文档中描述的 rslave 挂载传播。 Bidirectional 卷挂载与 HostToContainer 挂载相同。另外,由容器创建的所有卷挂载将被传播回主机和所有使用相同卷的容器的所有容器。 此模式的一个典型用例是带有 Flex 卷驱动器或需要使用 HostPath 卷在主机上挂载某些内容的 pod。 该模式等同于 Linux内核文档中所述的 rshared 挂载传播。 小心:双向挂载传播可能是危险的。它可能会损坏主机操作系统,因此只能在特权容器中使用。强烈建议熟悉 Linux 内核行为。另外,容器在 Pod 中创建的任何卷挂载必须在容器终止时销毁(卸载)。 参考 https://kubernetes.io/docs/concepts/storage/volumes/ 使用持久化卷来部署 WordPress 和 MySQL 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/persistent-volume.html":{"url":"concepts/persistent-volume.html","title":"Persistent Volume(持久化卷)","keywords":"","body":"Persistent Volume(持久化卷) 本文档介绍了 Kubernetes 中 PersistentVolume 的当前状态。建议您在阅读本文档前先熟悉 volume。 介绍 对于管理计算资源来说,管理存储资源明显是另一个问题。PersistentVolume 子系统为用户和管理员提供了一个 API,该 API 将如何提供存储的细节抽象了出来。为此,我们引入两个新的 API 资源:PersistentVolume 和 PersistentVolumeClaim。 PersistentVolume(PV)是由管理员设置的存储,它是群集的一部分。就像节点是集群中的资源一样,PV 也是集群中的资源。 PV 是 Volume 之类的卷插件,但具有独立于使用 PV 的 Pod 的生命周期。此 API 对象包含存储实现的细节,即 NFS、iSCSI 或特定于云供应商的存储系统。 PersistentVolumeClaim(PVC)是用户存储的请求。它与 Pod 相似。Pod 消耗节点资源,PVC 消耗 PV 资源。Pod 可以请求特定级别的资源(CPU 和内存)。声明可以请求特定的大小和访问模式(例如,可以以读/写一次或 只读多次模式挂载)。 虽然 PersistentVolumeClaims 允许用户使用抽象存储资源,但用户需要具有不同性质(例如性能)的 PersistentVolume 来解决不同的问题。集群管理员需要能够提供各种各样的 PersistentVolume,这些PersistentVolume 的大小和访问模式可以各有不同,但不需要向用户公开实现这些卷的细节。对于这些需求,StorageClass 资源可以实现。 请参阅工作示例的详细过程。 卷和声明的生命周期 PV 属于集群中的资源。PVC 是对这些资源的请求,也作为对资源的请求的检查。 PV 和 PVC 之间的相互作用遵循这样的生命周期: 配置(Provision) 有两种方式来配置 PV:静态或动态。 静态 集群管理员创建一些 PV。它们带有可供群集用户使用的实际存储的细节。它们存在于 Kubernetes API 中,可用于消费。 动态 根据 StorageClasses,当管理员创建的静态 PV 都不匹配用户的 PersistentVolumeClaim 时,集群可能会尝试动态地为 PVC 创建卷。 绑定 在动态配置的情况下,用户创建或已经创建了具有特定存储量的 PersistentVolumeClaim 以及某些访问模式。master 中的控制环路监视新的 PVC,寻找匹配的 PV(如果可能),并将它们绑定在一起。如果为新的 PVC 动态调配 PV,则该环路将始终将该 PV 绑定到 PVC。否则,用户总会得到他们所请求的存储,但是容量可能超出要求的数量。一旦 PV 和 PVC 绑定后,PersistentVolumeClaim 绑定是排他性的,不管它们是如何绑定的。 PVC 跟 PV 绑定是一对一的映射。 如果没有匹配的卷,声明将无限期地保持未绑定状态。随着匹配卷的可用,声明将被绑定。例如,配置了许多 50Gi PV的集群将不会匹配请求 100Gi 的PVC。将100Gi PV 添加到群集时,可以绑定 PVC。 使用 Pod 使用声明作为卷。集群检查声明以查找绑定的卷并为集群挂载该卷。对于支持多种访问模式的卷,用户指定在使用声明作为容器中的卷时所需的模式。 用户进行了声明,并且该声明是绑定的,则只要用户需要,绑定的 PV 就属于该用户。用户通过在 Pod 的 volume 配置中包含 persistentVolumeClaim 来调度 Pod 并访问用户声明的 PV。 持久化卷声明的保护 PVC 保护的目的是确保由 pod 正在使用的 PVC 不会从系统中移除,因为如果被移除的话可能会导致数据丢失。 注意:当 pod 状态为 Pending 并且 pod 已经分配给节点或 pod 为 Running 状态时,PVC 处于活动状态。 当启用PVC 保护 alpha 功能时,如果用户删除了一个 pod 正在使用的 PVC,则该 PVC 不会被立即删除。PVC 的删除将被推迟,直到 PVC 不再被任何 pod 使用。 您可以看到,当 PVC 的状态为 Teminatiing 时,PVC 受到保护,Finalizers 列表中包含 kubernetes.io/pvc-protection: kubectl described pvc hostpath Name: hostpath Namespace: default StorageClass: example-hostpath Status: Terminating Volume: Labels: Annotations: volume.beta.kubernetes.io/storage-class=example-hostpath volume.beta.kubernetes.io/storage-provisioner=example.com/hostpath Finalizers: [kubernetes.io/pvc-protection] ... 回收 用户用完 volume 后,可以从允许回收资源的 API 中删除 PVC 对象。PersistentVolume 的回收策略告诉集群在存储卷声明释放后应如何处理该卷。目前,volume 的处理策略有保留、回收或删除。 保留 保留回收策略允许手动回收资源。当 PersistentVolumeClaim 被删除时,PersistentVolume 仍然存在,volume 被视为“已释放”。但是由于前一个声明人的数据仍然存在,所以还不能马上进行其他声明。管理员可以通过以下步骤手动回收卷。 删除 PersistentVolume。在删除 PV 后,外部基础架构中的关联存储资产(如 AWS EBS、GCE PD、Azure Disk 或 Cinder 卷)仍然存在。 手动清理相关存储资产上的数据。 手动删除关联的存储资产,或者如果要重新使用相同的存储资产,请使用存储资产定义创建新的 PersistentVolume。 回收 如果存储卷插件支持,回收策略会在 volume上执行基本擦除(rm -rf / thevolume / *),可被再次声明使用。 但是,管理员可以使用如此处所述的 Kubernetes controller manager 命令行参数来配置自定义回收站 pod 模板。自定义回收站 pod 模板必须包含 volumes 规范,如下面的示例所示: apiVersion: v1 kind: Pod metadata: name: pv-recycler namespace: default spec: restartPolicy: Never volumes: - name: vol hostPath: path: /any/path/it/will/be/replaced containers: - name: pv-recycler image: \"k8s.gcr.io/busybox\" command: [\"/bin/sh\", \"-c\", \"test -e /scrub && rm -rf /scrub/..?* /scrub/.[!.]* /scrub/* && test -z \\\"$(ls -A /scrub)\\\" || exit 1\"] volumeMounts: - name: vol mountPath: /scrub 但是,volumes 部分的自定义回收站模块中指定的特定路径将被替换为正在回收的卷的特定路径。 删除 对于支持删除回收策略的卷插件,删除操作将从 Kubernetes 中删除 PersistentVolume 对象,并删除外部基础架构(如 AWS EBS、GCE PD、Azure Disk 或 Cinder 卷)中的关联存储资产。动态配置的卷继承其 StorageClass,默认为 Delete。管理员应该根据用户的期望来配置 StorageClass,否则就必须要在 PV 创建后进行编辑或修补。请参阅更改 PersistentVolume 的回收策略。 扩展持久化卷声明 Kubernetes 1.8 增加了对扩展持久化存储卷的 Alpha 支持。在 v1.9 中,以下持久化卷支持扩展持久化卷声明: gcePersistentDisk awsElasticBlockStore Cinder glusterfs rbd 管理员可以通过将 ExpandPersistentVolumes 特性门设置为true来允许扩展持久卷声明。管理员还应该启用PersistentVolumeClaimResize 准入控制插件来执行对可调整大小的卷的其他验证。 一旦 PersistentVolumeClaimResize 准入插件已打开,将只允许其 allowVolumeExpansion 字段设置为 true 的存储类进行大小调整。 kind: StorageClass apiVersion: storage.k8s.io/v1 metadata: name: gluster-vol-default provisioner: kubernetes.io/glusterfs parameters: resturl: \"http://192.168.10.100:8080\" restuser: \"\" secretNamespace: \"\" secretName: \"\" allowVolumeExpansion: true 一旦功能门和前述准入插件打开后,用户就可以通过简单地编辑声明以请求更大的 PersistentVolumeClaim 卷。这反过来将触发 PersistentVolume 后端的卷扩展。 在任何情况下都不会创建新的 PersistentVolume 来满足声明。 Kubernetes 将尝试调整现有 volume 来满足声明的要求。 对于扩展包含文件系统的卷,只有在 ReadWrite 模式下使用 PersistentVolumeClaim 启动新的 Pod 时,才会执行文件系统调整大小。换句话说,如果正在扩展的卷在 pod 或部署中使用,则需要删除并重新创建要进行文件系统调整大小的pod。此外,文件系统调整大小仅适用于以下文件系统类型: XFS Ext3、Ext4 注意:扩展 EBS 卷是一个耗时的操作。另外,每6个小时有一个修改卷的配额。 持久化卷类型 PersistentVolume 类型以插件形式实现。Kubernetes 目前支持以下插件类型: GCEPersistentDisk AWSElasticBlockStore AzureFile AzureDisk FC (Fibre Channel) FlexVolume Flocker NFS iSCSI RBD (Ceph Block Device) CephFS Cinder (OpenStack block storage) Glusterfs VsphereVolume Quobyte Volumes HostPath (仅限于但节点测试—— 不会以任何方式支持本地存储,也无法在多节点集群中工作) VMware Photon Portworx Volumes ScaleIO Volumes StorageOS 原始块支持仅适用于以上这些插件。 持久化卷 每个 PV 配置中都包含一个 sepc 规格字段和一个 status 卷状态字段。 apiVersion: v1 kind: PersistentVolume metadata: name: pv0003 spec: capacity: storage: 5Gi volumeMode: Filesystem accessModes: - ReadWriteOnce persistentVolumeReclaimPolicy: Recycle storageClassName: slow mountOptions: - hard - nfsvers=4.1 nfs: path: /tmp server: 172.17.0.2 容量 通常,PV 将具有特定的存储容量。这是使用 PV 的容量属性设置的。查看 Kubernetes 资源模型 以了解 capacity 预期。 目前,存储大小是可以设置或请求的唯一资源。未来的属性可能包括 IOPS、吞吐量等。 卷模式 在 v1.9 之前,所有卷插件的默认行为是在持久卷上创建一个文件系统。在 v1.9 中,用户可以指定一个 volumeMode,除了文件系统之外,它现在将支持原始块设备。 volumeMode 的有效值可以是“Filesystem”或“Block”。如果未指定,volumeMode 将默认为“Filesystem”。这是一个可选的 API 参数。 注意:该功能在 V1.9 中是 alpha的,未来可能会更改。 访问模式 PersistentVolume 可以以资源提供者支持的任何方式挂载到主机上。如下表所示,供应商具有不同的功能,每个 PV 的访问模式都将被设置为该卷支持的特定模式。例如,NFS 可以支持多个读/写客户端,但特定的 NFS PV 可能以只读方式导出到服务器上。每个 PV 都有一套自己的用来描述特定功能的访问模式。 存储模式包括: ReadWriteOnce——该卷可以被单个节点以读/写模式挂载 ReadOnlyMany——该卷可以被多个节点以只读模式挂载 ReadWriteMany——该卷可以被多个节点以读/写模式挂载 在命令行中,访问模式缩写为: RWO - ReadWriteOnce ROX - ReadOnlyMany RWX - ReadWriteMany 重要!一个卷一次只能使用一种访问模式挂载,即使它支持很多访问模式。例如,GCEPersistentDisk 可以由单个节点作为 ReadWriteOnce 模式挂载,或由多个节点以 ReadOnlyMany 模式挂载,但不能同时挂载。 Volume 插件 ReadWriteOnce ReadOnlyMany ReadWriteMany AWSElasticBlockStore ✓ - - AzureFile ✓ ✓ ✓ AzureDisk ✓ - - CephFS ✓ ✓ ✓ Cinder ✓ - - FC ✓ ✓ - FlexVolume ✓ ✓ - Flocker ✓ - - GCEPersistentDisk ✓ ✓ - Glusterfs ✓ ✓ ✓ HostPath ✓ - - iSCSI ✓ ✓ - PhotonPersistentDisk ✓ - - Quobyte ✓ ✓ ✓ NFS ✓ ✓ ✓ RBD ✓ ✓ - VsphereVolume ✓ - - (当 pod 并列时有效) PortworxVolume ✓ - ✓ ScaleIO ✓ ✓ - StorageOS ✓ - - 类 PV 可以具有一个类,通过将 storageClassName 属性设置为 StorageClass 的名称来指定该类。一个特定类别的 PV 只能绑定到请求该类别的 PVC。没有 storageClassName 的 PV 就没有类,它只能绑定到不需要特定类的 PVC。 过去,使用的是 volume.beta.kubernetes.io/storage-class 注解而不是 storageClassName 属性。这个注解仍然有效,但是将来的 Kubernetes 版本中将会完全弃用它。 回收策略 当前的回收策略包括: Retain(保留)——手动回收 Recycle(回收)——基本擦除(rm -rf /thevolume/*) Delete(删除)——关联的存储资产(例如 AWS EBS、GCE PD、Azure Disk 和 OpenStack Cinder 卷)将被删除 当前,只有 NFS 和 HostPath 支持回收策略。AWS EBS、GCE PD、Azure Disk 和 Cinder 卷支持删除策略。 挂载选项 Kubernetes 管理员可以指定在节点上为挂载持久卷指定挂载选项。 注意:不是所有的持久化卷类型都支持挂载选项。 以下卷类型支持挂载选项: GCEPersistentDisk AWSElasticBlockStore AzureFile AzureDisk NFS iSCSI RBD (Ceph Block Device) CephFS Cinder (OpenStack 卷存储) Glusterfs VsphereVolume Quobyte Volumes VMware Photon 挂载选项没有校验,如果挂载选项无效则挂载失败。 过去,使用 volume.beta.kubernetes.io/mount-options 注解而不是 mountOptions 属性。这个注解仍然有效,但在将来的 Kubernetes 版本中它将会被完全弃用。 状态 卷可以处于以下的某种状态: Available(可用)——一块空闲资源还没有被任何声明绑定 Bound(已绑定)——卷已经被声明绑定 Released(已释放)——声明被删除,但是资源还未被集群重新声明 Failed(失败)——该卷的自动回收失败 命令行会显示绑定到 PV 的 PVC 的名称。 PersistentVolumeClaim 每个 PVC 中都包含一个 spec 规格字段和一个 status 声明状态字段。 kind: PersistentVolumeClaim apiVersion: v1 metadata: name: myclaim spec: accessModes: - ReadWriteOnce volumeMode: Filesystem resources: requests: storage: 8Gi storageClassName: slow selector: matchLabels: release: \"stable\" matchExpressions: - {key: environment, operator: In, values: [dev]} 访问模式 在请求具有特定访问模式的存储时,声明使用与卷相同的约定。 卷模式 声明使用与卷相同的约定,指示将卷作为文件系统或块设备使用。 资源 像 pod 一样,声明可以请求特定数量的资源。在这种情况下,请求是用于存储的。相同的资源模型适用于卷和声明。 选择器 声明可以指定一个标签选择器来进一步过滤该组卷。只有标签与选择器匹配的卷可以绑定到声明。选择器由两个字段组成: matchLabels:volume 必须有具有该值的标签 matchExpressions:这是一个要求列表,通过指定关键字,值列表以及与关键字和值相关的运算符组成。有效的运算符包括 In、NotIn、Exists 和 DoesNotExist。 所有来自 matchLabels 和 matchExpressions 的要求都被“与”在一起——它们必须全部满足才能匹配。 类 声明可以通过使用属性 storageClassName 指定 StorageClass 的名称来请求特定的类。只有所请求的类与 PVC 具有相同 storageClassName 的 PV 才能绑定到 PVC。 PVC 不一定要请求类。其 storageClassName 设置为 \"\" 的 PVC 始终被解释为没有请求类的 PV,因此只能绑定到没有类的 PV(没有注解或 \"\")。没有 storageClassName 的 PVC 根据是否打开DefaultStorageClass 准入控制插件,集群对其进行不同处理。 如果打开了准入控制插件,管理员可以指定一个默认的 StorageClass。所有没有 StorageClassName 的 PVC 将被绑定到该默认的 PV。通过在 StorageClass 对象中将注解 storageclass.kubernetes.io/is-default-class 设置为 “true” 来指定默认的 StorageClass。如果管理员没有指定缺省值,那么集群会响应 PVC 创建,就好像关闭了准入控制插件一样。如果指定了多个默认值,则准入控制插件将禁止所有 PVC 创建。 如果准入控制插件被关闭,则没有默认 StorageClass 的概念。所有没有 storageClassName 的 PVC 只能绑定到没有类的 PV。在这种情况下,没有 storageClassName 的 PVC 的处理方式与 storageClassName 设置为 \"\" 的 PVC 的处理方式相同。 根据安装方法的不同,默认的 StorageClass 可以在安装过程中通过插件管理器部署到 Kubernetes 集群。 当 PVC 指定了 selector,除了请求一个 StorageClass 之外,这些需求被“与”在一起:只有被请求的类的 PV 具有和被请求的标签才可以被绑定到 PVC。 注意:目前,具有非空 selector 的 PVC 不能为其动态配置 PV。 过去,使用注解 volume.beta.kubernetes.io/storage-class 而不是 storageClassName 属性。这个注解仍然有效,但是在未来的 Kubernetes 版本中不会支持。 声明作为卷 通过将声明用作卷来访问存储。声明必须与使用声明的 pod 存在于相同的命名空间中。集群在 pod 的命名空间中查找声明,并使用它来获取支持声明的 PersistentVolume。该卷然后被挂载到主机的 pod 上。 kind: Pod apiVersion: v1 metadata: name: mypod spec: containers: - name: myfrontend image: dockerfile/nginx volumeMounts: - mountPath: \"/var/www/html\" name: mypd volumes: - name: mypd persistentVolumeClaim: claimName: myclaim 命名空间注意点 PersistentVolumes 绑定是唯一的,并且由于 PersistentVolumeClaims 是命名空间对象,因此只能在一个命名空间内挂载具有“多个”模式(ROX、RWX)的声明。 原始块卷支持 原始块卷的静态配置在 v1.9 中作为 alpha 功能引入。由于这个改变,需要一些新的 API 字段来使用该功能。目前,Fibre Channl 是支持该功能的唯一插件。 使用原始块卷作为持久化卷 apiVersion: v1 kind: PersistentVolume metadata: name: block-pv spec: capacity: storage: 10Gi accessModes: - ReadWriteOnce volumeMode: Block persistentVolumeReclaimPolicy: Retain fc: targetWWNs: [\"50060e801049cfd1\"] lun: 0 readOnly: false 持久化卷声明请求原始块卷 apiVersion: v1 kind: PersistentVolumeClaim metadata: name: block-pvc spec: accessModes: - ReadWriteOnce volumeMode: Block resources: requests: storage: 10Gi 在 Pod 规格配置中为容器添加原始块设备 apiVersion: v1 kind: Pod metadata: name: pod-with-block-volume spec: containers: - name: fc-container image: fedora:26 command: [\"/bin/sh\", \"-c\"] args: [ \"tail -f /dev/null\" ] volumeDevices: - name: data devicePath: /dev/xvda volumes: - name: data persistentVolumeClaim: claimName: block-pvc 注意:当为 Pod 增加原始块设备时,我们在容器中指定设备路径而不是挂载路径。 绑定块卷 如果用户通过使用 PersistentVolumeClaim 规范中的 volumeMode 字段指示此请求来请求原始块卷,则绑定规则与以前不认为该模式为规范一部分的版本略有不同。 下面是用户和管理员指定请求原始块设备的可能组合的表格。该表指示卷是否将被绑定或未给定组合。静态设置的卷的卷绑定矩阵: PV volumeMode PVC volumeMode 结果 unspecified unspecified 绑定 unspecified Block 不绑定 unspecified Filesystem 绑定 Block unspecified 不绑定 Block Block 绑定 Block Filesystem 不绑定 Filesystem Filesystem 绑定 Filesystem Block 不绑定 Filesystem unspecified 绑定 注意:alpha 版本只支持静态配置卷。使用原始块设备时,管理员应该注意考虑这些值。 编写可移植配置 如果您正在编写在多种集群上运行并需要持久存储的配置模板或示例,我们建议您使用以下模式: 要在您的在配置组合中包含 PersistentVolumeClaim 对象(与 Deployment、ConfigMap等一起)。 不要在配置中包含 PersistentVolume 对象,因为用户实例化配置可能没有创建 PersistentVolume 的权限。 给用户在实例化模板时提供存储类名称的选项。 如果用户提供存储类名称,则将该值放入 persistentVolumeClaim.storageClassName 字段中。如果集群具有由管理员启用的 StorageClass,这将导致 PVC 匹配正确的存储类别。 如果用户未提供存储类名称,则将 persistentVolumeClaim.storageClassName 字段保留为 nil。 这将导致使用集群中默认的 StorageClass 为用户自动配置 PV。许多集群环境都有默认的 StorageClass,或者管理员可以创建自己的默认 StorageClass。 在您的工具中,请注意一段时间之后仍未绑定的 PVC,并向用户展示它们,因为这表示集群可能没有动态存储支持(在这种情况下用户应创建匹配的 PV),或集群没有存储系统(在这种情况下用户不能部署需要 PVC 的配置)。 原文地址:https://kubernetes.io/docs/concepts/storage/persistent-volumes/ 译者:rootsongjc 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/storageclass.html":{"url":"concepts/storageclass.html","title":"Storage Class","keywords":"","body":"StorageClass 本文介绍了 Kubernetes 中 StorageClass 的概念。在阅读本文之前建议先熟悉 卷 和 Persistent Volume(持久卷)。 介绍 StorageClass 为管理员提供了描述存储 \"class(类)\" 的方法。 不同的 class 可能会映射到不同的服务质量等级或备份策略,或由群集管理员确定的任意策略。 Kubernetes 本身不清楚各种 class 代表的什么。这个概念在其他存储系统中有时被称为“配置文件”。 StorageClass 资源 StorageClass 中包含 provisioner、parameters 和 reclaimPolicy 字段,当 class 需要动态分配 PersistentVolume 时会使用到。 StorageClass 对象的名称很重要,用户使用该类来请求一个特定的方法。 当创建 StorageClass 对象时,管理员设置名称和其他参数,一旦创建了对象就不能再对其更新。 管理员可以为没有申请绑定到特定 class 的 PVC 指定一个默认的 StorageClass : 更多详情请参阅 PersistentVolumeClaim 章节。 kind: StorageClass apiVersion: storage.k8s.io/v1 metadata: name: standard provisioner: kubernetes.io/aws-ebs parameters: type: gp2 reclaimPolicy: Retain mountOptions: - debug Provisioner(存储分配器) Storage class 有一个分配器,用来决定使用哪个卷插件分配 PV。该字段必须指定。 Volume Plugin Internal Provisioner Config Example AWSElasticBlockStore ✓ AWS AzureFile ✓ Azure File AzureDisk ✓ Azure Disk CephFS - - Cinder ✓ OpenStack Cinder FC - - FlexVolume - - Flocker ✓ - GCEPersistentDisk ✓ GCE Glusterfs ✓ Glusterfs iSCSI - - PhotonPersistentDisk ✓ - Quobyte ✓ Quobyte NFS - - RBD ✓ Ceph RBD VsphereVolume ✓ vSphere PortworxVolume ✓ Portworx Volume ScaleIO ✓ ScaleIO StorageOS ✓ StorageOS 您不限于指定此处列出的\"内置\"分配器(其名称前缀为 kubernetes.io 并打包在 Kubernetes 中)。 您还可以运行和指定外部分配器,这些独立的程序遵循由 Kubernetes 定义的 规范。 外部供应商的作者完全可以自由决定他们的代码保存于何处、打包方式、运行方式、使用的插件(包括Flex)等。 代码仓库 kubernetes-incubator/external-storage 包含一个用于为外部分配器编写功能实现的类库,以及各种社区维护的外部分配器。 例如,NFS 没有内部分配器,但可以使用外部分配器。一些外部分配器在代码仓库 kubernetes-incubator/external-storage 中。 也有第三方存储供应商提供自己的外部分配器。 关于内置的 StorageClass 的配置请参考 Storage Classes。 回收策略 由 storage class 动态创建的 Persistent Volume 会在的 reclaimPolicy 字段中指定回收策略,可以是 Delete 或者 Retain。如果 StorageClass 对象被创建时没有指定 reclaimPolicy ,它将默认为 Delete。 通过 storage class 手动创建并管理的 Persistent Volume 会使用它们被创建时指定的回收政策。 挂载选项 由 storage class 动态创建的 Persistent Volume 将使用 class 中 mountOptions 字段指定的挂载选项。 如果卷插件不支持挂载选项,却指定了该选项,则分配操作失败。 安装选项在 class 和 PV 上都不会做验证,所以如果挂载选项无效,那么这个 PV 就会失败。 参数 Storage class 具有描述属于 storage class 卷的参数。取决于分配器,可以接受不同的参数。 例如,参数 type 的值 io1 和参数 iopsPerGB 特定于 EBS PV。当参数被省略时,会使用默认值。 参考 https://kubernetes.io/docs/concepts/storage/storage-classes/ 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/local-persistent-storage.html":{"url":"concepts/local-persistent-storage.html","title":"本地持久化存储","keywords":"","body":"本地持久化存储 本地持久化卷允许用户通过标准 PVC 接口以简单便携的方式访问本地存储。PV 中包含系统用于将 Pod 安排到正确节点的节点亲和性信息。 一旦配置了本地卷,外部静态配置器(provisioner)可用于帮助简化本地存储管理。请注意,本地存储配置器与大多数配置器不同,并且尚不支持动态配置。相反,它要求管理员预先配置每个节点上的本地卷,并且这些卷应该是: Filesystem volumeMode(默认)PV—— 将它们挂载到发现目录下。 Block volumeMode PV——在发现目录下为节点上的块设备创建一个符号链接。 配置器将通过为每个卷创建和清除 PersistentVolumes 来管理发现目录下的卷。 配置要求 本地卷插件希望路径稳定,包括在重新启动时和添加或删除磁盘时。 静态配置器仅发现挂载点(对于文件系统模式卷)或符号链接(对于块模式卷)。对于基于目录的本地卷必须绑定到发现目录中。 版本兼容性 推荐配置器版本与Kubernetes版本 Provisioner version K8s version Reason 2.1.0 1.10 Beta API default, block 2.0.0 1.8, 1.9 Mount propagation 1.0.1 1.7 K8s功能状态 另请参阅已知问题和 CHANGELOG。 1.10:Beta 添加了新的 PV.NodeAffinity 字段。 重要: Alpha PV NodeAffinity annotation 已弃用。用户必须手动更新其 PV 以使用新的 NodeAffinity字段或运行一次性更新作业。 Alpha:添加了对 raw block 的支持。 1.9:Alpha 新的 StorageClass volumeBindingMode 参数将延迟PVC绑定,直到 pod 被调度。 1.7:Alpha 新的local PersistentVolume 源,允许指定具有 node affinity 的目录或挂载点。 使用绑定到该 PV 的 PVC 的 Pod 将始终调度到该节点。 未来的功能 本地块设备作为卷源,具有分区和 fs 格式化 共享本地持久化存储的动态资源调配 当地 PV 健康监测、污点和容忍 内联 PV(使用专用本地磁盘作为临时存储) 用户指南 这些说明反映了最新版本的代码库。有关旧版本的说明,请参阅版本兼容性下的版本链接。 步骤1:使用本地磁盘启动集群 启用alpha feature gate 1.10+ 如果需要原始的本地块功能, export KUBE_FEATURE_GATES =\"BlockVolume = true\" 注意:1.10 之前的 Kubernetes 版本需要几个附加 feature gate,因为持久的本地卷和其他功能处于 alpha 版本。 选项1:裸金属环境 根据应用程序的要求对每个节点上的磁盘进行分区和格式化。 根据 StorageClass 将所有文件系统挂载到同一个目录下。目录在 configmap 中指定,见下文。 使用 KUBE_FEATURE_GATES配置 Kubernetes API server、controller manager、scheduler 和所有kubelet,如上所述。 如果不使用默认 Kubernetes 调度程序策略,则必须启用以下谓词: 1.9之前:NoVolumeBindConflict 1.9+:VolumeBindingChecker 选项2:本地测试集群 创建 /mnt/disks目录并将多个卷挂载到其子目录。下面的示例使用三个 ram 磁盘来模拟真实的本地卷: mkdir/mnt/disks vol for vol1 vol2 vol3;do mkdir/mnt/disks/$vol mount -t tmpfs $vol/mnt/disks/$vol DONE 运行本地集群。 $ALLOW_PRIVILEGED = true LOG_LEVEL = 5 FEATURE_GATES = $KUBE_FEATURE_GATES hack/local-up-cluster.sh 步骤2:创建StorageClass(1.9+) 要延迟卷绑定,直到 pod 被调度,并在单个 pod 中处理多个本地 PV,必须使用设置为 WaitForFirstConsumer 的 volumeBindingMode 创建 StorageClass。 $kubectl create -f provisioner/deployment/kubernetes/example/default_example_storageclass.yaml 步骤3:创建本地持久卷 选项1:使用本地卷静态配置器 生成 Provisioner 的 ServiceAccount、Role、DaemonSet 和 ConfigMap 规范,并对其进行自定义。 这一步使用 helm 模板来生成规格。有关安装说明,请参阅helm readme。要使用默认值生成配置器的规格,请运行: helm template ./helm/provisioner > ./provisioner/deployment/kubernetes/provisioner_generated.yaml 您也可以提供一个自定义值文件: helm template ./helm/provisioner --values custom-values.yaml > ./provisioner/deployment/kubernetes/provisioner_generated.yaml 部署配置程序 如果用户对 Provisioner 的 yaml 文件的内容感到满意,可以用 kubectl 创建 Provisioner 的 DaemonSet 和 ConfigMap。 $kubectl create -f ./provisioner/deployment/kubernetes/provisioner_generated.yaml 检查发现的本地卷 一旦启动,外部静态配置器将发现并创建本地 PV。 例如,如果目录 /mnt/disks/ 包含一个目录 /mnt/disks/vol1,则静态配置器会创建以下本地卷 PV: $ kubectl get pv NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM STORAGECLASS REASON AGE local-pv-ce05be60 1024220Ki RWO Delete Available local-storage 26s $ kubectl describe pv local-pv-ce05be60 Name: local-pv-ce05be60 Labels: Annotations: pv.kubernetes.io/provisioned-by=local-volume-provisioner-minikube-18f57fb2-a186-11e7-b543-080027d51893 StorageClass: local-fast Status: Available Claim: Reclaim Policy: Delete Access Modes: RWO Capacity: 1024220Ki NodeAffinity: Required Terms: Term 0: kubernetes.io/hostname in [my-node] Message: Source: Type: LocalVolume (a persistent volume backed by local storage on a node) Path: /mnt/disks/vol1 Events: 上面描述的 PV 可以通过引用 local-fast storageClassName 声明和绑定到 PVC。 选项2:手动创建本地持久化卷 有关示例 PersistentVolume 规范,请参阅Kubernetes文档。 步骤4:创建本地持久卷声明 kind: PersistentVolumeClaim apiVersion: v1 metadata: name: example-local-claim spec: accessModes: - ReadWriteOnce resources: requests: storage: 5Gi storageClassName: local-storage 请替换以下元素以反映您的配置: 卷所需的存储容量“5Gi” “local-storage”,与本地 PV 关联的存储类名称应该用于满足此 PVC 对于试图声明 “Block” PV 的 “Block” volumeMode PVC,可以使用以下示例: kind: PersistentVolumeClaim apiVersion: v1 metadata: name: example-local-claim spec: accessModes: - ReadWriteOnce resources: requests: storage: 5Gi volumeMode: Block storageClassName: local-storage 请注意,此处唯一需要注意的字段是 volumeMode,它已被设置为“Block”。 最佳实践 对于IO隔离,建议每个卷使用整个磁盘 对于容量隔离,建议使用单个分区 避免重新创建具有相同节点名称的节点,而仍然存在指定了该节点亲和性的旧 PV。否则,系统可能认为新节点包含旧的 PV。 对于带有文件系统的卷,建议在 fstab 条目和该挂载点的目录名称中使用它们的 UUID(例如 ls -l/dev/disk/by-uuid 的输出)。这种做法可确保即使设备路径发生变化(例如,如果 /dev/sda1 在添加新磁盘时变为 /dev/sdb1),也不会错误地挂在本地卷。此外,这种做法将确保如果创建具有相同名称的另一个节点,则该节点上的任何卷都是唯一的,而不会误认为是具有相同名称的另一个节点上的卷。 对于没有文件系统的 raw block 卷,使用唯一的 ID 作为符号链接名称。根据您的环境,/dev/disk/by-id/中的卷 ID 可能包含唯一的硬件序列号。否则,应该生成一个唯一的 ID。符号链接名称的唯一性将确保如果创建具有相同名称的另一个节点,则该节点上的任何卷都是唯一的,而不会误认为是具有相同名称的另一个节点上的卷。 删除/清理底层卷 当您想要停用本地卷时,以下是可能的工作流程。 停止使用卷的 pod 从节点中删除本地卷(即卸载、拔出磁盘等) 删除 PVC 供应商将尝试清理卷,但由于卷不再存在而会失败 手动删除 PV 对象 参考 Local Persistent Storage User Guide 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/extension.html":{"url":"concepts/extension.html","title":"集群扩展","keywords":"","body":"扩展 Kubernetes是一个高度开放可扩展的架构,可以通过自定义资源类型CRD来定义自己的类型,还可以自己来扩展API服务,用户的使用方式跟Kubernetes的原生对象无异。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/custom-resource.html":{"url":"concepts/custom-resource.html","title":"使用自定义资源扩展 API","keywords":"","body":"使用自定义资源扩展 API 注意:TPR 已经停止维护,kubernetes 1.7 及以上版本请使用 CRD。 自定义资源是对 Kubernetes API 的扩展,kubernetes 中的每个资源都是一个 API 对象的集合,例如我们在 YAML 文件里定义的那些 spec 都是对 kubernetes 中的资源对象的定义,所有的自定义资源可以跟 kubernetes 中内建的资源一样使用 kubectl 操作。 自定义资源 Kubernetes1.6 版本中包含一个内建的资源叫做 TPR(ThirdPartyResource),可以用它来创建自定义资源,但该资源在 kubernetes1.7 中版本已被 CRD(CustomResourceDefinition)取代。 扩展 API 自定义资源实际上是为了扩展 kubernetes 的 API,向 kubenetes API 中增加新类型,可以使用以下三种方式: 修改 kubenetes 的源码,显然难度比较高,也不太合适 创建自定义 API server 并聚合到 API 中 1.7 以下版本编写 TPR,kubernetes1.7 及以上版本用 CRD 编写自定义资源是扩展 kubernetes API 的最简单的方式,是否编写自定义资源来扩展 API 请参考 Should I add a custom resource to my Kubernetes Cluster?,行动前请先考虑以下几点: 你的 API 是否属于 声明式的 是否想使用 kubectl 命令来管理 是否要作为 kubenretes 中的对象类型来管理,同时显示在 kubernetes dashboard 上 是否可以遵守 kubernetes 的 API 规则限制,例如 URL 和 API group、namespace 限制 是否可以接受该 API 只能作用于集群或者 namespace 范围 想要复用 kubernetes API 的公共功能,比如 CRUD、watch、内置的认证和授权等 如果这些都不是你想要的,那么你可以开发一个独立的 API。 TPR 注意:TPR 已经停止维护,kubernetes 1.7 及以上版本请使用 CRD。 假如我们要创建一个名为 cron-tab.stable.example.com 的 TPR,yaml 文件定义如下: apiVersion: extensions/v1beta1 kind: ThirdPartyResource metadata: name: cron-tab.stable.example.com description: \"A specification of a Pod to run on a cron style schedule\" versions: - name: v1 ```然后使用`kubectl create`命令创建该资源,这样就可以创建出一个 API 端点`/apis/stable.example.com/v1/namespaces//crontabs/...`。 下面是在 [Linkerd](https://linkerd.io) 中的一个实际应用,Linkerd 中的一个名为 namerd 的组件使用了 TPR,定义如下: ```yaml --- kind: ThirdPartyResource apiVersion: extensions/v1beta1 metadata: name: d-tab.l5d.io description: stores dtabs used by namerd versions: - name: v1alpha1 CRD 参考下面的 CRD,resourcedefinition.yaml: apiVersion: apiextensions.k8s.io/v1beta1 kind: CustomResourceDefinition metadata: # 名称必须符合下面的格式:. name: crontabs.stable.example.com spec: # REST API 使用的组名称:/apis// group: stable.example.com # REST API 使用的版本号:/apis// version: v1 # Namespaced 或 Cluster scope: Namespaced names: # URL 中使用的复数名称: /apis/// plural: crontabs # CLI 中使用的单数名称 singular: crontab # CamelCased 格式的单数类型。在清单文件中使用 kind: CronTab # CLI 中使用的资源简称 shortNames: - ct ```创建该 CRD:```bash kubectl create -f resourcedefinition.yaml ```访问 RESTful API 端点如 将看到如下 API 端点已创建:```bash /apis/stable.example.com/v1/namespaces/*/crontabs/... 创建自定义对象 如下所示: apiVersion: \"stable.example.com/v1\" kind: CronTab metadata: name: my-new-cron-object spec: cronSpec: \"* * * * /5\" image: my-awesome-cron-image 引用该自定义资源的 API 创建对象。 终止器 可以为自定义对象添加一个终止器,如下所示: apiVersion: \"stable.example.com/v1\" kind: CronTab metadata: finalizers: - finalizer.stable.example.com 删除自定义对象前,异步执行的钩子。对于具有终止器的一个对象,删除请求仅仅是为metadata.deletionTimestamp 字段设置一个值,而不是删除它,这将触发监控该对象的控制器执行他们所能处理的任意终止器。 详情参考:Extend the Kubernetes API with CustomResourceDefinitions 自定义控制器 单纯设置了自定义资源,并没有什么用,只有跟自定义控制器结合起来,才能将资源对象中的声明式 API 翻译成用户所期望的状态。自定义控制器可以用来管理任何资源类型,但是一般是跟自定义资源结合使用。 请参考使用 Operator 模式,该模式可以让开发者将自己的领域知识转换成特定的 kubenretes API 扩展。 API server 聚合 Aggregated(聚合的)API server 是为了将原来的 API server 这个巨石(monolithic)应用给拆分成,为了方便用户开发自己的 API server 集成进来,而不用直接修改 kubernetes 官方仓库的代码,这样一来也能将 API server 解耦,方便用户使用实验特性。这些 API server 可以跟 core API server 无缝衔接,使用 kubectl 也可以管理它们。 详情参考 Aggregated API Server。 参考 Custom Resources Extend the Kubernetes API with CustomResourceDefinitions Introducing Operators: Putting Operational Knowledge into Software 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/crd.html":{"url":"concepts/crd.html","title":"使用 CRD 扩展 Kubernetes API","keywords":"","body":"使用CRD扩展Kubernetes API 本文是如何创建 CRD 来扩展 Kubernetes API 的教程。CRD 是用来扩展 Kubernetes 最常用的方式,在 Service Mesh 和 Operator 中也被大量使用。因此读者如果想在 Kubernetes 上做扩展和开发的话,是十分有必要了解 CRD 的。 在阅读本文前您需要先了解使用自定义资源扩展 API, 以下内容译自 Kubernetes 官方文档,有删改,推荐阅读如何从零开始编写一个 Kubernetes CRD。 创建 CRD(CustomResourceDefinition) 创建新的 CustomResourceDefinition(CRD)时,Kubernetes API Server 会为您指定的每个版本创建新的 RESTful 资源路径。CRD 可以是命名空间的,也可以是集群范围的,可以在 CRD scope 字段中所指定。与现有的内置对象一样,删除命名空间会删除该命名空间中的所有自定义对象。CustomResourceDefinition 本身是非命名空间的,可供所有命名空间使用。 参考下面的 CRD,将其配置保存在 resourcedefinition.yaml 文件中: apiVersion: apiextensions.k8s.io/v1 kind: CustomResourceDefinition metadata: # 名称必须符合下面的格式:. name: crontabs.stable.example.com spec: # REST API使用的组名称:/apis// group: stable.example.com # REST API使用的版本号:/apis// versions: - name: v1 # 可以通过 served 来开关每个 version served: true # 有且仅有一个 version 开启存储 storage: true schema: openAPIV3Schema: type: object properties: spec: type: object properties: cronSpec: type: string image: type: string replicas: type: integer # Namespaced或Cluster scope: Namespaced names: # URL中使用的复数名称: /apis/// plural: crontabs # CLI中使用的单数名称 singular: crontab # CamelCased格式的单数类型。在清单文件中使用 kind: CronTab # CLI中使用的资源简称 shortNames: - ct 此处使用的 apiVersion 版本是 apiextensions.k8s.io/v1,跟上一版 apiextensions.k8s.io/v1beta1 的最主要区别是改用了 OpenAPI v3.0 validation schema。 创建该 CRD: kubectl create -f resourcedefinition.yaml 访问 RESTful API 端点如 http://172.20.0.113:8080 将看到如下 API 端点已创建: /apis/stable.example.com/v1/namespaces/*/crontabs/... 然后,此端点 URL 可用于创建和管理自定义对象。上面的 CRD 中定义的类型就是 CronTab。 可能需要几秒钟才能创建端点。您可以监控 CustomResourceDefinition 中 Established 的状态何时为 true,或者查看 API 资源的发现信息中是否显示了您的资源。 创建自定义对象 创建 CustomResourceDefinition 对象后,您可以创建自定义对象。自定义对象可包含自定义字段。这些字段可以包含任意 JSON。在以下示例中, cronSpec 和 image 自定义字段在自定义对象中设置 CronTab。CronTab 类型来自您在上面创建的 CustomResourceDefinition 对象的规范。 如果您将以下 YAML 保存到 my-crontab.yaml: apiVersion: \"stable.example.com/v1\" kind: CronTab metadata: name: my-new-cron-object spec: cronSpec: \"* * * * */5\" image: my-awesome-cron-image 并创建它: kubectl create -f my-crontab.yaml 然后,您可以使用 kubectl 管理 CronTab 对象。例如: kubectl get crontab 应该打印这样的列表: NAME AGE my-new-cron-object 6s 使用 kubectl 时,资源名称不区分大小写,您可以使用 CRD 中定义的单数或复数形式,以及任何短名称。 您还可以查看原始 YAML 数据: kubectl get ct -o yaml 您应该看到它的 yaml 中的自定义 cronSpec 和 image 字段: apiVersion: v1 items: - apiVersion: stable.example.com/v1 kind: CronTab metadata: clusterName: \"\" creationTimestamp: 2017-05-31T12:56:35Z deletionGracePeriodSeconds: null deletionTimestamp: null name: my-new-cron-object namespace: default resourceVersion: \"285\" selfLink: /apis/stable.example.com/v1/namespaces/default/crontabs/my-new-cron-object uid: 9423255b-4600-11e7-af6a-28d2447dc82b spec: cronSpec: '* * * * */5' image: my-awesome-cron-image kind: List metadata: resourceVersion: \"\" selfLink: \"\" 删除 CustomResourceDefinition 删除 CustomResourceDefinition 时,服务器将删除 RESTful API 端点并删除存储在其中的所有自定义对象。 kubectl delete -f resourcedefinition.yaml kubectl get crontabs Error from server (NotFound): Unable to list \"crontabs\": the server could not find the requested resource (get crontabs.stable.example.com) 如果稍后重新创建相同的 CustomResourceDefinition,它将从空开始。 提供 CRD 的多个版本 有关提供 CustomResourceDefinition 的多个版本以及将对象从一个版本迁移到另一个版本的详细信息,请参阅自定义资源定义版本控制。 高级主题 Finalizer(终结器) Finalizer(终结器)允许控制器实现异步预删除 hook。自定义对象支持终结器,就像内置对象一样。 您可以将终结器添加到自定义对象,如下所示: apiVersion: \"stable.example.com/v1\" kind: CronTab metadata: finalizers: - finalizer.stable.example.com 终结器是任意字符串值,当存在时确保在资源存在时不可能进行硬删除。 对具有终结器的对象的第一个删除请求设置该metadata.deletionTimestamp字段的值, 但不删除它。设置此值后,finalizer 只能删除列表中的条目。 如果设置了 metadata.deletionTimestamp 字段,控制器监控对象将执行它们所有的终结器,对该对象轮询更新请求。执行完所有终结器后,将删除该资源。 值metadata.deletionGracePeriodSeconds控制轮询更新之间的间隔。 每个控制器都有责任从列表中删除其终结器。 如果终结器列表为空,Kubernetes 最终只会删除该对象,这意味着所有终结器都已执行。 Validation(验证) 功能状态: Kubernetes v1.12 beta 可以通过 OpenAPI v3 schema验证自定义对象是否符合标准 。此外,以下限制适用于 schema: 字段default、nullable、discriminator、readOnly、writeOnly、xml、 deprecated 和 $ref 不能设置。 该字段 uniqueItems 不能设置为 true。 该字段 additionalProperties 不能设置为 false。 您可以使用 kube-apiserverCustomResourceValidation 上的功能门(feature gate)禁用此功能: --feature-gates=CustomResourceValidation=false 该 schema 在 CustomResourceDefinition 中定义。在以下示例中,CustomResourceDefinition 对自定义对象应用以下验证: spec.cronSpec 必须是字符串,并且必须是正则表达式描述的形式。 spec.replicas 必须是整数,且最小值必须为 1,最大值为 10。 将 CustomResourceDefinition 保存到 resourcedefinition.yaml: apiVersion: apiextensions.k8s.io/v1beta1 kind: CustomResourceDefinition metadata: name: crontabs.stable.example.com spec: group: stable.example.com versions: - name: v1 served: true storage: true version: v1 scope: Namespaced names: plural: crontabs singular: crontab kind: CronTab shortNames: - ct validation: # openAPIV3Schema 适用于验证自定义对象的 schema。 openAPIV3Schema: properties: spec: properties: cronSpec: type: string pattern: '^(\\d+|\\*)(/\\d+)?(\\s+(\\d+|\\*)(/\\d+)?){4}$' replicas: type: integer minimum: 1 maximum: 10 并创建它: kubectl create -f resourcedefinition.yaml CronTab 如果其字段中存在无效值,则将拒绝创建类型的自定义对象的请求。在以下示例中,自定义对象包含具有无效值的字段: spec.cronSpec 与正则表达式不匹配。 spec.replicas 大于10。 如果您将以下YAML保存到my-crontab.yaml: apiVersion: \"stable.example.com/v1\" kind: CronTab metadata: name: my-new-cron-object spec: cronSpec: \"* * * *\" image: my-awesome-cron-image replicas: 15 并创建它: kubectl create -f my-crontab.yaml 你会收到一个错误: The CronTab \"my-new-cron-object\" is invalid: []: Invalid value: map[string]interface {}{\"apiVersion\":\"stable.example.com/v1\", \"kind\":\"CronTab\", \"metadata\":map[string]interface {}{\"name\":\"my-new-cron-object\", \"namespace\":\"default\", \"deletionTimestamp\":interface {}(nil), \"deletionGracePeriodSeconds\":(*int64)(nil), \"creationTimestamp\":\"2017-09-05T05:20:07Z\", \"uid\":\"e14d79e7-91f9-11e7-a598-f0761cb232d1\", \"selfLink\":\"\", \"clusterName\":\"\"}, \"spec\":map[string]interface {}{\"cronSpec\":\"* * * *\", \"image\":\"my-awesome-cron-image\", \"replicas\":15}}: validation failure list: spec.cronSpec in body should match '^(\\d+|\\*)(/\\d+)?(\\s+(\\d+|\\*)(/\\d+)?){4}$' spec.replicas in body should be less than or equal to 10 如果字段包含有效值,则接受对象创建请求。 将以下 YAML 保存到 my-crontab.yaml: apiVersion: \"stable.example.com/v1\" kind: CronTab metadata: name: my-new-cron-object spec: cronSpec: \"* * * * */5\" image: my-awesome-cron-image replicas: 5 并创建它: kubectl create -f my-crontab.yaml crontab \"my-new-cron-object\" created 其他打印列 从 Kubernetes 1.11 开始,kubectl 使用服务器端打印。服务器决定 kubectl get 命令显示哪些列。您可以使用 CustomResourceDefinition 自定义这些列。下面的示例将输出 Spec、Replicas 和 Age 列。 将 CustomResourceDefinition 保存到 resourcedefinition.yaml。 apiVersion: apiextensions.k8s.io/v1beta1 kind: CustomResourceDefinition metadata: name: crontabs.stable.example.com spec: group: stable.example.com version: v1 scope: Namespaced names: plural: crontabs singular: crontab kind: CronTab shortNames: - ct additionalPrinterColumns: - name: Spec type: string description: The cron spec defining the interval a CronJob is run JSONPath: .spec.cronSpec - name: Replicas type: integer description: The number of jobs launched by the CronJob JSONPath: .spec.replicas - name: Age type: date JSONPath: .metadata.creationTimestamp 创建 CustomResourceDefinition: kubectl create -f resourcedefinition.yaml 使用上一节中的创建的 my-crontab.yaml 实例。 调用服务器端打印: kubectl get crontab my-new-cron-object 请注意 NAME、SPEC、REPLICAS 和 AGE 在输出列: NAME SPEC REPLICAS AGE my-new-cron-object * * * * * 1 7s NAME 列是隐含的,不需要在 CustomResourceDefinition 中定义。 Priority(优先级) 每列中都包含一个 priority 字段。目前,优先级区分标准视图或 wide 视图中显示的列(使用 -o wide 标志)。 具有优先级的列 0 显示在标准视图中。 优先级大于 0 的列仅在 wide 视图中显示。 Type(类型) 列中的 type 字段可以是以下任何一种(参考 OpenAPI v3 数据类型): integer - 非浮点数 number - 浮点数 string - 字符串 boolean - ture 或 false date - 自此时间戳以来的时间差异呈现 如果 CustomResource 中的值与为列指定的类型不匹配,则省略该值。使用 CustomResource 验证以确保值类型正确。 Format(格式) 列中的 format 字段可以是以下任何一个: int32 int64 float double byte date date-time password 该列 format 控制 kubectl 打印值时使用的样式。 子资源 功能状态: Kubernetes v1.12 beta 自定义资源支持 /status 和 /scale 子资源。 您可以使用 kube-apiserver CustomResourceSubresources 上的功能门(feature gate)禁用此功能: --feature-gates=CustomResourceSubresources=false 可以通过在 CustomResourceDefinition 中定义它们来选择性地启用 status 和 scale 子资源。 状态子资源 启用状态子资源后,将公开自定义资源的子资源 /status。 状态和规范节分别由自定义资源内的 JSONPath .status 和 .specJSONPath 表示。 PUT``/status 对子资源的请求采用自定义资源对象,并忽略除状态节之外的任何更改。 PUT``/status 对子资源的请求仅验证自定义资源的状态节。 PUT/ POST/ PATCH 请求自定义资源忽略更改状态节。 对 spec 节的任何更改都会增加 .metadata.generation 的值。 在 CRD OpenAPI 验证模式的根目录中只允许以下构造: Description Example ExclusiveMaximum ExclusiveMinimum ExternalDocs Format Items Maximum MaxItems MaxLength Minimum MinItems MinLength MultipleOf Pattern Properties Required Title Type UniqueItems 扩展子资源 启用 scale 子资源后,将公开自定义资源的子资源 /scale。该 autoscaling/v1.Scale 对象作为有效负载发送 /scale。 要启用 scale 子资源,CustomResourceDefinition 中需要定义以下值。 SpecReplicasPath 在与之对应的自定义资源中定义 JSONPath Scale.Spec.Replicas。 这是一个必需的值。 .spec 只允许使用带点符号的 JSONPaths 。 如果 SpecReplicasPath 自定义资源中没有值,则 /scale 子资源将在GET上返回错误。 StatusReplicasPath 在与之对应的自定义资源中定义 JSONPath Scale.Status.Replicas。 这是一个必需的值。 .stutus 只允许使用带点符号的 JSONPaths 。 如果 StatusReplicasPath 自定义资源中没有值,则子资源 /scale 中的状态副本值将默认为 0。 LabelSelectorPath在与之对应的自定义资源中定义 JSONPath Scale.Status.Selector。 这是一个可选值。 必须将其设置为与 HPA 一起使用。 .status 只允许使用带点符号的 JSONPaths 。 如果 LabelSelectorPath 自定义资源中没有值,则子资源 /scale 中的状态选择器值将默认为空字符串。 在以下示例中,启用了status 和 scale 子资源。 将 CustomResourceDefinition 保存到resourcedefinition.yaml: apiVersion: apiextensions.k8s.io/v1beta1 kind: CustomResourceDefinition metadata: name: crontabs.stable.example.com spec: group: stable.example.com versions: - name: v1 served: true storage: true scope: Namespaced names: plural: crontabs singular: crontab kind: CronTab shortNames: - ct # subresources describes the subresources for custom resources. subresources: # status enables the status subresource. status: {} # scale enables the scale subresource. scale: # specReplicasPath defines the JSONPath inside of a custom resource that corresponds to Scale.Spec.Replicas. specReplicasPath: .spec.replicas # statusReplicasPath defines the JSONPath inside of a custom resource that corresponds to Scale.Status.Replicas. statusReplicasPath: .status.replicas # labelSelectorPath defines the JSONPath inside of a custom resource that corresponds to Scale.Status.Selector. labelSelectorPath: .status.labelSelector 并创建它: kubectl create -f resourcedefinition.yaml 创建 CustomResourceDefinition 对象后,您可以创建自定义对象。 如果您将以下 YAML 保存到 my-crontab.yaml: apiVersion: \"stable.example.com/v1\" kind: CronTab metadata: name: my-new-cron-object spec: cronSpec: \"* * * * */5\" image: my-awesome-cron-image replicas: 3 并创建它: kubectl create -f my-crontab.yaml 然后在以下位置创建新的命名空间 RESTful API 端点: /apis/stable.example.com/v1/namespaces/*/crontabs/status 和 /apis/stable.example.com/v1/namespaces/*/crontabs/scale 可以使用该 kubectl scale 命令缩放自定义资源。例如,以上创建的自定义资源的的 .spec.replicas 设置为 5: kubectl scale --replicas=5 crontabs/my-new-cron-object crontabs \"my-new-cron-object\" scaled kubectl get crontabs my-new-cron-object -o jsonpath='{.spec.replicas}' 5 Category(分类) 类别是自定义资源所属的分组资源的列表(例如 all)。您可以使用 kubectl get 列出属于该类别的资源。此功能是 beta,可用于 v1.10 中的自定义资源。 以下示例添加 all CustomResourceDefinition 中的类别列表,并说明如何使用 kubectl get all 输出自定义资源 。 将以下 CustomResourceDefinition 保存到 resourcedefinition.yaml: apiVersion: apiextensions.k8s.io/v1beta1 kind: CustomResourceDefinition metadata: name: crontabs.stable.example.com spec: group: stable.example.com versions: - name: v1 served: true storage: true scope: Namespaced names: plural: crontabs singular: crontab kind: CronTab shortNames: - ct # categories is a list of grouped resources the custom resource belongs to. categories: - all 并创建它: kubectl create -f resourcedefinition.yaml 创建 CustomResourceDefinition 对象后,您可以创建自定义对象。 将以下 YAML 保存到 my-crontab.yaml: apiVersion: \"stable.example.com/v1\" kind: CronTab metadata: name: my-new-cron-object spec: cronSpec: \"* * * * */5\" image: my-awesome-cron-image 并创建它: kubectl create -f my-crontab.yaml 您可以使用kubectl get以下方式指定类别: kubectl get all 它将包括种类的自定义资源CronTab: NAME AGE crontabs/my-new-cron-object 3s 参考 Extend the Kubernetes API with CustomResourceDefinitions - kubernetes.io 如何从零开始编写一个Kubernetes CRD - servicemesher.com 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/aggregated-api-server.html":{"url":"concepts/aggregated-api-server.html","title":"Aggregated API Server","keywords":"","body":"Aggregated API Server Aggregated(聚合的)API server是为了将原来的API server这个巨石(monolithic)应用给拆分成,为了方便用户开发自己的API server集成进来,而不用直接修改kubernetes官方仓库的代码,这样一来也能将API server解耦,方便用户使用实验特性。这些API server可以跟core API server无缝衔接,使用kubectl也可以管理它们。 架构 我们需要创建一个新的组件,名为kube-aggregator,它需要负责以下几件事: 提供用于注册API server的API 汇总所有的API server信息 代理所有的客户端到API server的请求 注意:这里说的API server是一组“API Server”,而不是说我们安装集群时候的那个API server,而且这组API server是可以横向扩展的。 关于聚合的API server的更多信息请参考:Aggregated API Server 安装配置聚合的API server 有两种方式来启用kube-aggregator: 使用test mode/single-user mode,作为一个独立的进程来运行 使用gateway mode,kube-apiserver将嵌入到kbe-aggregator组件中,它将作为一个集群的gateway,用来聚合所有apiserver。 kube-aggregator二进制文件已经包含在kubernetes release里面了。 参考 Aggregated API Servers - kuberentes design-proposals 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/apiservice.html":{"url":"concepts/apiservice.html","title":"APIService","keywords":"","body":"APIService APIService 是用来表示一个特定的 GroupVersion 的中的 server,它的结构定义位于代码 staging/src/k8s.io/kube-aggregator/pkg/apis/apiregistration/types.go 中。 下面是一个 APIService 的示例配置: apiVersion: apiregistration.k8s.io/v1beta1 kind: APIService metadata: name: v1alpha1.custom-metrics.metrics.k8s.io spec: insecureSkipTLSVerify: true group: custom-metrics.metrics.k8s.io groupPriorityMinimum: 1000 versionPriority: 5 service: name: api namespace: custom-metrics version: v1alpha1 APIService 详解 使用 apiregistration.k8s.io/v1beta1 版本的 APIService,在 metadata.name 中定义该 API 的名字。 使用上面的 yaml 的创建 v1alpha1.custom-metrics.metrics.k8s.io APIService。 insecureSkipTLSVerify:当与该服务通信时,禁用 TLS 证书认证。强加建议不要设置这个参数,默认为 false。应该使用 CABundle 代替。 service:与该 APIService 通信时引用的 service,其中要注明 service 的名字和所属的 namespace,如果为空的话,则所有的服务都会该 API groupversion 将在本地 443 端口处理所有通信。 groupPriorityMinimum:该组 API 的处理优先级,主要排序是基于 groupPriorityMinimum,该数字越大表明优先级越高,客户端就会与其通信处理请求。次要排序是基于字母表顺序,例如 v1.bar 比 v1.foo 的优先级更高。 versionPriority:VersionPriority 控制其组内的 API 版本的顺序。必须大于零。主要排序基于 VersionPriority,从最高到最低(20 大于 10)排序。次要排序是基于对象名称的字母比较。 (v1.foo 在 v1.bar 之前)由于它们都是在一个组内,因此数字可能很小,一般都小于 10。 查看我们使用上面的 yaml 文件创建的 APIService。 kubectl get apiservice v1alpha1.custom-metrics.metrics.k8s.io -o yaml ``````yaml apiVersion: apiregistration.k8s.io/v1beta1 kind: APIService metadata: creationTimestamp: 2017-12-14T08:27:35Z name: v1alpha1.custom-metrics.metrics.k8s.io resourceVersion: \"35194598\" selfLink: /apis/apiregistration.k8s.io/v1beta1/apiservices/v1alpha1.custom-metrics.metrics.k8s.io uid: a31a3412-e0a8-11e7-9fa4-f4e9d49f8ed0 spec: caBundle: null group: custom-metrics.metrics.k8s.io groupPriorityMinimum: 1000 insecureSkipTLSVerify: true service: name: api namespace: custom-metrics version: v1alpha1 versionPriority: 5 status: conditions: - lastTransitionTime: 2017-12-14T08:27:38Z message: all checks passed reason: Passed status: \"True\" type: Available 查看集群支持的 APISerivce 作为 Kubernetes 中的一种资源对象,可以使用 kubectl get apiservice 来查看。 例如查看集群中所有的 APIService: $ kubectl get apiservice NAME AGE v1. 2d v1.authentication.k8s.io 2d v1.authorization.k8s.io 2d v1.autoscaling 2d v1.batch 2d v1.monitoring.coreos.com 1d v1.networking.k8s.io 2d v1.rbac.authorization.k8s.io 2d v1.storage.k8s.io 2d v1alpha1.custom-metrics.metrics.k8s.io 2h v1beta1.apiextensions.k8s.io 2d v1beta1.apps 2d v1beta1.authentication.k8s.io 2d v1beta1.authorization.k8s.io 2d v1beta1.batch 2d v1beta1.certificates.k8s.io 2d v1beta1.extensions 2d v1beta1.policy 2d v1beta1.rbac.authorization.k8s.io 2d v1beta1.storage.k8s.io 2d v1beta2.apps 2d v2beta1.autoscaling 2d 另外查看当前 kubernetes 集群支持的 API 版本还可以使用kubectl api-versions: $ kubectl api-versions apiextensions.k8s.io/v1beta1 apiregistration.k8s.io/v1beta1 apps/v1beta1 apps/v1beta2 authentication.k8s.io/v1 authentication.k8s.io/v1beta1 authorization.k8s.io/v1 authorization.k8s.io/v1beta1 autoscaling/v1 autoscaling/v2beta1 batch/v1 batch/v1beta1 certificates.k8s.io/v1beta1 custom-metrics.metrics.k8s.io/v1alpha1 extensions/v1beta1 monitoring.coreos.com/v1 networking.k8s.io/v1 policy/v1beta1 rbac.authorization.k8s.io/v1 rbac.authorization.k8s.io/v1beta1 storage.k8s.io/v1 storage.k8s.io/v1beta1 v1 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/service-catalog.html":{"url":"concepts/service-catalog.html","title":"Service Catalog","keywords":"","body":"服务目录(Service Catalog) 服务目录(Service Catalog)是Kubernetes的扩展API,它使运行在Kubernetes集群中的应用程序可以轻松使用外部托管软件产品,例如由云提供商提供的数据存储服务。 它提供列表清单、提供(provision)和绑定(binding)来自服务代理(Service Brokers)的外部托管服务,而不需要关心如何创建或管理这些服务的详细情况。 由Open Service Broker API规范定义的Service broker是由第三方提供和维护的一组托管服务的端点(endpoint),该第三方可以是AWS,GCP或Azure等云提供商。 托管服务可以是Microsoft Azure Cloud Queue,Amazon Simple Queue Service和Google Cloud Pub/Sub等,它们可以是应用可以使用的提供的各种软件。 通过Service Catalog,集群运营者可以浏览由Service Broker提供的托管服务列表,提供的托管服务实例,并与其绑定,使其可被Kubernetes集群中的应用程序所使用。 场景样例 应用程序开发人员编写基于Kubernetes集群的应用程序,他们希望使用消息队列作为其应用程序的一部分。但是,他们不想自己配置和管理这个服务服务。恰好,有一家云提供商通过其服务代理(Service Broker)提供消息队列服务。 集群运营商可以设置Service Catalog并使用它与云提供商的Service Broker进行通信,以调配消息排队服务的实例并使其可用于Kubernetes集群内的应用程序。因此,应用程序开发人员不需要关心消息队列的实现细节或管理,可以简单地像服务一样使用它。 架构 Service Catalog使用Open Service Broker API与Service Broker进行通信,充当Kubernetes API服务器的中介,发起供应并返回应用程序使用托管服务所需的凭据。 Service Catalog通过扩展API服务器和控制器实现,使用etcd进行存储。它还使用Kubernetes 1.7+中提供的聚合层来呈现其API。 图 4.10.5.1:Service Catalog Architecture API资源 Service Catalog安装servicecatalog.k8s.ioAPI并提供以以下Kubernetes资源: ClusterServiceBroker:作为service broker的群集内代理,封装其服务器连接详细信息。这些由集群运营者创建和管理,希望使用broker服务在其集群中提供新类型的托管服务。 ClusterServiceClass:由特定service broker提供的托管服务。将新ClusterServiceBroker资源添加到群集时,Service catalog controller将连接到service broker以获取可用托管服务的列表清单。然后它会创建新的ClusterServiceClass资源,与每个托管服务相对应。 ClusterServicePlan:托管服务的特定产品。例如,托管服务可能有不同的可用套餐,例如免费套餐或付费套餐,或者可能有不同的配置选项,例如使用SSD存储或拥有更多资源。同向群集添加ClusterServiceClass一样,当添加一个新的ClusterServiceBroker时,Service Catalog会创建一个新的ClusterServicePlan资源,与每个托管服务可用的每个服务套餐对应。 ServiceInstance:一个提供好的ClusterServiceClass实例。这些是由集群运营者创建的托管服务的特定实例,供一个或多个集群内应用程序使用。当创建一个新的ServiceInstance资源时,Service Catalog controller连接到相应的服务代理并指示它提供服务实例。 ServiceBinding:访问ServiceInstance的凭据。由想让他们的应用利用ServiceInstance的集群集运营者创建。创建之后,Service Catalog controller将创建一个与此服务实例对应的Kubernetes的Secret,包含此服务实例的连接详细信息和凭证 ,可以挂载到Pod中。 鉴权认证 Service Catalog 支持这些认证方法: Basic (username/password) OAuth 2.0 Bearer Token 用法 群集运营者可以使用Service Catalog API资源来提供托管服务,并使其在Kubernetes群集中可用。涉及的步骤是: 列出Service Broker提供的托管服务清单和服务套餐。 提供托管服务的新实例。 绑定到托管服务,该服务返回连接凭证。 将连接凭证映射到应用程序中。 列出托管服务和服务套餐 首先,群集运营者必须在servicecatalog.k8s.io群组内创建ClusterServiceBroker资源。此资源包含访问服务代理端点所需的URL和连接详细信息。 这是一个ClusterServiceBroker资源的例子: apiVersion: servicecatalog.k8s.io/v1beta1 kind: ClusterServiceBroker metadata: name: cloud-broker spec: # Points to the endpoint of a service broker. (This example is not a working URL.) url: https://servicebroker.somecloudprovider.com/v1alpha1/projects/service-catalog/brokers/default ##### # Additional values can be added here, which may be used to communicate # with the service broker, such as bearer token info or a caBundle for TLS. ##### 以下是说明从一个service broker列出托管服务和套餐所涉及步骤的顺序图: 图 4.10.5.2:List Services 将ClusterServiceBroker资源添加到Service catalog中,它会触发对外部Service Broker的调用以获取可用服务的清单。 Service Broker返回可用托管服务的清单和服务套餐的列表,它们分别在本地缓存为ClusterServiceClass资源和ClusterServicePlan资源。 然后,集群运营者可以使用以下命令获取可用托管服务的清单: kubectl get clusterserviceclasses -o=custom-columns=SERVICE\\ NAME:.metadata.name,EXTERNAL\\ NAME:.spec.externalName 它应该输出一个类似于以下格式的服务名称列表: SERVICE NAME EXTERNAL NAME 4f6e6cf6-ffdd-425f-a2c7-3c9258ad2468 cloud-provider-service ... ... 他们还可以使用以下命令查看可用的服务套餐: kubectl get clusterserviceplans -o=custom-columns=PLAN\\ NAME:.metadata.name,EXTERNAL\\ NAME:.spec.externalName 它应该输出一个类似于以下格式的套餐名称列表: PLAN NAME EXTERNAL NAME 86064792-7ea2-467b-af93-ac9694d96d52 service-plan-name ... ... 提供新的实例 集群运营者可以通过创建ServiceInstance资源来启动新实例的供应。 如下是一个ServiceInstance资源的例子: apiVersion: servicecatalog.k8s.io/v1beta1 kind: ServiceInstance metadata: name: cloud-queue-instance namespace: cloud-apps spec: # References one of the previously returned services clusterServiceClassExternalName: cloud-provider-service clusterServicePlanExternalName: service-plan-name ##### # Additional parameters can be added here, # which may be used by the service broker. ##### 以下序列图说明了提供一个新的托管服务的实例所涉及的步骤: 图 4.10.5.3:Provision a Service 当ServiceInstance资源创建后,Service Catalog发起到外部service broker来提供服务的一个实例。 service broker创建托管服务的新实例并返回HTTP响应。 然后,群集运营者可以检查实例的状态,来确认它是否准备就绪。 绑定到托管服务 在提供新实例后,群集运营者必须绑定到托管服务才能获取到应用程序使用服务所需的连接凭证和服务帐户详细信息。这是通过创建ServiceBinding资源完成的。 以下是一个ServiceBinding资源的例子: apiVersion: servicecatalog.k8s.io/v1beta1 kind: ServiceBinding metadata: name: cloud-queue-binding namespace: cloud-apps spec: instanceRef: name: cloud-queue-instance ##### # Additional information can be added here, such as a secretName or # service account parameters, which may be used by the service broker. ##### 以下序列图说明了绑定到托管服务实例所涉及的步骤: 图 4.10.5.4:Bind to a managed service 在ServiceBinding创建后,Service Catalog给外部service broker发一个调用请求,获取与服务实例绑定所需的信息。 service broker为相应的服务帐户启用应用程序权限/角色。 service broker返回连接和访问托管服务实例所需的信息。根据不同的提供商和不同的服务,返回的信息可能在服务提供商和其管理服务之间有所不同。 映射连接凭证 绑定后,最后一步是将连接凭证和服务特定的信息映射到应用程序中。这些信息存储在secret中,应用程序可以用来访问并与托管服务连接。 图 4.10.5.5:Map connection credentials Pod配置文件 执行此映射的一种方法是使用声明式Pod配置文件。 以下示例描述了如何将服务帐户凭证映射到应用程序中。被调用的sa-key密钥存储在名为provider-cloud-key的卷中,并且应用程序将此卷挂载到/var/secrets/provider/key.json。环境变量PROVIDER_APPLICATION_CREDENTIALS是从挂载文件的值映射而来的。 ... spec: volumes: - name: provider-cloud-key secret: secretName: sa-key containers: ... volumeMounts: - name: provider-cloud-key mountPath: /var/secrets/provider env: - name: PROVIDER_APPLICATION_CREDENTIALS value: \"/var/secrets/provider/key.json\" 以下示例描述如何将secret值映射到应用程序环境变量。在此示例中,消息传递队列topic名称从名为provider-queue-credentials的secret的key topic值映射到环境变量TOPIC。 ... env: - name: \"TOPIC\" valueFrom: secretKeyRef: name: provider-queue-credentials key: topic 下一步 如果熟悉Helm Charts ,使用Helm将Service Catalog安装到Kubernetes集群中。或者,可以使用SC工具安装服务目录。 查看 sample service brokers. 探索kubernetes-incubator/service-catalog 项目。 以上翻译自官方文档。 Service Catalog的安装(利用Helm)和交互 以下翻译自官方项目文档。与官方网站文档大致一致。 Kubernetes 1.7或更高版本的集群运行 API Aggregator,它位于core API Server前面的专用proxy服务器。 服务目录(Service Catalog)提供了一个位于API aggregator后面的API Server,因此可以用kubectl像平常一样与Service Catalog进行交互。 要了解更多关于API aggregation的信息,请参阅 Kubernetes文档。 本文档的其余部分详细介绍了如何: 在群集上设置Service Catalog 与Service Catalog API进行交互 前提条件 Kubernetes版本 Service Catalog需要Kubernetes v1.7或更高版本。您还需要 在主机上安装Kubernetes configuration file 。你需要这个文件,以便可以使用kubectl和 helm与群集通信。许多Kubernetes安装工具或云提供商会为你设置此配置文件。有关详细信息,请与您的工具或提供商联系。 kubectl版本 大多数与Service Catalog系统的交互都是通过kubectl命令行界面实现的。与群集版本一样,Service Catalog需要kubectl版本1.7或更高版本。 首先,检查kubectl版本: kubectl version 确保Kubernetes版本和kubectl版本均为1.7或更高。 如果需要升级客户端,请按照安装说明 获取新的kubectl二进制文件。 例如,运行以下命令以在Mac OS上获取最新的二进制文件: curl -LO https://storage.googleapis.com/kubernetes-release/release/$(curl -s https://storage.googleapis.com/kubernetes-release/release/stable.txt)/bin/darwin/amd64/kubectl chmod +x ./kubectl 群集内DNS 您需要启用Kubernetes集群内的DNS。大多数常用的安装方法会为您自动配置群集内DNS: Minikube hack/local-up-cluster.sh 大多数云提供商 Helm 使用Helm安装Service Catalog ,需要v2.7.0或更高版本。请参阅以下步骤进行安装。 如果还没有安装Helm 如果尚未安装Helm,请下载helm CLI,然后运行helm init(这会将Helm的服务器端组件Tiller安装到Kubernetes群集中)。 如果已经安装了Helm 如果已经安装了Helm,请运行helm version并确保客户端和服务器版本均为v2.7.0或更高。 如果不是, 请安装更新版本的helm CLI并运行helm init --upgrade。 有关安装的更多详细信息,请参阅 Helm安装说明。 Tiller 权限 Tiller是Helm的服务端组件。默认情况下, helm init将Tiller pod安装到kube-system名称空间中,并将Tiller配置为使用default服务帐户(service account)。 需要对Tiller进行配置cluster-admin权限,才能正确安装Service Catalog: kubectl create clusterrolebinding tiller-cluster-admin \\ --clusterrole=cluster-admin \\ --serviceaccount=kube-system:default Helm Repository设置 Service Catalog很容易通过 Helm chart 安装 。 此chart位于 chart repository 中。将此repository添加到本地计算机: helm repo add svc-cat https://svc-catalog-charts.storage.googleapis.com 然后,确保repository已成功添加: helm search service-catalog 应该看到以下输出: NAME VERSION DESCRIPTION svc-cat/catalog x,y.z service-catalog API server and controller-manag... RBAC Kubernetes群集必须启用RBAC 才能使用Service Catalog。 与群集内DNS一样,许多安装方法都有对应启用RBAC的途径。 Minikube 如果您正在使用Minikube,请使用以下命令启动群集: minikube start --extra-config=apiserver.Authorization.Mode=RBAC hack/local-cluster-up.sh 如果使用hack/local-up-cluster.sh脚本,请使用以下命令启动群集: AUTHORIZATION_MODE=Node,RBAC hack/local-up-cluster.sh -O 云提供商 许多云提供商为你启用了RBAC的新集群。有关详细信息,请查阅你的提供商的文档。 安装Service Catalog 集群和Helm配置正确,安装Service Catalog很简单: helm install svc-cat/catalog \\ --name catalog --namespace catalog 安装Service Catalog CLI 客户端 按照适用于操作系统的说明安装svcat。二进制文件可以单独使用,也可以作为kubectl插件使用。 MacOS curl -sLO https://download.svcat.sh/cli/latest/darwin/amd64/svcat chmod +x ./svcat mv ./svcat /usr/local/bin/ svcat version --client Linux curl -sLO https://download.svcat.sh/cli/latest/linux/amd64/svcat chmod +x ./svcat mv ./svcat /usr/local/bin/ svcat version --client Windows 下面的片段仅在当前会话的PATH添加一个路径。后续使用需要将它相应的路径永久添加到PATH中。 iwr 'https://download.svcat.sh/cli/latest/windows/amd64/svcat.exe' -UseBasicParsing -OutFile svcat.exe mkdir -f ~\\bin $env:PATH += \";${pwd}\\bin\" svcat version --client 手动方式 对应操作系统下载相应的二进制文件: macOS: https://download.svcat.sh/cli/latest/darwin/amd64/svcat Windows: https://download.svcat.sh/cli/latest/windows/amd64/svcat.exe Linux: https://download.svcat.sh/cli/latest/linux/amd64/svcat 使二进制文件可执行。 将二进制文件移动到PATH相应的目录。 插件方式使用客户端 要将svcat用作插件,请在下载后运行以下命令: $ ./svcat install plugin Plugin has been installed to ~/.kube/plugins/svcat. Run kubectl plugin svcat --help for help using the plugin. 当作为插件运行时,这些命令与添加全局kubectl配置标志相同。其中一个例外是,在插件模式下运行时不支持布尔标志,所以不要使用--flag,必须指定--flag=true。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/multicluster.html":{"url":"concepts/multicluster.html","title":"多集群管理","keywords":"","body":"多集群管理 组织需要部署多个 Kubernetes 集群来为不同的业务提供隔离,增强可用性和可扩展性。 什么是多集群? 多集群是一种在多个Kubernetes集群上或跨集群部署应用的策略,目的是提高可用性、隔离性和可扩展性。多集群对于确保遵守不同的和相互冲突的法规非常重要,因为单个集群可以进行调整,以遵守特定地域或认证的法规。软件交付的速度和安全性也可以提高,单个开发团队将应用程序部署到隔离的集群中,并有选择地暴露哪些服务可用于测试和发布。 参考 Multicluster Special Interest Group 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/scheduling.html":{"url":"concepts/scheduling.html","title":"资源调度","keywords":"","body":"资源调度 Kubernetes作为一个容器编排调度引擎,资源调度是它的最基本也是最重要的功能,这一节中我们将着重讲解Kubernetes中是如何做资源调度的。 Kubernetes中有一个叫做kube-scheduler的组件,该组件就是专门监听kube-apiserver中是否有还未调度到node上的pod,再通过特定的算法为pod指定分派node运行。 Kubernetes中的众多资源类型,例如Deployment、DaemonSet、StatefulSet等都已经定义了Pod运行的一些默认调度策略,但是如果我们细心的根据node或者pod的不同属性,分别为它们打上标签之后,我们将发现Kubernetes中的高级调度策略是多么强大。当然如果要实现动态的资源调度,即pod已经调度到某些节点上后,因为一些其它原因,想要让pod重新调度到其它节点。 考虑以下两种情况: 集群中有新增节点,想要让集群中的节点的资源利用率比较均衡一些,想要将一些高负载的节点上的pod驱逐到新增节点上,这是kuberentes的scheduler所不支持的,需要使用如descheduler这样的插件来实现。 想要运行一些大数据应用,设计到资源分片,pod需要与数据分布达到一致均衡,避免个别节点处理大量数据,而其它节点闲置导致整个作业延迟,这时候可以考虑使用kube-batch。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"concepts/qos.html":{"url":"concepts/qos.html","title":"QoS(服务质量等级)","keywords":"","body":"QoS(服务质量等级) QoS(Quality of Service),大部分译为“服务质量等级”,又译作“服务质量保证”,是作用在 Pod 上的一个配置,当 Kubernetes 创建一个 Pod 时,它就会给这个 Pod 分配一个 QoS 等级,可以是以下等级之一: Guaranteed:Pod 里的每个容器都必须有内存/CPU 限制和请求,而且值必须相等。 Burstable:Pod 里至少有一个容器有内存或者 CPU 请求且不满足 Guarantee 等级的要求,即内存/CPU 的值设置的不同。 BestEffort:容器必须没有任何内存或者 CPU 的限制或请求。 该配置不是通过一个配置项来配置的,而是通过配置 CPU/内存的 limits 与 requests 值的大小来确认服务质量等级的。使用 kubectl get pod -o yaml 可以看到 pod 的配置输出中有 qosClass 一项。该配置的作用是为了给资源调度提供策略支持,调度算法根据不同的服务质量等级可以确定将 pod 调度到哪些节点上。 例如,下面这个 YAML 配置中的 Pod 资源配置部分设置的服务质量等级就是 Guarantee。 spec: containers: ... resources: limits: cpu: 100m memory: 128Mi requests: cpu: 100m memory: 128Mi 下面的 YAML 配置的 Pod 的服务质量等级是 Burstable。 spec: containers: ... resources: limits: memory: \"180Mi\" requests: memory: \"100Mi\" 参考 Configure Quality of Service for Pods 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/":{"url":"guide/","title":"用户指南概览","keywords":"","body":"用户指南概览 该章节主要记录 Kubernetes 使用过程中的一些配置技巧和操作,包括: Kubernetes 中基本资源对象的配置 命令行工具的使用 集群安全性管理 如何访问 Kubernetes 集群 如何在 Kubernetes 中开发部署应用 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/resource-configuration.html":{"url":"guide/resource-configuration.html","title":"资源对象配置","keywords":"","body":"资源配置 Kubernetes 中的各个 Object 的配置指南。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/configure-liveness-readiness-probes.html":{"url":"guide/configure-liveness-readiness-probes.html","title":"配置 Pod 的 liveness 和 readiness 探针","keywords":"","body":"配置Pod的liveness和readiness探针 当你使用kubernetes的时候,有没有遇到过Pod在启动后一会就挂掉然后又重新启动这样的恶性循环?你有没有想过kubernetes是如何检测pod是否还存活?虽然容器已经启动,但是kubernetes如何知道容器的进程是否准备好对外提供服务了呢?让我们通过kubernetes官网的这篇文章Configure Liveness and Readiness Probes,来一探究竟。 本文将展示如何配置容器的存活和可读性探针。 Kubelet使用liveness probe(存活探针)来确定何时重启容器。例如,当应用程序处于运行状态但无法做进一步操作,liveness探针将捕获到deadlock,重启处于该状态下的容器,使应用程序在存在bug的情况下依然能够继续运行下去(谁的程序还没几个bug呢)。 Kubelet使用readiness probe(就绪探针)来确定容器是否已经就绪可以接受流量。只有当Pod中的容器都处于就绪状态时kubelet才会认定该Pod处于就绪状态。该信号的作用是控制哪些Pod应该作为service的后端。如果Pod处于非就绪状态,那么它们将会被从service的load balancer中移除。 定义 liveness命令 许多长时间运行的应用程序最终会转换到broken状态,除非重新启动,否则无法恢复。Kubernetes提供了liveness probe来检测和补救这种情况。 在本次练习将基于 gcr.io/google_containers/busybox镜像创建运行一个容器的Pod。以下是Pod的配置文件exec-liveness.yaml: apiVersion: v1 kind: Pod metadata: labels: test: liveness name: liveness-exec spec: containers: - name: liveness args: - /bin/sh - -c - touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600 image: gcr.io/google_containers/busybox livenessProbe: exec: command: - cat - /tmp/healthy initialDelaySeconds: 5 periodSeconds: 5 该配置文件给Pod配置了一个容器。periodSeconds 规定kubelet要每隔5秒执行一次liveness probe。 initialDelaySeconds 告诉kubelet在第一次执行probe之前要的等待5秒钟。探针检测命令是在容器中执行 cat /tmp/healthy 命令。如果命令执行成功,将返回0,kubelet就会认为该容器是活着的并且很健康。如果返回非0值,kubelet就会杀掉这个容器并重启它。 容器启动时,执行该命令: /bin/sh -c \"touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600\" 在容器生命的最初30秒内有一个 /tmp/healthy 文件,在这30秒内 cat /tmp/healthy命令会返回一个成功的返回码。30秒后, cat /tmp/healthy 将返回失败的返回码。 创建Pod: kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/exec-liveness.yaml 在30秒内,查看Pod的event: kubectl describe pod liveness-exec 结果显示没有失败的liveness probe: FirstSeen LastSeen Count From SubobjectPath Type Reason Message --------- -------- ----- ---- ------------- -------- ------ ------- 24s 24s 1 {default-scheduler } Normal Scheduled Successfully assigned liveness-exec to worker0 23s 23s 1 {kubelet worker0} spec.containers{liveness} Normal Pulling pulling image \"gcr.io/google_containers/busybox\" 23s 23s 1 {kubelet worker0} spec.containers{liveness} Normal Pulled Successfully pulled image \"gcr.io/google_containers/busybox\" 23s 23s 1 {kubelet worker0} spec.containers{liveness} Normal Created Created container with docker id 86849c15382e; Security:[seccomp=unconfined] 23s 23s 1 {kubelet worker0} spec.containers{liveness} Normal Started Started container with docker id 86849c15382e 启动35秒后,再次查看pod的event: kubectl describe pod liveness-exec 在最下面有一条信息显示liveness probe失败,容器被删掉并重新创建。 FirstSeen LastSeen Count From SubobjectPath Type Reason Message --------- -------- ----- ---- ------------- -------- ------ ------- 37s 37s 1 {default-scheduler } Normal Scheduled Successfully assigned liveness-exec to worker0 36s 36s 1 {kubelet worker0} spec.containers{liveness} Normal Pulling pulling image \"gcr.io/google_containers/busybox\" 36s 36s 1 {kubelet worker0} spec.containers{liveness} Normal Pulled Successfully pulled image \"gcr.io/google_containers/busybox\" 36s 36s 1 {kubelet worker0} spec.containers{liveness} Normal Created Created container with docker id 86849c15382e; Security:[seccomp=unconfined] 36s 36s 1 {kubelet worker0} spec.containers{liveness} Normal Started Started container with docker id 86849c15382e 2s 2s 1 {kubelet worker0} spec.containers{liveness} Warning Unhealthy Liveness probe failed: cat: can't open '/tmp/healthy': No such file or directory 再等30秒,确认容器已经重启: kubectl get pod liveness-exec 从输出结果来RESTARTS值加1了。 NAME READY STATUS RESTARTS AGE liveness-exec 1/1 Running 1 1m 定义一个liveness HTTP请求 我们还可以使用HTTP GET请求作为liveness probe。下面是一个基于gcr.io/google_containers/liveness镜像运行了一个容器的Pod的例子http-liveness.yaml: apiVersion: v1 kind: Pod metadata: labels: test: liveness name: liveness-http spec: containers: - name: liveness args: - /server image: gcr.io/google_containers/liveness livenessProbe: httpGet: path: /healthz port: 8080 httpHeaders: - name: X-Custom-Header value: Awesome initialDelaySeconds: 3 periodSeconds: 3 该配置文件只定义了一个容器,livenessProbe 指定kubelet需要每隔3秒执行一次liveness probe。initialDelaySeconds 指定kubelet在该执行第一次探测之前需要等待3秒钟。该探针将向容器中的server的8080端口发送一个HTTP GET请求。如果server的/healthz路径的handler返回一个成功的返回码,kubelet就会认定该容器是活着的并且很健康。如果返回失败的返回码,kubelet将杀掉该容器并重启它。 任何大于200小于400的返回码都会认定是成功的返回码。其他返回码都会被认为是失败的返回码。 最开始的10秒该容器是活着的, /healthz handler返回200的状态码。这之后将返回500的返回码。 http.HandleFunc(\"/healthz\", func(w http.ResponseWriter, r *http.Request) { duration := time.Now().Sub(started) if duration.Seconds() > 10 { w.WriteHeader(500) w.Write([]byte(fmt.Sprintf(\"error: %v\", duration.Seconds()))) } else { w.WriteHeader(200) w.Write([]byte(\"ok\")) } }) 容器启动3秒后,kubelet开始执行健康检查。第一次健康监测会成功,但是10秒后,健康检查将失败,kubelet将杀掉和重启容器。 创建一个Pod来测试一下HTTP liveness检测: kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/http-liveness.yaml After 10 seconds, view Pod events to verify that liveness probes have failed and the Container has been restarted: 10秒后,查看Pod的event,确认liveness probe失败并重启了容器。 kubectl describe pod liveness-http 定义TCP liveness探针 第三种liveness probe使用TCP Socket。 使用此配置,kubelet将尝试在指定端口上打开容器的套接字。 如果可以建立连接,容器被认为是健康的,如果不能就认为是失败的。 apiVersion: v1 kind: Pod metadata: name: goproxy labels: app: goproxy spec: containers: - name: goproxy image: gcr.io/google_containers/goproxy:0.1 ports: - containerPort: 8080 readinessProbe: tcpSocket: port: 8080 initialDelaySeconds: 5 periodSeconds: 10 livenessProbe: tcpSocket: port: 8080 initialDelaySeconds: 15 periodSeconds: 20 如您所见,TCP检查的配置与HTTP检查非常相似。 此示例同时使用了readiness和liveness probe。 容器启动后5秒钟,kubelet将发送第一个readiness probe。 这将尝试连接到端口8080上的goproxy容器。如果探测成功,则该pod将被标记为就绪。Kubelet将每隔10秒钟执行一次该检查。 除了readiness probe之外,该配置还包括liveness probe。 容器启动15秒后,kubelet将运行第一个liveness probe。 就像readiness probe一样,这将尝试连接到goproxy容器上的8080端口。如果liveness probe失败,容器将重新启动。 使用命名的端口 可以使用命名的ContainerPort作为HTTP或TCP liveness检查: ports: - name: liveness-port containerPort: 8080 hostPort: 8080 livenessProbe: httpGet: path: /healthz port: liveness-port 定义readiness探针 有时,应用程序暂时无法对外部流量提供服务。 例如,应用程序可能需要在启动期间加载大量数据或配置文件。 在这种情况下,你不想杀死应用程序,但你也不想发送请求。 Kubernetes提供了readiness probe来检测和减轻这些情况。 Pod中的容器可以报告自己还没有准备,不能处理Kubernetes服务发送过来的流量。 Readiness probe的配置跟liveness probe很像。唯一的不同是使用 readinessProbe而不是livenessProbe。 readinessProbe: exec: command: - cat - /tmp/healthy initialDelaySeconds: 5 periodSeconds: 5 Readiness probe的HTTP和TCP的探测器配置跟liveness probe一样。 Readiness和livenss probe可以并行用于同一容器。 使用两者可以确保流量无法到达未准备好的容器,并且容器在失败时重新启动。 配置Probe Probe 中有很多精确和详细的配置,通过它们你能准确的控制liveness和readiness检查: initialDelaySeconds:容器启动后第一次执行探测是需要等待多少秒。 periodSeconds:执行探测的频率。默认是10秒,最小1秒。 timeoutSeconds:探测超时时间。默认1秒,最小1秒。 successThreshold:探测失败后,最少连续探测成功多少次才被认定为成功。默认是1。对于liveness必须是1。最小值是1。 failureThreshold:探测成功后,最少连续探测失败多少次才被认定为失败。默认是3。最小值是1。 HTTP probe 中可以给 httpGet设置其他配置项: host:连接的主机名,默认连接到pod的IP。你可能想在http header中设置\"Host\"而不是使用IP。 scheme:连接使用的schema,默认HTTP。 path: 访问的HTTP server的path。 httpHeaders:自定义请求的header。HTTP运行重复的header。 port:访问的容器的端口名字或者端口号。端口号必须介于1和65535之间。 对于HTTP探测器,kubelet向指定的路径和端口发送HTTP请求以执行检查。 Kubelet将probe发送到容器的IP地址,除非地址被httpGet中的可选host字段覆盖。 在大多数情况下,你不想设置主机字段。 有一种情况下你可以设置它。 假设容器在127.0.0.1上侦听,并且Pod的hostNetwork字段为true。 然后,在httpGet下的host应该设置为127.0.0.1。 如果你的pod依赖于虚拟主机,这可能是更常见的情况,你不应该是用host,而是应该在httpHeaders中设置Host头。 参考 关于 Container Probes 的更多信息 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/configure-pod-service-account.html":{"url":"guide/configure-pod-service-account.html","title":"配置 Pod 的 Service Account","keywords":"","body":"配置 Pod 的 Service Account Service account 为 Pod 中的进程提供身份信息。 本文是关于 Service Account 的用户指南,管理指南另见 Service Account 的集群管理指南 。 注意:本文档描述的关于 Service Account 的行为只有当您按照 Kubernetes 项目建议的方式搭建起集群的情况下才有效。您的集群管理员可能在您的集群中有自定义配置,这种情况下该文档可能并不适用。 当您(真人用户)访问集群(例如使用kubectl命令)时,apiserver 会将您认证为一个特定的 User Account(目前通常是admin,除非您的系统管理员自定义了集群配置)。Pod 容器中的进程也可以与 apiserver 联系。 当它们在联系 apiserver 的时候,它们会被认证为一个特定的 Service Account(例如default)。 使用默认的 Service Account 访问 API server 当您创建 pod 的时候,如果您没有指定一个 service account,系统会自动得在与该pod 相同的 namespace 下为其指派一个default service account。如果您获取刚创建的 pod 的原始 json 或 yaml 信息(例如使用kubectl get pods/podename -o yaml命令),您将看到spec.serviceAccountName字段已经被设置为 automatically 。 您可以在 pod 中使用自动挂载的 service account 凭证来访问 API,如 Accessing the Cluster 中所描述。 Service account 是否能够取得访问 API 的许可取决于您使用的 授权插件和策略。 在 1.6 以上版本中,您可以选择取消为 service account 自动挂载 API 凭证,只需在 service account 中设置 automountServiceAccountToken: false: apiVersion: v1 kind: ServiceAccount metadata: name: build-robot automountServiceAccountToken: false ... 在 1.6 以上版本中,您也可以选择只取消单个 pod 的 API 凭证自动挂载: apiVersion: v1 kind: Pod metadata: name: my-pod spec: serviceAccountName: build-robot automountServiceAccountToken: false ... 如果在 pod 和 service account 中同时设置了 automountServiceAccountToken , pod 设置中的优先级更高。 使用 Service Account 作为用户权限管理配置 kubeconfig 创建服务账号 kubectl create serviceaccount sample-sc 这时候我们将得到一个在 default namespace 的 serviceaccount 账号; 我们运行kubectl get serviceaccount sample-sc 将得到如下结果: apiVersion: v1 kind: ServiceAccount metadata: creationTimestamp: 2018-09-03T02:00:37Z labels: from: mofang name: mofang-viewer-sc namespace: default resourceVersion: \"18914458\" selfLink: /api/v1/namespaces/default/serviceaccounts/sample-sc uid: 26e129dc-af1d-11e8-9453-00163e0efab0 secrets: - name: sample-sc-token-9x7nk 因为我们在使用 serviceaccount 账号配置 kubeconfig 的时候需要使用到 sample-sc 的 token, 该 token 保存在该 serviceaccount 保存的 secret 中; 我们运行kubectl get secret sample-sc-token-9x7nk 将会得到如下结果: apiVersion: v1 data: ca.crt: Ci0tLS0tQkVHSU4gQ0VSVcvfUNBVEUtLS0tLQpNSUlDL3pDQ0FtaWdBd0lCQWdJREJzdFlNQTBHQ1NxR1NJYjNEUUVCQ3dVQU1HSXhDekFKQmdOVkJBWVRBa05PCk1SRXdEd1lEVlFRSURBaGFhR1ZLYVdGdVp6RVJNQThHQTFVRUJ3d0lTR0Z1WjFwb2IzVXhFREFPQmdOVkJBb00KQjBGc2FXSmhZbUV4RERBS0JnTlZCQXNNQTBGRFV6RU5NQXNHQTFVRUF3d0VjbTl2ZERBZUZ3MHhPREExTWprdwpNelF3TURCYUZ3MHpPREExTWpRd016UTFOVGxhTUdveEtqQW9CZ05WQkFvVElXTTJaVGxqTm1KallUY3pZakUwClkyTTBZV0UzT1RNd1lqTTROREV4TkRaallURVFNQTRHQTFVRUN4TUhaR1ZtWVhWc2RERXFNQ2dHQTFVRUF4TWgKWXpabE9XTTJZbU5oTnpOaU1UUmpZelJoWVRjNU16QmlNemcwTVRFME5tTmhNSUdmTUEwR0NTcUdTSWIzRFFFQgpBUVVBQTRHTkFEQ0JpUUtCZ1FETGNFWmJycCtBa0taNHU4TklVM25jaFU4YkExMnhKR0pJMzlxdTd4aFFsR3lHCmZqQTFqdXV4cVMyaE4vTGpwM21XNkdIaW0zd2lJd2N1WUtUN3RGOW9UejgrTzhBQzZHYnpkWExIL1RQTWtCZ2YKOVNYaEdod1hndklMb3YzbnZlS1MzRElxU3UreS9OK1huMzhOOW53SHF6S0p2WE1ROWtJaUJuTXgwVnlzSFFJRApBUUFCbzRHNk1JRzNNQTRHQTFVZER3RUIvd1FFQXdJQ3JEQVBCZ05WSFJNQkFmOEVCVEFEQVFIL01COEdBMVVkCkl3UVlNQmFBRklWYS85MGp6U1Z2V0VGdm5tMUZPWnRZZlhYL01Ed0dDQ3NHQVFVRkJ3RUJCREF3TGpBc0JnZ3IKQmdFRkJRY3dBWVlnYUhSMGNEb3ZMMk5sY25SekxtRmpjeTVoYkdsNWRXNHVZMjl0TDI5amMzQXdOUVlEVlIwZgpCQzR3TERBcW9DaWdKb1lrYUhSMGNEb3ZMMk5sY25SekxtRmpjeTVoYkdsNWRXNHl0TDNKdmIzUXVZM0pzCk1BMEdDU3FHU0liM0RRRUJDd1VBQTRHQkFKWFRpWElvQ1VYODFFSU5idVRTay9PanRJeDM0ckV0eVBuTytBU2oKakszaTR3d1BRMEt5MDhmTlNuU2Z4Q1EyeEY1NTIxNVNvUzMxU3dMellJVEp1WFpBN2xXT29RU1RZL2lBTHVQQgovazNCbDhOUGNmejhGNXlZNy9uY1N6WDRwTXgxOHIwY29PTE1iZlpUUXJtSHBmQ053bWRjQmVCK0JuRFJMUEpGCmgzSUQKLS0tLS1FTkQgQ0VSVElGSUNBVEUtLS0tLQoKCg== namespace: ZGVmYXAsdA== token: ZXlKaGJHY2lPaUpTVXpJMU5pSXNJblI1Y0NJNklrcFhppppppo5LmV5SnBjM01pT2lKcmRXSmxjbTVsZddekwzTmxjblpwWTJWaFkyTnZkVzUwSWl3aWEzVmlaWEp1WlhSbGN5NXBieTl6WlhKMmFXTmxZV05qYjNWdWRDOXVZVzFsYzNCaFkyVWlPaUprWldaaGRXeDBJaXdpYTNWaVpYSnVaWFJsY3k1cGJ5OXpaWEoyYVdObFlXTmpiM1Z1ZEM5elpXTnlaWFF1Ym1GdFpTSTZJbTF2Wm1GdVp5MTJhV1YzWlhJdGMyTXRkRzlyWlc0dE9YZzNibXNpTENKcmRXSmxjbTVsZEdWekxtbHZMM05sY25acFkyVmhZMk52ZFc1MEwzTmxjblpwWTJVdFlXTmpiM1Z1ZEM1dVlXMWxJam9pYlc5bVlXNW5MWFpwWlhkbGNpMXpZeUlzSW10MVltVnlibVYwWlhNdWFXOHZjMlZ5ZG1salpXRmpZMjkxYm5RdmMyVnlkbWxqWlMxaFkyTnZkVzUwTG5WcFpDSTZJakkyWlRFeU9XUmpMV0ZtTVdRdE1URmxPQzA1TkRVekxUQXdNVFl6WlRCbFptRmlNQ0lzSW5OMVlpSTZJbk41YzNSbGJUcHpaWEoyYVdObFlXTmpiM1Z1ZERwa1pXWmhkV3gwT20xdlptRnVaeTEyYVdWM1pYSXRjMk1pZlEuQWpudnZueXRaWHJ1UndSdEJ3S3RFdzZWNzJpWU1vOUI2LVh3VmkzRWhReXNOM21PLXJvdGFJQnZHUFlNMGZNVDlWRzVjTFFKYmJWUmhLR0FyclUyQ1FNVl9JQ3NpbjFzMjFxTXJ5dngzNm9abzFYZkpWZlVVMEtqeWxndEQ0NTNmWU84SlFfWFF3OGNwVWc5NGE2WnZvcDZHcXNGNGhzT0sxTjFMaGRrSFBpWHA4TzRQUzJ6eDFXNklfeGs2ZUNBcjUxRVpwSktEWTZHMmhmZ1A5emxROGdPV21nbS1EVjZPZzNobjJ4UFprZUktVk1nYUF3amdFUGtVZFJDSndYRk9QRG5UcXlqUmtZVzdLVU1GLTVDTHdBNDZMNk5PYjJ6YUR0Uy16Zm5hdVFwLVdIcFNQdDNEdFc0UmRLZDVDZzE3Z3RGaWhRZzI3dnVqYWJNMGpmQmp3 kind: Secret metadata: annotations: kubernetes.io/service-account.name: sample-sc kubernetes.io/service-account.uid: 26e129dc-af1d-11e8-9453-00163e0efab0 creationTimestamp: 2018-09-03T02:00:37Z name: mofang-viewer-sc-token-9x7nk namespace: default resourceVersion: \"18914310\" selfLink: /api/v1/namespaces/default/secrets/sample-sc-token-9x7nk uid: 26e58b7c-af1d-11e8-9453-00163e0efab0 type: kubernetes.io/service-account-token 其中 {data.token} 就会是我们的用户 token 的 base64 编码,之后我们配置 kubeconfig 的时候将会用到它; 创建角色 比如我们想创建一个只可以查看集群deployments,services,pods 相关的角色,应该使用如下配置 apiVersion: rbac.authorization.k8s.io/v1 ## 这里也可以使用 Role kind: ClusterRole metadata: name: mofang-viewer-role labels: from: mofang rules: - apiGroups: - \"\" resources: - pods - pods/status - pods/log - services - services/status - endpoints - endpoints/status - deployments verbs: - get - list - watch 创建角色绑定 apiVersion: rbac.authorization.k8s.io/v1 ## 这里也可以使用 RoleBinding kind: ClusterRoleBinding metadata: name: sample-role-binding labels: from: mofang roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: mofang-viewer-role subjects: - kind: ServiceAccount name: sample-sc namespace: default 配置 kubeconfig 经过以上的步骤,我们最开始创建的 serviceaccount 就可以用来访问我们的集群了, 同时我们可以动态更改 ClusterRole 的授权来及时控制某个账号的权限(这也是使用 serviceaccount 的好处); 配置应该如下: apiVersion: v1 clusters: - cluster: ## 这个是集群的 TLS 证书,与授权无关,使用同一的就可以 certificate-authority-data: LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUMvekNDQW1pZ0F3SUJBZ0lEQnN0WU1BMEdDU3FHU0liM0RRRUJDd1VBTUdJeEN6QUpCZ05WQkFZVEFrTk8KTVJFd0R3WURWUVFJREFoYWFHVkthV0Z1WnpFUk1BOEdBMVVFQnd3SVNHRnVaMXBvYjNVeEVEQU9CZ05WQkFvTQpCMEZzYVdKaFltRXhEREFLQmdOVkJBc01BMEZEVXpFTk1Bc0dBMVVFQXd3RWNtOXZkREFlRncweE9EQTFNamt3Ck16UXdNREJhRncwek9EQTFNalF3TXpRMU5UbGFNR294S2pBb0JnTlZCQW9USVdNMlpUbGpObUpqWVRjellqRTAKWTJNMFlXRTNPVE13WWpNNE5ERXhORFpqWVRFUU1BNEdBMVVFQ3hNSFpHVm1ZWFZzZERFcU1DZ0dBMVVFQXhNaApZelpsT1dNMlltTmhOek5pTVRSall6UmhZVGM1TXpCaU16ZzBNVEUwTm1OaE1JR2ZNQTBHQ1NxR1NJYjNEUUVCCkFRVUFBNEdOQURDQmlRS0JnUURMY0VaYnJwK0FrS1o0dThOSVUzbmNoVThiQTEyeEpHSkkzOXF1N3hoUWxHeUcKZmpBMWp1dXhxUzJoTi9ManAzbVc2R0hpbTN3aUl3Y3VZS1Q3dEY5b1R6OCtPOEFDNkdiemRYTEgvVFBNa0JnZgo5U1hoR2h3WGd2SUxvdjNudmVLUzNESXFTdSt5L04rWG4zOE45bndIcXpLSnZYTVE5a0lpQm5NeDBWeXNIUUlECkFRQUJvNEc2TUlHM01BNEdBMVVkRHdFQi93UUVBd0lDckRBUEJnTlZIUk1CQWY4RUJUQURBUUgvTUI4R0ExVWQKSXdRWU1CYUFGSVZhLzkwanpTVnZXRUZ2bm0xRk9adFlmWFgvTUR3R0NDc0dBUVVGQndFQkJEQXdMakFzQmdncgpCZ0VGQlFjd0FZWWdhSFIwY0RvdkwyTmxjblJ6TG1GamN5NWhiR2w1ZFc0dVkyOXRMMjlqYzNBd05RWURWUjBmCkJDNHdMREFxb0NpZ0pvWWthSFIwY0RvdkwyTmxjblJ6TG1GamN5NWhiR2w1ZFc0dVkyOXRMM0p2YjNRdVkzSnMKTUEwR0NTcUdTSWIzRFFFQkN3VUFBNEdCQUpYVGlYSW9DVVg4MUVJTmJ1VFNrL09qdEl4MzRyRXR5UG5PK0FTagpqSzNpNHd3UFEwS3kwOGZOU25TZnhDUTJ4RjU1MjE1U29TMzFTd0x6WUlUSnVYWkE3bFdPb1FTVFkvaUFMdVBCCi9rM0JsOE5QY2Z6OEY1eVk3L25jU3pYNHBNeDE4cjBjb09MTWJmWlRRcm1IcGZDTndtZGNCZUIrQm5EUkxQSkYKaDNJRAotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg== server: https://47.95.24.167:6443 name: beta contexts: - context: cluster: beta user: beta-viewer name: beta-viewer current-context: beta-viewer kind: Config preferences: {} users: - name: beta-viewer user: ## 这个使我们在创建 serviceaccount 生成相关 secret 之后的 data.token 的 base64 解码字符,它本质是一个 jwt token token: eyJhbGciOiJSUzI1NiIsInR5dffg6IkpXVCJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJkZWZhdWx0Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZWNyZXQubmFtZSI6Im1vZmFuZy12aWV3ZXItc2MtdG9rZW4tOXg3bmsiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoibW9mYW5nLXZpZXdlci1zYyIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6IjxZTEyOWRjLWFmMWQtMTFlOC05NDUzLTAwMTYzZTBlZmFiMCIsInN1YiI6InN5c3RlbTpzZXJ2aWNlYWNjb3VudDpkZWZhdWx0Om1vZmFuZy12aWV3ZXItc2MifQ.AjnvvnytZXruRwRtBwKtEw6V72iYMo9B6-XwVi3EhQysN3mO-rotaIBvGPYM0fMT9VG5cLQJbbVRhKGArrU2CQMV_ICsin1s21qMryvx36oZo1XfJVfUU0KjylgtD453fYO8JQ_XQw8cpUg94a6Zvop6GqsF4hsOK1N1LhdkHPiXp8O4PS2zx1W6I_xk6eCAr51EZpJKDY6G2hfgP9zlQ8gOWmgm-DV6Og3hn2xPZkeI-VMgaAwjgEPkUdRCJwXFOPDnTqyjRkYW7KUMF-5CLwA46L6NOb2zaDtS-zfnauQp-WHpSPt3DtW4RdKd5Cg17gtFihQg27vujabM0jfBjw 使用多个Service Account 每个 namespace 中都有一个默认的叫做 default 的 service account 资源。 您可以使用以下命令列出 namespace 下的所有 serviceAccount 资源。 $ kubectl get serviceAccounts NAME SECRETS AGE default 1 1d 您可以像这样创建一个 ServiceAccount 对象: $ cat > /tmp/serviceaccount.yaml 如果您看到如下的 service account 对象的完整输出信息: $ kubectl get serviceaccounts/build-robot -o yaml apiVersion: v1 kind: ServiceAccount metadata: creationTimestamp: 2015-06-16T00:12:59Z name: build-robot namespace: default resourceVersion: \"272500\" selfLink: /api/v1/namespaces/default/serviceaccounts/build-robot uid: 721ab723-13bc-11e5-aec2-42010af0021e secrets: - name: build-robot-token-bvbk5 然后您将看到有一个 token 已经被自动创建,并被 service account 引用。 您可以使用授权插件来 设置 service account 的权限 。 设置非默认的 service account,只需要在 pod 的spec.serviceAccountName 字段中将name设置为您想要用的 service account 名字即可。 在 pod 创建之初 service account 就必须已经存在,否则创建将被拒绝。 您不能更新已创建的 pod 的 service account。 您可以清理 service account,如下所示: $ kubectl delete serviceaccount/build-robot 手动创建 service account 的 API token 假设我们已经有了一个如上文提到的名为 ”build-robot“ 的 service account,我们手动创建一个新的 secret。 $ cat > /tmp/build-robot-secret.yaml 现在您可以确认下新创建的 secret 取代了 \"build-robot\" 这个 service account 原来的 API token。 所有已不存在的 service account 的 token 将被 token controller 清理掉。 $ kubectl describe secrets/build-robot-secret Name: build-robot-secret Namespace: default Labels: Annotations: kubernetes.io/service-account.name=build-robot,kubernetes.io/service-account.uid=870ef2a5-35cf-11e5-8d06-005056b45392 Type: kubernetes.io/service-account-token Data ==== ca.crt: 1220 bytes token: ... namespace: 7 bytes 注意该内容中的token被省略了。 为 service account 添加 ImagePullSecret 首先,创建一个 imagePullSecret,详见这里。 然后,确认已创建。如: $ kubectl get secrets myregistrykey NAME TYPE DATA AGE myregistrykey kubernetes.io/.dockerconfigjson 1 1d 然后,修改 namespace 中的默认 service account 使用该 secret 作为 imagePullSecret。 kubectl patch serviceaccount default -p '{\"imagePullSecrets\": [{\"name\": \"myregistrykey\"}]}' Vi 交互过程中需要手动编辑: $ kubectl get serviceaccounts default -o yaml > ./sa.yaml $ cat sa.yaml apiVersion: v1 kind: ServiceAccount metadata: creationTimestamp: 2015-08-07T22:02:39Z name: default namespace: default resourceVersion: \"243024\" selfLink: /api/v1/namespaces/default/serviceaccounts/default uid: 052fb0f4-3d50-11e5-b066-42010af0d7b6 secrets: - name: default-token-uudge $ vi sa.yaml [editor session not shown] [delete line with key \"resourceVersion\"] [add lines with \"imagePullSecret:\"] $ cat sa.yaml apiVersion: v1 kind: ServiceAccount metadata: creationTimestamp: 2015-08-07T22:02:39Z name: default namespace: default selfLink: /api/v1/namespaces/default/serviceaccounts/default uid: 052fb0f4-3d50-11e5-b066-42010af0d7b6 secrets: - name: default-token-uudge imagePullSecrets: - name: myregistrykey $ kubectl replace serviceaccount default -f ./sa.yaml serviceaccounts/default 现在,所有当前 namespace 中新创建的 pod 的 spec 中都会增加如下内容: spec: imagePullSecrets: - name: myregistrykey 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/secret-configuration.html":{"url":"guide/secret-configuration.html","title":"Secret 配置","keywords":"","body":"Secret 配置 Secret 对象类型用来保存敏感信息,例如密码、OAuth 令牌和 ssh key。将这些信息放在 secret 中比放在 pod 的定义中或者 docker 镜像中来说更加安全和灵活。 Secret 概览 Secret 是一种包含少量敏感信息例如密码、token 或 key 的对象。这样的信息可能会被放在 Pod spec 中或者镜像中;将其放在一个 secret 对象中可以更好地控制它的用途,并降低意外暴露的风险。 用户可以创建 secret,同时系统也创建了一些 secret。 要使用 secret,pod 需要引用 secret。Pod 可以用两种方式使用 secret:作为 volume 中的文件被挂载到 pod 中的一个或者多个容器里,或者当 kubelet 为 pod 拉取镜像时使用。 内置 secret Service Account 使用 API 凭证自动创建和附加 secret Kubernetes 自动创建包含访问 API 凭据的 secret,并自动修改您的 pod 以使用此类型的 secret。 如果需要,可以禁用或覆盖自动创建和使用API凭据。但是,如果您需要的只是安全地访问 apiserver,我们推荐这样的工作流程。 参阅 Service Account 文档获取关于 Service Account 如何工作的更多信息。 创建您自己的 Secret 使用 kubectl 创建 Secret 假设有些 pod 需要访问数据库。这些 pod 需要使用的用户名和密码在您本地机器的 ./username.txt 和 ./password.txt 文件里。 # Create files needed for rest of example. $ echo -n \"admin\" > ./username.txt $ echo -n \"1f2d1e2e67df\" > ./password.txt kubectl create secret 命令将这些文件打包到一个 Secret 中并在 API server 中创建了一个对象。 $ kubectl create secret generic db-user-pass --from-file=./username.txt --from-file=./password.txt secret \"db-user-pass\" created 您可以这样检查刚创建的 secret: $ kubectl get secrets NAME TYPE DATA AGE db-user-pass Opaque 2 51s $ kubectl describe secrets/db-user-pass Name: db-user-pass Namespace: default Labels: Annotations: Type: Opaque Data ==== password.txt: 12 bytes username.txt: 5 bytes 请注意,默认情况下,get 和 describe 命令都不会显示文件的内容。这是为了防止将 secret 中的内容被意外暴露给从终端日志记录中刻意寻找它们的人。 请参阅 解码 secret 了解如何查看它们的内容。 手动创建 Secret 您也可以先以 json 或 yaml 格式在文件中创建一个 secret 对象,然后创建该对象。 每一项必须是 base64 编码: $ echo -n \"admin\" | base64 YWRtaW4= $ echo -n \"1f2d1e2e67df\" | base64 MWYyZDFlMmU2N2Rm 现在可以像这样写一个 secret 对象: apiVersion: v1 kind: Secret metadata: name: mysecret type: Opaque data: username: YWRtaW4= password: MWYyZDFlMmU2N2Rm 数据字段是一个映射。它的键必须匹配 DNS_SUBDOMAIN,前导点也是可以的。这些值可以是任意数据,使用 base64 进行编码。 使用 kubectl create创建 secret: $ kubectl create -f ./secret.yaml secret \"mysecret\" created 编码注意: secret 数据的序列化 JSON 和 YAML 值使用 base64 编码成字符串。换行符在这些字符串中无效,必须省略。当在Darwin/OS X上使用 base64 实用程序时,用户应避免使用 -b 选项来拆分长行。另外,对于 Linux用户如果 -w 选项不可用的话,应该添加选项 -w 0 到 base64 命令或管道 base64 | tr -d '\\n' 。 解码 Secret 可以使用 kubectl get secret 命令获取 secret。例如,获取在上一节中创建的 secret: $ kubectl get secret mysecret -o yaml apiVersion: v1 data: username: YWRtaW4= password: MWYyZDFlMmU2N2Rm kind: Secret metadata: creationTimestamp: 2016-01-22T18:41:56Z name: mysecret namespace: default resourceVersion: \"164619\" selfLink: /api/v1/namespaces/default/secrets/mysecret uid: cfee02d6-c137-11e5-8d73-42010af00002 type: Opaque 解码密码字段: $ echo \"MWYyZDFlMmU2N2Rm\" | base64 --decode 1f2d1e2e67df 使用 Secret Secret 可以作为数据卷被挂载,或作为环境变量暴露出来以供 pod 中的容器使用。它们也可以被系统的其他部分使用,而不直接暴露在 pod 内。例如,它们可以保存凭据,系统的其他部分应该用它来代表您与外部系统进行交互。 在 Pod 中使用 Secret 文件 在 Pod 中的 volume 里使用 Secret: 创建一个 secret 或者使用已有的 secret。多个 pod 可以引用同一个 secret。 修改您的 pod 的定义在 spec.volumes[] 下增加一个 volume。可以给这个 volume 随意命名,它的 spec.volumes[].secret.secretName 必须等于 secret 对象的名字。 将 spec.containers[].volumeMounts[] 加到需要用到该 secret 的容器中。指定 spec.containers[].volumeMounts[].readOnly = true 和 spec.containers[].volumeMounts[].mountPath 为您想要该 secret 出现的尚未使用的目录。 修改您的镜像并且/或者命令行让程序从该目录下寻找文件。Secret 的 data 映射中的每一个键都成为了 mountPath 下的一个文件名。 这是一个在 pod 中使用 volume 挂在 secret 的例子: apiVersion: v1 kind: Pod metadata: name: mypod spec: containers: - name: mypod image: redis volumeMounts: - name: foo mountPath: \"/etc/foo\" readOnly: true volumes: - name: foo secret: secretName: mysecret 您想要用的每个 secret 都需要在 spec.volumes 中指明。 如果 pod 中有多个容器,每个容器都需要自己的 volumeMounts 配置块,但是每个 secret 只需要一个 spec.volumes。 您可以打包多个文件到一个 secret 中,或者使用的多个 secret,怎样方便就怎样来。 向特性路径映射 secret 密钥 我们还可以控制 Secret key 映射在 volume 中的路径。您可以使用 spec.volumes[].secret.items 字段修改每个 key 的目标路径: apiVersion: v1 kind: Pod metadata: name: mypod spec: containers: - name: mypod image: redis volumeMounts: - name: foo mountPath: \"/etc/foo\" readOnly: true volumes: - name: foo secret: secretName: mysecret items: - key: username path: my-group/my-username 将会发生什么呢: username secret 存储在 /etc/foo/my-group/my-username 文件中而不是 /etc/foo/username 中。 password secret 没有被影射 如果使用了 spec.volumes[].secret.items,只有在 items 中指定的 key 被影射。要使用 secret 中所有的 key,所有这些都必须列在 items 字段中。所有列出的密钥必须存在于相应的 secret 中。否则,不会创建卷。 Secret 文件权限 您还可以指定 secret 将拥有的权限模式位文件。如果不指定,默认使用 0644。您可以为整个保密卷指定默认模式,如果需要,可以覆盖每个密钥。 apiVersion: v1 kind: Pod metadata: name: mypod spec: containers: - name: mypod image: redis volumeMounts: - name: foo mountPath: \"/etc/foo\" volumes: - name: foo secret: secretName: mysecret defaultMode: 256 然后,secret 将被挂载到 /etc/foo 目录,所有通过该 secret volume 挂载创建的文件的权限都是 0400。 请注意,JSON 规范不支持八进制符号,因此使用 256 值作为 0400 权限。如果您使用 yaml 而不是 json 作为 pod,则可以使用八进制符号以更自然的方式指定权限。 您还可以是用映射,如上一个示例,并为不同的文件指定不同的权限,如下所示: apiVersion: v1 kind: Pod metadata: name: mypod spec: containers: - name: mypod image: redis volumeMounts: - name: foo mountPath: \"/etc/foo\" volumes: - name: foo secret: secretName: mysecret items: - key: username path: my-group/my-username mode: 511 在这种情况下,导致 /etc/foo/my-group/my-username 的文件的权限值为 0777。由于 JSON 限制,必须以十进制格式指定模式。 请注意,如果稍后阅读此权限值可能会以十进制格式显示。 从 Volume 中消费 secret 值 在挂载的 secret volume 的容器内,secret key 将作为文件,并且 secret 的值使用 base-64 解码并存储在这些文件中。这是在上面的示例容器内执行的命令的结果: $ ls /etc/foo/ username password $ cat /etc/foo/username admin $ cat /etc/foo/password 1f2d1e2e67df 容器中的程序负责从文件中读取 secret。 挂载的 secret 被自动更新 当已经在 volume 中消被消费的 secret 被更新时,被映射的 key 也将被更新。 Kubelet 在周期性同步时检查被挂载的 secret 是不是最新的。但是,它正在使用其基于本地 ttl 的缓存来获取当前的 secret 值。结果是,当 secret 被更新的时刻到将新的 secret 映射到 pod 的时刻的总延迟可以与 kubelet 中的secret 缓存的 kubelet sync period + ttl 一样长。 Secret 作为环境变量 将 secret 作为 pod 中的环境变量使用: 创建一个 secret 或者使用一个已存在的 secret。多个 pod 可以引用同一个 secret。 在每个容器中修改您想要使用 secret key 的 Pod 定义,为要使用的每个 secret key 添加一个环境变量。消费secret key 的环境变量应填充 secret 的名称,并键入 env[x].valueFrom.secretKeyRef。 修改镜像并/或者命令行,以便程序在指定的环境变量中查找值。 apiVersion: v1 kind: Pod metadata: name: secret-env-pod spec: containers: - name: mycontainer image: redis env: - name: SECRET_USERNAME valueFrom: secretKeyRef: name: mysecret key: username - name: SECRET_PASSWORD valueFrom: secretKeyRef: name: mysecret key: password restartPolicy: Never 消费环境变量里的 Secret 值 在一个消耗环境变量 secret 的容器中,secret key 作为包含 secret 数据的 base-64 解码值的常规环境变量。这是从上面的示例在容器内执行的命令的结果: $ echo $SECRET_USERNAME admin $ echo $SECRET_PASSWORD 1f2d1e2e67df 使用 imagePullSecret imagePullSecret 是将包含 Docker(或其他)镜像注册表密码的 secret 传递给 Kubelet 的一种方式,因此可以代表您的 pod 拉取私有镜像。 手动指定 imagePullSecret imagePullSecret 的使用在 镜像文档 中说明。 安排 imagePullSecrets 自动附加 您可以手动创建 imagePullSecret,并从 serviceAccount 引用它。使用该 serviceAccount 创建的任何 pod 和默认使用该 serviceAccount 的 pod 将会将其的 imagePullSecret 字段设置为服务帐户的 imagePullSecret 字段。有关该过程的详细说明,请参阅 将 ImagePullSecrets 添加到服务帐户。 自动挂载手动创建的 Secret 手动创建的 secret(例如包含用于访问 github 帐户的令牌)可以根据其服务帐户自动附加到 pod。请参阅 使用 PodPreset 向 Pod 中注入信息 以获取该进程的详细说明。 详细 限制 验证 secret volume 来源确保指定的对象引用实际上指向一个类型为 Secret 的对象。因此,需要在依赖于它的任何 pod 之前创建一个 secret。 Secret API 对象驻留在命名空间中。它们只能由同一命名空间中的 pod 引用。 每个 secret 的大小限制为1MB。这是为了防止创建非常大的 secret 会耗尽 apiserver 和 kubelet 的内存。然而,创建许多较小的 secret 也可能耗尽内存。更全面得限制 secret 对内存使用的更全面的限制是计划中的功能。 Kubelet 仅支持从 API server 获取的 Pod 使用 secret。这包括使用 kubectl 创建的任何 pod,或间接通过 replication controller 创建的 pod。它不包括通过 kubelet --manifest-url 标志,其 --config 标志或其 REST API 创建的pod(这些不是创建 pod 的常用方法)。 必须先创建 secret,除非将它们标记为可选项,否则必须在将其作为环境变量在 pod 中使用之前创建 secret。对不存在的 secret 的引用将阻止其启动。 通过 secretKeyRef 对不存在于命名的 key 中的 key 进行引用将阻止该启动。 用于通过 envFrom 填充环境变量的 secret,这些环境变量具有被认为是无效环境变量名称的 key 将跳过这些键。该 pod 将被允许启动。将会有一个事件,其原因是 InvalidVariableNames,该消息将包含被跳过的无效键的列表。该示例显示一个 pod,它指的是包含2个无效键,1badkey 和 2alsobad 的默认/mysecret ConfigMap。 $ kubectl get events LASTSEEN FIRSTSEEN COUNT NAME KIND SUBOBJECT TYPE REASON 0s 0s 1 dapi-test-pod Pod Warning InvalidEnvironmentVariableNames kubelet, 127.0.0.1 Keys [1badkey, 2alsobad] from the EnvFrom secret default/mysecret were skipped since they are considered invalid environment variable names. Secret 与 Pod 生命周期的联系 通过 API 创建的 Pod 时,不会检查应用的 secret 是否存在。一旦 Pod 被调度,kubelet 就会尝试获取该 secret 的值。如果获取不到该 secret,或者暂时无法与 API server 建立连接,kubelet 将会定期重试。Kubelet 将会报告关于 pod 的事件,并解释它无法启动的原因。一旦获取的 secret,kubelet将创建并装载一个包含它的卷。在安装所有pod的卷之前,都不会启动 pod 的容器。 使用案例 使用案例:包含 ssh 密钥的 pod 创建一个包含 ssh key 的 secret: $ kubectl create secret generic ssh-key-secret --from-file=ssh-privatekey=/path/to/.ssh/id_rsa --from-file=ssh-publickey=/path/to/.ssh/id_rsa.pub 安全性注意事项:发送自己的 ssh 密钥之前要仔细思考:集群的其他用户可能有权访问该密钥。使用您想要共享 Kubernetes 群集的所有用户可以访问的服务帐户,如果它们遭到入侵,可以撤销。 现在我们可以创建一个使用 ssh 密钥引用 secret 的pod,并在一个卷中使用它: kind: Pod apiVersion: v1 metadata: name: secret-test-pod labels: name: secret-test spec: volumes: - name: secret-volume secret: secretName: ssh-key-secret containers: - name: ssh-test-container image: mySshImage volumeMounts: - name: secret-volume readOnly: true mountPath: \"/etc/secret-volume\" 当容器中的命令运行时,密钥的片段将可在以下目录: /etc/secret-volume/ssh-publickey /etc/secret-volume/ssh-privatekey 然后容器可以自由使用密钥数据建立一个 ssh 连接。 使用案例:包含 prod/test 凭据的 pod 下面的例子说明一个 pod 消费一个包含 prod 凭据的 secret,另一个 pod 使用测试环境凭据消费 secret。 创建 secret: $ kubectl create secret generic prod-db-secret --from-literal=username=produser --from-literal=password=Y4nys7f11 secret \"prod-db-secret\" created $ kubectl create secret generic test-db-secret --from-literal=username=testuser --from-literal=password=iluvtests secret \"test-db-secret\" created 创建 pod : apiVersion: v1 kind: List items: - kind: Pod apiVersion: v1 metadata: name: prod-db-client-pod labels: name: prod-db-client spec: volumes: - name: secret-volume secret: secretName: prod-db-secret containers: - name: db-client-container image: myClientImage volumeMounts: - name: secret-volume readOnly: true mountPath: \"/etc/secret-volume\" - kind: Pod apiVersion: v1 metadata: name: test-db-client-pod labels: name: test-db-client spec: volumes: - name: secret-volume secret: secretName: test-db-secret containers: - name: db-client-container image: myClientImage volumeMounts: - name: secret-volume readOnly: true mountPath: \"/etc/secret-volume\" 这两个容器将在其文件系统上显示以下文件,其中包含每个容器环境的值: /etc/secret-volume/username /etc/secret-volume/password 请注意,两个 pod 的 spec 配置中仅有一个字段有所不同;这有助于使用普通的 pod 配置模板创建具有不同功能的 pod。您可以使用两个 service account 进一步简化基本 pod spec:一个名为 prod-user 拥有 prod-db-secret ,另一个称为 test-user 拥有 test-db-secret 。然后,pod spec 可以缩短为,例如: kind: Pod apiVersion: v1 metadata: name: prod-db-client-pod labels: name: prod-db-client spec: serviceAccount: prod-db-client containers: - name: db-client-container image: myClientImage 使用案例:secret 卷中以点号开头的文件 为了将数据“隐藏”起来(即文件名以点号开头的文件),简单地说让该键以一个点开始。例如,当如下 secret 被挂载到卷中: kind: Secret apiVersion: v1 metadata: name: dotfile-secret data: .secret-file: dmFsdWUtMg0KDQo= --- kind: Pod apiVersion: v1 metadata: name: secret-dotfiles-pod spec: volumes: - name: secret-volume secret: secretName: dotfile-secret containers: - name: dotfile-test-container image: gcr.io/google_containers/busybox command: - ls - \"-l\" - \"/etc/secret-volume\" volumeMounts: - name: secret-volume readOnly: true mountPath: \"/etc/secret-volume\" Secret-volume 将包含一个单独的文件,叫做 .secret-file,dotfile-test-container 的 /etc/secret-volume/.secret-file路径下将有该文件。 注意 以点号开头的文件在 ls -l 的输出中被隐藏起来了;列出目录内容时,必须使用 ls -la 才能查看它们。 使用案例:Secret 仅对 pod 中的一个容器可见 考虑以下一个需要处理 HTTP 请求的程序,执行一些复杂的业务逻辑,然后使用 HMAC 签署一些消息。因为它具有复杂的应用程序逻辑,所以在服务器中可能会出现一个未被注意的远程文件读取漏洞,这可能会将私钥暴露给攻击者。 这可以在两个容器中分为两个进程:前端容器,用于处理用户交互和业务逻辑,但无法看到私钥;以及可以看到私钥的签名者容器,并且响应来自前端的简单签名请求(例如通过本地主机网络)。 使用这种分割方法,攻击者现在必须欺骗应用程序服务器才能进行任意的操作,这可能比使其读取文件更难。 最佳实践 客户端使用 secret API 当部署与 secret API 交互的应用程序时,应使用诸如 RBAC 之类的 授权策略 来限制访问。 Secret 的重要性通常不尽相同,其中许多可能只对 Kubernetes 集群内(例如 service account 令牌)和对外部系统造成影响。即使一个应用程序可以理解其期望的与之交互的 secret 的权力,但是同一命名空间中的其他应用程序也可以使这些假设无效。 由于这些原因,在命名空间中 watch 和 list secret 的请求是非常强大的功能,应该避免这样的行为,因为列出 secret 可以让客户端检查所有 secret 是否在该命名空间中。在群集中watch 和 list 所有 secret 的能力应该只保留给最有特权的系统级组件。 需要访问 secrets API 的应用程序应该根据他们需要的 secret 执行 get 请求。这允许管理员限制对所有 secret 的访问,同时设置 白名单访问 应用程序需要的各个实例。 为了提高循环获取的性能,客户端可以设计引用 secret 的资源,然后 watch 资源,在引用更改时重新请求 secret。 安全属性 保护 因为 secret 对象可以独立于使用它们的 pod 而创建,所以在创建、查看和编辑 pod 的流程中 secret 被暴露的风险较小。系统还可以对 secret 对象采取额外的预防措施,例如避免将其写入到磁盘中可能的位置。 只有当节点上的 pod 需要用到该 secret 时,该 secret 才会被发送到该节点上。它不会被写入磁盘,而是存储在 tmpfs 中。一旦依赖于它的 pod 被删除,它就被删除。 在大多数 Kubernetes 项目维护的发行版中,用户与 API server 之间的通信以及从 API server 到 kubelet 的通信都受到 SSL/TLS 的保护。通过这些通道传输时,secret 受到保护。 节点上的 secret 数据存储在 tmpfs 卷中,因此不会传到节点上的其他磁盘。 同一节点上的很多个 pod 可能拥有多个 secret。但是,只有 pod 请求的 secret 在其容器中才是可见的。因此,一个 pod 不能访问另一个 Pod 的 secret。 Pod 中有多个容器。但是,pod 中的每个容器必须请求其挂载卷中的 secret 卷才能在容器内可见。这可以用于 在 Pod 级别构建安全分区。 风险 API server 的 secret 数据以纯文本的方式存储在 etcd 中;因此: 管理员应该限制 admin 用户访问 etcd; API server 中的 secret 数据位于 etcd 使用的磁盘上;管理员可能希望在不再使用时擦除/粉碎 etcd 使用的磁盘 如果您将 secret 数据编码为 base64 的清单(JSON 或 YAML)文件,共享该文件或将其检入代码库,这样的话该密码将会被泄露。 Base64 编码不是一种加密方式,一样也是纯文本。 应用程序在从卷中读取 secret 后仍然需要保护 secret 的值,例如不会意外记录或发送给不信任方。 可以创建和使用 secret 的 pod 的用户也可以看到该 secret 的值。即使 API server 策略不允许用户读取 secret 对象,用户也可以运行暴露 secret 的 pod。 如果运行了多个副本,那么这些 secret 将在它们之间共享。默认情况下,etcd 不能保证与 SSL/TLS 的对等通信,尽管可以进行配置。 目前,任何节点的 root 用户都可以通过模拟 kubelet 来读取 API server 中的任何 secret。只有向实际需要它们的节点发送 secret 才能限制单个节点的根漏洞的影响,该功能还在计划中。 原文地址:https://github.com/rootsongjc/kubernetes.github.io/blob/master/docs/concepts/configuration/secret.md 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/resource-quota-management.html":{"url":"guide/resource-quota-management.html","title":"管理 namespace 中的资源配额","keywords":"","body":"管理namespace中的资源配额 当用多个团队或者用户共用同一个集群的时候难免会有资源竞争的情况发生,这时候就需要对不同团队或用户的资源使用配额做出限制。 开启资源配额限制功能 目前有两种资源分配管理相关的控制策略插件 ResourceQuota 和 LimitRange。 要启用它们只要 API Server 的启动配置的 KUBE_ADMISSION_CONTROL 参数中加入了 ResourceQuota 的设置,这样就给集群开启了资源配额限制功能,加入 LimitRange 可以用来限制一个资源申请的范围限制,参考 为 namesapce 配置默认的内存请求与限额 和 在 namespace 中配置默认的CPU请求与限额。 两种控制策略的作用范围都是对于某一 namespace,ResourceQuota 用来限制 namespace 中所有的 Pod 占用的总的资源 request 和 limit,而 LimitRange 是用来设置 namespace 中 Pod 的默认的资源 request 和 limit 值。 资源配额分为三种类型: 计算资源配额 存储资源配额 对象数量配额 关于资源配额的详细信息请参考 kubernetes 官方文档 资源配额。 示例 我们为 spark-cluster 这个 namespace 设置 ResouceQuota 和 LimitRange。 以下 yaml 文件可以在 kubernetes-handbook 的 manifests/spark-with-kubernetes-native-scheduler 目录下找到。 配置计算资源配额 配置文件:spark-compute-resources.yaml apiVersion: v1 kind: ResourceQuota metadata: name: compute-resources namespace: spark-cluster spec: hard: pods: \"20\" requests.cpu: \"20\" requests.memory: 100Gi limits.cpu: \"40\" limits.memory: 200Gi 要想查看该配置只要执行: kubectl -n spark-cluster describe resourcequota compute-resources 配置对象数量限制 配置文件:spark-object-counts.yaml apiVersion: v1 kind: ResourceQuota metadata: name: object-counts namespace: spark-cluster spec: hard: configmaps: \"10\" persistentvolumeclaims: \"4\" replicationcontrollers: \"20\" secrets: \"10\" services: \"10\" services.loadbalancers: \"2\" 配置CPU和内存LimitRange 配置文件:spark-limit-range.yaml apiVersion: v1 kind: LimitRange metadata: name: mem-limit-range spec: limits: - default: memory: 50Gi cpu: 5 defaultRequest: memory: 1Gi cpu: 1 type: Container default 即 limit 的值 defaultRequest 即 request 的值 参考 资源配额 为命名空间配置默认的内存请求与限额 在命名空间中配置默认的CPU请求与限额 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/command-usage.html":{"url":"guide/command-usage.html","title":"命令使用","keywords":"","body":"命令使用 Kubernetes 中的 kubectl 及其他管理命令使用。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/docker-cli-to-kubectl.html":{"url":"guide/docker-cli-to-kubectl.html","title":"Docker 用户过渡到 kubectl 命令行指南","keywords":"","body":"docker用户过渡到kubectl命令行指南 对于没有使用过 kubernetes 的 docker 用户,如何快速掌握 kubectl 命令? 在本文中,我们将向 docker-cli 用户介绍 Kubernetes 命令行如何与 api 进行交互。该命令行工具——kubectl,被设计成 docker-cli 用户所熟悉的样子,但是它们之间又存在一些必要的差异。该文档将向您展示每个 docker 子命令和 kubectl 与其等效的命令。 在使用 kubernetes 集群的时候,docker 命令通常情况是不需要用到的,只有在调试程序或者容器的时候用到,我们基本上使用 kubectl 命令即可,所以在操作 kubernetes 的时候我们抛弃原先使用 docker 时的一些观念。 docker run 如何运行一个 nginx Deployment 并将其暴露出来? 查看 kubectl run 。 使用 docker 命令: $ docker run -d --restart=always -e DOMAIN=cluster --name nginx-app -p 80:80 nginx a9ec34d9878748d2f33dc20cb25c714ff21da8d40558b45bfaec9955859075d0 $ docker ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES a9ec34d98787 nginx \"nginx -g 'daemon of 2 seconds ago Up 2 seconds 0.0.0.0:80->80/tcp, 443/tcp nginx-app 使用 kubectl 命令: # start the pod running nginx $ kubectl run --image=nginx nginx-app --port=80 --env=\"DOMAIN=cluster\" deployment \"nginx-app\" created 在大于等于 1.2 版本 Kubernetes 集群中,使用kubectl run 命令将创建一个名为 \"nginx-app\" 的 Deployment。如果您运行的是老版本,将会创建一个 replication controller。 如果您想沿用旧的行为,使用 --generation=run/v1 参数,这样就会创建 replication controller。查看 kubectl run 获取更多详细信息。 # expose a port through with a service $ kubectl expose deployment nginx-app --port=80 --name=nginx-http service \"nginx-http\" exposed 在 kubectl 命令中,我们创建了一个 Deployment,这将保证有 N 个运行 nginx 的 pod(N 代表 spec 中声明的 replica 数,默认为 1)。我们还创建了一个 service,使用 selector 匹配具有相应的 selector 的 Deployment。查看 快速开始 获取更多信息。 默认情况下镜像会在后台运行,与docker run -d ... 类似,如果您想在前台运行,使用: kubectl run [-i] [--tty] --attach --image= 与 docker run ... 不同的是,如果指定了 --attach ,我们将连接到 stdin,stdout 和 stderr,而不能控制具体连接到哪个输出流(docker -a ...)。 因为我们使用 Deployment 启动了容器,如果您终止了连接到的进程(例如 ctrl-c),容器将会重启,这跟 docker run -it不同。 如果想销毁该 Deployment(和它的 pod),您需要运行 kubeclt delete deployment 。 docker ps 如何列出哪些正在运行?查看 kubectl get。 使用 docker 命令: $ docker ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES a9ec34d98787 nginx \"nginx -g 'daemon of About an hour ago Up About an hour 0.0.0.0:80->80/tcp, 443/tcp nginx-app 使用 kubectl 命令: $ kubectl get po NAME READY STATUS RESTARTS AGE nginx-app-5jyvm 1/1 Running 0 1h docker attach 如何连接到已经运行在容器中的进程?查看 kubectl attach。 使用 docker 命令: $ docker ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES a9ec34d98787 nginx \"nginx -g 'daemon of 8 minutes ago Up 8 minutes 0.0.0.0:80->80/tcp, 443/tcp nginx-app $ docker attach a9ec34d98787 ... 使用 kubectl 命令: $ kubectl get pods NAME READY STATUS RESTARTS AGE nginx-app-5jyvm 1/1 Running 0 10m $ kubectl attach -it nginx-app-5jyvm ... docker exec 如何在容器中执行命令?查看 kubectl exec。 使用 docker 命令: $ docker ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES a9ec34d98787 nginx \"nginx -g 'daemon of 8 minutes ago Up 8 minutes 0.0.0.0:80->80/tcp, 443/tcp nginx-app $ docker exec a9ec34d98787 cat /etc/hostname a9ec34d98787 使用 kubectl 命令: $ kubectl get po NAME READY STATUS RESTARTS AGE nginx-app-5jyvm 1/1 Running 0 10m $ kubectl exec nginx-app-5jyvm -- cat /etc/hostname nginx-app-5jyvm 执行交互式命令怎么办? 使用 docker 命令: $ docker exec -ti a9ec34d98787 /bin/sh # exit 使用 kubectl 命令: $ kubectl exec -ti nginx-app-5jyvm -- /bin/sh # exit 更多信息请查看 获取运行中容器的 Shell 环境。 docker logs 如何查看运行中进程的 stdout/stderr?查看 kubectl logs。 使用 docker 命令: $ docker logs -f a9e 192.168.9.1 - - [14/Jul/2015:01:04:02 +0000] \"GET / HTTP/1.1\" 200 612 \"-\" \"curl/7.35.0\" \"-\" 192.168.9.1 - - [14/Jul/2015:01:04:03 +0000] \"GET / HTTP/1.1\" 200 612 \"-\" \"curl/7.35.0\" \"-\" 使用 kubectl 命令: $ kubectl logs -f nginx-app-zibvs 10.240.63.110 - - [14/Jul/2015:01:09:01 +0000] \"GET / HTTP/1.1\" 200 612 \"-\" \"curl/7.26.0\" \"-\" 10.240.63.110 - - [14/Jul/2015:01:09:02 +0000] \"GET / HTTP/1.1\" 200 612 \"-\" \"curl/7.26.0\" \"-\" 现在是时候提一下 pod 和容器之间的细微差别了;默认情况下如果 pod 中的进程退出 pod 也不会终止,相反它将会重启该进程。这类似于 docker run 时的 --restart=always 选项, 这是主要差别。在 docker 中,进程的每个调用的输出都是被连接起来的,但是对于 kubernetes,每个调用都是分开的。要查看以前在 kubernetes 中执行的输出,请执行以下操作: $ kubectl logs --previous nginx-app-zibvs 10.240.63.110 - - [14/Jul/2015:01:09:01 +0000] \"GET / HTTP/1.1\" 200 612 \"-\" \"curl/7.26.0\" \"-\" 10.240.63.110 - - [14/Jul/2015:01:09:02 +0000] \"GET / HTTP/1.1\" 200 612 \"-\" \"curl/7.26.0\" \"-\" 查看 记录和监控集群活动 获取更多信息。 docker stop 和 docker rm 如何停止和删除运行中的进程?查看 kubectl delete。 使用 docker 命令: $ docker ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES a9ec34d98787 nginx \"nginx -g 'daemon of 22 hours ago Up 22 hours 0.0.0.0:80->80/tcp, 443/tcp nginx-app $ docker stop a9ec34d98787 a9ec34d98787 $ docker rm a9ec34d98787 a9ec34d98787 使用 kubectl 命令: $ kubectl get deployment nginx-app NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE nginx-app 1 1 1 1 2m $ kubectl get po -l run=nginx-app NAME READY STATUS RESTARTS AGE nginx-app-2883164633-aklf7 1/1 Running 0 2m $ kubectl delete deployment nginx-app deployment \"nginx-app\" deleted $ kubectl get po -l run=nginx-app # Return nothing 请注意,我们不直接删除 pod。使用 kubectl 命令,我们要删除拥有该 pod 的 Deployment。如果我们直接删除pod,Deployment 将会重新创建该 pod。 docker login 在 kubectl 中没有对 docker login 的直接模拟。如果您有兴趣在私有镜像仓库中使用 Kubernetes,请参阅 使用私有镜像仓库。 docker version 如何查看客户端和服务端的版本?查看 kubectl version。 使用 docker 命令: $ docker version Client version: 1.7.0 Client API version: 1.19 Go version (client): go1.4.2 Git commit (client): 0baf609 OS/Arch (client): linux/amd64 Server version: 1.7.0 Server API version: 1.19 Go version (server): go1.4.2 Git commit (server): 0baf609 OS/Arch (server): linux/amd64 使用 kubectl 命令: $ kubectl version Client Version: version.Info{Major:\"1\", Minor:\"6\", GitVersion:\"v1.6.9+a3d1dfa6f4335\", GitCommit:\"9b77fed11a9843ce3780f70dd251e92901c43072\", GitTreeState:\"dirty\", BuildDate:\"2017-08-29T20:32:58Z\", OpenPaasKubernetesVersion:\"v1.03.02\", GoVersion:\"go1.7.5\", Compiler:\"gc\", Platform:\"linux/amd64\"} Server Version: version.Info{Major:\"1\", Minor:\"6\", GitVersion:\"v1.6.9+a3d1dfa6f4335\", GitCommit:\"9b77fed11a9843ce3780f70dd251e92901c43072\", GitTreeState:\"dirty\", BuildDate:\"2017-08-29T20:32:58Z\", OpenPaasKubernetesVersion:\"v1.03.02\", GoVersion:\"go1.7.5\", Compiler:\"gc\", Platform:\"linux/amd64\"} docker info 如何获取有关环境和配置的各种信息?查看 kubectl cluster-info。 使用 docker 命令: $ docker info Containers: 40 Images: 168 Storage Driver: aufs Root Dir: /usr/local/google/docker/aufs Backing Filesystem: extfs Dirs: 248 Dirperm1 Supported: false Execution Driver: native-0.2 Logging Driver: json-file Kernel Version: 3.13.0-53-generic Operating System: Ubuntu 14.04.2 LTS CPUs: 12 Total Memory: 31.32 GiB Name: k8s-is-fun.mtv.corp.google.com ID: ADUV:GCYR:B3VJ:HMPO:LNPQ:KD5S:YKFQ:76VN:IANZ:7TFV:ZBF4:BYJO WARNING: No swap limit support 使用 kubectl 命令: $ kubectl cluster-info Kubernetes master is running at https://108.59.85.141 KubeDNS is running at https://108.59.85.141/api/v1/namespaces/kube-system/services/kube-dns/proxy KubeUI is running at https://108.59.85.141/api/v1/namespaces/kube-system/services/kube-ui/proxy Grafana is running at https://108.59.85.141/api/v1/namespaces/kube-system/services/monitoring-grafana/proxy Heapster is running at https://108.59.85.141/api/v1/namespaces/kube-system/services/monitoring-heapster/proxy InfluxDB is running at https://108.59.85.141/api/v1/namespaces/kube-system/services/monitoring-influxdb/proxy 原文地址:https://github.com/rootsongjc/kubernetes.github.io/blob/master/docs/user-guide/docker-cli-to-kubectl.md 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/using-kubectl.html":{"url":"guide/using-kubectl.html","title":"kubectl 命令概览","keywords":"","body":"Kubectl命令概览 Kubernetes提供的kubectl命令是与集群交互最直接的方式,v1.6版本的kubectl命令参考图如下: 图 5.3.2.1:kubectl cheatsheet Kubectl的子命令主要分为8个类别: 基础命令(初学者都会使用的) 基础命令(中级) 部署命令 集群管理命令 故障排查和调试命令 高级命令 设置命令 其他命令 熟悉这些命令有助于大家来操作和管理kubernetes集群。 命令行提示 为了使用kubectl命令更加高效,我们可以选择安装一下开源软件来增加操作kubectl命令的快捷方式,同时为kubectl命令增加命令提示。 图 5.3.2.2:增加kubeclt命令的工具(图片来自网络) kubectx:用于切换kubernetes context kube-ps1:为命令行终端增加$PROMPT字段 kube-shell:交互式带命令提示的kubectl终端 全部配置完成后的kubectl终端如下图所示: 图 5.3.2.3:增强的kubectl命令 kube-shell 开源项目kube-shell可以为kubectl提供自动的命令提示和补全,使用起来特别方便,推荐给大家。 Kube-shell有以下特性: 命令提示,给出命令的使用说明 自动补全,列出可选命令并可以通过tab键自动补全,支持模糊搜索 高亮 使用tab键可以列出可选的对象 vim模式 Mac下安装 pip install kube-shell --user -U 图 5.3.2.4:kube-shell页面 kubectl的身份认证 Kubernetes中存在三种安全认证方式: CA证书:API server与其它几个组件之间都是通过这种方式认证的 HTTP base:即在API server的启动参数中指定的--token-auth-file=/etc/kubernetes/token.csv文件中明文的用户、组、密码和UID配置 bearer token:HTTP请求中header中传递的Autorization:Bearer token,这个token通常保存在创建角色跟serviceaccount绑定的时候生成的secret中。 kubectl通过读取kubeconfig文件中的配置信息在向API server发送请求的时候同时传递认证信息,同时支持CA证书和bearer token的认证方式,请参考使用kubeconfig文件配置跨集群认证。 终端下kubectl命令自动补全 建议使用oh-my-zsh,增加对kubectl命令自动补全支持。 修改~/.zshrc文件,增加如下两行: plugins=(kubectl) source 保存后重启终端即可生效。 参考:Install and Set Up kubectl 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/kubectl-cheatsheet.html":{"url":"guide/kubectl-cheatsheet.html","title":"kubectl 命令技巧大全","keywords":"","body":"kubectl 命令技巧大全 Kubctl 命令是操作 kubernetes 集群的最直接和最 skillful 的途径,这个60多MB大小的二进制文件,到底有啥能耐呢?请看下文: Kubectl 自动补全 $ source Kubectl 上下文和配置 设置 kubectl 命令交互的 kubernetes 集群并修改配置信息。参阅 使用 kubeconfig 文件进行跨集群验证 获取关于配置文件的详细信息。 $ kubectl config view # 显示合并后的 kubeconfig 配置 # 同时使用多个 kubeconfig 文件并查看合并后的配置 $ KUBECONFIG=~/.kube/config:~/.kube/kubconfig2 kubectl config view # 获取 e2e 用户的密码 $ kubectl config view -o jsonpath='{.users[?(@.name == \"e2e\")].user.password}' $ kubectl config current-context # 显示当前的上下文 $ kubectl config use-context my-cluster-name # 设置默认上下文为 my-cluster-name # 向 kubeconf 中增加支持基本认证的新集群 $ kubectl config set-credentials kubeuser/foo.kubernetes.com --username=kubeuser --password=kubepassword # 使用指定的用户名和 namespace 设置上下文 $ kubectl config set-context gce --user=cluster-admin --namespace=foo \\ && kubectl config use-context gce 创建对象 Kubernetes 的清单文件可以使用 json 或 yaml 格式定义。可以以 .yaml、.yml、或者 .json 为扩展名。 $ kubectl create -f ./my-manifest.yaml # 创建资源 $ kubectl create -f ./my1.yaml -f ./my2.yaml # 使用多个文件创建资源 $ kubectl create -f ./dir # 使用目录下的所有清单文件来创建资源 $ kubectl create -f https://git.io/vPieo # 使用 url 来创建资源 $ kubectl run nginx --image=nginx # 启动一个 nginx 实例 $ kubectl explain pods,svc # 获取 pod 和 svc 的文档 # 从 stdin 输入中创建多个 YAML 对象 $ cat 显示和查找资源 # Get commands with basic output $ kubectl get services # 列出所有 namespace 中的所有 service $ kubectl get pods --all-namespaces # 列出所有 namespace 中的所有 pod $ kubectl get pods -o wide # 列出所有 pod 并显示详细信息 $ kubectl get deployment my-dep # 列出指定 deployment $ kubectl get pods --include-uninitialized # 列出该 namespace 中的所有 pod 包括未初始化的 # 使用详细输出来描述命令 $ kubectl describe nodes my-node $ kubectl describe pods my-pod $ kubectl get services --sort-by=.metadata.name # List Services Sorted by Name # 根据重启次数排序列出 pod $ kubectl get pods --sort-by='.status.containerStatuses[0].restartCount' # 获取所有具有 app=cassandra 的 pod 中的 version 标签 $ kubectl get pods --selector=app=cassandra rc -o \\ jsonpath='{.items[*].metadata.labels.version}' # 获取所有节点的 ExternalIP $ kubectl get nodes -o jsonpath='{.items[*].status.addresses[?(@.type==\"ExternalIP\")].address}' # 列出属于某个 PC 的 Pod 的名字 # “jq”命令用于转换复杂的 jsonpath,参考 https://stedolan.github.io/jq/ $ sel=${$(kubectl get rc my-rc --output=json | jq -j '.spec.selector | to_entries | .[] | \"\\(.key)=\\(.value),\"')%?} $ echo $(kubectl get pods --selector=$sel --output=jsonpath={.items..metadata.name}) # 查看哪些节点已就绪 $ JSONPATH='{range .items[*]}{@.metadata.name}:{range @.status.conditions[*]}{@.type}={@.status};{end}{end}' \\ && kubectl get nodes -o jsonpath=\"$JSONPATH\" | grep \"Ready=True\" # 列出当前 Pod 中使用的 Secret $ kubectl get pods -o json | jq '.items[].spec.containers[].env[]?.valueFrom.secretKeyRef.name' | grep -v null | sort | uniq 更新资源 $ kubectl rolling-update frontend-v1 -f frontend-v2.json # 滚动更新 pod frontend-v1 $ kubectl rolling-update frontend-v1 frontend-v2 --image=image:v2 # 更新资源名称并更新镜像 $ kubectl rolling-update frontend --image=image:v2 # 更新 frontend pod 中的镜像 $ kubectl rolling-update frontend-v1 frontend-v2 --rollback # 退出已存在的进行中的滚动更新 $ cat pod.json | kubectl replace -f - # 基于 stdin 输入的 JSON 替换 pod # 强制替换,删除后重新创建资源。会导致服务中断。 $ kubectl replace --force -f ./pod.json # 为 nginx RC 创建服务,启用本地 80 端口连接到容器上的 8000 端口 $ kubectl expose rc nginx --port=80 --target-port=8000 # 更新单容器 pod 的镜像版本(tag)到 v4 $ kubectl get pod mypod -o yaml | sed 's/\\(image: myimage\\):.*$/\\1:v4/' | kubectl replace -f - $ kubectl label pods my-pod new-label=awesome # 添加标签 $ kubectl annotate pods my-pod icon-url=http://goo.gl/XXBTWq # 添加注解 $ kubectl autoscale deployment foo --min=2 --max=10 # 自动扩展 deployment “foo” 修补资源 使用策略合并补丁并修补资源。 $ kubectl patch node k8s-node-1 -p '{\"spec\":{\"unschedulable\":true}}' # 部分更新节点 # 更新容器镜像; spec.containers[*].name 是必须的,因为这是合并的关键字 $ kubectl patch pod valid-pod -p '{\"spec\":{\"containers\":[{\"name\":\"kubernetes-serve-hostname\",\"image\":\"new image\"}]}}' # 使用具有位置数组的 json 补丁更新容器镜像 $ kubectl patch pod valid-pod --type='json' -p='[{\"op\": \"replace\", \"path\": \"/spec/containers/0/image\", \"value\":\"new image\"}]' # 使用具有位置数组的 json 补丁禁用 deployment 的 livenessProbe $ kubectl patch deployment valid-deployment --type json -p='[{\"op\": \"remove\", \"path\": \"/spec/template/spec/containers/0/livenessProbe\"}]' 编辑资源 在编辑器中编辑任何 API 资源。 $ kubectl edit svc/docker-registry # 编辑名为 docker-registry 的 service $ KUBE_EDITOR=\"nano\" kubectl edit svc/docker-registry # 使用其它编辑器 Scale 资源 $ kubectl scale --replicas=3 rs/foo # Scale a replicaset named 'foo' to 3 $ kubectl scale --replicas=3 -f foo.yaml # Scale a resource specified in \"foo.yaml\" to 3 $ kubectl scale --current-replicas=2 --replicas=3 deployment/mysql # If the deployment named mysql's current size is 2, scale mysql to 3 $ kubectl scale --replicas=5 rc/foo rc/bar rc/baz # Scale multiple replication controllers 删除资源 $ kubectl delete -f ./pod.json # 删除 pod.json 文件中定义的类型和名称的 pod $ kubectl delete pod,service baz foo # 删除名为“baz”的 pod 和名为“foo”的 service $ kubectl delete pods,services -l name=myLabel # 删除具有 name=myLabel 标签的 pod 和 serivce $ kubectl delete pods,services -l name=myLabel --include-uninitialized # 删除具有 name=myLabel 标签的 pod 和 service,包括尚未初始化的 $ kubectl -n my-ns delete po,svc --all # 删除 my-ns namespace 下的所有 pod 和 serivce,包括尚未初始化的 与运行中的 Pod 交互 $ kubectl logs my-pod # dump 输出 pod 的日志(stdout) $ kubectl logs my-pod -c my-container # dump 输出 pod 中容器的日志(stdout,pod 中有多个容器的情况下使用) $ kubectl logs -f my-pod # 流式输出 pod 的日志(stdout) $ kubectl logs -f my-pod -c my-container # 流式输出 pod 中容器的日志(stdout,pod 中有多个容器的情况下使用) $ kubectl run -i --tty busybox --image=busybox -- sh # 交互式 shell 的方式运行 pod $ kubectl attach my-pod -i # 连接到运行中的容器 $ kubectl port-forward my-pod 5000:6000 # 转发 pod 中的 6000 端口到本地的 5000 端口 $ kubectl exec my-pod -- ls / # 在已存在的容器中执行命令(只有一个容器的情况下) $ kubectl exec my-pod -c my-container -- ls / # 在已存在的容器中执行命令(pod 中有多个容器的情况下) $ kubectl top pod POD_NAME --containers # 显示指定 pod 和容器的指标度量 与节点和集群交互 $ kubectl cordon my-node # 标记 my-node 不可调度 $ kubectl drain my-node # 清空 my-node 以待维护 $ kubectl uncordon my-node # 标记 my-node 可调度 $ kubectl top node my-node # 显示 my-node 的指标度量 $ kubectl cluster-info # 显示 master 和服务的地址 $ kubectl cluster-info dump # 将当前集群状态输出到 stdout $ kubectl cluster-info dump --output-directory=/path/to/cluster-state # 将当前集群状态输出到 /path/to/cluster-state # 如果该键和影响的污点(taint)已存在,则使用指定的值替换 $ kubectl taint nodes foo dedicated=special-user:NoSchedule 资源类型 下表列出的是 kubernetes 中所有支持的类型和缩写的别名。 资源类型 缩写别名 clusters componentstatuses cs configmaps cm daemonsets ds deployments deploy endpoints ep event ev horizontalpodautoscalers hpa ingresses ing jobs limitranges limits namespaces ns networkpolicies nodes no statefulsets persistentvolumeclaims pvc persistentvolumes pv pods po podsecuritypolicies psp podtemplates replicasets rs replicationcontrollers rc resourcequotas quota cronjob secrets serviceaccount sa services svc storageclasses thirdpartyresources 格式化输出 要以特定的格式向终端窗口输出详细信息,可以在 kubectl 命令中添加 -o 或者 -output 标志。 输出格式 描述 -o=custom-columns= 使用逗号分隔的自定义列列表打印表格 -o=custom-columns-file= 使用 文件中的自定义列模板打印表格 -o=json 输出 JSON 格式的 API 对象 -o=jsonpath= 打印 jsonpath 表达式中定义的字段 -o=jsonpath-file= 打印由 文件中的 jsonpath 表达式定义的字段 -o=name 仅打印资源名称 -o=wide 以纯文本格式输出任何附加信息,对于 Pod ,包含节点名称 -o=yaml 输出 YAML 格式的 API 对象 Kubectl 详细输出和调试 使用 -v 或 --v 标志跟着一个整数来指定日志级别。 详细等级 描述 --v=0 总是对操作人员可见。 --v=1 合理的默认日志级别,如果您不需要详细输出。 --v=2 可能与系统的重大变化相关的,有关稳定状态的信息和重要的日志信息。这是对大多数系统推荐的日志级别。 --v=3 有关更改的扩展信息。 --v=4 调试级别详细输出。 --v=6 显示请求的资源。 --v=7 显示HTTP请求的header。 --v=8 显示HTTP请求的内容。 参考 Kubectl 概览 JsonPath 手册 本文是对官方文档的中文翻译,原文地址:https://kubernetes.io/docs/user-guide/kubectl-cheatsheet/ 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/using-etcdctl-to-access-kubernetes-data.html":{"url":"guide/using-etcdctl-to-access-kubernetes-data.html","title":"使用 etcdctl 访问 kubernetes 数据","keywords":"","body":"使用etcdctl访问kubernetes数据 Kubenretes1.6中使用etcd V3版本的API,使用etcdctl直接ls的话只能看到/kube-centos一个路径。需要在命令前加上ETCDCTL_API=3这个环境变量才能看到kuberentes在etcd中保存的数据。 ETCDCTL_API=3 etcdctl get /registry/namespaces/default -w=json|python -m json.tool 如果是使用 kubeadm 创建的集群,在 Kubenretes 1.11 中,etcd 默认使用 tls ,这时你可以在 master 节点上使用以下命令来访问 etcd : ETCDCTL_API=3 etcdctl --cacert=/etc/kubernetes/pki/etcd/ca.crt \\ --cert=/etc/kubernetes/pki/etcd/peer.crt \\ --key=/etc/kubernetes/pki/etcd/peer.key \\ get /registry/namespaces/default -w=json | jq . -w指定输出格式 将得到这样的json的结果: { \"count\": 1, \"header\": { \"cluster_id\": 12091028579527406772, \"member_id\": 16557816780141026208, \"raft_term\": 36, \"revision\": 29253467 }, \"kvs\": [ { \"create_revision\": 5, \"key\": \"L3JlZ2lzdHJ5L25hbWVzcGFjZXMvZGVmYXVsdA==\", \"mod_revision\": 5, \"value\": \"azhzAAoPCgJ2MRIJTmFtZXNwYWNlEmIKSAoHZGVmYXVsdBIAGgAiACokZTU2YzMzMDgtMWVhOC0xMWU3LThjZDctZjRlOWQ0OWY4ZWQwMgA4AEILCIn4sscFEKOg9xd6ABIMCgprdWJlcm5ldGVzGggKBkFjdGl2ZRoAIgA=\", \"version\": 1 } ] } 使用--prefix可以看到所有的子目录,如查看集群中的namespace: ETCDCTL_API=3 etcdctl get /registry/namespaces --prefix -w=json|python -m json.tool 输出结果中可以看到所有的namespace。 { \"count\": 8, \"header\": { \"cluster_id\": 12091028579527406772, \"member_id\": 16557816780141026208, \"raft_term\": 36, \"revision\": 29253722 }, \"kvs\": [ { \"create_revision\": 24310883, \"key\": \"L3JlZ2lzdHJ5L25hbWVzcGFjZXMvYXV0b21vZGVs\", \"mod_revision\": 24310883, \"value\": \"azhzAAoPCgJ2MRIJTmFtZXNwYWNlEmQKSgoJYXV0b21vZGVsEgAaACIAKiQ1MjczOTU1ZC1iMzEyLTExZTctOTcwYy1mNGU5ZDQ5ZjhlZDAyADgAQgsI7fSWzwUQ6Jv1Z3oAEgwKCmt1YmVybmV0ZXMaCAoGQWN0aXZlGgAiAA==\", \"version\": 1 }, { \"create_revision\": 21387676, \"key\": \"L3JlZ2lzdHJ5L25hbWVzcGFjZXMvYnJhbmQ=\", \"mod_revision\": 21387676, \"value\": \"azhzAAoPCgJ2MRIJTmFtZXNwYWNlEmEKRwoFYnJhbmQSABoAIgAqJGNkZmQ1Y2NmLWExYzktMTFlNy05NzBjLWY0ZTlkNDlmOGVkMDIAOABCDAjR9qLOBRDYn83XAXoAEgwKCmt1YmVybmV0ZXMaCAoGQWN0aXZlGgAiAA==\", \"version\": 1 }, { \"create_revision\": 5, \"key\": \"L3JlZ2lzdHJ5L25hbWVzcGFjZXMvZGVmYXVsdA==\", \"mod_revision\": 5, \"value\": \"azhzAAoPCgJ2MRIJTmFtZXNwYWNlEmIKSAoHZGVmYXVsdBIAGgAiACokZTU2YzMzMDgtMWVhOC0xMWU3LThjZDctZjRlOWQ0OWY4ZWQwMgA4AEILCIn4sscFEKOg9xd6ABIMCgprdWJlcm5ldGVzGggKBkFjdGl2ZRoAIgA=\", \"version\": 1 }, { \"create_revision\": 18504694, \"key\": \"L3JlZ2lzdHJ5L25hbWVzcGFjZXMvZGV2\", \"mod_revision\": 24310213, \"value\": \"azhzAAoPCgJ2MRIJTmFtZXNwYWNlEmwKUgoDZGV2EgAaACIAKiQyOGRlMGVjNS04ZTEzLTExZTctOTcwYy1mNGU5ZDQ5ZjhlZDAyADgAQgwI89CezQUQ0v2fuQNaCwoEbmFtZRIDZGV2egASDAoKa3ViZXJuZXRlcxoICgZBY3RpdmUaACIA\", \"version\": 4 }, { \"create_revision\": 10, \"key\": \"L3JlZ2lzdHJ5L25hbWVzcGFjZXMva3ViZS1wdWJsaWM=\", \"mod_revision\": 10, \"value\": \"azhzAAoPCgJ2MRIJTmFtZXNwYWNlEmcKTQoLa3ViZS1wdWJsaWMSABoAIgAqJGU1ZjhkY2I1LTFlYTgtMTFlNy04Y2Q3LWY0ZTlkNDlmOGVkMDIAOABCDAiJ+LLHBRDdrsDPA3oAEgwKCmt1YmVybmV0ZXMaCAoGQWN0aXZlGgAiAA==\", \"version\": 1 }, { \"create_revision\": 2, \"key\": \"L3JlZ2lzdHJ5L25hbWVzcGFjZXMva3ViZS1zeXN0ZW0=\", \"mod_revision\": 2, \"value\": \"azhzAAoPCgJ2MRIJTmFtZXNwYWNlEmYKTAoLa3ViZS1zeXN0ZW0SABoAIgAqJGU1NmFhMDVkLTFlYTgtMTFlNy04Y2Q3LWY0ZTlkNDlmOGVkMDIAOABCCwiJ+LLHBRDoq9ASegASDAoKa3ViZXJuZXRlcxoICgZBY3RpdmUaACIA\", \"version\": 1 }, { \"create_revision\": 3774247, \"key\": \"L3JlZ2lzdHJ5L25hbWVzcGFjZXMvc3BhcmstY2x1c3Rlcg==\", \"mod_revision\": 3774247, \"value\": \"azhzAAoPCgJ2MRIJTmFtZXNwYWNlEoABCmYKDXNwYXJrLWNsdXN0ZXISABoAIgAqJDMyNjY3ZDVjLTM0YWMtMTFlNy1iZmJkLThhZjFlM2E3YzViZDIAOABCDAiA1cbIBRDU3YuAAVoVCgRuYW1lEg1zcGFyay1jbHVzdGVyegASDAoKa3ViZXJuZXRlcxoICgZBY3RpdmUaACIA\", \"version\": 1 }, { \"create_revision\": 15212191, \"key\": \"L3JlZ2lzdHJ5L25hbWVzcGFjZXMveWFybi1jbHVzdGVy\", \"mod_revision\": 15212191, \"value\": \"azhzAAoPCgJ2MRIJTmFtZXNwYWNlEn0KYwoMeWFybi1jbHVzdGVyEgAaACIAKiQ2YWNhNjk1Yi03N2Y5LTExZTctYmZiZC04YWYxZTNhN2M1YmQyADgAQgsI1qiKzAUQkoqxDloUCgRuYW1lEgx5YXJuLWNsdXN0ZXJ6ABIMCgprdWJlcm5ldGVzGggKBkFjdGl2ZRoAIgA=\", \"version\": 1 } ] } key的值是经过base64编码,需要解码后才能看到实际值,如: $ echo L3JlZ2lzdHJ5L25hbWVzcGFjZXMvYXV0b21vZGVs|base64 -d /registry/namespaces/automodel etcd中kubernetes的元数据 我们使用kubectl命令获取的kubernetes的对象状态实际上是保存在etcd中的,使用下面的脚本可以获取etcd中的所有kubernetes对象的key: 注意,我们使用了ETCD v3版本的客户端命令来访问etcd。 #!/bin/bash # Get kubernetes keys from etcd export ETCDCTL_API=3 keys=`etcdctl get /registry --prefix -w json|python -m json.tool|grep key|cut -d \":\" -f2|tr -d '\"'|tr -d \",\"` for x in $keys;do echo $x|base64 -d|sort done 通过输出的结果我们可以看到kubernetes的原数据是按何种结构包括在kuberentes中的,输出结果如下所示: /registry/ThirdPartyResourceData/istio.io/istioconfigs/default/route-rule-details-default /registry/ThirdPartyResourceData/istio.io/istioconfigs/default/route-rule-productpage-default /registry/ThirdPartyResourceData/istio.io/istioconfigs/default/route-rule-ratings-default ... /registry/configmaps/default/namerctl-script /registry/configmaps/default/namerd-config /registry/configmaps/default/nginx-config ... /registry/deployments/default/sdmk-page-sdmk /registry/deployments/default/sdmk-payment-web /registry/deployments/default/sdmk-report ... 我们可以看到所有的Kuberentes的所有元数据都保存在/registry目录下,下一层就是API对象类型(复数形式),再下一层是namespace,最后一层是对象的名字。 以下是etcd中存储的kubernetes所有的元数据类型: ThirdPartyResourceData apiextensions.k8s.io apiregistration.k8s.io certificatesigningrequests clusterrolebindings clusterroles configmaps controllerrevisions controllers daemonsets deployments events horizontalpodautoscalers ingress limitranges minions monitoring.coreos.com namespaces persistentvolumeclaims persistentvolumes poddisruptionbudgets pods ranges replicasets resourcequotas rolebindings roles secrets serviceaccounts services statefulsets storageclasses thirdpartyresources 参考 etcd中文文档 etcd官方文档 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/cluster-security-management.html":{"url":"guide/cluster-security-management.html","title":"集群安全性管理","keywords":"","body":"集群安全性管理 Kubernetes 支持多租户,这就需要对集群的安全性进行管理。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/managing-tls-in-a-cluster.html":{"url":"guide/managing-tls-in-a-cluster.html","title":"管理集群中的 TLS","keywords":"","body":"管理集群中的TLS 在本书的最佳实践部分,我们在CentOS上部署了kuberentes集群,其中最开始又重要的一步就是创建TLS认证的,查看创建TLS证书和秘钥。很多人在进行到这一步时都会遇到各种各样千奇百怪的问题,这一步是创建集群的基础,我们有必要详细了解一下其背后的流程和原理。 概览 每个Kubernetes集群都有一个集群根证书颁发机构(CA)。 集群中的组件通常使用CA来验证API server的证书,由API服务器验证kubelet客户端证书等。为了支持这一点,CA证书包被分发到集群中的每个节点,并作为一个secret附加分发到默认service account上。 或者,你的workload可以使用此CA建立信任。 你的应用程序可以使用类似于ACME草案的协议,使用certificates.k8s.io API请求证书签名。 集群中的TLS信任 让Pod中运行的应用程序信任集群根CA通常需要一些额外的应用程序配置。 您将需要将CA证书包添加到TLS客户端或服务器信任的CA证书列表中。 例如,您可以使用golang TLS配置通过解析证书链并将解析的证书添加到tls.Config结构中的Certificates字段中,CA证书捆绑包将使用默认服务账户自动加载到pod中,路径为/var/run/secrets/kubernetes.io/serviceaccount/ca.crt。 如果您没有使用默认服务账户,请请求集群管理员构建包含您有权访问使用的证书包的configmap。 请求认证 以下部分演示如何为通过DNS访问的Kubernetes服务创建TLS证书。 步骤0. 下载安装SSL 下载cfssl工具:https://pkg.cfssl.org/. 步骤1. 创建证书签名请求 通过运行以下命令生成私钥和证书签名请求(或CSR): $ cat 172.168.0.24 是 service 的 cluster IP,my-svc.my-namespace.svc.cluster.local 是 service 的 DNS 名称, 10.0.34.2 是 Pod 的 IP, my-pod.my-namespace.pod.cluster.local 是pod 的 DNS 名称,你可以看到以下输出: 2017/03/21 06:48:17 [INFO] generate received request 2017/03/21 06:48:17 [INFO] received CSR 2017/03/21 06:48:17 [INFO] generating key: ecdsa-256 2017/03/21 06:48:17 [INFO] encoded CSR 此命令生成两个文件; 它生成包含PEM编码的pkcs #10认证请求的server.csr,以及包含仍然要创建的证书的PEM编码密钥的server-key.pem。 步骤2. 创建证书签名请求对象以发送到Kubernetes API 使用以下命令创建CSR yaml文件,并发送到API server: $ cat 请注意,在步骤1中创建的server.csr文件是base64编码并存储在.spec.request字段中。 我们还要求提供“数字签名”,“密钥加密”和“服务器身份验证”密钥用途的证书。 在API server中可以看到这些CSR处于pending状态。执行下面的命令你将可以看到: $ kubectl describe csr my-svc.my-namespace Name: my-svc.my-namespace Labels: Annotations: CreationTimestamp: Tue, 21 Mar 2017 07:03:51 -0700 Requesting User: yourname@example.com Status: Pending Subject: Common Name: my-svc.my-namespace.svc.cluster.local Serial Number: Subject Alternative Names: DNS Names: my-svc.my-namespace.svc.cluster.local IP Addresses: 172.168.0.24 10.0.34.2 Events: 步骤3. 获取证书签名请求 批准证书签名请求是通过自动批准过程完成的,或由集群管理员一次完成。 有关这方面涉及的更多信息,请参见下文。 步骤4. 下载签名并使用 一旦CSR被签署并获得批准,您应该看到以下内容: $ kubectl get csr NAME AGE REQUESTOR CONDITION my-svc.my-namespace 10m yourname@example.com Approved,Issued 你可以通过运行以下命令下载颁发的证书并将其保存到server.crt文件中: $ kubectl get csr my-svc.my-namespace -o jsonpath='{.status.certificate}' \\ | base64 -d > server.crt 现在你可以用server.crt和server-key.pem来做为keypair来启动HTTPS server。 批准证书签名请求 Kubernetes 管理员(具有适当权限)可以使用 kubectl certificate approve 和kubectl certificate deny 命令手动批准(或拒绝)证书签名请求。但是,如果您打算大量使用此 API,则可以考虑编写自动化的证书控制器。 如果上述机器或人类使用 kubectl,批准者的作用是验证 CSR 满足如下两个要求: CSR 的主体控制用于签署 CSR 的私钥。这解决了伪装成授权主体的第三方的威胁。在上述示例中,此步骤将验证该 pod 控制了用于生成 CSR 的私钥。 CSR 的主体被授权在请求的上下文中执行。这解决了我们加入群集的我们不期望的主体的威胁。在上述示例中,此步骤将是验证该 pod 是否被允许加入到所请求的服务中。 当且仅当满足这两个要求时,审批者应该批准 CSR,否则拒绝 CSR。 给集群管理员的一个建议 本教程假设将signer设置为服务证书API。Kubernetes controller manager提供了一个signer的默认实现。 要启用它,请将--cluster-signing-cert-file和--cluster-signing-key-file参数传递给controller manager,并配置具有证书颁发机构的密钥对的路径。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/kubelet-authentication-authorization.html":{"url":"guide/kubelet-authentication-authorization.html","title":"kubelet 的认证授权","keywords":"","body":"Kublet的认证授权 概览 Kubelet 的 HTTPS 端点对外暴露了用于访问不同敏感程度数据的 API,并允许您在节点或者容器内执行不同权限级别的操作。 本文档向您描述如何通过认证授权来访问 kubelet 的 HTTPS 端点。 Kubelet 认证 默认情况下,所有未被配置的其他身份验证方法拒绝的,对 kubelet 的 HTTPS 端点的请求将被视为匿名请求,并被授予 system:anonymous 用户名和 system:unauthenticated 组。 如果要禁用匿名访问并发送 401 Unauthorized 的未经身份验证的请求的响应: 启动 kubelet 时指定 --anonymous-auth=false 标志 如果要对 kubelet 的 HTTPS 端点启用 X509 客户端证书身份验证: 启动 kubelet 时指定 --client-ca-file 标志,提供 CA bundle 以验证客户端证书 启动 apiserver 时指定 --kubelet-client-certificate 和 --kubelet-client-key 标志 参阅 apiserver 认证文档 获取更多详细信息。 启用 API bearer token(包括 service account token)用于向 kubelet 的 HTTPS 端点进行身份验证: 确保在 API server 中开启了 authentication.k8s.io/v1beta1 API 组。 启动 kubelet 时指定 --authentication-token-webhook, --kubeconfig 和 --require-kubeconfig 标志 Kubelet 在配置的 API server 上调用 TokenReview API 以确定来自 bearer token 的用户信息 Kubelet 授权 接着对任何成功验证的请求(包括匿名请求)授权。默认授权模式为 AlwaysAllow,允许所有请求。 细分访问 kubelet API 有很多原因: 启用匿名认证,但匿名用户调用 kubelet API 的能力应受到限制 启动 bearer token 认证,但是 API 用户(如 service account)调用 kubelet API 的能力应受到限制 客户端证书身份验证已启用,但只有那些配置了 CA 签名的客户端证书的用户才可以使用 kubelet API 如果要细分访问 kubelet API,将授权委托给 API server: 确保 API server 中启用了 authorization.k8s.io/v1beta1 API 组 启动 kubelet 时指定 --authorization-mode=Webhook、 --kubeconfig 和 --require-kubeconfig 标志 kubelet 在配置的 API server 上调用 SubjectAccessReview API,以确定每个请求是否被授权 kubelet 使用与 apiserver 相同的 请求属性 方法来授权 API 请求。 Verb(动词)是根据传入的请求的 HTTP 动词确定的: HTTP 动词 request 动词 POST create GET, HEAD get PUT update PATCH patch DELETE delete 资源和子资源根据传入请求的路径确定: Kubelet API 资源 子资源 /stats/* nodes stats /metrics/* nodes metrics /logs/* nodes log /spec/* nodes spec all others nodes proxy Namespace 和 API 组属性总是空字符串,资源的名字总是 kubelet 的 Node API 对象的名字。 当以该模式运行时,请确保用户为 apiserver 指定了 --kubelet-client-certificate 和 --kubelet-client-key 标志并授权了如下属性: verb=*, resource=nodes, subresource=proxy verb=*, resource=nodes, subresource=stats verb=*, resource=nodes, subresource=log verb=*, resource=nodes, subresource=spec verb=*, resource=nodes, subresource=metrics 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/tls-bootstrapping.html":{"url":"guide/tls-bootstrapping.html","title":"TLS Bootstrap","keywords":"","body":"TLS Bootstrap 本文档介绍如何为 kubelet 设置 TLS 客户端证书引导(bootstrap)。 Kubernetes 1.4 引入了一个用于从集群级证书颁发机构(CA)请求证书的 API。此 API 的原始目的是为 kubelet 提供 TLS 客户端证书。可以在 这里 找到该提议,在 feature #43 追踪该功能的进度。 kube-apiserver 配置 您必须提供一个 token 文件,该文件中指定了至少一个分配给 kubelet 特定 bootstrap 组的 “bootstrap token”。 该组将作为 controller manager 配置中的默认批准控制器而用于审批。随着此功能的成熟,您应该确保 token 被绑定到基于角色的访问控制(RBAC)策略上,该策略严格限制了与证书配置相关的客户端请求(使用 bootstrap token)。使用 RBAC,将 token 范围划分为组可以带来很大的灵活性(例如,当您配置完成节点后,您可以禁用特定引导组的访问)。 Token 认证文件 Token 可以是任意的,但应该可以表示为从安全随机数生成器(例如大多数现代操作系统中的 /dev/urandom)导出的至少128位熵。生成 token 有很多中方式。例如: head -c 16 /dev/urandom | od -An -t x | tr -d ' ' 产生的 token 类似于这样: 02b50b05283e98dd0fd71db496ef01e8。 Token 文件应该类似于以下示例,其中前三个值可以是任何值,引用的组名称应如下所示: 02b50b05283e98dd0fd71db496ef01e8,kubelet-bootstrap,10001,system:kubelet-bootstrap 注意:system:kubelet-bootstrap 的配置,当只有一个组时,不需要加引号。 在 kube-apiserver 命令中添加 --token-auth-file=FILENAME 标志(可能在您的 systemd unit 文件中)来启用 token 文件。 查看 该文档 获取更多详细信息。 客户端证书 CA 包 在 kube-apiserver 命令中添加 --client-ca-file=FILENAME 标志启用客户端证书认证,指定包含签名证书的证书颁发机构包(例如 --client-ca-file=/var/lib/kubernetes/ca.pem)。 kube-controller-manager 配置 请求证书的 API 向 Kubernetes controller manager 中添加证书颁发控制循环。使用磁盘上的 cfssl 本地签名文件的形式。目前,所有发型的证书均为一年有效期和并具有一系列关键用途。 签名文件 您必须提供证书颁发机构,这样才能提供颁发证书所需的密码资料。 kube-apiserver 通过指定的 --client-ca-file=FILENAME 标志来认证和采信该 CA。CA 的管理超出了本文档的范围,但建议您为 Kubernetes 生成专用的 CA。 假定证书和密钥都是 PEM 编码的。 Kube-controller-manager 标志为: --cluster-signing-cert-file=\"/etc/path/to/kubernetes/ca/ca.crt\" --cluster-signing-key-file=\"/etc/path/to/kubernetes/ca/ca.key\" 审批控制器 在 kubernetes 1.7 版本中,实验性的 “组自动批准” 控制器被弃用,新的 csrapproving 控制器将作为 kube-controller-manager 的一部分,被默认启用。 控制器使用 SubjectAccessReview API 来确定给定用户是否已被授权允许请求 CSR,然后根据授权结果进行批准。为了防止与其他批准者冲突,内置审批者没有明确地拒绝 CSR,只是忽略未经授权的请求。 控制器将 CSR 分为三个子资源: nodeclient :用户的客户端认证请求 O=system:nodes, CN=system:node:(node name)。 selfnodeclient:更新具有相同 O 和 CN 的客户端证书的节点。 selfnodeserver:更新服务证书的节点(ALPHA,需要 feature gate)。 当前,确定 CSR 是否为 selfnodeserver 请求的检查与 kubelet 的凭据轮换实现(Alpha 功能)相关联。因此,selfnodeserver 的定义将来可能会改变,并且需要 Controller Manager 上的RotateKubeletServerCertificate feature gate。该功能的进展可以在 kubernetes/feature/#267 上追踪。 --feature-gates=RotateKubeletServerCertificate=true 以下 RBAC ClusterRoles 代表 nodeClient、selfnodeclient 和 selfnodeserver 功能。在以后的版本中可能会自动创建类似的角色。 # A ClusterRole which instructs the CSR approver to approve a user requesting # node client credentials. kind: ClusterRole apiVersion: rbac.authorization.k8s.io/v1beta1 metadata: name: approve-node-client-csr rules: - apiGroups: [\"certificates.k8s.io\"] resources: [\"certificatesigningrequests/nodeclient\"] verbs: [\"create\"] --- # A ClusterRole which instructs the CSR approver to approve a node renewing its # own client credentials. kind: ClusterRole apiVersion: rbac.authorization.k8s.io/v1beta1 metadata: name: approve-node-client-renewal-csr rules: - apiGroups: [\"certificates.k8s.io\"] resources: [\"certificatesigningrequests/selfnodeclient\"] verbs: [\"create\"] --- # A ClusterRole which instructs the CSR approver to approve a node requesting a # serving cert matching its client cert. kind: ClusterRole apiVersion: rbac.authorization.k8s.io/v1beta1 metadata: name: approve-node-server-renewal-csr rules: - apiGroups: [\"certificates.k8s.io\"] resources: [\"certificatesigningrequests/selfnodeserver\"] verbs: [\"create\"] 这些权力可以授予给凭证,如 bootstrap token。例如,要复制由已被移除的自动批准标志提供的行为,由单个组批准所有的 CSR: # REMOVED: This flag no longer works as of 1.7. --insecure-experimental-approve-all-kubelet-csrs-for-group=\"kubelet-bootstrap-token\" 管理员将创建一个 ClusterRoleBinding 来定位该组。 # Approve all CSRs for the group \"kubelet-bootstrap-token\" kind: ClusterRoleBinding apiVersion: rbac.authorization.k8s.io/v1beta1 metadata: name: auto-approve-csrs-for-group subjects: - kind: Group name: kubelet-bootstrap-token apiGroup: rbac.authorization.k8s.io roleRef: kind: ClusterRole name: approve-node-client-csr apiGroup: rbac.authorization.k8s.io 要让节点更新自己的凭据,管理员可以构造一个 ClusterRoleBinding 来定位该节点的凭据。 kind: ClusterRoleBinding apiVersion: rbac.authorization.k8s.io/v1beta1 metadata: name: node1-client-cert-renewal subjects: - kind: User name: system:node:node-1 # Let \"node-1\" renew its client certificate. apiGroup: rbac.authorization.k8s.io roleRef: kind: ClusterRole name: approve-node-client-renewal-csr apiGroup: rbac.authorization.k8s.io 删除该绑定将会阻止节点更新客户端凭据,一旦其证书到期,实际上就会将其从集群中删除。 kubelet 配置 要向 kube-apiserver 请求客户端证书,kubelet 首先需要一个包含 bootstrap 身份验证 token 的 kubeconfig 文件路径。您可以使用 kubectl config set-cluster,set-credentials 和 set-context 来构建此 kubeconfig 文件。为 kubectl config set-credentials 提供 kubelet-bootstrap 的名称,并包含 --token = ,如下所示: kubectl config set-credentials kubelet-bootstrap --token=${BOOTSTRAP_TOKEN} --kubeconfig=bootstrap.kubeconfig 启动 kubelet 时,如果 --kubeconfig 指定的文件不存在,则使用 bootstrap kubeconfig 向 API server 请求客户端证书。在批准 kubelet 的证书请求和回执时,将包含了生成的密钥和证书的 kubeconfig 文件写入由 -kubeconfig 指定的路径。证书和密钥文件将被放置在由 --cert-dir 指定的目录中。 启动 kubelet 时启用 bootstrap 用到的标志: --experimental-bootstrap-kubeconfig=\"/path/to/bootstrap/kubeconfig\" 此外,在1.7中,kubelet 实现了 Alpha 功能,使其客户端和/或服务器都能轮转提供证书。 可以分别通过 kubelet 中的 RotateKubeletClientCertificate 和 RotateKubeletServerCertificate 功能标志启用此功能,但在未来版本中可能会以向后兼容的方式发生变化。 --feature-gates=RotateKubeletClientCertificate=true,RotateKubeletServerCertificate=true RotateKubeletClientCertificate 可以让 kubelet 在其现有凭据到期时通过创建新的 CSR 来轮换其客户端证书。 RotateKubeletServerCertificate 可以让 kubelet 在其引导客户端凭据后还可以请求服务证书,并轮换该证书。服务证书目前不要求 DNS 或 IP SANs。 kubectl 审批 签名控制器不会立即签署所有证书请求。相反,它会一直等待直到适当特权的用户被标记为 “已批准” 状态。这最终将是由外部审批控制器来处理的自动化过程,但是对于 alpha 版本的 API 来说,可以由集群管理员通过 kubectl 命令手动完成。 管理员可以使用 kubectl get csr 命令列出所有的 CSR,使用 kubectl describe csr 命令描述某个 CSR的详细信息。在 1.6 版本以前,没有直接的批准/拒绝命令 ,因此审批者需要直接更新 Status 信息(查看如何实现)。此后的 Kubernetes 版本中提供了 kubectl certificate approve 和 kubectl certificate deny 命令。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/kubectl-user-authentication-authorization.html":{"url":"guide/kubectl-user-authentication-authorization.html","title":"创建用户认证授权的 kubeconfig 文件","keywords":"","body":"创建用户认证授权的kubeconfig文件 当我们安装好集群后,如果想要把 kubectl 命令交给用户使用,就不得不对用户的身份进行认证和对其权限做出限制。 下面以创建一个 devuser 用户并将其绑定到 dev 和 test 两个 namespace 为例说明。 创建 CA 证书和秘钥 创建 devuser-csr.json 文件 { \"CN\": \"devuser\", \"hosts\": [], \"key\": { \"algo\": \"rsa\", \"size\": 2048 }, \"names\": [ { \"C\": \"CN\", \"ST\": \"BeiJing\", \"L\": \"BeiJing\", \"O\": \"k8s\", \"OU\": \"System\" } ] } 生成 CA 证书和私钥 在 创建 TLS 证书和秘钥 一节中我们将生成的证书和秘钥放在了所有节点的 /etc/kubernetes/ssl 目录下,下面我们再在 master 节点上为 devuser 创建证书和秘钥,在 /etc/kubernetes/ssl 目录下执行以下命令: 执行该命令前请先确保该目录下已经包含如下文件: ca-key.pem ca.pem ca-config.json devuser-csr.json $ cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes devuser-csr.json | cfssljson -bare devuser 2017/08/31 13:31:54 [INFO] generate received request 2017/08/31 13:31:54 [INFO] received CSR 2017/08/31 13:31:54 [INFO] generating key: rsa-2048 2017/08/31 13:31:55 [INFO] encoded CSR 2017/08/31 13:31:55 [INFO] signed certificate with serial number 43372632012323103879829229080989286813242051309 2017/08/31 13:31:55 [WARNING] This certificate lacks a \"hosts\" field. This makes it unsuitable for websites. For more information see the Baseline Requirements for the Issuance and Management of Publicly-Trusted Certificates, v.1.1.6, from the CA/Browser Forum (https://cabforum.org); specifically, section 10.2.3 (\"Information Requirements\"). 这将生成如下文件: devuser.csr devuser-key.pem devuser.pem 创建 kubeconfig 文件 # 设置集群参数 export KUBE_APISERVER=\"https://172.20.0.113:6443\" kubectl config set-cluster kubernetes \\ --certificate-authority=/etc/kubernetes/ssl/ca.pem \\ --embed-certs=true \\ --server=${KUBE_APISERVER} \\ --kubeconfig=devuser.kubeconfig # 设置客户端认证参数 kubectl config set-credentials devuser \\ --client-certificate=/etc/kubernetes/ssl/devuser.pem \\ --client-key=/etc/kubernetes/ssl/devuser-key.pem \\ --embed-certs=true \\ --kubeconfig=devuser.kubeconfig # 设置上下文参数 kubectl config set-context kubernetes \\ --cluster=kubernetes \\ --user=devuser \\ --namespace=dev \\ --kubeconfig=devuser.kubeconfig # 设置默认上下文 kubectl config use-context kubernetes --kubeconfig=devuser.kubeconfig 我们现在查看 kubectl 的 context: kubectl config get-contexts CURRENT NAME CLUSTER AUTHINFO NAMESPACE * kubernetes kubernetes admin default-context default-cluster default-admin 显示的用户仍然是 admin,这是因为 kubectl 使用了 $HOME/.kube/config 文件作为了默认的 context 配置,我们只需要将其用刚生成的 devuser.kubeconfig 文件替换即可。 cp -f ./devuser.kubeconfig /root/.kube/config 关于 kubeconfig 文件的更多信息请参考 使用 kubeconfig 文件配置跨集群认证。 RoleBinding 如果我们想限制 devuser 用户的行为,需要使用 RBAC创建角色绑定以将该用户的行为限制在某个或某几个 namespace 空间范围内,例如: kubectl create rolebinding devuser-admin-binding --clusterrole=admin --user=devuser --namespace=dev kubectl create rolebinding devuser-admin-binding --clusterrole=admin --user=devuser --namespace=test 这样 devuser 用户对 dev 和 test 两个 namespace 具有完全访问权限。 让我们来验证以下,现在我们在执行: # 获取当前的 context kubectl config get-contexts CURRENT NAME CLUSTER AUTHINFO NAMESPACE * kubernetes kubernetes devuser dev * kubernetes kubernetes devuser test # 无法访问 default namespace kubectl get pods --namespace default Error from server (Forbidden): User \"devuser\" cannot list pods in the namespace \"default\". (get pods) # 默认访问的是 dev namespace,您也可以重新设置 context 让其默认访问 test namespace kubectl get pods No resources found. 现在 kubectl 命令默认使用的 context 就是 devuser 了,且该用户只能操作 dev 和 test 这两个 namespace,并拥有完全的访问权限。 可以使用我写的create-user.sh脚本来创建namespace和用户并授权,参考说明。 关于角色绑定的更多信息请参考 RBAC——基于角色的访问控制。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/ip-masq-agent.html":{"url":"guide/ip-masq-agent.html","title":"IP 伪装代理","keywords":"","body":"IP 伪装代理 本文将讲述如何配置和启用 ip-masq-agent。 创建 ip-masq-agent 要创建 ip-masq-agent,运行下面的 kubectl 命令: kubectl create -f https://raw.githubusercontent.com/kubernetes-incubator/ip-masq-agent/master/ip-masq-agent.yaml 关于 ip-masq-agent 的更多信息请参考 该文档。 在大多数情况下,默认的一套规则应该是足够的;但是,如果内置的规则不适用于您的集群,您可以创建并应用 ConfigMap 来自定义受影响的 IP 范围。例如,为了仅允许 ip-masq-agent 考虑 10.0.0.0/8,您可以在名为 “config” 的文件中创建以下 ConfigMap。 nonMasqueradeCIDRs: - 10.0.0.0/8 resyncInterval: 60s 注意:重要的是,该文件被命名为 config,因为默认情况下,该文件将被用作 ip-masq-agent 查找的关键字。 运行下列命令将 ConfigMap 添加到您的集群中: kubectl create configmap ip-masq-agent --from-file=config --namespace=kube-system 这将会更新 /etc/config/ip-masq-agent 文件,并每隔 resyscInterval 时间段检查一遍该文件,将配置应用到集群的节点中。 iptables -t nat -L IP-MASQ-AGENT Chain IP-MASQ-AGENT (1 references) target prot opt source destination RETURN all -- anywhere 169.254.0.0/16 /* ip-masq-agent: cluster-local traffic should not be subject to MASQUERADE */ ADDRTYPE match dst-type !LOCAL RETURN all -- anywhere 10.0.0.0/8 /* ip-masq-agent: cluster-local MASQUERADE all -- anywhere anywhere /* ip-masq-agent: outbound traffic should be subject to MASQUERADE (this match must come after cluster-local CIDR matches) */ ADDRTYPE match dst-type !LOCAL 默认情况下,本地链路范围(169.254.0.0/16)也由 ip-masq 代理处理,该代理设置相应的 iptables 规则。想要让 ip-masq-agent 忽略本地链路,您可以在 ConfigMap 中将 masqLinkLocal 设置为 true。 nonMasqueradeCIDRs: - 10.0.0.0/8 resyncInterval: 60s masqLinkLocal: true IP 伪装代理用户指南 ip-masq-agent 用户配置 iptables 规则将 Pod 的 IP 地址隐藏在集群 node 节点的 IP 地址后面。这通常在将流量发送到群集的 pod CIDR 范围之外的目的地时执行。 关键术语 NAT(网络地址转换) 是一种通过修改 IP 头中的源和/或目标地址信息来将一个 IP 地址重映射到另一个 IP 地址的方法。通常由执行 IP 路由的设备完成。 Masquerading(伪装) NAT 的一种形式,通常用于执行多个地址转换,其中多个源 IP 地址被掩盖在单个地址之后,通常是由某设备进行 IP 路由。在 kubernetes 中,这是 Node 的 IP 地址。 CIDR(无类域内路由选择) 基于可变长度子网掩码,允许指定任意长度的前缀。CIDR 引入了一种新的 IP 地址表示方法,现在通常被称为 CIDR 表示法,将地址或路由前缀的比特位数作为后缀,例如 192.168.2.0/24。 本地链路 本地链路地址是仅能在主机连接的网段或广播域内进行有效通信的网络地址。IPv4 的链路本地地址在 CIDR 表示法定义的地址块是 169.254.0.0/16。 Ip-masq-agent 在将流量发送到集群 node 节点的 IP 和 Cluster IP 范围之外的目的地时,会配置 iptables 规则来处理伪装的 node/pod IP 地址。这基本上将 pod 的 IP 地址隐藏在了集群 node 节点的 IP 地址后面。在某些环境中,到 “外部” 地址的流量必须来自已知的机器地址。例如,在 Google Cloud 中,到互联网的任何流量必须来自虚拟机的 IP。当使用容器时,如在GKE中,Pod IP 将被拒绝作为出口。为了避免这种情况,我们必须将 Pod IP 隐藏在 VM 自己的 IP 地址之后——通常被称为 “伪装”。默认情况下,配置代理将 RFC 1918指定的三个专用 IP 范围视为非伪装 CIDR。范围包括 10.0.0.0/8、172.16.0.0/12 和 192.168.0.0/16。默认情况下,代理还将本地链路(169.254.0.0/16)视为非伪装 CIDR。代理配置为每隔60秒从 /etc/config/ip-masq-agent 位置重新加载其配置,这也是可配置的。 图 5.4.5.1:IP伪装代理示意图 代理的配置文件必须使用 yaml 或 json 语法,并且包含以下三个可选的 key: nonMasqueradeCIDRs:使用 CIDR 表示法指定的非伪装范围的字符串列表。 masqLinkLocal:一个布尔值(true/false),表示是否将流量伪装成本地链路前缀 169.254.0.0/16。默认为false。 resyncInterval:代理尝试从磁盘重新加载配置的时间间隔。例如 ’30s’ 其中 ‘s’ 是秒,’ms’ 是毫秒等… 到 10.0.0.0/8、172.16.0.0/12 和 192.168.0.0/16 范围的流量将不会被伪装。任何其他流量(假定是互联网)将被伪装。这里有个例子,来自 pod 的本地目的地址可以是其节点的 IP 地址、其他节点的地址或 Cluster IP 范围中的一个 IP 地址。其他任何流量都将默认伪装。以下条目显示 ip-masq-agent 应用的默认规则集: iptables -t nat -L IP-MASQ-AGENT RETURN all -- anywhere 169.254.0.0/16 /* ip-masq-agent: cluster-local traffic should not be subject to MASQUERADE */ ADDRTYPE match dst-type !LOCAL RETURN all -- anywhere 10.0.0.0/8 /* ip-masq-agent: cluster-local traffic should not be subject to MASQUERADE */ ADDRTYPE match dst-type !LOCAL RETURN all -- anywhere 172.16.0.0/12 /* ip-masq-agent: cluster-local traffic should not be subject to MASQUERADE */ ADDRTYPE match dst-type !LOCAL RETURN all -- anywhere 192.168.0.0/16 /* ip-masq-agent: cluster-local traffic should not be subject to MASQUERADE */ ADDRTYPE match dst-type !LOCAL MASQUERADE all -- anywhere anywhere /* ip-masq-agent: outbound traffic should be subject to MASQUERADE (this match must come after cluster-local CIDR matches) */ ADDRTYPE match dst-type !LOCAL 默认情况下,在 GCE/GKE 中将启动 kubernetes 1.7.0 版本,ip-masq-agent 已经在集群中运行。如果您在其他环境中运行 kubernetes,那么您可以将 ip-masq-agent 以 DaemonSet 的方式在集群中运行。 原文地址:https://k8smeetup.github.io/docs/tasks/administer-cluster/ip-masq-agent/ 译者:rootsongjc 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/auth-with-kubeconfig-or-token.html":{"url":"guide/auth-with-kubeconfig-or-token.html","title":"使用 kubeconfig 或 token 进行用户身份认证","keywords":"","body":"使用 kubeconfig 或 token 进行用户身份认证 在开启了 TLS 的集群中,每当与集群交互的时候少不了的是身份认证,使用 kubeconfig(即证书) 和 token 两种认证方式是最简单也最通用的认证方式,在 dashboard 的登录功能就可以使用这两种登录功能。 下文分两块以示例的方式来讲解两种登陆认证方式: 为 brand 命名空间下的 brand 用户创建 kubeconfig 文件 为集群的管理员(拥有所有命名空间的 amdin 权限)创建 token 使用 kubeconfig 如何生成kubeconfig文件请参考创建用户认证授权的kubeconfig文件。 注意我们生成的 kubeconfig 文件中没有 token 字段,需要手动添加该字段。 比如我们为 brand namespace 下的 brand 用户生成了名为 brand.kubeconfig 的 kubeconfig 文件,还要再该文件中追加一行 token 的配置(如何生成 token 将在下文介绍),如下所示: 图 5.4.6.1:kubeconfig文件 对于访问 dashboard 时候的使用 kubeconfig 文件如brand.kubeconfig 必须追到 token 字段,否则认证不会通过。而使用 kubectl 命令时的用的 kubeconfig 文件则不需要包含 token 字段。 生成 token 需要创建一个admin用户并授予admin角色绑定,使用下面的yaml文件创建admin用户并赋予他管理员权限,然后可以通过token访问kubernetes,该文件见admin-role.yaml。 生成kubernetes集群最高权限admin用户的token kind: ClusterRoleBinding apiVersion: rbac.authorization.k8s.io/v1beta1 metadata: name: admin annotations: rbac.authorization.kubernetes.io/autoupdate: \"true\" roleRef: kind: ClusterRole name: cluster-admin apiGroup: rbac.authorization.k8s.io subjects: - kind: ServiceAccount name: admin namespace: kube-system --- apiVersion: v1 kind: ServiceAccount metadata: name: admin namespace: kube-system labels: kubernetes.io/cluster-service: \"true\" addonmanager.kubernetes.io/mode: Reconcile 然后执行下面的命令创建 serviceaccount 和角色绑定, kubectl create -f admin-role.yaml 创建完成后获取secret中token的值。 # 获取admin-token的secret名字 $ kubectl -n kube-system get secret|grep admin-token admin-token-nwphb kubernetes.io/service-account-token 3 6m # 获取token的值 $ kubectl -n kube-system describe secret admin-token-nwphb Name: admin-token-nwphb Namespace: kube-system Labels: Annotations: kubernetes.io/service-account.name=admin kubernetes.io/service-account.uid=f37bd044-bfb3-11e7-87c0-f4e9d49f8ed0 Type: kubernetes.io/service-account-token Data ==== namespace: 11 bytes token: 非常长的字符串 ca.crt: 1310 bytes 也可以使用 jsonpath 的方式直接获取 token 的值,如: kubectl -n kube-system get secret admin-token-nwphb -o jsonpath={.data.token}|base64 -d 注意:yaml 输出里的那个 token 值是进行 base64 编码后的结果,一定要将 kubectl 的输出中的 token 值进行 base64 解码,在线解码工具 base64decode,Linux 和 Mac 有自带的 base64 命令也可以直接使用,输入 base64 是进行编码,Linux 中base64 -d 表示解码,Mac 中使用 base64 -D。 我们使用了 base64 对其重新解码,因为 secret 都是经过 base64 编码的,如果直接使用 kubectl 中查看到的 token 值会认证失败,详见 secret 配置。关于 JSONPath 的使用请参考 JSONPath 手册。 更简单的方式是直接使用kubectl describe命令获取token的内容(经过base64解码之后): kubectl describe secret admin-token-nwphb 为普通用户生成token 为指定namespace分配该namespace的最高权限,这通常是在为某个用户(组织或者个人)划分了namespace之后,需要给该用户创建token登陆kubernetes dashboard或者调用kubernetes API的时候使用。 每次创建了新的namespace下都会生成一个默认的token,名为default-token-xxxx。default就相当于该namespace下的一个用户,可以使用下面的命令给该用户分配该namespace的管理员权限。 kubectl create rolebinding $ROLEBINDING_NAME --clusterrole=admin --serviceaccount=$NAMESPACE:default --namespace=$NAMESPACE $ROLEBINDING_NAME必须是该namespace下的唯一的 admin表示用户该namespace的管理员权限,关于使用clusterrole进行更细粒度的权限控制请参考RBAC——基于角色的访问控制。 我们给默认的serviceaccount default分配admin权限,这样就不要再创建新的serviceaccount,当然你也可以自己创建新的serviceaccount,然后给它admin权限 参考 JSONPath 手册 Kubernetes 中的认证 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/authentication.html":{"url":"guide/authentication.html","title":"Kubernetes 中的用户与身份认证授权","keywords":"","body":"Kubernetes 中的用户与身份认证授权 在安装集群的时候我们在 master 节点上生成了一堆证书、token,还在 kubelet 的配置中用到了 bootstrap token,安装各种应用时,为了能够与 API server 通信创建了各种 service account,在 Dashboard 中使用了 kubeconfig 或 token 登陆,那么这些都属于什么认证方式?如何区分用户的?我特地翻译了下这篇官方文档,想你看了之后你将找到答案。 重点查看 bearer token 和 HTTP 认证中的 token 使用,我们已经有所应用,如 使用kubeconfig或token进行用户身份认证。 认识 Kubernetes 中的用户 Kubernetes 集群中包含两类用户:一类是由 Kubernetes 管理的 service account,另一类是普通用户。 普通用户被假定为由外部独立服务管理。管理员分发私钥,用户存储(如 Keystone 或 Google 帐户),甚至包含用户名和密码列表的文件。在这方面,Kubernetes 没有代表普通用户帐户的对象。无法通过 API 调用的方式向集群中添加普通用户。 相对的,service account 是由 Kubernetes API 管理的帐户。它们都绑定到了特定的 namespace,并由 API server 自动创建,或者通过 API 调用手动创建。Service account 关联了一套凭证,存储在 Secret,这些凭证同时被挂载到 pod 中,从而允许 pod 与 kubernetes API 之间的调用。 API 请求被绑定到普通用户或 serivce account 上,或者作为匿名请求对待。这意味着集群内部或外部的每个进程,无论从在工作站上输入 kubectl 的人类用户到节点上的 kubelet,到控制平面的成员,都必须在向 API Server 发出请求时进行身份验证,或者被视为匿名用户。 认证策略 Kubernetes 使用客户端证书、bearer token、身份验证代理或者 HTTP 基本身份验证等身份认证插件来对 API 请求进行身份验证。当有 HTTP 请求发送到 API server 时,插件会尝试将以下属性关联到请求上: 用户名:标识最终用户的字符串。常用值可能是 kube-admin 或 jane@example.com。 UID:标识最终用户的字符串,比用户名更加一致且唯一。 组:一组将用户和常规用户组相关联的字符串。 额外字段:包含其他有用认证信息的字符串列表的映射。 所有的值对于认证系统都是不透明的,只有 授权人 才能解释这些值的重要含义。 您可以一次性启用多种身份验证方式。通常使用至少以下两种认证方式: 服务帐户的 service account token 至少一种其他的用户认证的方式 当启用了多个认证模块时,第一个认证模块成功认证后将短路请求,不会进行第二个模块的认证。API server 不会保证认证的顺序。 system:authenticated 组包含在所有已验证用户的组列表中。 与其他身份验证协议(LDAP、SAML、Kerberos、x509 方案等)的集成可以使用身份验证代理或身份验证 webhook来实现。 X509 客户端证书 通过将 --client-ca-file=SOMEFILE 选项传递给 API server 来启用客户端证书认证。引用的文件必须包含一个或多个证书颁发机构,用于验证提交给 API server 的客户端证书。如果客户端证书已提交并验证,则使用 subject 的 Common Name(CN)作为请求的用户名。从 Kubernetes 1.4开始,客户端证书还可以使用证书的 organization 字段来指示用户的组成员身份。要为用户包含多个组成员身份,请在证书中包含多个 organization 字段。 例如,使用 openssl 命令工具生成用于签名认证请求的证书: openssl req -new -key jbeda.pem -out jbeda-csr.pem -subj \"/CN=jbeda/O=app1/O=app2\" 这将为一个用户名为 ”jbeda“ 的 CSR,属于两个组“app1”和“app2”。 静态 Token 文件 当在命令行上指定 --token-auth-file=SOMEFILE 选项时,API server 从文件读取 bearer token。目前,token 会无限期地持续下去,并且不重新启动 API server 的话就无法更改令牌列表。 token 文件是一个 csv 文件,每行至少包含三列:token、用户名、用户 uid,其次是可选的组名。请注意,如果您有多个组,则该列必须使用双引号。 token,user,uid,\"group1,group2,group3\" 在请求中放置 Bearer Token 当使用来自 http 客户端的 bearer token 时,API server 期望 Authorization header 中包含 Bearer token 的值。Bearer token 必须是一个字符串序列,只需使用 HTTP 的编码和引用功能就可以将其放入到 HTTP header 中。例如:如果 bearer token 是 31ada4fd-adec-460c-809a-9e56ceb75269,那么它将出现在 HTTP header 中,如下所示: Authorization: Bearer 31ada4fd-adec-460c-809a-9e56ceb75269 Bootstrap Token 该功能仍处于 alpha 版本。 为了简化新集群的初始化引导过程,Kubernetes 中包含了一个名为 Bootstrap Token 的动态管理的 bearer token。这些 token 使用 Secret 存储在 kube-system namespace 中,在那里它们可以被动态管理和创建。Controller Manager 中包含了一个 TokenCleaner 控制器,用于在 bootstrap token 过期时删除将其删除。 这些 token 的形式是 [a-z0-9]{6}.[a-z0-9]{16}。第一部分是 Token ID,第二部分是 Token Secret。您在 HTTP header 中指定的 token 如下所示: Authorization: Bearer 781292.db7bc3a58fc5f07e 在 API server 的启动参数中加上 --experimental-bootstrap-token-auth 标志以启用 Bootstrap Token Authenticator。您必须通过 Controller Manager 上的 --controllers 标志启用 TokenCleaner 控制器,如 --controllers=*,tokencleaner。如果您使用它来引导集群, kubeadm 会为您完成。 认证者认证为 system:bootstrap: 。被包含在 system:bootstrappers 组中。命名和组是有意限制用户使用过去的 bootstap token。可以使用用户名和组(kubeadm 使用)来制定适当的授权策略以支持引导集群。 有关 Bootstrap Token 身份验证器和控制器的更深入的文档,以及如何使用 kubeadm 管理这些令牌,请参阅 Bootstrap Token。 静态密码文件 通过将 --basic-auth-file=SOMEFILE 选项传递给 API server 来启用基本身份验证。目前,基本身份验证凭证将无限期地保留,并且密码在不重新启动API服务器的情况下无法更改。请注意,为了方便起见,目前支持基本身份验证,而上述模式更安全更容易使用。 基本身份认证是一个 csv 文件,至少包含3列:密码、用户名和用户 ID。在 Kubernetes 1.6 和更高版本中,可以指定包含以逗号分隔的组名称的可选第四列。如果您有多个组,则必须将第四列值用双引号(“)括起来,请参阅以下示例: password,user,uid,\"group1,group2,group3\" 当使用来自 HTTP 客户端的基本身份验证时,API server 需要Authorization header 中包含 Basic BASE64ENCODED(USER:PASSWORD) 的值。 Service Account Token Service account 是一个自动启用的验证器,它使用签名的 bearer token 来验证请求。该插件包括两个可选的标志: --service-account-key-file 一个包含签名 bearer token 的 PEM 编码文件。如果未指定,将使用 API server 的 TLS 私钥。 --service-account-lookup 如果启用,从 API 中删除掉的 token 将被撤销。 Service account 通常 API server 自动创建,并通过 ServiceAccount 注入控制器 关联到集群中运行的 Pod 上。Bearer token 挂载到 pod 中众所周知的位置,并允许集群进程与 API server 通信。 帐户可以使用 PodSpec 的 serviceAccountName 字段显式地与Pod关联。 注意: serviceAccountName 通常被省略,因为这会自动生成。 apiVersion: apps/v1beta2 kind: Deployment metadata: name: nginx-deployment namespace: default spec: replicas: 3 template: metadata: # ... spec: containers: - name: nginx image: nginx:1.7.9 serviceAccountName: bob-the-bot Service account bearer token 在集群外使用也是完全有效的,并且可以用于为希望与 Kubernetes 通信的长期运行作业创建身份。要手动创建 service account,只需要使用 kubectl create serviceaccount (NAME) 命令。这将在当前的 namespace 和相关连的 secret 中创建一个 service account。 $ kubectl create serviceaccount jenkins serviceaccount \"jenkins\" created $ kubectl get serviceaccounts jenkins -o yaml apiVersion: v1 kind: ServiceAccount metadata: # ... secrets: - name: jenkins-token-1yvwg 创建出的 secret 中拥有 API server 的公共 CA 和前面的 JSON Web Token(JWT)。 $ kubectl get secret jenkins-token-1yvwg -o yaml apiVersion: v1 data: ca.crt: (APISERVER'S CA BASE64 ENCODED) namespace: ZGVmYXVsdA== token: (BEARER TOKEN BASE64 ENCODED) kind: Secret metadata: # ... type: kubernetes.io/service-account-token 注意:所有值是基于 base64 编码的,因为 secret 总是基于 base64 编码。 经过签名的 JWT 可以用作 bearer token 与给定的 service account 进行身份验证。请参阅上面关于如何在请求中放置 bearer token。通常情况下,这些 secret 被挂载到 pod 中,以便对集群内的 API server 进行访问,但也可以从集群外访问。 Service account 验证时用户名 system:serviceaccount:(NAMESPACE):(SERVICEACCOUNT),被指定到组 system:serviceaccounts 和 system:serviceaccounts:(NAMESPACE)。 注意:由于 service account 的 token 存储在 secret 中,所以具有对这些 secret 的读取权限的任何用户都可以作为 service account 进行身份验证。授予 service account 权限和读取 secret 功能时要谨慎。 OpenID Connect Token OpenID Connect 是由 OAuth2 供应商提供的 OAuth2,特别是 Azure Active Directory、Salesforce 和 Google。对 OAuth2 协议的主要扩展是返回一个称作 ID Token 的格外字段。该 token 是一个 JSON Web Token (JWT) ,有服务器签名,具有众所周知的字段,如用户的电子邮件。 为了识别用户,认证者使用 OAuth2 token 响应 中的 id_token(而不是 access_token)作为 bearer token。请参阅上面的关于将 token 置于请求中。 图 5.4.7.1:Kubernetes OpenID Connect Flow 登陆到您的身份提供商 您的身份提供商将为您提供一个 access_token,一个 id_token 和一个 refresh_token 当使用 kubectl 时,使用 --token 标志和 id_token ,或者直接加入到您的 kubeconfig 文件中 kubectl 在调用 API server 时将 id_token 置于 HTTP header 中 API server 将通过检查配置中指定的证书来确保 JWT 签名有效 检查以确保 id_token 没有过期 确保用户已授权 授权 API server 后向 kubectl kubectl 向用户提供反馈 由于所有需要验证您身份的数据都在 id_token 中,Kubernetes 不需要向身份提供商 “phone home”。在每个请求都是无状态的模型中,这为认证提供了非常可扩展的解决方案。它确实提供了一些挑战: Kubernetes 没有 ”web 接口“ 来出发验证进程。没有浏览器或界面来收集凭据,这就是为什么您需要首先认证您的身份提供商。 id_token 无法撤销,就像一个证书,所以它应该是短暂的(只有几分钟),所以每隔几分钟就得到一个新的令牌是非常烦人的。 没有使用 kubectl proxy 命令或注入 id_token 的反向代理,无法简单地对 Kubernetes dashboard 进行身份验证。 配置 API Server 要启用该插件,需要在 API server 中配置如下标志: 参数 描述 示例 是否必需 --oidc-issuer-url 允许 API server 发现公共签名密钥的提供者的 URL。只接受使用 https:// 的方案。通常是提供商的 URL 地址,不包含路径,例如“https://accounts.google.com” 或者 “https://login.salesforce.com”。这个 URL 应该指向下面的 .well-known/openid-configuration 如果发现 URL 是 https://accounts.google.com/.well-known/openid-configuration,值应该是https://accounts.google.com 是 --oidc-client-id 所有的 token 必须为其颁发的客户端 ID kubernetes 是 --oidc-username-claim JWT声明使用的用户名。默认情况下,sub 是最终用户的唯一标识符。管理员可以选择其他声明,如email 或 name,具体取决于他们的提供者。不过,email 以外的其他声明将以发行者的 URL 作为前缀,以防止与其他插件命名冲突。 sub 否 --oidc-groups-claim JWT声明使用的用户组。如果生命存在,它必须是一个字符串数组。 groups 否 --oidc-ca-file 用来签名您的身份提供商的网络 CA 证书的路径。默认为主机的跟 CA。 /etc/kubernetes/ssl/kc-ca.pem 否 如果为 --oidc-username-claim 选择了除 email 以外的其他声明,则该值将以 --oidc-issuer-url 作为前缀,以防止与现有 Kubernetes 名称(例如 system:users)冲突。例如,如果提供商网址是 https://accounts.google.com,而用户名声明映射到 jane,则插件会将用户身份验证为: https://accounts.google.com#jane 重要的是,API server 不是 OAuth2 客户端,而只能配置为信任单个发行者。这允许使用 Google 等公共提供者,而不必信任第三方发行的凭据。希望利用多个 OAuth 客户端的管理员应该探索支持 azp(授权方)声明的提供者,这是允许一个客户端代表另一个客户端发放令牌的机制。 Kubernetes不提供 OpenID Connect 身份提供商。您可以使用现有的公共 OpenID Connect 标识提供程序(例如Google 或 其他)。或者,您可以运行自己的身份提供程序,例如 CoreOS dex、Keycloak、CloudFoundry UAA 或 Tremolo Security 的 OpenUnison。 对于身份提供商能够适用于 Kubernetes,必须满足如下条件:Kubernetes it must: 支持 OpenID connect 发现;不必是全部。 使用非过时密码在TLS中运行 拥有 CA 签名证书(即使 CA 不是商业 CA 或自签名) 有关上述要求3的说明,需要 CA 签名证书。如果您部署自己的身份提供商(而不是像 Google 或 Microsoft 之类的云提供商),则必须让您的身份提供商的 Web 服务器证书由 CA 标志设置为 TRUE 的证书签名,即使是自签名的。这是由于 GoLang 的 TLS 客户端实现对证书验证的标准非常严格。如果您没有 CA,可以使用 CoreOS 团队的 这个脚本 创建一个简单的 CA 和一个签名的证书和密钥对。 针对特定系统的安装说明: UAA Dex OpenUnison 使用 kubectl 选项 1 - OIDC 身份验证器 第一个选项是使用 oidc 身份验证器。此身份验证程序将您的 id_token、refresh_token 和您的 OIDC client_secret 自动刷新您的 token。一旦您对身份提供者进行了身份验证: kubectl config set-credentials USER_NAME \\ --auth-provider=oidc \\ --auth-provider-arg=idp-issuer-url=( issuer url ) \\ --auth-provider-arg=client-id=( your client id ) \\ --auth-provider-arg=client-secret=( your client secret ) \\ --auth-provider-arg=refresh-token=( your refresh token ) \\ --auth-provider-arg=idp-certificate-authority=( path to your ca certificate ) \\ --auth-provider-arg=id-token=( your id_token ) \\ --auth-provider-arg=extra-scopes=( comma separated list of scopes to add to \"openid email profile\", optional ) 例如,在向身份提供者进行身份验证之后运行以下命令: kubectl config set-credentials mmosley \\ --auth-provider=oidc \\ --auth-provider-arg=idp-issuer-url=https://oidcidp.tremolo.lan:8443/auth/idp/OidcIdP \\ --auth-provider-arg=client-id=kubernetes \\ --auth-provider-arg=client-secret=1db158f6-177d-4d9c-8a8b-d36869918ec5 \\ --auth-provider-arg=refresh-token=q1bKLFOyUiosTfawzA93TzZIDzH2TNa2SMm0zEiPKTUwME6BkEo6Sql5yUWVBSWpKUGphaWpxSVAfekBOZbBhaEW+VlFUeVRGcluyVF5JT4+haZmPsluFoFu5XkpXk5BXqHega4GAXlF+ma+vmYpFcHe5eZR+slBFpZKtQA= \\ --auth-provider-arg=idp-certificate-authority=/root/ca.pem \\ --auth-provider-arg=extra-scopes=groups \\ --auth-provider-arg=id-token=eyJraWQiOiJDTj1vaWRjaWRwLnRyZW1vbG8ubGFuLCBPVT1EZW1vLCBPPVRybWVvbG8gU2VjdXJpdHksIEw9QXJsaW5ndG9uLCBTVD1WaXJnaW5pYSwgQz1VUy1DTj1rdWJlLWNhLTEyMDIxNDc5MjEwMzYwNzMyMTUyIiwiYWxnIjoiUlMyNTYifQ.eyJpc3MiOiJodHRwczovL29pZGNpZHAudHJlbW9sby5sYW46ODQ0My9hdXRoL2lkcC9PaWRjSWRQIiwiYXVkIjoia3ViZXJuZXRlcyIsImV4cCI6MTQ4MzU0OTUxMSwianRpIjoiMm96US15TXdFcHV4WDlHZUhQdy1hZyIsImlhdCI6MTQ4MzU0OTQ1MSwibmJmIjoxNDgzNTQ5MzMxLCJzdWIiOiI0YWViMzdiYS1iNjQ1LTQ4ZmQtYWIzMC0xYTAxZWU0MWUyMTgifQ.w6p4J_6qQ1HzTG9nrEOrubxIMb9K5hzcMPxc9IxPx2K4xO9l-oFiUw93daH3m5pluP6K7eOE6txBuRVfEcpJSwlelsOsW8gb8VJcnzMS9EnZpeA0tW_p-mnkFc3VcfyXuhe5R3G7aa5d8uHv70yJ9Y3-UhjiN9EhpMdfPAoEB9fYKKkJRzF7utTTIPGrSaSU6d2pcpfYKaxIwePzEkT4DfcQthoZdy9ucNvvLoi1DIC-UocFD8HLs8LYKEqSxQvOcvnThbObJ9af71EwmuE21fO5KzMW20KtAeget1gnldOosPtz1G5EwvaQ401-RPQzPGMVBld0_zMCAwZttJ4knw 将产生下面的配置: users: - name: mmosley user: auth-provider: config: client-id: kubernetes client-secret: 1db158f6-177d-4d9c-8a8b-d36869918ec5 extra-scopes: groups id-token: eyJraWQiOiJDTj1vaWRjaWRwLnRyZW1vbG8ubGFuLCBPVT1EZW1vLCBPPVRybWVvbG8gU2VjdXJpdHksIEw9QXJsaW5ndG9uLCBTVD1WaXJnaW5pYSwgQz1VUy1DTj1rdWJlLWNhLTEyMDIxNDc5MjEwMzYwNzMyMTUyIiwiYWxnIjoiUlMyNTYifQ.eyJpc3MiOiJodHRwczovL29pZGNpZHAudHJlbW9sby5sYW46ODQ0My9hdXRoL2lkcC9PaWRjSWRQIiwiYXVkIjoia3ViZXJuZXRlcyIsImV4cCI6MTQ4MzU0OTUxMSwianRpIjoiMm96US15TXdFcHV4WDlHZUhQdy1hZyIsImlhdCI6MTQ4MzU0OTQ1MSwibmJmIjoxNDgzNTQ5MzMxLCJzdWIiOiI0YWViMzdiYS1iNjQ1LTQ4ZmQtYWIzMC0xYTAxZWU0MWUyMTgifQ.w6p4J_6qQ1HzTG9nrEOrubxIMb9K5hzcMPxc9IxPx2K4xO9l-oFiUw93daH3m5pluP6K7eOE6txBuRVfEcpJSwlelsOsW8gb8VJcnzMS9EnZpeA0tW_p-mnkFc3VcfyXuhe5R3G7aa5d8uHv70yJ9Y3-UhjiN9EhpMdfPAoEB9fYKKkJRzF7utTTIPGrSaSU6d2pcpfYKaxIwePzEkT4DfcQthoZdy9ucNvvLoi1DIC-UocFD8HLs8LYKEqSxQvOcvnThbObJ9af71EwmuE21fO5KzMW20KtAeget1gnldOosPtz1G5EwvaQ401-RPQzPGMVBld0_zMCAwZttJ4knw idp-certificate-authority: /root/ca.pem idp-issuer-url: https://oidcidp.tremolo.lan:8443/auth/idp/OidcIdP refresh-token: q1bKLFOyUiosTfawzA93TzZIDzH2TNa2SMm0zEiPKTUwME6BkEo6Sql5yUWVBSWpKUGphaWpxSVAfekBOZbBhaEW+VlFUeVRGcluyVF5JT4+haZmPsluFoFu5XkpXk5BXq name: oidc 一旦您的 id_token 过期,kubectl 将使用 refresh_token 刷新 id_token,然后在 kube/.config 文件的client_secret 中存储 id_token 的值和refresh_token 的新值。 选项 2 - 使用 --token 选项 可以在 kubectl 命令的 --token 选项中传入 token。简单的拷贝和复制 id_token 到该选项中: kubectl --token=eyJhbGciOiJSUzI1NiJ9.eyJpc3MiOiJodHRwczovL21sYi50cmVtb2xvLmxhbjo4MDQzL2F1dGgvaWRwL29pZGMiLCJhdWQiOiJrdWJlcm5ldGVzIiwiZXhwIjoxNDc0NTk2NjY5LCJqdGkiOiI2RDUzNXoxUEpFNjJOR3QxaWVyYm9RIiwiaWF0IjoxNDc0NTk2MzY5LCJuYmYiOjE0NzQ1OTYyNDksInN1YiI6Im13aW5kdSIsInVzZXJfcm9sZSI6WyJ1c2VycyIsIm5ldy1uYW1lc3BhY2Utdmlld2VyIl0sImVtYWlsIjoibXdpbmR1QG5vbW9yZWplZGkuY29tIn0.f2As579n9VNoaKzoF-dOQGmXkFKf1FMyNV0-va_B63jn-_n9LGSCca_6IVMP8pO-Zb4KvRqGyTP0r3HkHxYy5c81AnIh8ijarruczl-TK_yF5akjSTHFZD-0gRzlevBDiH8Q79NAr-ky0P4iIXS8lY9Vnjch5MF74Zx0c3alKJHJUnnpjIACByfF2SCaYzbWFMUNat-K1PaUk5-ujMBG7yYnr95xD-63n8CO8teGUAAEMx6zRjzfhnhbzX-ajwZLGwGUBT4WqjMs70-6a7_8gZmLZb2az1cZynkFRj2BaCkVT3A2RrjeEwZEtGXlMqKJ1_I2ulrOVsYx01_yD35-rw get nodes Webhook Token 认证 Webhook 认证是用来认证 bearer token 的 hook。 --authentication-token-webhook-config-file 是一个用来描述如何访问远程 webhook 服务的 kubeconfig 文件。 --authentication-token-webhook-cache-ttl 缓存身份验证策略的时间。默认为两分钟。 配置文件使用 kubeconfig 文件格式。文件中的 ”user“ 指的是 API server 的 webhook,”clusters“ 是指远程服务。见下面的例子: # clusters refers to the remote service. clusters: - name: name-of-remote-authn-service cluster: certificate-authority: /path/to/ca.pem # CA for verifying the remote service. server: https://authn.example.com/authenticate # URL of remote service to query. Must use 'https'. # users refers to the API server's webhook configuration. users: - name: name-of-api-server user: client-certificate: /path/to/cert.pem # cert for the webhook plugin to use client-key: /path/to/key.pem # key matching the cert # kubeconfig files require a context. Provide one for the API server. current-context: webhook contexts: - context: cluster: name-of-remote-authn-service user: name-of-api-sever name: webhook 当客户端尝试使用 bearer token 与API server 进行认证是,如上论述,认证 webhook 用饱含该 token 的对象查询远程服务。Kubernetes 不会挑战缺少该 header 的请求。 请注意,webhook API对象与其他 Kubernetes API 对象具有相同的 版本控制兼容性规则。实现者应该意识到 Beta 对象的宽松兼容性承诺,并检查请求的 “apiVersion” 字段以确保正确的反序列化。此外,API server 必须启用 authentication.k8s.io/v1beta1 API 扩展组(--runtime config =authentication.k8s.io/v1beta1=true)。 The request body will be of the following format: { \"apiVersion\": \"authentication.k8s.io/v1beta1\", \"kind\": \"TokenReview\", \"spec\": { \"token\": \"(BEARERTOKEN)\" } } 预计远程服务将填写请求的 status 字段以指示登录成功。响应主体的 spec 字段被忽略,可以省略。成功验证后的 bearer token 将返回: { \"apiVersion\": \"authentication.k8s.io/v1beta1\", \"kind\": \"TokenReview\", \"status\": { \"authenticated\": true, \"user\": { \"username\": \"janedoe@example.com\", \"uid\": \"42\", \"groups\": [ \"developers\", \"qa\" ], \"extra\": { \"extrafield1\": [ \"extravalue1\", \"extravalue2\" ] } } } } 未成功的请求将返回: { \"apiVersion\": \"authentication.k8s.io/v1beta1\", \"kind\": \"TokenReview\", \"status\": { \"authenticated\": false } } HTTP状态代码可以用来提供额外的错误上下文。 认证代理 可以配置 API server 从请求 header 的值中识别用户,例如 X-Remote-User。这样的设计是用来与请求 header 值的验证代理结合使用。 --requestheader-username-headers 必需,大小写敏感。按 header 名称和顺序检查用户标识。包含值的第一个 header 将被作为用户名。 --requestheader-group-headers 1.6 以上版本。可选。大小写敏感。建议为 “X-Remote-Group”。按 header 名称和顺序检查用户组。所有指定的 header 中的所有值都将作为组名。 --requestheader-extra-headers-prefix 1.6 以上版本。可选,大小写敏感。建议为 “X-Remote-Extra-”。标题前缀可用于查找有关用户的额外信息(通常由配置的授权插件使用)。以任何指定的前缀开头的 header 都会删除前缀,header 名称的其余部分将成为额外的键值,而 header 值则是额外的值。 例如下面的配置: --requestheader-username-headers=X-Remote-User --requestheader-group-headers=X-Remote-Group --requestheader-extra-headers-prefix=X-Remote-Extra- 该请求: GET / HTTP/1.1 X-Remote-User: fido X-Remote-Group: dogs X-Remote-Group: dachshunds X-Remote-Extra-Scopes: openid X-Remote-Extra-Scopes: profile 将产生如下的用户信息: name: fido groups: - dogs - dachshunds extra: scopes: - openid - profile 为了防止 header 欺骗,验证代理需要在验证请求 header 之前向 API server 提供有效的客户端证书,以对照指定的 CA 进行验证。 --requestheader-client-ca-file 必需。PEM 编码的证书包。在检查用户名的请求 header 之前,必须针对指定文件中的证书颁发机构提交并验证有效的客户端证书。 --requestheader-allowed-names 可选。Common Name (cn)列表。如果设置了,则在检查用户名的请求 header 之前, 必须提供指定列表中 Common Name(cn)的有效客户端证书。如果为空,则允许使用任何 Common Name。 Keystone 密码 通过在启动过程中将 --experimental-keystone-url= 选项传递给 API server 来启用 Keystone 认证。该插件在 plugin/pkg/auth/authenticator/password/keystone/keystone.go 中实现,目前使用基本身份验证通过用户名和密码验证用户。 如果您为 Keystone 服务器配置了自签名证书,则在启动 Kubernetes API server 时可能需要设置 --experimental-keystone-ca-file=SOMEFILE 选项。如果您设置了该选项,Keystone 服务器的证书将由experimental-keystone-ca-file 中的某个权威机构验证。否则,证书由主机的根证书颁发机构验证。 有关如何使用 keystone 来管理项目和用户的详细信息,请参阅 Keystone 文档。请注意,这个插件仍处于试验阶段,正在积极开发之中,并可能在后续版本中进行更改。 请参考 讨论、蓝图 和 提出的改变 获取更多信息。 匿名请求 启用时,未被其他已配置身份验证方法拒绝的请求将被视为匿名请求,并给予 system:anonymous 的用户名和system:unuthenticated 的组名。 例如,在配置了令牌认证和启用了匿名访问的服务器上,提供无效的 bearer token 的请求将收到 401 Unauthorized 错误。提供 bearer token 的请求将被视为匿名请求。 在 1.5.1 - 1.5.x 版本中,默认情况下命名访问是被禁用的,可以通过传递 --anonymous-auth=false 选项给 API server 来启用。 在 1.6+ 版本中,如果使用 AlwaysAllow 以外的授权模式,则默认启用匿名访问,并且可以通过将 --anonymous-auth=false选项传递给API服务器来禁用。从 1.6 开始,ABAC 和 RBAC 授权人需要明确授权 system:annoymous 或 system:unauthenticated 组,因此授予对 * 用户或 * 组访问权的传统策略规则不包括匿名用户。 用户模拟 用户可以通过模拟 header 充当另一个用户。该请求会覆盖请求认证的用户信息。例如,管理员可以使用此功能通过暂时模拟其他用户并查看请求是否被拒绝来调试授权策略。 模拟请求首先认证为请求用户,然后切换到模拟的用户信息。 用户使用他们的凭证和模拟 header 进行 API 调用。 API server 认证用户 API server 确保经过身份验证的用户具有模拟权限。 请求用户的信息被替换为模拟值 请求被评估,授权作用于模拟的用户信息。 以下 HTTP header 可用户执行模拟请求: Impersonate-User:充当的用户名 Impersonate-Group:作为组名。可以多次使用来设置多个组。可选的,需要 “Impersonate-User” Impersonate-Extra-( extra name ):用于将额外字段与用户关联的动态 header。可选。需要 “Impersonate-User” 一组示例 header: Impersonate-User: jane.doe@example.com Impersonate-Group: developers Impersonate-Group: admins Impersonate-Extra-dn: cn=jane,ou=engineers,dc=example,dc=com Impersonate-Extra-scopes: view Impersonate-Extra-scopes: development 当使用 kubectl 的 --as 标志来配置 Impersonate-User header 时,可以使用 --as-group 标志来配置 Impersonate-Group header。 $ kubectl drain mynode Error from server (Forbidden): User \"clark\" cannot get nodes at the cluster scope. (get nodes mynode) $ kubectl drain mynode --as=superman --as-group=system:masters node \"mynode\" cordoned node \"mynode\" draine 为模仿用户、组或设置额外字段,模拟用户必须能够对正在模拟的属性的种类(“用户”,“组”等)执行“模拟”动词。对于启用了 RBAC 授权插件的集群,以下 ClusterRole 包含设置用户和组模拟 header 所需的规则: apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: impersonator rules: - apiGroups: [\"\"] resources: [\"users\", \"groups\", \"serviceaccounts\"] verbs: [\"impersonate\"] 额外的字段被评估为资源 “userextras” 的子资源。为了允许用户使用额外字段 “scope” 的模拟 header,应授予用户以下角色: apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: scopes-impersonator # Can set \"Impersonate-Extra-scopes\" header. - apiGroups: [\"authentication.k8s.io\"] resources: [\"userextras/scopes\"] verbs: [\"impersonate\"] 模拟 header 的可用值可以通过设置 resourceNames 可以使用的资源来限制。 apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: limited-impersonator rules: # Can impersonate the user \"jane.doe@example.com\" - apiGroups: [\"\"] resources: [\"users\"] verbs: [\"impersonate\"] resourceNames: [\"jane.doe@example.com\"] # Can impersonate the groups \"developers\" and \"admins\" - apiGroups: [\"\"] resources: [\"groups\"] - verbs: [\"impersonate\"] resourceNames: [\"developers\",\"admins\"] # Can impersonate the extras field \"scopes\" with the values \"view\" and \"development\" - apiGroups: [\"authentication.k8s.io\"] resources: [\"userextras/scopes\"] verbs: [\"impersonate\"] resourceNames: [\"view\", \"development\"] 附录 创建证书 使用客户端证书进行身份验证时,可以使用现有的部署脚本或通过 easyrsa 或 openssl 手动生成证书。 使用已有的部署脚本 已有的部署脚本 在 cluster/saltbase/salt/generate-cert/make-ca-cert.sh。 执行该脚本时需要传递两个参数。第一个参数是 API server 的 IP地址。第二个参数是 IP 形式的主题备用名称列表: IP: 或 DNS:。 该脚本将生成三个文件: ca.crt、server.crt 和 server.key。 最后,将一下参数添加到 API server 的启动参数中: --client-ca-file=/srv/kubernetes/ca.crt --tls-cert-file=/srv/kubernetes/server.crt --tls-private-key-file=/srv/kubernetes/server.key easyrsa easyrsa 可以用来手动为集群生成证书。 下载,解压,并初始化修补版本的easyrsa3。 curl -L -O https://storage.googleapis.com/kubernetes-release/easy-rsa/easy-rsa.tar.gz tar xzf easy-rsa.tar.gz cd easy-rsa-master/easyrsa3 ./easyrsa init-pki 生成 CA(使用 --batch 设置为自动模式。使用 --req-cn 设置默认的 CN) ./easyrsa --batch \"--req-cn=${MASTER_IP}@`date +%s`\" build-ca nopass 生成服务器证书和密钥。(build-server-full [文件名]:生成一个键值对,在本地为客户端和服务器签名。) ./easyrsa --subject-alt-name=\"IP:${MASTER_IP}\" build-server-full server nopass 复制 pki/ca.crt, pki/issued/server.crt 和 pki/private/server.key 到您的目录下。 将以下参数添加到 API server 的启动参数中: --client-ca-file=/yourdirectory/ca.crt --tls-cert-file=/yourdirectory/server.crt --tls-private-key-file=/yourdirectory/server.key openssl openssl 可以用来手动为集群生成证书。 生成一个 2048 bit 的 ca.key: openssl genrsa -out ca.key 2048 根据 ca.key 生成一个 ca.crt(使用 -days 设置证书的有效时间): openssl req -x509 -new -nodes -key ca.key -subj \"/CN=${MASTER_IP}\" -days 10000 -out ca.crt 生成一个 2048 bit 的 server.key: openssl genrsa -out server.key 2048 根据 server.key 生成一个 server.csr: openssl req -new -key server.key -subj \"/CN=${MASTER_IP}\" -out server.csr 根据 ca.key、ca.crt 和 server.csr 生成 server.crt: openssl x509 -req -in server.csr -CA ca.crt -CAkey ca.key -CAcreateserial -out server.crt -days 10000 查看证书: openssl x509 -noout -text -in ./server.crt 最后,不要忘了向 API server 的启动参数中增加配置。 认证 API 您可以使用 certificates.k8s.io API将 x509 证书配置为用于身份验证,如 此处 所述。 官方最新文档地址:https://kubernetes.io/docs/admin/authentication/ 译者:Jimmy Song 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/kubernetes-security-best-practice.html":{"url":"guide/kubernetes-security-best-practice.html","title":"Kubernetes 集群安全性配置最佳实践","keywords":"","body":"Kubernetes集群安全性配置最佳实践 本文是对Kubernetes集群安全性管理的最佳实践。 端口 请注意管理好以下端口。 端口 进程 描述 4149/TCP kubelet 用于查询容器监控指标的cAdvisor端口 10250/TCP kubelet 访问节点的API端口 10255/TCP kubelet 未认证的只读端口,允许访问节点状态 10256/TCP kube-proxy kube-proxy的健康检查服务端口 9099/TCP calico-felix calico的健康检查服务端口(如果使用calico/canal) 6443/TCP kube-apiserver Kubernetes API端口 Kubernetes安全扫描工具kube-bench kube-bench可以消除大约kubernetes集群中95%的配置缺陷。通过应用CIS Kubernetes Benchmark来检查master节点、node节点及其控制平面组件,从而确保集群设置了特定安全准则。在经历特定的Kubernetes安全问题或安全增强功能之前,这应该是第一步。 API设置 授权模式和匿名认证 像kops这样的一些安装程序会为集群使用AlwaysAllow授权模式。这将授予任何经过身份验证的实体拥有完全访问集群的权限。应该使用RBAC基于角色的访问控制。检查您的kube-apiserver进程的--authorization-mode参数。有关该主题的更多信息,请访问https://kubernetes.io/docs/admin/authorization/。要强制进行身份验证,请确保通过设置--anonymous-auth = false禁用匿名身份验证。 注意这不影响Kubelet授权模式。kubelet本身公开了一个API来执行命令,通过它可以完全绕过Kubernetes API。 更多关于使用kops等工具自动安装Kubernetes集群的安全配置注意事项请参考Kubernetes Security - Best Practice Guide。 参考 Kubernetes Security - Best Practice Guide Kubernetes v1.7 security in practice Isolate containers with a user namespace Docker Security – It’s a Layered Approach Kubernetes 1.8: Security, Workloads and Feature Depth Security Matters: RBAC in Kubernetes 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/access-kubernetes-cluster.html":{"url":"guide/access-kubernetes-cluster.html","title":"访问 Kubernetes 集群","keywords":"","body":"访问 Kubernetes 集群 根据用户部署和暴露服务的方式不同,有很多种方式可以用来访问 kubernetes 集群。 最简单也是最直接的方式是使用 kubectl 命令。 其次可以使用 kubeconfig 文件来认证授权访问 API server。 通过各种 proxy 经过端口转发访问 kubernetes 集群中的服务 使用 Ingress,在集群外访问 kubernetes 集群内的 service 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/access-cluster.html":{"url":"guide/access-cluster.html","title":"访问集群","keywords":"","body":"访问集群 第一次使用 kubectl 访问 如果您是第一次访问 Kubernetes API 的话,我们建议您使用 Kubernetes 命令行工具:kubectl。 为了访问集群,您需要知道集群的地址,并且需要有访问它的凭证。通常,如果您完成了入门指南那么这些将会自动设置,或者其他人为您部署的集群提供并给您凭证和集群地址。 使用下面的命令检查 kubectl 已知的集群的地址和凭证: $ kubectl config view 直接访问 REST API Kubectl 处理对 apiserver 的定位和认证。如果您想直接访问 REST API,可以使用像 curl、wget 或浏览器这样的 http 客户端,有以下几种方式来定位和认证: 以 proxy 模式运行 kubectl。 推荐方法。 使用已保存的 apiserver 位置信息。 使用自签名证书验证 apiserver 的身份。 没有 MITM(中间人攻击)的可能。 认证到 apiserver。 将来,可能会做智能的客户端负载均衡和故障转移。 直接向 http 客户端提供位置和凭据。 替代方法。 适用于通过使用代理而混淆的某些类型的客户端代码。 需要将根证书导入浏览器以防止 MITM。 使用 kubectl proxy 以下命令作为反向代理的模式运行 kubectl。 它处理对 apiserver 的定位并进行认证。 像这样运行: $ kubectl proxy --port=8080 & 然后您可以使用 curl、wget 或者浏览器来访问 API,如下所示: $ curl http://localhost:8080/api/ { \"versions\": [ \"v1\" ] } 不使用 kubectl proxy(1.3.x 以前版本) 通过将认证 token 直接传递给 apiserver 的方式,可以避免使用 kubectl proxy,如下所示: $ APISERVER=$(kubectl config view | grep server | cut -f 2- -d \":\" | tr -d \" \") $ TOKEN=$(kubectl config view | grep token | cut -f 2 -d \":\" | tr -d \" \") $ curl $APISERVER/api --header \"Authorization: Bearer $TOKEN\" --insecure { \"versions\": [ \"v1\" ] } 不使用 kubectl proxy(1.3.x 以后版本) 在 Kubernetes 1.3 或更高版本中,kubectl config view 不再显示 token。 使用 kubectl describe secret … 获取 default service account 的 token,如下所示: $ APISERVER=$(kubectl config view | grep server | cut -f 2- -d \":\" | tr -d \" \") $ TOKEN=$(kubectl describe secret $(kubectl get secrets | grep default | cut -f1 -d ' ') | grep -E '^token' | cut -f2 -d':' | tr -d '\\t') $ curl $APISERVER/api --header \"Authorization: Bearer $TOKEN\" --insecure { \"kind\": \"APIVersions\", \"versions\": [ \"v1\" ], \"serverAddressByClientCIDRs\": [ { \"clientCIDR\": \"0.0.0.0/0\", \"serverAddress\": \"10.0.1.149:443\" } ] } 以上示例使用--insecure 标志。 这使得它容易受到 MITM 攻击。 当 kubectl 访问集群时,它使用存储的根证书和客户端证书来访问服务器。 (这些安装在~/.kube目录中)。 由于集群证书通常是自签名的,因此可能需要特殊配置才能让您的 http 客户端使用根证书。 对于某些群集,apiserver 可能不需要身份验证;可以选择在本地主机上服务,或者使用防火墙保护。 对此还没有一个标准。配置对API的访问 描述了群集管理员如何配置此操作。 这种方法可能与未来的高可用性支持相冲突。 编程访问 API Kubernetes 支持 Go 和 Python 客户端库。 Go 客户端 要获取该库,请运行以下命令:go get k8s.io/client-go//kubernetes 请参阅 https://github.com/kubernetes/client-go 以查看支持哪些版本。 使用 client-go 客户端编程。请注意,client-go 定义了自己的 API 对象,因此如果需要,请从 client-go 而不是从主存储库导入 API 定义,例如导入 k8s.io/client-go/1.4/pkg/api/v1 是正确的。 Go 客户端可以使用与 kubectl 命令行工具相同的 kubeconfig 文件 来定位和验证 apiserver。参考官方 示例 和 client-go 示例。 如果应用程序在群集中以 Pod 的形式部署,请参考 下一节。 Python 客户端 要使用 Python client,请运行以下命令:pip install kubernetes。查看 Python 客户端库页面 获取更多的安装选择。 Python 客户端可以使用与 kubectl 命令行工具相同的 kubeconfig 文件 来定位和验证 apiserver。 其他语言 还有更多的客户端库可以用来访问 API。有关其他库的验证方式,请参阅文档。 在 Pod 中访问 API 在 Pod 中访问 API 时,定位和认证到 API server 的方式有所不同。在 Pod 中找到 apiserver 地址的推荐方法是使用kubernetes DNS 名称,将它解析为服务 IP,后者又将被路由到 apiserver。 向 apiserver 认证的推荐方法是使用 service account 凭据。通过 kube-system,pod 与 service account 相关联,并且将该 service account 的凭据(token)放入该 pod 中每个容器的文件系统树中,位于 /var/run/secrets/kubernetes.io/serviceaccount/token。 如果可用,证书包将位于每个容器的文件系统树的 /var/run/secrets/kubernetes.io/serviceaccount/ca.crt 位置,并用于验证 apiserver 的服务证书。 最后,用于 namespace API 操作的默认 namespace 放在每个容器中的 /var/run/secrets/kubernetes.io/serviceaccount/namespace 中。 在 pod 中,连接到 API 的推荐方法是: 将 kubectl proxy 作为 pod 中的一个容器来运行,或作为在容器内运行的后台进程。它将 Kubernetes API 代理到 pod 的本地主机接口,以便其他任何 pod 中的容器内的进程都可以访问它。 使用 Go 客户端库,并使用 rest.InClusterConfig() 和 kubernetes.NewForConfig() 函数创建一个客户端。 他们处理对 apiserver 的定位和认证。示例 在以上的几种情况下,都需要使用 pod 的凭据与 apiserver 进行安全通信。 访问集群中运行的 service 上一节是关于连接到 kubernetes API server。这一节是关于连接到 kubernetes 集群中运行的 service。在 Kubernetes 中,node、 pod 和 services 都有它们自己的 IP。很多情况下,集群中 node 的 IP、Pod 的 IP、service 的 IP 都是不可路由的,因此在集群外面的机器就无法访问到它们,例如从您自己的笔记本电脑。 连接的方式 您可以选择以下几种方式从集群外部连接到 node、pod 和 service: 通过 public IP 访问 service。 使用 NodePort 和 LoadBalancer 类型的 service,以使 service 能够在集群外部被访问到。 根据您的群集环境,这可能会将服务暴露给您的公司网络,或者可能会将其暴露在互联网上。想想暴露的服务是否安全。它是否自己进行身份验证? 将 pod 放在服务后面。 要从一组副本(例如为了调试)访问一个特定的 pod,请在 pod 上放置一个唯一的 label,并创建一个选择该 label 的新服务。 在大多数情况下,应用程序开发人员不需要通过 node IP 直接访问节点。 通过 Proxy 规则访问 service、node、pod。 在访问远程服务之前,请执行 apiserver 认证和授权。 如果服务不够安全,无法暴露给互联网,或者为了访问节点 IP 上的端口或进行调试,请使用这种方式。 代理可能会导致某些 Web 应用程序出现问题。 仅适用于 HTTP/HTTPS。 见此描述。 在集群内访问 node 和 pod。 运行一个 pod,然后使用 kubectl exec 命令连接到 shell。从该 shell 中连接到其他 node、pod 和 service。 有些集群可能允许 ssh 到集群上的某个节点。 从那个节点您可以访问到集群中的服务。这是一个非标准的方法,它可能将在某些集群上奏效,而在某些集群不行。这些节点上可能安装了浏览器和其他工具也可能没有。群集 DNS 可能无法正常工作。 访问内置服务 通常集群内会有几个在 kube-system 中启动的服务。使用 kubectl cluster-info 命令获取该列表: $ kubectl cluster-info Kubernetes master is running at https://104.197.5.247 elasticsearch-logging is running at https://104.197.5.247/api/v1/namespaces/kube-system/services/elasticsearch-logging/proxy kibana-logging is running at https://104.197.5.247/api/v1/namespaces/kube-system/services/kibana-logging/proxy kube-dns is running at https://104.197.5.247/api/v1/namespaces/kube-system/services/kube-dns/proxy grafana is running at https://104.197.5.247/api/v1/namespaces/kube-system/services/monitoring-grafana/proxy heapster is running at https://104.197.5.247/api/v1/namespaces/kube-system/services/monitoring-heapster/proxy 这显示了访问每个服务的代理 URL。 例如,此集群启用了集群级日志记录(使用Elasticsearch),如果传入合适的凭据,可以在该地址 https://104.197.5.247/api/v1/namespaces/kube-system/services/elasticsearch-logging/proxy/ 访问到,或通过 kubectl 代理,例如:http://localhost:8080/api/v1/namespaces/kube-system/services/elasticsearch-logging/proxy/。 (有关如何传递凭据和使用 kubectl 代理,请 参阅上文) 手动构建 apiserver 代理 URL 如上所述,您可以使用 kubectl cluster-info 命令来检索服务的代理 URL。要创建包含服务端点、后缀和参数的代理 URL,您只需附加到服务的代理URL: http://kubernetes_master_address/api/v1/namespaces/namespace_name/services/service_name[:port_name]/proxy 如果您没有指定 port 的名字,那么您不必在 URL 里指定 port_name。 示例 要想访问 Elasticsearch 的服务端点 _search?q=user:kimchy,您需要使用:http://104.197.5.247/api/v1/namespaces/kube-system/services/elasticsearch-logging/proxy/_search?q=user:kimchy 要想访问 Elasticsearch 的集群健康信息 _cluster/health?pretty=true,您需要使用:https://104.197.5.247/api/v1/namespaces/kube-system/services/elasticsearch-logging/proxy/_cluster/health?pretty=true { \"cluster_name\" : \"kubernetes_logging\", \"status\" : \"yellow\", \"timed_out\" : false, \"number_of_nodes\" : 1, \"number_of_data_nodes\" : 1, \"active_primary_shards\" : 5, \"active_shards\" : 5, \"relocating_shards\" : 0, \"initializing_shards\" : 0, \"unassigned_shards\" : 5 } 使用 web 浏览器来访问集群中运行的服务 您可以将 apiserver 代理网址放在浏览器的地址栏中。 然而: Web 浏览器通常不能传递 token,因此您可能需要使用基本(密码)认证。 Apiserver 可以配置为接受基本认证,但您的集群可能未配置为接受基本认证。 某些网络应用程序可能无法正常工作,特别是那些在不知道代理路径前缀的情况下构造 URL 的客户端 JavaScript。 请求重定向 重定向功能已被弃用和删除。 请改用代理(见下文)。 多种代理 在使用 kubernetes 的时候您可能会遇到许多种不同的代理: kubectl 代理: 在用户桌面或 pod 中运行 从 localhost 地址到 Kubernetes apiserver 的代理 客户端到代理使用 HTTP apiserver 的代理使用 HTTPS 定位 apiserver 添加身份验证 header apiserver 代理: 将一个堡垒机作为 apiserver 将群集之外的用户连接到群集IP,否则可能无法访问 在 apiserver 进程中运行 客户端到代理使用 HTTPS(或 http,如果 apiserver 如此配置) 根据代理目标的可用信息由代理选择使用 HTTP 或 HTTPS 可用于访问 node、pod 或 service 用于访问 service 时进行负载均衡 kube 代理: 在每个节点上运行 代理 UDP 和 TCP 不支持 HTTP 提供负载均衡 只是用来访问 service apiserver 前面的代理/负载均衡器: 存在和实现因群集而异(例如 nginx) 位于所有客户端和一个或多个 apiserver 之间 作为负载均衡器,如果有多个 apiserver 外部服务的云负载均衡器: 由一些云提供商提供(例如 AWS ELB,Google Cloud Load Balancer) 当 Kubernetes service 类型为 LoadBalancer 时,会自动创建 仅使用 UDP/TCP 实施方式因云提供商而异 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/authenticate-across-clusters-kubeconfig.html":{"url":"guide/authenticate-across-clusters-kubeconfig.html","title":"使用 kubeconfig 文件配置跨集群认证","keywords":"","body":"使用 kubeconfig 文件配置跨集群认证 Kubernetes 的认证方式对于不同的人来说可能有所不同。 运行 kubelet 可能有一种认证方式(即证书)。 用户可能有不同的认证方式(即令牌)。 管理员可能具有他们为个人用户提供的证书列表。 我们可能有多个集群,并希望在同一个地方将其全部定义——这样用户就能使用自己的证书并重用相同的全局配置。 所以为了能够让用户轻松地在多个集群之间切换,对于多个用户的情况下,我们将其定义在了一个 kubeconfig 文件中。 此文件包含一系列与昵称相关联的身份验证机制和集群连接信息。它还引入了一个(用户)认证信息元组和一个被称为上下文的与昵称相关联的集群连接信息的概念。 如果明确指定,则允许使用多个 kubeconfig 文件。在运行时,它们与命令行中指定的覆盖选项一起加载并合并(参见下面的 规则)。 相关讨论 http://issue.k8s.io/1755 Kubeconfig 文件的组成 Kubeconifg 文件示例 current-context: federal-context apiVersion: v1 clusters: - cluster: api-version: v1 server: http://cow.org:8080 name: cow-cluster - cluster: certificate-authority: path/to/my/cafile server: https://horse.org:4443 name: horse-cluster - cluster: insecure-skip-tls-verify: true server: https://pig.org:443 name: pig-cluster contexts: - context: cluster: horse-cluster namespace: chisel-ns user: green-user name: federal-context - context: cluster: pig-cluster namespace: saw-ns user: black-user name: queen-anne-context kind: Config preferences: colors: true users: - name: blue-user user: token: blue-token - name: green-user user: client-certificate: path/to/my/client/cert client-key: path/to/my/client/key 各个组件的拆解/释意 Cluster clusters: - cluster: certificate-authority: path/to/my/cafile server: https://horse.org:4443 name: horse-cluster - cluster: insecure-skip-tls-verify: true server: https://pig.org:443 name: pig-cluster cluster 中包含 kubernetes 集群的端点数据,包括 kubernetes apiserver 的完整 url 以及集群的证书颁发机构或者当集群的服务证书未被系统信任的证书颁发机构签名时,设置insecure-skip-tls-verify: true。 cluster 的名称(昵称)作为该 kubeconfig 文件中的集群字典的 key。 您可以使用 kubectl config set-cluster添加或修改 cluster 条目。 user users: - name: blue-user user: token: blue-token - name: green-user user: client-certificate: path/to/my/client/cert client-key: path/to/my/client/key user 定义用于向 kubernetes 集群进行身份验证的客户端凭据。在加载/合并 kubeconfig 之后,user 将有一个名称(昵称)作为用户条目列表中的 key。 可用凭证有 client-certificate、client-key、token 和 username/password。 username/password 和 token 是二者只能选择一个,但 client-certificate 和 client-key 可以分别与它们组合。 您可以使用 kubectl config set-credentials 添加或者修改 user 条目。 context contexts: - context: cluster: horse-cluster namespace: chisel-ns user: green-user name: federal-context context 定义了一个命名的 cluster、user、namespace 元组,用于使用提供的认证信息和命名空间将请求发送到指定的集群。 三个都是可选的;仅使用 cluster、user、namespace 之一指定上下文,或指定 none。 未指定的值或在加载的 kubeconfig 中没有相应条目的命名值(例如,如果为上述 kubeconfig 文件指定了 pink-user 的上下文)将被替换为默认值。 有关覆盖/合并行为,请参阅下面的 加载和合并规则。 您可以使用 kubectl config set-context 添加或修改上下文条目。 current-context current-context: federal-context current-context 是昵称或者说是作为 cluster、user、namespace 元组的 ”key“,当 kubectl 从该文件中加载配置的时候会被默认使用。您可以在 kubectl 命令行里覆盖这些值,通过分别传入 —context=CONTEXT、 —cluster=CLUSTER、--user=USER 和 --namespace=NAMESPACE 。 您可以使用 kubectl config use-context 更改 current-context。 apiVersion: v1 kind: Config preferences: colors: true 杂项 apiVersion 和 kind 标识客户端解析器的版本和模式,不应手动编辑。 preferences 指定可选(和当前未使用)的 kubectl 首选项。 查看 kubeconfig 文件 kubectl config view 命令可以展示当前的 kubeconfig 设置。默认将为您展示所有的 kubeconfig 设置;您可以通过传入 —minify 参数,将视图过滤到与 current-context 有关的配额设置。有关其他选项,请参阅 kubectl config view。 构建您自己的 kubeconfig 文件 您可以使用上文 示例 kubeconfig 文件 作为 注意: 如果您是通过 kube-up.sh 脚本部署的 kubernetes 集群,不需要自己创建 kubeconfig 文件——该脚本已经为您创建过了。 当 api server 启动的时候使用了 —token-auth-file=tokens.csv 选项时,上述文件将会与 API server 相关联,tokens.csv 文件看起来会像这个样子: blue-user,blue-user,1 mister-red,mister-red,2 注意: 启动 API server 时有很多 可用选项。请您一定要确保理解您使用的选项。 上述示例 kubeconfig 文件提供了 green-user 的客户端凭证。因为用户的 current-user 是 green-user ,任何该 API server 的客户端使用该示例 kubeconfig 文件时都可以成功登录。同样,我们可以通过修改 current-context 的值以 blue-user 的身份操作。 在上面的示例中,green-user 通过提供凭据登录,blue-user 使用的是 token。使用 kubectl config set-credentials 指定登录信息。想了解更多信息,请访问 \"示例文件相关操作命令\"。 加载和合并规则 加载和合并 kubeconfig 文件的规则很简单,但有很多。最终的配置按照以下顺序构建: 从磁盘中获取 kubeconfig。这将通过以下层次结构和合并规则完成: 如果设置了 CommandLineLocation (kubeconfig 命令行参数的值),将会只使用该文件,而不会进行合并。该参数在一条命令中只允许指定一次。 或者,如果设置了 EnvVarLocation ($KUBECONFIG 的值),其将会被作为应合并的文件列表,并根据以下规则合并文件。空文件名被忽略。非串行内容的文件将产生错误。设置特定值或 map key 的第一个文件将优先使用,并且值或 map key 也永远不会更改。 这意味着设置 CurrentContext 的第一个文件将保留其上下文。 这也意味着如果两个文件同时指定一个 red-user,那么将只使用第一个文件中的 red-user 的值。 即使第二个文件的 red-user 中有非冲突条目也被丢弃。 另外,使用 Home 目录位置(~/.kube/config)将不会合并。 根据此链中的第一个命中确定要使用的上下文 命令行参数——context 命令行选项的值 来自合并后的 kubeconfig 文件的 current-context 在这个阶段允许空 确定要使用的群集信息和用户。此时,我们可能有也可能没有上下文。他们是基于这个链中的第一次命中。 (运行两次,一次为用户,一次为集群) 命令行参数——user 指定用户,cluster 指定集群名称 如果上下文存在,则使用上下文的值 允许空 确定要使用的实际群集信息。此时,我们可能有也可能没有集群信息。根据链条构建每个集群信息(第一次命中胜出): 命令行参数——server,api-version,certificate-authority 和 insecure-skip-tls-verify 如果存在集群信息,并且存在该属性的值,请使用它。 如果没有服务器位置,则产生错误。 确定要使用的实际用户信息。用户使用与集群信息相同的规则构建,除非,您的每个用户只能使用一种认证技术。 负载优先级为1)命令行标志 2)来自 kubeconfig 的用户字段 命令行标志是:client-certificate、client-key、username、password 和 token 如果有两种冲突的技术,则失败。 对于任何仍然缺少的信息,将使用默认值,并可能会提示验证信息 Kubeconfig 文件中的所有文件引用都相对于 kubeconfig 文件本身的位置进行解析。当命令行上显示文件引用时,它们将相对于当前工作目录进行解析。当路径保存在 ~/.kube/config 中时,相对路径使用相对存储,绝对路径使用绝对存储。 Kubeconfig 文件中的任何路径都相对于 kubeconfig 文件本身的位置进行解析。 使用 kubectl config 操作 kubeconfig kubectl config 有一些列的子命令可以帮助我们更方便的操作 kubeconfig 文件。 请参阅 kubectl/kubectl_config。 Example $ kubectl config set-credentials myself --username=admin --password=secret $ kubectl config set-cluster local-server --server=http://localhost:8080 $ kubectl config set-context default-context --cluster=local-server --user=myself $ kubectl config use-context default-context $ kubectl config set contexts.default-context.namespace the-right-prefix $ kubectl config view 产生如下输出: apiVersion: v1 clusters: - cluster: server: http://localhost:8080 name: local-server contexts: - context: cluster: local-server namespace: the-right-prefix user: myself name: default-context current-context: default-context kind: Config preferences: {} users: - name: myself user: password: secret username: admin Kubeconfig 文件会像这样子: apiVersion: v1 clusters: - cluster: server: http://localhost:8080 name: local-server contexts: - context: cluster: local-server namespace: the-right-prefix user: myself name: default-context current-context: default-context kind: Config preferences: {} users: - name: myself user: password: secret username: admin 示例文件相关操作命令 $ kubectl config set preferences.colors true $ kubectl config set-cluster cow-cluster --server=http://cow.org:8080 --api-version=v1 $ kubectl config set-cluster horse-cluster --server=https://horse.org:4443 --certificate-authority=path/to/my/cafile $ kubectl config set-cluster pig-cluster --server=https://pig.org:443 --insecure-skip-tls-verify=true $ kubectl config set-credentials blue-user --token=blue-token $ kubectl config set-credentials green-user --client-certificate=path/to/my/client/cert --client-key=path/to/my/client/key $ kubectl config set-context queen-anne-context --cluster=pig-cluster --user=black-user --namespace=saw-ns $ kubectl config set-context federal-context --cluster=horse-cluster --user=green-user --namespace=chisel-ns $ kubectl config use-context federal-context 最后将它们捆绑在一起 所以,将这一切绑在一起,快速创建自己的 kubeconfig 文件: 仔细看一下,了解您的 api-server 的启动方式:在设计 kubeconfig 文件以方便身份验证之前,您需要知道您自己的安全要求和策略。 将上面的代码段替换为您的集群的 api-server 端点的信息。 确保您的 api-server 至少能够以提供一个用户(即 green-user)凭据的方式启动。 当然您必须查看 api-server 文档,以了解当前关于身份验证细节方面的最新技术。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/connecting-to-applications-port-forward.html":{"url":"guide/connecting-to-applications-port-forward.html","title":"通过端口转发访问集群中的应用程序","keywords":"","body":"通过端口转发访问集群中的应用程序 本页向您展示如何使用 kubectl port-forward 命令连接到运行在 Kubernetes 集群中的 Redis 服务器。这种类型的连接对于数据库调试很有帮助。 创建一个 Pod 来运行 Redis 服务器 创建一个 Pod: kubectl create -f https://k8s.io/docs/tasks/access-application-cluster/redis-master.yaml 命令运行成功后将有以下输出验证该 Pod 是否已经创建: pod \"redis-master\" created 检查 Pod 是否正在运行且处于就绪状态: kubectl get pods 当 Pod 就绪,输出显示 Running 的状态: NAME READY STATUS RESTARTS AGE redis-master 2/2 Running 0 41s 验证 Redis 服务器是否已在 Pod 中运行,并监听 6379 端口: kubectl get pods redis-master --template='{{(index (index .spec.containers 0).ports 0).containerPort}}{{\"\\n\"}}' 端口输出如下: 6379 将本地端口转发到 Pod 中的端口 将本地工作站上的 6379 端口转发到 redis-master pod 的 6379 端口: kubectl port-forward redis-master 6379:6379 输出类似于: I0710 14:43:38.274550 3655 portforward.go:225] Forwarding from 127.0.0.1:6379 -> 6379 I0710 14:43:38.274797 3655 portforward.go:225] Forwarding from [::1]:6379 -> 6379 启动 Redis 命令行界面 redis-cli 在 Redis 命令行提示符下,输入 ping 命令: 127.0.0.1:6379>ping Ping 请求成功返回 PONG。 讨论 创建连接,将本地的 6379 端口转发到运行在 Pod 中的 Redis 服务器的 6379 端口。有了这个连接您就可以在本地工作站中调试运行在 Pod 中的数据库。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/service-access-application-cluster.html":{"url":"guide/service-access-application-cluster.html","title":"使用 service 访问群集中的应用程序","keywords":"","body":"使用 service 访问群集中的应用程序 本文向您展示如何创建 Kubernetes Service 对象,外部客户端可以使用它来访问集群中运行的应用程序。该 Service 可以为具有两个运行实例的应用程序提供负载均衡。 目的 运行 Hello World 应用程序的两个实例。 创建一个暴露 node 节点端口的 Service 对象。 使用 Service 对象访问正在运行的应用程序。 为在两个 pod 中运行的应用程序创建 service 在集群中运行 Hello World 应用程序: kubectl run hello-world --replicas=2 --labels=\"run=load-balancer-example\" --image=gcr.io/google-samples/node-hello:1.0 --port=8080 上述命令创建一个 Deployment 对象和一个相关联的 ReplicaSet 对象。该 ReplicaSet 有两个 Pod,每个 Pod 中都运行一个 Hello World 应用程序。 显示关于该 Deployment 的信息: kubectl get deployments hello-world kubectl describe deployments hello-world 显示 ReplicaSet 的信息: kubectl get replicasets kubectl describe replicasets 创建一个暴露该 Deployment 的 Service 对象: kubectl expose deployment hello-world --type=NodePort --name=example-service 显示该 Service 的信息: kubectl describe services example-service 输出类似于: Name: example-service Namespace: default Labels: run=load-balancer-example Selector: run=load-balancer-example Type: NodePort IP: 10.32.0.16 Port: 8080/TCP NodePort: 31496/TCP Endpoints: 10.200.1.4:8080,10.200.2.5:8080 Session Affinity: None No events. 记下服务的 NodePort 值。例如,在前面的输出中,NodePort 值为 31496。 列出运行 Hello World 应用程序的 Pod: kubectl get pods --selector=\"run=load-balancer-example\" --output=wide 输出类似于: NAME READY STATUS ... IP NODE hello-world-2895499144-bsbk5 1/1 Running ... 10.200.1.4 worker1 hello-world-2895499144-m1pwt 1/1 Running ... 10.200.2.5 worker2 获取正在运行 Hello World 应用程序的 Pod 的其中一个节点的 public IP 地址。如何得到这个地址取决于您的集群设置。例如,如果您使用 Minikube,可以通过运行 kubectl cluster-info 查看节点地址。如果您是使用 Google Compute Engine 实例,可以使用 gcloud compute instances list 命令查看您的公共地址节点。 在您选择的节点上,在您的节点端口上例如创建允许 TCP 流量的防火墙规则,如果您的服务 NodePort 值为 31568,创建防火墙规则,允许端口 31568 上的TCP流量。 使用节点地址和节点端口访问 Hello World 应用程序: curl http://: 其中 是您节点的 public IP地址,而 是您服务的 NodePort 值。 对成功请求的响应是一个 hello 消息: Hello Kubernetes! 使用 Service 配置文件 作为使用 kubectl expose 的替代方法,您可以使用 service 配置文件 来创建 Service。 要删除 Service,输入以下命令: kubectl delete services example-service 删除 Deployment、ReplicaSet 和正运行在 Pod 中的 Hello World 应用程序,输入以下命令: kubectl delete deployment hello-world 了解更多关于 使用 service 连接应用程序。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/accessing-kubernetes-pods-from-outside-of-the-cluster.html":{"url":"guide/accessing-kubernetes-pods-from-outside-of-the-cluster.html","title":"从外部访问 Kubernetes 中的 Pod","keywords":"","body":"从外部访问Kubernetes中的Pod 前面几节讲到如何访问kubneretes集群,本文主要讲解访问kubenretes中的Pod和Serivce的几种方式,包括如下几种: hostNetwork hostPort NodePort LoadBalancer Ingress 说是暴露Pod其实跟暴露Service是一回事,因为Pod就是Service的backend。 hostNetwork: true 这是一种直接定义Pod网络的方式。 如果在Pod中使用hostNotwork:true配置的话,在这种pod中运行的应用程序可以直接看到pod启动的主机的网络接口。在主机的所有网络接口上都可以访问到该应用程序。以下是使用主机网络的pod的示例定义: apiVersion: v1 kind: Pod metadata: name: influxdb spec: hostNetwork: true containers: - name: influxdb image: influxdb 部署该Pod: $ kubectl create -f influxdb-hostnetwork.yml 访问该pod所在主机的8086端口: curl -v http://$POD_IP:8086/ping 将看到204 No Content的204返回码,说明可以正常访问。 注意每次启动这个Pod的时候都可能被调度到不同的节点上,所有外部访问Pod的IP也是变化的,而且调度Pod的时候还需要考虑是否与宿主机上的端口冲突,因此一般情况下除非您知道需要某个特定应用占用特定宿主机上的特定端口时才使用hostNetwork: true的方式。 这种Pod的网络模式有一个用处就是可以将网络插件包装在Pod中然后部署在每个宿主机上,这样该Pod就可以控制该宿主机上的所有网络。 hostPort 这是一种直接定义Pod网络的方式。 hostPort是直接将容器的端口与所调度的节点上的端口路由,这样用户就可以通过宿主机的IP加上来访问Pod了,如:。 apiVersion: v1 kind: Pod metadata: name: influxdb spec: containers: - name: influxdb image: influxdb ports: - containerPort: 8086 hostPort: 8086 这样做有个缺点,因为Pod重新调度的时候该Pod被调度到的宿主机可能会变动,这样就变化了,用户必须自己维护一个Pod与所在宿主机的对应关系。 这种网络方式可以用来做 nginx ingress controller。外部流量都需要通过kubenretes node节点的80和443端口。 NodePort NodePort在kubenretes里是一个广泛应用的服务暴露方式。Kubernetes中的service默认情况下都是使用的ClusterIP这种类型,这样的service会产生一个ClusterIP,这个IP只能在集群内部访问,要想让外部能够直接访问service,需要将service type修改为 nodePort。 apiVersion: v1 kind: Pod metadata: name: influxdb labels: name: influxdb spec: containers: - name: influxdb image: influxdb ports: - containerPort: 8086 同时还可以给service指定一个nodePort值,范围是30000-32767,这个值在API server的配置文件中,用--service-node-port-range定义。 kind: Service apiVersion: v1 metadata: name: influxdb spec: type: NodePort ports: - port: 8086 nodePort: 30000 selector: name: influxdb 集群外就可以使用kubernetes任意一个节点的IP加上30000端口访问该服务了。kube-proxy会自动将流量以round-robin的方式转发给该service的每一个pod。 这种服务暴露方式,无法让你指定自己想要的应用常用端口,不过可以在集群上再部署一个反向代理作为流量入口。 LoadBalancer LoadBalancer 只能在service上定义。这是公有云提供的负载均衡器,如AWS、Azure、CloudStack、GCE等。 kind: Service apiVersion: v1 metadata: name: influxdb spec: type: LoadBalancer ports: - port: 8086 selector: name: influxdb 查看服务: $ kubectl get svc influxdb NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE influxdb 10.97.121.42 10.13.242.236 8086:30051/TCP 39s 内部可以使用ClusterIP加端口来访问服务,如19.97.121.42:8086。 外部可以用以下两种方式访问该服务: 使用任一节点的IP加30051端口访问该服务 使用EXTERNAL-IP来访问,这是一个VIP,是云供应商提供的负载均衡器IP,如10.13.242.236:8086。 Ingress Ingress是自kubernetes1.1版本后引入的资源类型。必须要部署 Ingress controller 才能创建Ingress资源,Ingress controller是以一种插件的形式提供。Ingress controller 是部署在Kubernetes之上的Docker容器。它的Docker镜像包含一个像nginx或HAProxy的负载均衡器和一个控制器守护进程。控制器守护程序从Kubernetes接收所需的Ingress配置。它会生成一个nginx或HAProxy配置文件,并重新启动负载平衡器进程以使更改生效。换句话说,Ingress controller是由Kubernetes管理的负载均衡器。 Kubernetes Ingress提供了负载平衡器的典型特性:HTTP路由,粘性会话,SSL终止,SSL直通,TCP和UDP负载平衡等。目前并不是所有的Ingress controller都实现了这些功能,需要查看具体的Ingress controller文档。 apiVersion: extensions/v1beta1 kind: Ingress metadata: name: influxdb spec: rules: - host: influxdb.kube.example.com http: paths: - backend: serviceName: influxdb servicePort: 8086 外部访问URL http://influxdb.kube.example.com/ping 访问该服务,入口就是80端口,然后Ingress controller直接将流量转发给后端Pod,不需再经过kube-proxy的转发,比LoadBalancer方式更高效。 总结 总的来说Ingress是一个非常灵活和越来越得到厂商支持的服务暴露方式,包括Nginx、HAProxy、Traefik,还有各种Service Mesh,而其它服务暴露方式可以更适用于服务调试、特殊应用的部署。 参考 Accessing Kubernetes Pods from Outside of the Cluster - alesnosek.com 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/cabin-mobile-dashboard-for-kubernetes.html":{"url":"guide/cabin-mobile-dashboard-for-kubernetes.html","title":"Cabin - Kubernetes 手机客户端","keywords":"","body":"Cabin - Kubernetes手机客户端 cabin是由bitnami开源的手机管理Kubernetes集群的客户端,目前提供iOS和安卓版本,代码开源在GitHub上:https://bitnami.com/ 为了方便移动办公,可以使用Cabin这个kuberntes手机客户端,可以链接GKE和任何Kubernetes集群,可以使用以下三种认证方式: 证书 token kubeconfig文件 所有功能跟kubernetes dashboard相同,还可以支持使用Helm chart部署应用,可以配置自定义的chart仓库地址。 iPhone用户可以在App Store中搜索Cabin即可找到。 图 5.5.6.1:App Store 可以很方便的在手机上操作自己的kubernetes集群,还可以登录到容器中操作,只要是kubernetes API支持的功能,都可以在该移动客户端上实现。 图 5.5.6.2:在手机上操作Kubernetes集群 更多详细信息请参考:https://github.com/bitnami/cabin 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/kubernetes-desktop-client.html":{"url":"guide/kubernetes-desktop-client.html","title":"Lens - Kubernetes IDE/桌面客户端","keywords":"","body":"Lens - Kubernetes IDE/桌面客户端 Lens 是一款开源的 Kubenretes IDE,也可以作为桌面客户端,官方网站 https://k8slens.dev,具有以下特性: 完全开源,GitHub 地址 https://github.com/lensapp/lens 实时展示集群状态 内置 Prometheus 监控 多集群,多个 namespace 管理 原生 Kubernetes 支持 支持使用 chart 安装应用 使用 kubeconfig 登陆认证 支持多平台,Windows、Mac、Linux Visual Studio Code 友好的风格设计 Lens 界面图下图所示。 图 5.5.7.1:Lens Kubernetes IDE 界面 参考 Lens, Kubernetes IDE - k8slens.dev 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/kubernator-kubernetes-ui.html":{"url":"guide/kubernator-kubernetes-ui.html","title":"Kubernator - 更底层的 Kubernetes UI","keywords":"","body":"Kubernator - 更底层的 Kubernetes UI Kubernator 相较于 Kubernetes Dashboard 来说,是一个更底层的 Kubernetes UI,Dashboard 操作的都是 Kubernetes 的底层对象,而 Kubernator 是直接操作 Kubernetes 各个对象的 YAML 文件。 Kubernator 提供了一种基于目录树和关系拓扑图的方式来管理 Kubernetes 的对象的方法,用户可以在 Web 上像通过 GitHub 的网页版一样操作 Kubernetes 的对象,执行修改、拷贝等操作,详细的使用方式见 https://github.com/smpio/kubernator。 安装 Kubernator Kubernator 的安装十分简单,可以直接使用 kubectl 命令来运行,它不依赖任何其它组件。 kubectl create ns kubernator kubectl -n kubernator run --image=smpio/kubernator --port=80 kubernator kubectl -n kubernator expose deploy kubernator kubectl proxy 然后就可以通过 http://localhost:8001/api/v1/namespaces/kubernator/services/kubernator/proxy/ 来访问了。 Catalog 页面可以看到 Kubernetes 中资源对象的树形结构,还可以在该页面中对资源对象的配置进行更改和操作。 图 5.5.8.1:Kubernator catalog 页面 RBAC 页面可以看到集群中 RBAC 关系及结构。 图 5.5.8.2:Kubernator rbac 页面 参考 Kubernator - github.com 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/application-development-deployment-flow.html":{"url":"guide/application-development-deployment-flow.html","title":"在 Kubernetes 中开发部署应用","keywords":"","body":"在 Kubernetes 中开发部署应用 理论上只要可以使用主机名做服务注册的应用都可以迁移到 kubernetes 集群上。看到这里你可能不禁要问,为什么使用 IP 地址做服务注册发现的应用不适合迁移到 kubernetes 集群?因为这样的应用不适合自动故障恢复,因为目前 kubernetes 中不支持固定 Pod 的 IP 地址,当 Pod 故障后自动转移到其他 Node 的时候该 Pod 的 IP 地址也随之变化。 将传统应用迁移到 kubernetes 中可能还有很长的路要走,但是直接开发 Cloud native 应用,kubernetes 就是最佳运行时环境了。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/deploy-applications-in-kubernetes.html":{"url":"guide/deploy-applications-in-kubernetes.html","title":"适用于 kubernetes 的应用开发部署流程","keywords":"","body":"适用于kubernetes的应用开发部署流程 本文讲解了如何开发容器化应用,并使用Wercker持续集成工具构建docker镜像上传到docker镜像仓库中,然后在本地使用docker-compose测试后,再使用kompose自动生成kubernetes的yaml文件,再将注入Envoy sidecar容器,集成Istio service mesh中的详细过程。 整个过程如下图所示。 图 5.6.1.1:流程图 为了讲解详细流程,我特意写了用Go语言开发的示例程序放在GitHub中,模拟监控流程: k8s-app-monitor-test:生成模拟的监控数据,在接收到http请求返回json格式的metrics信息 K8s-app-monitor-agent:获取监控metrics信息并绘图,访问该服务将获得监控图表 API文档见k8s-app-monitor-test中的api.html文件,该文档在API blueprint中定义,使用aglio生成,打开后如图所示: 图 5.6.1.2:API 关于服务发现 K8s-app-monitor-agent服务需要访问k8s-app-monitor-test服务,这就涉及到服务发现的问题,我们在代码中直接写死了要访问的服务的内网DNS地址(kubedns中的地址,即k8s-app-monitor-test.default.svc.cluster.local)。 我们知道Kubernetes在启动Pod的时候为容器注入环境变量,这些环境变量在所有的 namespace 中共享(环境变量是不断追加的,新启动的Pod中将拥有老的Pod中所有的环境变量,而老的Pod中的环境变量不变)。但是既然使用这些环境变量就已经可以访问到对应的service,那么获取应用的地址信息,究竟是使用变量呢?还是直接使用DNS解析来发现? 答案是使用DNS,详细说明见Kubernetes中的服务发现与Docker容器间的环境变量传递源码探究。 持续集成 因为我使用wercker自动构建,构建完成后自动打包成docker镜像并上传到docker hub中(需要现在docker hub中创建repo)。 构建流程见:https://app.wercker.com/jimmysong/k8s-app-monitor-agent/ 图 5.6.1.3:wercker构建页面 生成了如下两个docker镜像: jimmysong/k8s-app-monitor-test:9c935dd jimmysong/k8s-app-monitor-agent:234d51c 测试 在将服务发布到线上之前,我们可以先使用docker-compose在本地测试一下,这两个应用的docker-compose.yaml文件如下: version: '2' services: k8s-app-monitor-agent: image: jimmysong/k8s-app-monitor-agent:234d51c container_name: monitor-agent depends_on: - k8s-app-monitor-test ports: - 8888:8888 environment: - SERVICE_NAME=k8s-app-monitor-test k8s-app-monitor-test: image: jimmysong/k8s-app-monitor-test:9c935dd container_name: monitor-test ports: - 3000:3000 执行下面的命令运行测试。 docker-compose up 在浏览器中访问http://localhost:8888/k8s-app-monitor-test就可以看到监控页面。 发布 所有的kubernetes应用启动所用的yaml配置文件都保存在那两个GitHub仓库的manifest.yaml文件中。也可以使用kompose这个工具,可以将docker-compose的YAML文件转换成kubernetes规格的YAML文件。 分别在两个GitHub目录下执行kubectl create -f manifest.yaml即可启动服务。也可以直接在k8s-app-monitor-agent代码库的k8s目录下执行kubectl apply -f kompose。 在以上YAML文件中有包含了Ingress配置,是为了将k8s-app-monitor-agent服务暴露给集群外部访问。 方式一 服务启动后需要更新ingress配置,在ingress.yaml文件中增加以下几行: - host: k8s-app-monitor-agent.jimmysong.io http: paths: - path: /k8s-app-monitor-agent backend: serviceName: k8s-app-monitor-agent servicePort: 8888 保存后,然后执行kubectl replace -f ingress.yaml即可刷新ingress。 修改本机的/etc/hosts文件,在其中加入以下一行: 172.20.0.119 k8s-app-monitor-agent.jimmysong.io 当然你也可以将该域名加入到内网的DNS中,为了简单起见我使用hosts。 方式二 或者不修改已有的Ingress,而是为该队外暴露的服务单独创建一个Ingress,如下: apiVersion: extensions/v1beta1 kind: Ingress metadata: name: k8s-app-monitor-agent-ingress annotations: kubernetes.io/ingress.class: \"treafik\" spec: rules: - host: k8s-app-monitor-agent.jimmysong.io http: paths: - path: / backend: serviceName: k8s-app-monitor-agent servicePort: 8888 详见边缘节点配置。 集成Istio service mesh 上一步中我们生成了kubernetes可读取的应用的YAML配置文件,我们可以将所有的YAML配置和并到同一个YAML文件中假如文件名为k8s-app-monitor-istio-all-in-one.yaml,如果要将其集成到Istio service mesh,只需要执行下面的命令。 kubectl apply -n default -f 这样就会在每个Pod中注入一个sidecar容器。 验证 如果您使用的是Traefik ingress来暴露的服务,那么在浏览器中访问http://k8s-app-monitor-agent.jimmysong.io/k8s-app-monitor-agent,可以看到如下的画面,每次刷新页面将看到新的柱状图。 图 5.6.1.4:图表 使用kubernetes-vagrant-centos-cluster来部署的kubernetes集群,该应用集成了Istio service mesh后可以通过http://172.17.8.101:32000/k8s-app-monitor-agent来访问。 在对k8s-app-monitor-agent服务进行了N此访问之后,再访问http://grafana.istio.jimmysong.io可以看到Service Mesh的监控信息。 图 5.6.1.5:Grafana页面 访问http://servicegraph.istio.jimmysong.io/dotviz可以看到服务的依赖和QPS信息。 图 5.6.1.6:servicegraph页面 访问http://zipkin.istio.jimmysong.io可以选择查看k8s-app-monitor-agent应用的追踪信息。 图 5.6.1.7:Zipkin页面 至此从代码提交到上线到Kubernetes集群上并集成Istio service mesh的过程就全部完成了。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/migrating-hadoop-yarn-to-kubernetes.html":{"url":"guide/migrating-hadoop-yarn-to-kubernetes.html","title":"迁移传统应用到 Kubernetes 中 —— 以 Hadoop YARN 为例","keywords":"","body":"迁移传统应用到Kubernetes步骤详解——以Hadoop YARN为例 本文档不是说明如何在 kubernetes 中开发和部署应用程序,如果您想要直接开发应用程序在 kubernetes 中运行可以参考 适用于kubernetes的应用开发部署流程。 本文旨在说明如何将已有的应用程序尤其是传统的分布式应用程序迁移到 kubernetes 中。如果该类应用程序符合云原生应用规范(如12因素法则)的话,那么迁移会比较顺利,否则会遇到一些麻烦甚至是阻碍。具体请参考 迁移至云原生应用架构。 下图是将单体应用迁移到云原生的步骤。 图 5.6.2.1:将单体应用迁移到云原生(图片来自DevOpsDay Toronto) 接下来我们将以 Spark on YARN with kubernetes 为例来说明,该例子足够复杂也很有典型性,了解了这个例子可以帮助大家将自己的应用迁移到 kubernetes 集群上去。 下图即整个架构的示意图,所有的进程管理和容器扩容直接使用 Makefile。 图 5.6.2.2:spark on yarn with kubernetes 注意: 该例子仅用来说明具体的步骤划分和复杂性,在生产环境应用还有待验证,请谨慎使用。 术语 对于为曾接触过 kubernetes 或对云平台的技术细节不太了解的人来说,如何将应用迁移到 kubernetes 中可能是个头疼的问题,在行动之前有必要先了解整个过程中需要用到哪些概念和术语,有助于大家在行动中达成共识。 过程中可能用到的概念和术语初步整理如下: 图 5.6.2.3:Terms 为了讲解整改过程和具体细节,我们所有操作都是通过命令手动完成,不使用自动化工具。当您充分了解到其中的细节后可以通过自动化工具来优化该过程,以使其更加自动和高效,同时减少因为人为操作失误导致的迁移失败。 迁移应用 图 5.6.2.4:分解步骤解析 整个迁移过程分为如下几个步骤: 将原有应用拆解为服务 我们不是一上来就开始做镜像,写配置,而是应该先梳理下要迁移的应用中有哪些可以作为服务运行,哪些是变的,哪些是不变的部分。 服务划分的原则是最小可变原则,这个同样适用于镜像制作,将服务中不变的部分编译到同一个镜像中。 对于像 Spark on YARN 这样复杂的应用,可以将其划分为三大类服务: ResourceManager NodeManager Spark client 制作镜像 根据拆解出来的服务,我们需要制作两个镜像: Hadoop Spark (From hadoop docker image) 因为我们运行的是 Spark on YARN,因此 Spark 依赖与 Hadoop 镜像,我们在 Spark 的基础上包装了一个 web service 作为服务启动。 镜像制作过程中不需要在 Dockerfile 中指定 Entrypoint 和 CMD,这些都是在 kubernetes 的 YAML 文件中指定的。 Hadoop YARN 的 Dockerfile 参考如下配置。 FROM my-docker-repo/jdk:7u80 # Add native libs ARG HADOOP_VERSION=2.6.0-cdh5.5.2 ## Prefer to download from server not use local storage ADD hadoop-${HADOOP_VERSION}.tar.gz /usr/local ADD ./lib/* /usr/local/hadoop-${HADOOP_VERSION}/lib/native/ ADD ./jars/* /usr/local/hadoop-${HADOOP_VERSION}/share/hadoop/yarn/ ENV HADOOP_PREFIX=/usr/local/hadoop \\ HADOOP_COMMON_HOME=/usr/local/hadoop \\ HADOOP_HDFS_HOME=/usr/local/hadoop \\ HADOOP_MAPRED_HOME=/usr/local/hadoop \\ HADOOP_YARN_HOME=/usr/local/hadoop \\ HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop \\ YARN_CONF_DIR=/usr/local/hadoop/etc/hadoop \\ PATH=${PATH}:/usr/local/hadoop/bin RUN \\ cd /usr/local && ln -s ./hadoop-${HADOOP_VERSION} hadoop && \\ rm -f ${HADOOP_PREFIX}/logs/* WORKDIR $HADOOP_PREFIX # Hdfs ports EXPOSE 50010 50020 50070 50075 50090 8020 9000 # Mapred ports EXPOSE 19888 #Yarn ports EXPOSE 8030 8031 8032 8033 8040 8042 8088 #Other ports EXPOSE 49707 2122 准备应用的配置文件 因为我们只制作了一个 Hadoop 的镜像,而需要启动两个服务,这就要求在服务启动的时候必须加载不同的配置文件,现在我们只需要准备两个服务中需要同时用的的配置的部分。 YARN 依赖的配置在 artifacts 目录下,包含以下文件: bootstrap.sh capacity-scheduler.xml container-executor.cfg core-site.xml hadoop-env.sh hdfs-site.xml log4j.properties mapred-site.xml nodemanager_exclude.txt slaves start-yarn-nm.sh start-yarn-rm.sh yarn-env.sh yarn-site.xml 其中作为 bootstrap 启动脚本的 bootstrap.sh 也包含在该目录下,该脚本的如何编写请见下文。 Kubernetes YAML 文件 根据业务的特性选择最适合的 kubernetes 的资源对象来运行,因为在 YARN 中 NodeManager 需要使用主机名向 ResourceManger 注册,因此需要沿用 YARN 原有的服务发现方式,使用 headless service 和 StatefulSet 资源。更多资料请参考 StatefulSet。 所有的 Kubernetes YAML 配置文件存储在 manifest 目录下,包括如下配置: yarn-cluster 的 namespace 配置 Spark、ResourceManager、NodeManager 的 headless service 和 StatefulSet 配置 需要暴露到 kubernetes 集群外部的 ingress 配置(ResourceManager 的 Web) kube-yarn-ingress.yaml spark-statefulset.yaml yarn-cluster-namespace.yaml yarn-nm-statefulset.yaml yarn-rm-statefulset.yaml Bootstrap 脚本 Bootstrap 脚本的作用是在启动时根据 Pod 的环境变量、主机名或其他可以区分不同 Pod 和将启动角色的变量来修改配置文件和启动服务应用。 该脚本同时将原来 YARN 的日志使用 stdout 输出,便于使用 kubectl logs 查看日志或其他日志收集工具进行日志收集。 启动脚本 bootstrap.sh 跟 Hadoop 的配置文件同时保存在 artifacts 目录下。 该脚本根据 Pod 的主机名,决定如何修改 Hadoop 的配置文件和启动何种服务。bootstrap.sh 文件的部分代码如下: if [[ \"${HOSTNAME}\" =~ \"yarn-nm\" ]]; then sed -i '//d' $HADOOP_PREFIX/etc/hadoop/yarn-site.xml cat >> $HADOOP_PREFIX/etc/hadoop/yarn-site.xml yarn.nodemanager.resource.memory-mb ${MY_MEM_LIMIT:-2048} yarn.nodemanager.resource.cpu-vcores ${MY_CPU_LIMIT:-2} EOM echo '' >> $HADOOP_PREFIX/etc/hadoop/yarn-site.xml cp ${CONFIG_DIR}/start-yarn-nm.sh $HADOOP_PREFIX/sbin/ cd $HADOOP_PREFIX/sbin chmod +x start-yarn-nm.sh ./start-yarn-nm.sh fi if [[ $1 == \"-d\" ]]; then until find ${HADOOP_PREFIX}/logs -mmin -1 | egrep -q '.*'; echo \"`date`: Waiting for logs...\" ; do sleep 2 ; done tail -F ${HADOOP_PREFIX}/logs/* & while true; do sleep 1000; done fi 从这部分中代码中可以看到,如果 Pod 的主机名中包含 yarn-nm 字段则向 yarn-site.xml 配置文件中增加如下内容: yarn.nodemanager.resource.memory-mb ${MY_MEM_LIMIT:-2048} yarn.nodemanager.resource.cpu-vcores ${MY_CPU_LIMIT:-2} 其中 MY_MEM_LIMIT 和 MY_CPU_LIMIT 是 kubernetes YAML 中定义的环境变量,该环境变量又是引用的 Resource limit。 所有的配置准备完成后,执行 start-yarn-nm.sh 脚本启动 NodeManager。 如果 kubernetes YAML 中的 container CMD args 中包含 -d 则在后台运行 NodeManger 并 tail 输出 NodeManager 的日志到标准输出。 ConfigMaps 将 Hadoop 的配置文件和 bootstrap 脚本作为 ConfigMap 资源保存,用作 Pod 启动时挂载的 volume。 kubectl create configmap hadoop-config \\ --from-file=artifacts/hadoop/bootstrap.sh \\ --from-file=artifacts/hadoop/start-yarn-rm.sh \\ --from-file=artifacts/hadoop/start-yarn-nm.sh \\ --from-file=artifacts/hadoop/slaves \\ --from-file=artifacts/hadoop/core-site.xml \\ --from-file=artifacts/hadoop/hdfs-site.xml \\ --from-file=artifacts/hadoop/mapred-site.xml \\ --from-file=artifacts/hadoop/yarn-site.xml \\ --from-file=artifacts/hadoop/capacity-scheduler.xml \\ --from-file=artifacts/hadoop/container-executor.cfg \\ --from-file=artifacts/hadoop/hadoop-env.sh \\ --from-file=artifacts/hadoop/log4j.properties \\ --from-file=artifacts/hadoop/nodemanager_exclude.txt \\ --from-file=artifacts/hadoop/yarn-env.sh kubectl create configmap spark-config \\ --from-file=artifacts/spark/spark-bootstrap.sh \\ --from-file=artifacts/spark/spark-env.sh \\ --from-file=artifacts/spark/spark-defaults.conf 所有的配置完成后,可以可以使用 kubectl 命令来启动和管理集群了,我们编写了 Makefile,您可以直接使用该 Makefile 封装的命令实现部分的自动化。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"guide/using-statefulset.html":{"url":"guide/using-statefulset.html","title":"使用 StatefulSet 部署用状态应用","keywords":"","body":"使用StatefulSet部署有状态应用 StatefulSet 这个对象是专门用来部署用状态应用的,可以为Pod提供稳定的身份标识,包括hostname、启动顺序、DNS名称等。 下面以在kubernetes1.6版本中部署zookeeper和kafka为例讲解StatefulSet的使用,其中kafka依赖于zookeeper。 Dockerfile和配置文件见 zookeeper 和 kafka。 注:所有的镜像基于CentOS系统的JDK制作,为我的私人镜像,外部无法访问,yaml中没有配置持久化存储。 部署Zookeeper Dockerfile中从远程获取zookeeper的安装文件,然后在定义了三个脚本: zkGenConfig.sh:生成zookeeper配置文件 zkMetrics.sh:获取zookeeper的metrics zkOk.sh:用来做ReadinessProb 我们在来看下这三个脚本的执行结果: zkGenConfig.sh zkMetrics.sh脚本实际上执行的是下面的命令: $ echo mntr | nc localhost $ZK_CLIENT_PORT >& 1 zk_version 3.4.6-1569965, built on 02/20/2014 09:09 GMT zk_avg_latency 0 zk_max_latency 5 zk_min_latency 0 zk_packets_received 427879 zk_packets_sent 427890 zk_num_alive_connections 3 zk_outstanding_requests 0 zk_server_state leader zk_znode_count 18 zk_watch_count 3 zk_ephemerals_count 4 zk_approximate_data_size 613 zk_open_file_descriptor_count 29 zk_max_file_descriptor_count 1048576 zk_followers 1 zk_synced_followers 1 zk_pending_syncs 0 zkOk.sh脚本实际上执行的是下面的命令: $ echo ruok | nc 127.0.0.1 $ZK_CLIENT_PORT imok zookeeper.yaml 下面是启动三个zookeeper实例的yaml配置文件: --- apiVersion: v1 kind: Service metadata: name: zk-svc labels: app: zk-svc spec: ports: - port: 2888 name: server - port: 3888 name: leader-election clusterIP: None selector: app: zk --- apiVersion: v1 kind: ConfigMap metadata: name: zk-cm data: jvm.heap: \"1G\" tick: \"2000\" init: \"10\" sync: \"5\" client.cnxns: \"60\" snap.retain: \"3\" purge.interval: \"0\" --- apiVersion: policy/v1beta1 kind: PodDisruptionBudget metadata: name: zk-pdb spec: selector: matchLabels: app: zk minAvailable: 2 --- apiVersion: apps/v1beta1 kind: StatefulSet metadata: name: zk spec: serviceName: zk-svc replicas: 3 template: metadata: labels: app: zk spec: affinity: podAntiAffinity: requiredDuringSchedulingIgnoredDuringExecution: - labelSelector: matchExpressions: - key: \"app\" operator: In values: - zk topologyKey: \"kubernetes.io/hostname\" containers: - name: k8szk imagePullPolicy: Always image: harbor-001.jimmysong.io/library/zookeeper:3.4.6 resources: requests: memory: \"2Gi\" cpu: \"500m\" ports: - containerPort: 2181 name: client - containerPort: 2888 name: server - containerPort: 3888 name: leader-election env: - name : ZK_REPLICAS value: \"3\" - name : ZK_HEAP_SIZE valueFrom: configMapKeyRef: name: zk-cm key: jvm.heap - name : ZK_TICK_TIME valueFrom: configMapKeyRef: name: zk-cm key: tick - name : ZK_INIT_LIMIT valueFrom: configMapKeyRef: name: zk-cm key: init - name : ZK_SYNC_LIMIT valueFrom: configMapKeyRef: name: zk-cm key: tick - name : ZK_MAX_CLIENT_CNXNS valueFrom: configMapKeyRef: name: zk-cm key: client.cnxns - name: ZK_SNAP_RETAIN_COUNT valueFrom: configMapKeyRef: name: zk-cm key: snap.retain - name: ZK_PURGE_INTERVAL valueFrom: configMapKeyRef: name: zk-cm key: purge.interval - name: ZK_CLIENT_PORT value: \"2181\" - name: ZK_SERVER_PORT value: \"2888\" - name: ZK_ELECTION_PORT value: \"3888\" command: - sh - -c - zkGenConfig.sh && zkServer.sh start-foreground readinessProbe: exec: command: - \"zkOk.sh\" initialDelaySeconds: 10 timeoutSeconds: 5 livenessProbe: exec: command: - \"zkOk.sh\" initialDelaySeconds: 10 timeoutSeconds: 5 securityContext: runAsUser: 1000 fsGroup: 1000 我们再主要下上面那三个脚本的用途。 部署kafka Kafka的docker镜像制作跟zookeeper类似,都是从远程下载安装包后,解压安装。 与zookeeper不同的是,只要一个脚本,但是又依赖于我们上一步安装的zookeeper,kafkaGenConfig.sh用来生成kafka的配置文件。 我们来看下这个脚本。 #!/bin/bash HOST=`hostname -s` if [[ $HOST =~ (.*)-([0-9]+)$ ]]; then NAME=${BASH_REMATCH[1]} ORD=${BASH_REMATCH[2]} else echo \"Failed to extract ordinal from hostname $HOST\" exit 1 fi MY_ID=$((ORD+1)) sed -i s\"/broker.id=0/broker.id=$MY_ID/g\" /opt/kafka/config/server.properties sed -i s'/zookeeper.connect=localhost:2181/zookeeper.connect=zk-0.zk-svc.brand.svc:2181,zk-1.zk-svc.brand.svc:2181,zk-2.zk-svc.brand.svc:2181/g' /opt/kafka/config/server.properties 该脚本根据statefulset生成的pod的hostname的后半截数字部分作为broker ID,同时再替换zookeeper的地址。 Kafka.yaml 下面是创建3个kafka实例的yaml配置。 --- apiVersion: v1 kind: Service metadata: name: kafka-svc labels: app: kafka spec: ports: - port: 9093 name: server clusterIP: None selector: app: kafka --- apiVersion: policy/v1beta1 kind: PodDisruptionBudget metadata: name: kafka-pdb spec: selector: matchLabels: app: kafka minAvailable: 2 --- apiVersion: apps/v1beta1 kind: StatefulSet metadata: name: kafka spec: serviceName: kafka-svc replicas: 3 template: metadata: labels: app: kafka spec: affinity: podAntiAffinity: requiredDuringSchedulingIgnoredDuringExecution: - labelSelector: matchExpressions: - key: \"app\" operator: In values: - kafka topologyKey: \"kubernetes.io/hostname\" podAffinity: preferredDuringSchedulingIgnoredDuringExecution: - weight: 1 podAffinityTerm: labelSelector: matchExpressions: - key: \"app\" operator: In values: - zk topologyKey: \"kubernetes.io/hostname\" terminationGracePeriodSeconds: 300 containers: - name: k8skafka imagePullPolicy: Always image: harbor-001.jimmysong.io/library/kafka:2.10-0.8.2.1 resources: requests: memory: \"1Gi\" cpu: 500m env: - name: KF_REPLICAS value: \"3\" ports: - containerPort: 9093 name: server command: - /bin/bash - -c - \"/opt/kafka/bin/kafkaGenConfig.sh && /opt/kafka/bin/kafka-server-start.sh /opt/kafka/config/server.properties\" env: - name: KAFKA_HEAP_OPTS value : \"-Xmx512M -Xms512M\" - name: KAFKA_OPTS value: \"-Dlogging.level=DEBUG\" readinessProbe: tcpSocket: port: 9092 initialDelaySeconds: 15 timeoutSeconds: 1 参考 https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/ kubernetes contrib - statefulsets 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"practice/":{"url":"practice/","title":"最佳实践概览","keywords":"","body":"最佳实践概览 本章节从零开始创建我们自己的kubernetes集群,并在该集群的基础上,配置服务发现、负载均衡和日志收集等功能,使我们的集群能够成为一个真正线上可用、功能完整的集群。 第一部分 在CentOS上部署kubernetes集群中介绍了如何通过二进制文件在CentOS物理机(也可以是公有云主机)上快速部署一个kubernetes集群。 第二部分介绍如何在kubernetes中的服务发现与负载均衡。 第三部分介绍如何运维kubernetes集群。 第四部分介绍kubernetes中的存储管理。 第五部分关于kubernetes集群和应用的监控。 第六部分介绍kuberentes中的服务编排与管理。 第七部分介绍如何基于kubernetes做持续集成与发布。 第八部分是kubernetes集群与插件的更新升级。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/install-kubernetes-on-centos.html":{"url":"practice/install-kubernetes-on-centos.html","title":"在 CentOS 上部署 Kubernetes 集群","keywords":"","body":"在CentOS上部署kubernetes集群 本文档最初是基于kubenetes1.6版本编写的,对于kuberentes1.8及以上版本同样适用,只是个别位置有稍许变动,变动的地方我将特别注明版本要求。 本系列文档介绍使用二进制部署 kubernetes 集群的所有步骤,而不是使用 kubeadm 等自动化方式来部署集群,同时开启了集群的TLS安全认证,该安装步骤适用于所有bare metal环境、on-premise环境和公有云环境。 如果您想快速的在自己电脑的本地环境下使用虚拟机来搭建kubernetes集群,可以参考本地分布式开发环境搭建(使用Vagrant和Virtualbox)。 在部署的过程中,将详细列出各组件的启动参数,给出配置文件,详解它们的含义和可能遇到的问题。 部署完成后,你将理解系统各组件的交互原理,进而能快速解决实际问题。 所以本文档主要适合于那些有一定 kubernetes 基础,想通过一步步部署的方式来学习和了解系统配置、运行原理的人。 注:本文档中不包括docker和私有镜像仓库的安装,安装说明中使用的镜像来自 Google Cloud Platform,中国大陆用户若无法访问请自行选择其他镜像仓库备份。 欲下载最新版本的官方镜像请访问 Google 云平台容器注册表。 提供所有的配置文件 集群安装时所有组件用到的配置文件,包含在以下目录中: etc:service的环境变量配置文件 manifest:kubernetes应用的yaml文件 systemd :systemd serivce配置文件 集群详情 OS:CentOS Linux release 7.4.1708 (Core) 3.10.0-693.11.6.el7.x86_64 Kubernetes 1.6.0+(最低的版本要求是1.6) Docker:建议使用 Docker CE,请勿使用 docker-1.13.1-84.git07f3374.el7.centos.x86_64 版本,查看详情 Etcd 3.1.5 Flannel 0.7.1 vxlan或者host-gw 网络 TLS 认证通信 (所有组件,如 etcd、kubernetes master 和 node) RBAC 授权 kubelet TLS BootStrapping kubedns、dashboard、heapster(influxdb、grafana)、EFK(elasticsearch、fluentd、kibana) 集群插件 私有docker镜像仓库harbor(请自行部署,harbor提供离线安装包,直接使用docker-compose启动即可) 环境说明 在下面的步骤中,我们将在三台CentOS系统的物理机上部署具有三个节点的kubernetes1.6.0集群。 角色分配如下: 镜像仓库:172.20.0.112,域名为 harbor.jimmysong.io,为私有镜像仓库,请替换为公共仓库或你自己的镜像仓库地址。 Master:172.20.0.113 Node:172.20.0.113、172.20.0.114、172.20.0.115 注意:172.20.0.113这台主机master和node复用。所有生成证书、执行kubectl命令的操作都在这台节点上执行。一旦node加入到kubernetes集群之后就不需要再登陆node节点了。 安装前的准备 在node节点上安装docker1.12.5 直接使用yum install docker 关闭所有节点的SELinux 永久方法 – 需要重启服务器 修改/etc/selinux/config文件中设置SELINUX=disabled ,然后重启服务器。 临时方法 – 设置系统参数 使用命令setenforce 0 附: setenforce 1 设置SELinux 成为enforcing模式 setenforce 0 设置SELinux 成为permissive模式 准备harbor私有镜像仓库 参考:https://github.com/vmware/harbor 步骤介绍 创建 TLS 证书和秘钥 创建kubeconfig 文件 创建高可用etcd集群 安装kubectl命令行工具 部署master节点 安装flannel网络插件 部署node节点 安装kubedns插件 安装dashboard插件 安装heapster插件 安装EFK插件 提醒 由于启用了 TLS 双向认证、RBAC 授权等严格的安全机制,建议从头开始部署,而不要从中间开始,否则可能会认证、授权等失败! 部署过程中需要有很多证书的操作,请大家耐心操作,不明白的操作可以参考本书中的其他章节的解释。 该部署操作仅是搭建成了一个可用 kubernetes 集群,而很多地方还需要进行优化,heapster 插件、EFK 插件不一定会用于真实的生产环境中,但是通过部署这些插件,可以让大家了解到如何部署应用到集群上。 注:本安装文档参考了 opsnull 跟我一步步部署 kubernetes 集群 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/create-tls-and-secret-key.html":{"url":"practice/create-tls-and-secret-key.html","title":"创建 TLS 证书和秘钥","keywords":"","body":"创建TLS证书和秘钥 前言 执行下列步骤前建议你先阅读以下内容: 管理集群中的TLS:教您如何创建TLS证书 kubelet的认证授权:向您描述如何通过认证授权来访问 kubelet 的 HTTPS 端点。 TLS bootstrap:介绍如何为 kubelet 设置 TLS 客户端证书引导(bootstrap)。 注意:这一步是在安装配置kubernetes的所有步骤中最容易出错也最难于排查问题的一步,而这却刚好是第一步,万事开头难,不要因为这点困难就望而却步。 如果您足够有信心在完全不了解自己在做什么的情况下能够成功地完成了这一步的配置,那么您可以尽管跳过上面的几篇文章直接进行下面的操作。 kubernetes 系统的各组件需要使用 TLS 证书对通信进行加密,本文档使用 CloudFlare 的 PKI 工具集 cfssl 来生成 Certificate Authority (CA) 和其它证书; 生成的 CA 证书和秘钥文件如下: ca-key.pem ca.pem kubernetes-key.pem kubernetes.pem kube-proxy.pem kube-proxy-key.pem admin.pem admin-key.pem 使用证书的组件如下: etcd:使用 ca.pem、kubernetes-key.pem、kubernetes.pem; kube-apiserver:使用 ca.pem、kubernetes-key.pem、kubernetes.pem; kubelet:使用 ca.pem; kube-proxy:使用 ca.pem、kube-proxy-key.pem、kube-proxy.pem; kubectl:使用 ca.pem、admin-key.pem、admin.pem; kube-controller-manager:使用 ca-key.pem、ca.pem 注意:以下操作都在 master 节点即 172.20.0.113 这台主机上执行,证书只需要创建一次即可,以后在向集群中添加新节点时只要将 /etc/kubernetes/ 目录下的证书拷贝到新节点上即可。 安装 CFSSL 方式一:直接使用二进制源码包安装 wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 chmod +x cfssl_linux-amd64 mv cfssl_linux-amd64 /usr/local/bin/cfssl wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64 chmod +x cfssljson_linux-amd64 mv cfssljson_linux-amd64 /usr/local/bin/cfssljson wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64 chmod +x cfssl-certinfo_linux-amd64 mv cfssl-certinfo_linux-amd64 /usr/local/bin/cfssl-certinfo export PATH=/usr/local/bin:$PATH 方式二:使用go命令安装 我们的系统中安装了Go1.7.5,使用以下命令安装更快捷: $ go get -u github.com/cloudflare/cfssl/cmd/... $ echo $GOPATH /usr/local $ls /usr/local/bin/cfssl* cfssl cfssl-bundle cfssl-certinfo cfssljson cfssl-newkey cfssl-scan 在$GOPATH/bin目录下得到以cfssl开头的几个命令。 注意:以下文章中出现的cat的文件名如果不存在需要手工创建。 创建 CA (Certificate Authority) 创建 CA 配置文件 mkdir /root/ssl cd /root/ssl cfssl print-defaults config > config.json cfssl print-defaults csr > csr.json # 根据config.json文件的格式创建如下的ca-config.json文件 # 过期时间设置成了 87600h cat > ca-config.json 字段说明 ca-config.json:可以定义多个 profiles,分别指定不同的过期时间、使用场景等参数;后续在签名证书时使用某个 profile; signing:表示该证书可用于签名其它证书;生成的 ca.pem 证书中 CA=TRUE; server auth:表示client可以用该 CA 对server提供的证书进行验证; client auth:表示server可以用该CA对client提供的证书进行验证; 创建 CA 证书签名请求 创建 ca-csr.json 文件,内容如下: { \"CN\": \"kubernetes\", \"key\": { \"algo\": \"rsa\", \"size\": 2048 }, \"names\": [ { \"C\": \"CN\", \"ST\": \"BeiJing\", \"L\": \"BeiJing\", \"O\": \"k8s\", \"OU\": \"System\" } ], \"ca\": { \"expiry\": \"87600h\" } } \"CN\":Common Name,kube-apiserver 从证书中提取该字段作为请求的用户名 (User Name);浏览器使用该字段验证网站是否合法; \"O\":Organization,kube-apiserver 从证书中提取该字段作为请求用户所属的组 (Group); 生成 CA 证书和私钥 $ cfssl gencert -initca ca-csr.json | cfssljson -bare ca $ ls ca* ca-config.json ca.csr ca-csr.json ca-key.pem ca.pem 创建 kubernetes 证书 创建 kubernetes 证书签名请求文件 kubernetes-csr.json: { \"CN\": \"kubernetes\", \"hosts\": [ \"127.0.0.1\", \"172.20.0.112\", \"172.20.0.113\", \"172.20.0.114\", \"172.20.0.115\", \"10.254.0.1\", \"kubernetes\", \"kubernetes.default\", \"kubernetes.default.svc\", \"kubernetes.default.svc.cluster\", \"kubernetes.default.svc.cluster.local\" ], \"key\": { \"algo\": \"rsa\", \"size\": 2048 }, \"names\": [ { \"C\": \"CN\", \"ST\": \"BeiJing\", \"L\": \"BeiJing\", \"O\": \"k8s\", \"OU\": \"System\" } ] } 如果 hosts 字段不为空则需要指定授权使用该证书的 IP 或域名列表,由于该证书后续被 etcd 集群和 kubernetes master 集群使用,所以上面分别指定了 etcd 集群、kubernetes master 集群的主机 IP 和 kubernetes 服务的服务 IP(一般是 kube-apiserver 指定的 service-cluster-ip-range 网段的第一个IP,如 10.254.0.1)。 这是最小化安装的kubernetes集群,包括一个私有镜像仓库,三个节点的kubernetes集群,以上物理节点的IP也可以更换为主机名。 生成 kubernetes 证书和私钥 $ cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kubernetes-csr.json | cfssljson -bare kubernetes $ ls kubernetes* kubernetes.csr kubernetes-csr.json kubernetes-key.pem kubernetes.pem 或者直接在命令行上指定相关参数: echo '{\"CN\":\"kubernetes\",\"hosts\":[\"\"],\"key\":{\"algo\":\"rsa\",\"size\":2048}}' | cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes -hostname=\"127.0.0.1,172.20.0.112,172.20.0.113,172.20.0.114,172.20.0.115,kubernetes,kubernetes.default\" - | cfssljson -bare kubernetes 创建 admin 证书 创建 admin 证书签名请求文件 admin-csr.json: { \"CN\": \"admin\", \"hosts\": [], \"key\": { \"algo\": \"rsa\", \"size\": 2048 }, \"names\": [ { \"C\": \"CN\", \"ST\": \"BeiJing\", \"L\": \"BeiJing\", \"O\": \"system:masters\", \"OU\": \"System\" } ] } 后续 kube-apiserver 使用 RBAC 对客户端(如 kubelet、kube-proxy、Pod)请求进行授权; kube-apiserver 预定义了一些 RBAC 使用的 RoleBindings,如 cluster-admin 将 Group system:masters 与 Role cluster-admin 绑定,该 Role 授予了调用kube-apiserver 的所有 API的权限; O 指定该证书的 Group 为 system:masters,kubelet 使用该证书访问 kube-apiserver 时 ,由于证书被 CA 签名,所以认证通过,同时由于证书用户组为经过预授权的 system:masters,所以被授予访问所有 API 的权限; 注意:这个admin 证书,是将来生成管理员用的kube config 配置文件用的,现在我们一般建议使用RBAC 来对kubernetes 进行角色权限控制, kubernetes 将证书中的CN 字段 作为User, O 字段作为 Group(具体参考 Kubernetes中的用户与身份认证授权中 X509 Client Certs 一段)。 在搭建完 kubernetes 集群后,我们可以通过命令: kubectl get clusterrolebinding cluster-admin -o yaml ,查看到 clusterrolebinding cluster-admin 的 subjects 的 kind 是 Group,name 是 system:masters。 roleRef 对象是 ClusterRole cluster-admin。 意思是凡是 system:masters Group 的 user 或者 serviceAccount 都拥有 cluster-admin 的角色。 因此我们在使用 kubectl 命令时候,才拥有整个集群的管理权限。 $ kubectl get clusterrolebinding cluster-admin -o yaml apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: annotations: rbac.authorization.kubernetes.io/autoupdate: \"true\" creationTimestamp: 2017-04-11T11:20:42Z labels: kubernetes.io/bootstrapping: rbac-defaults name: cluster-admin resourceVersion: \"52\" selfLink: /apis/rbac.authorization.k8s.io/v1/clusterrolebindings/cluster-admin uid: e61b97b2-1ea8-11e7-8cd7-f4e9d49f8ed0 roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: cluster-admin subjects: - apiGroup: rbac.authorization.k8s.io kind: Group name: system:masters 生成 admin 证书和私钥: $ cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes admin-csr.json | cfssljson -bare admin $ ls admin* admin.csr admin-csr.json admin-key.pem admin.pem 创建 kube-proxy 证书 创建 kube-proxy 证书签名请求文件 kube-proxy-csr.json: { \"CN\": \"system:kube-proxy\", \"hosts\": [], \"key\": { \"algo\": \"rsa\", \"size\": 2048 }, \"names\": [ { \"C\": \"CN\", \"ST\": \"BeiJing\", \"L\": \"BeiJing\", \"O\": \"k8s\", \"OU\": \"System\" } ] } CN 指定该证书的 User 为 system:kube-proxy; kube-apiserver 预定义的 RoleBinding system:node-proxier 将User system:kube-proxy 与 Role system:node-proxier 绑定,该 Role 授予了调用 kube-apiserver Proxy 相关 API 的权限; 生成 kube-proxy 客户端证书和私钥 $ cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kube-proxy-csr.json | cfssljson -bare kube-proxy $ ls kube-proxy* kube-proxy.csr kube-proxy-csr.json kube-proxy-key.pem kube-proxy.pem 校验证书 以 Kubernetes 证书为例。 使用 openssl 命令 $ openssl x509 -noout -text -in kubernetes.pem ... Signature Algorithm: sha256WithRSAEncryption Issuer: C=CN, ST=BeiJing, L=BeiJing, O=k8s, OU=System, CN=Kubernetes Validity Not Before: Apr 5 05:36:00 2017 GMT Not After : Apr 5 05:36:00 2018 GMT Subject: C=CN, ST=BeiJing, L=BeiJing, O=k8s, OU=System, CN=kubernetes ... X509v3 extensions: X509v3 Key Usage: critical Digital Signature, Key Encipherment X509v3 Extended Key Usage: TLS Web Server Authentication, TLS Web Client Authentication X509v3 Basic Constraints: critical CA:FALSE X509v3 Subject Key Identifier: DD:52:04:43:10:13:A9:29:24:17:3A:0E:D7:14:DB:36:F8:6C:E0:E0 X509v3 Authority Key Identifier: keyid:44:04:3B:60:BD:69:78:14:68:AF:A0:41:13:F6:17:07:13:63:58:CD X509v3 Subject Alternative Name: DNS:kubernetes, DNS:kubernetes.default, DNS:kubernetes.default.svc, DNS:kubernetes.default.svc.cluster, DNS:kubernetes.default.svc.cluster.local, IP Address:127.0.0.1, IP Address:172.20.0.112, IP Address:172.20.0.113, IP Address:172.20.0.114, IP Address:172.20.0.115, IP Address:10.254.0.1 ... 确认 Issuer 字段的内容和 ca-csr.json 一致; 确认 Subject 字段的内容和 kubernetes-csr.json 一致; 确认 X509v3 Subject Alternative Name 字段的内容和 kubernetes-csr.json 一致; 确认 X509v3 Key Usage、Extended Key Usage 字段的内容和 ca-config.json 中 kubernetes profile 一致; 使用 cfssl-certinfo 命令 $ cfssl-certinfo -cert kubernetes.pem ... { \"subject\": { \"common_name\": \"kubernetes\", \"country\": \"CN\", \"organization\": \"k8s\", \"organizational_unit\": \"System\", \"locality\": \"BeiJing\", \"province\": \"BeiJing\", \"names\": [ \"CN\", \"BeiJing\", \"BeiJing\", \"k8s\", \"System\", \"kubernetes\" ] }, \"issuer\": { \"common_name\": \"Kubernetes\", \"country\": \"CN\", \"organization\": \"k8s\", \"organizational_unit\": \"System\", \"locality\": \"BeiJing\", \"province\": \"BeiJing\", \"names\": [ \"CN\", \"BeiJing\", \"BeiJing\", \"k8s\", \"System\", \"Kubernetes\" ] }, \"serial_number\": \"174360492872423263473151971632292895707129022309\", \"sans\": [ \"kubernetes\", \"kubernetes.default\", \"kubernetes.default.svc\", \"kubernetes.default.svc.cluster\", \"kubernetes.default.svc.cluster.local\", \"127.0.0.1\", \"10.64.3.7\", \"10.254.0.1\" ], \"not_before\": \"2017-04-05T05:36:00Z\", \"not_after\": \"2018-04-05T05:36:00Z\", \"sigalg\": \"SHA256WithRSA\", ... 分发证书 将生成的证书和秘钥文件(后缀名为.pem)拷贝到所有机器的 /etc/kubernetes/ssl 目录下备用; mkdir -p /etc/kubernetes/ssl cp *.pem /etc/kubernetes/ssl 参考 Generate self-signed certificates Client Certificates V/s Server Certificates TLS bootstrap 引导程序 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/create-kubeconfig.html":{"url":"practice/create-kubeconfig.html","title":"创建 kubeconfig 文件","keywords":"","body":"创建 kubeconfig 文件 注意:请先参考 安装kubectl命令行工具,先在 master 节点上安装 kubectl 然后再进行下面的操作。 kubelet、kube-proxy 等 Node 机器上的进程与 Master 机器的 kube-apiserver 进程通信时需要认证和授权; kubernetes 1.4 开始支持由 kube-apiserver 为客户端生成 TLS 证书的 TLS Bootstrapping 功能,这样就不需要为每个客户端生成证书了;该功能当前仅支持为 kubelet 生成证书; 因为我的master节点和node节点复用,所有在这一步其实已经安装了kubectl。参考安装kubectl命令行工具。 以下操作只需要在master节点上执行,生成的*.kubeconfig文件可以直接拷贝到node节点的/etc/kubernetes目录下。 创建 TLS Bootstrapping Token Token auth file Token可以是任意的包含128 bit的字符串,可以使用安全的随机数发生器生成。 export BOOTSTRAP_TOKEN=$(head -c 16 /dev/urandom | od -An -t x | tr -d ' ') cat > token.csv 后三行是一句,直接复制上面的脚本运行即可。 注意:在进行后续操作前请检查 token.csv 文件,确认其中的 ${BOOTSTRAP_TOKEN} 环境变量已经被真实的值替换。 BOOTSTRAP_TOKEN 将被写入到 kube-apiserver 使用的 token.csv 文件和 kubelet 使用的 bootstrap.kubeconfig 文件,如果后续重新生成了 BOOTSTRAP_TOKEN,则需要: 更新 token.csv 文件,分发到所有机器 (master 和 node)的 /etc/kubernetes/ 目录下,分发到node节点上非必需; 重新生成 bootstrap.kubeconfig 文件,分发到所有 node 机器的 /etc/kubernetes/ 目录下; 重启 kube-apiserver 和 kubelet 进程; 重新 approve kubelet 的 csr 请求; cp token.csv /etc/kubernetes/ 创建 kubelet bootstrapping kubeconfig 文件 执行下面的命令时需要先安装kubectl命令,请参考安装kubectl命令行工具。 cd /etc/kubernetes export KUBE_APISERVER=\"https://172.20.0.113:6443\" # 设置集群参数 kubectl config set-cluster kubernetes \\ --certificate-authority=/etc/kubernetes/ssl/ca.pem \\ --embed-certs=true \\ --server=${KUBE_APISERVER} \\ --kubeconfig=bootstrap.kubeconfig # 设置客户端认证参数 kubectl config set-credentials kubelet-bootstrap \\ --token=${BOOTSTRAP_TOKEN} \\ --kubeconfig=bootstrap.kubeconfig # 设置上下文参数 kubectl config set-context default \\ --cluster=kubernetes \\ --user=kubelet-bootstrap \\ --kubeconfig=bootstrap.kubeconfig # 设置默认上下文 kubectl config use-context default --kubeconfig=bootstrap.kubeconfig --embed-certs 为 true 时表示将 certificate-authority 证书写入到生成的 bootstrap.kubeconfig 文件中; 设置客户端认证参数时没有指定秘钥和证书,后续由 kube-apiserver 自动生成; 创建 kube-proxy kubeconfig 文件 export KUBE_APISERVER=\"https://172.20.0.113:6443\" # 设置集群参数 kubectl config set-cluster kubernetes \\ --certificate-authority=/etc/kubernetes/ssl/ca.pem \\ --embed-certs=true \\ --server=${KUBE_APISERVER} \\ --kubeconfig=kube-proxy.kubeconfig # 设置客户端认证参数 kubectl config set-credentials kube-proxy \\ --client-certificate=/etc/kubernetes/ssl/kube-proxy.pem \\ --client-key=/etc/kubernetes/ssl/kube-proxy-key.pem \\ --embed-certs=true \\ --kubeconfig=kube-proxy.kubeconfig # 设置上下文参数 kubectl config set-context default \\ --cluster=kubernetes \\ --user=kube-proxy \\ --kubeconfig=kube-proxy.kubeconfig # 设置默认上下文 kubectl config use-context default --kubeconfig=kube-proxy.kubeconfig 设置集群参数和客户端认证参数时 --embed-certs 都为 true,这会将 certificate-authority、client-certificate 和 client-key 指向的证书文件内容写入到生成的 kube-proxy.kubeconfig 文件中; kube-proxy.pem 证书中 CN 为 system:kube-proxy,kube-apiserver 预定义的 RoleBinding cluster-admin 将User system:kube-proxy 与 Role system:node-proxier 绑定,该 Role 授予了调用 kube-apiserver Proxy 相关 API 的权限; 分发 kubeconfig 文件 将两个 kubeconfig 文件分发到所有 Node 机器的 /etc/kubernetes/ 目录 cp bootstrap.kubeconfig kube-proxy.kubeconfig /etc/kubernetes/ 参考 关于 kubeconfig 文件的更多信息请参考 使用 kubeconfig 文件配置跨集群认证。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/etcd-cluster-installation.html":{"url":"practice/etcd-cluster-installation.html","title":"创建高可用 etcd 集群","keywords":"","body":"创建高可用 etcd 集群 kuberntes 系统使用 etcd 存储所有数据,本文档介绍部署一个三节点高可用 etcd 集群的步骤,这三个节点复用 kubernetes master 机器,分别命名为test-001.jimmysong.io、test-002.jimmysong.io、test-003.jimmysong.io: test-001.jimmysong.io:172.20.0.113 test-002.jimmysong.io:172.20.0.114 test-003.jimmysong.io:172.20.0.115 TLS 认证文件 需要为 etcd 集群创建加密通信的 TLS 证书,这里复用以前创建的 kubernetes 证书 cp ca.pem kubernetes-key.pem kubernetes.pem /etc/kubernetes/ssl kubernetes 证书的 hosts 字段列表中包含上面三台机器的 IP,否则后续证书校验会失败; 下载二进制文件 到 https://github.com/coreos/etcd/releases 页面下载最新版本的二进制文件 wget https://github.com/coreos/etcd/releases/download/v3.1.5/etcd-v3.1.5-linux-amd64.tar.gz tar -xvf etcd-v3.1.5-linux-amd64.tar.gz mv etcd-v3.1.5-linux-amd64/etcd* /usr/local/bin 或者直接使用yum命令安装: yum install etcd 若使用yum安装,默认etcd命令将在/usr/bin目录下,注意修改下面的etcd.service文件中的启动命令地址为/usr/bin/etcd。 创建 etcd 的 systemd unit 文件 在/usr/lib/systemd/system/目录下创建文件etcd.service,内容如下。注意替换IP地址为你自己的etcd集群的主机IP。 [Unit] Description=Etcd Server After=network.target After=network-online.target Wants=network-online.target Documentation=https://github.com/coreos [Service] Type=notify WorkingDirectory=/var/lib/etcd/ EnvironmentFile=-/etc/etcd/etcd.conf ExecStart=/usr/local/bin/etcd \\ --name ${ETCD_NAME} \\ --cert-file=/etc/kubernetes/ssl/kubernetes.pem \\ --key-file=/etc/kubernetes/ssl/kubernetes-key.pem \\ --peer-cert-file=/etc/kubernetes/ssl/kubernetes.pem \\ --peer-key-file=/etc/kubernetes/ssl/kubernetes-key.pem \\ --trusted-ca-file=/etc/kubernetes/ssl/ca.pem \\ --peer-trusted-ca-file=/etc/kubernetes/ssl/ca.pem \\ --initial-advertise-peer-urls ${ETCD_INITIAL_ADVERTISE_PEER_URLS} \\ --listen-peer-urls ${ETCD_LISTEN_PEER_URLS} \\ --listen-client-urls ${ETCD_LISTEN_CLIENT_URLS},http://127.0.0.1:2379 \\ --advertise-client-urls ${ETCD_ADVERTISE_CLIENT_URLS} \\ --initial-cluster-token ${ETCD_INITIAL_CLUSTER_TOKEN} \\ --initial-cluster infra1=https://172.20.0.113:2380,infra2=https://172.20.0.114:2380,infra3=https://172.20.0.115:2380 \\ --initial-cluster-state new \\ --data-dir=${ETCD_DATA_DIR} Restart=on-failure RestartSec=5 LimitNOFILE=65536 [Install] WantedBy=multi-user.target 指定 etcd 的工作目录为 /var/lib/etcd,数据目录为 /var/lib/etcd,需在启动服务前创建这个目录,否则启动服务的时候会报错“Failed at step CHDIR spawning /usr/bin/etcd: No such file or directory”; 为了保证通信安全,需要指定 etcd 的公私钥(cert-file和key-file)、Peers 通信的公私钥和 CA 证书(peer-cert-file、peer-key-file、peer-trusted-ca-file)、客户端的CA证书(trusted-ca-file); 创建 kubernetes.pem 证书时使用的 kubernetes-csr.json 文件的 hosts 字段包含所有 etcd 节点的IP,否则证书校验会出错; --initial-cluster-state 值为 new 时,--name 的参数值必须位于 --initial-cluster 列表中; 完整 unit 文件见:etcd.service 环境变量配置文件/etc/etcd/etcd.conf。 # [member] ETCD_NAME=infra1 ETCD_DATA_DIR=\"/var/lib/etcd\" ETCD_LISTEN_PEER_URLS=\"https://172.20.0.113:2380\" ETCD_LISTEN_CLIENT_URLS=\"https://172.20.0.113:2379\" #[cluster] ETCD_INITIAL_ADVERTISE_PEER_URLS=\"https://172.20.0.113:2380\" ETCD_INITIAL_CLUSTER_TOKEN=\"etcd-cluster\" ETCD_ADVERTISE_CLIENT_URLS=\"https://172.20.0.113:2379\" 这是172.20.0.113节点的配置,其他两个etcd节点只要将上面的IP地址改成相应节点的IP地址即可。ETCD_NAME换成对应节点的infra1/2/3。 启动 etcd 服务 mv etcd.service /usr/lib/systemd/system/ systemctl daemon-reload systemctl enable etcd systemctl start etcd systemctl status etcd 在所有的 kubernetes master 节点重复上面的步骤,直到所有机器的 etcd 服务都已启动。 注意:如果日志中出现连接异常信息,请确认所有节点防火墙是否开放2379,2380端口。 以centos7为例: firewall-cmd --zone=public --add-port=2380/tcp --permanent firewall-cmd --zone=public --add-port=2379/tcp --permanent firewall-cmd --reload 验证服务 在任一 kubernetes master 机器上执行如下命令: $ etcdctl \\ --ca-file=/etc/kubernetes/ssl/ca.pem \\ --cert-file=/etc/kubernetes/ssl/kubernetes.pem \\ --key-file=/etc/kubernetes/ssl/kubernetes-key.pem \\ cluster-health 2017-04-11 15:17:09.082250 I | warning: ignoring ServerName for user-provided CA for backwards compatibility is deprecated 2017-04-11 15:17:09.083681 I | warning: ignoring ServerName for user-provided CA for backwards compatibility is deprecated member 9a2ec640d25672e5 is healthy: got healthy result from https://172.20.0.115:2379 member bc6f27ae3be34308 is healthy: got healthy result from https://172.20.0.114:2379 member e5c92ea26c4edba0 is healthy: got healthy result from https://172.20.0.113:2379 cluster is healthy 结果最后一行为 cluster is healthy 时表示集群服务正常。 更多资料 关于如何在etcd中查看kubernetes的数据,请参考使用etcdctl访问kuberentes数据。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/kubectl-installation.html":{"url":"practice/kubectl-installation.html","title":"安装 kubectl 命令行工具","keywords":"","body":"安装kubectl命令行工具 本文档介绍下载和配置 kubernetes 集群命令行工具 kubelet 的步骤。 下载 kubectl 注意请下载对应的Kubernetes版本的安装包。 wget https://dl.k8s.io/v1.6.0/kubernetes-client-linux-amd64.tar.gz tar -xzvf kubernetes-client-linux-amd64.tar.gz cp kubernetes/client/bin/kube* /usr/bin/ chmod a+x /usr/bin/kube* 创建 kubectl kubeconfig 文件 export KUBE_APISERVER=\"https://172.20.0.113:6443\" # 设置集群参数 kubectl config set-cluster kubernetes \\ --certificate-authority=/etc/kubernetes/ssl/ca.pem \\ --embed-certs=true \\ --server=${KUBE_APISERVER} # 设置客户端认证参数 kubectl config set-credentials admin \\ --client-certificate=/etc/kubernetes/ssl/admin.pem \\ --embed-certs=true \\ --client-key=/etc/kubernetes/ssl/admin-key.pem # 设置上下文参数 kubectl config set-context kubernetes \\ --cluster=kubernetes \\ --user=admin # 设置默认上下文 kubectl config use-context kubernetes admin.pem 证书 OU 字段值为 system:masters,kube-apiserver 预定义的 RoleBinding cluster-admin 将 Group system:masters 与 Role cluster-admin 绑定,该 Role 授予了调用kube-apiserver 相关 API 的权限; 生成的 kubeconfig 被保存到 ~/.kube/config 文件; 注意:~/.kube/config文件拥有对该集群的最高权限,请妥善保管。 更多资料 kubectl命令概览 kubectl命令技巧大全 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/master-installation.html":{"url":"practice/master-installation.html","title":"部署 master 节点","keywords":"","body":"部署master节点 kubernetes master 节点包含的组件: kube-apiserver kube-scheduler kube-controller-manager 目前这三个组件需要部署在同一台机器上。 kube-scheduler、kube-controller-manager 和 kube-apiserver 三者的功能紧密相关; 同时只能有一个 kube-scheduler、kube-controller-manager 进程处于工作状态,如果运行多个,则需要通过选举产生一个 leader; 注: 暂时未实现master节点的高可用 master节点上没有部署flannel网络插件,如果想要在master节点上也能访问ClusterIP,请参考下一节部署node节点中的配置Flanneld部分。 TLS 证书文件 以下pem证书文件我们在创建TLS证书和秘钥这一步中已经创建过了,token.csv文件在创建kubeconfig文件的时候创建。我们再检查一下。 $ ls /etc/kubernetes/ssl admin-key.pem admin.pem ca-key.pem ca.pem kube-proxy-key.pem kube-proxy.pem kubernetes-key.pem kubernetes.pem 下载最新版本的二进制文件 有两种下载方式,请注意下载对应的Kubernetes版本。 方式一 从 github release 页面 下载发布版 tarball,解压后再执行下载脚本 wget https://github.com/kubernetes/kubernetes/releases/download/v1.6.0/kubernetes.tar.gz tar -xzvf kubernetes.tar.gz cd kubernetes ./cluster/get-kube-binaries.sh 方式二 从 CHANGELOG页面 下载 client 或 server tarball 文件 server 的 tarball kubernetes-server-linux-amd64.tar.gz 已经包含了 client(kubectl) 二进制文件,所以不用单独下载kubernetes-client-linux-amd64.tar.gz文件; # wget https://dl.k8s.io/v1.6.0/kubernetes-client-linux-amd64.tar.gz wget https://dl.k8s.io/v1.6.0/kubernetes-server-linux-amd64.tar.gz tar -xzvf kubernetes-server-linux-amd64.tar.gz cd kubernetes tar -xzvf kubernetes-src.tar.gz 将二进制文件拷贝到指定路径 cp -r server/bin/{kube-apiserver,kube-controller-manager,kube-scheduler,kubectl,kube-proxy,kubelet} /usr/local/bin/ 配置和启动 kube-apiserver 创建 kube-apiserver的service配置文件 service配置文件/usr/lib/systemd/system/kube-apiserver.service内容: [Unit] Description=Kubernetes API Service Documentation=https://github.com/GoogleCloudPlatform/kubernetes After=network.target After=etcd.service [Service] EnvironmentFile=-/etc/kubernetes/config EnvironmentFile=-/etc/kubernetes/apiserver ExecStart=/usr/local/bin/kube-apiserver \\ $KUBE_LOGTOSTDERR \\ $KUBE_LOG_LEVEL \\ $KUBE_ETCD_SERVERS \\ $KUBE_API_ADDRESS \\ $KUBE_API_PORT \\ $KUBELET_PORT \\ $KUBE_ALLOW_PRIV \\ $KUBE_SERVICE_ADDRESSES \\ $KUBE_ADMISSION_CONTROL \\ $KUBE_API_ARGS Restart=on-failure Type=notify LimitNOFILE=65536 [Install] WantedBy=multi-user.target /etc/kubernetes/config文件的内容为: ### # kubernetes system config # # The following values are used to configure various aspects of all # kubernetes services, including # # kube-apiserver.service # kube-controller-manager.service # kube-scheduler.service # kubelet.service # kube-proxy.service # logging to stderr means we get it in the systemd journal KUBE_LOGTOSTDERR=\"--logtostderr=true\" # journal message level, 0 is debug KUBE_LOG_LEVEL=\"--v=0\" # Should this cluster be allowed to run privileged docker containers KUBE_ALLOW_PRIV=\"--allow-privileged=true\" # How the controller-manager, scheduler, and proxy find the apiserver #KUBE_MASTER=\"--master=http://test-001.jimmysong.io:8080\" KUBE_MASTER=\"--master=http://172.20.0.113:8080\" 该配置文件同时被kube-apiserver、kube-controller-manager、kube-scheduler、kubelet、kube-proxy使用。 apiserver配置文件/etc/kubernetes/apiserver内容为: ### ## kubernetes system config ## ## The following values are used to configure the kube-apiserver ## # ## The address on the local server to listen to. #KUBE_API_ADDRESS=\"--insecure-bind-address=test-001.jimmysong.io\" KUBE_API_ADDRESS=\"--advertise-address=172.20.0.113 --bind-address=172.20.0.113 --insecure-bind-address=172.20.0.113\" # ## The port on the local server to listen on. #KUBE_API_PORT=\"--port=8080\" # ## Port minions listen on #KUBELET_PORT=\"--kubelet-port=10250\" # ## Comma separated list of nodes in the etcd cluster KUBE_ETCD_SERVERS=\"--etcd-servers=https://172.20.0.113:2379,https://172.20.0.114:2379,https://172.20.0.115:2379\" # ## Address range to use for services KUBE_SERVICE_ADDRESSES=\"--service-cluster-ip-range=10.254.0.0/16\" # ## default admission control policies KUBE_ADMISSION_CONTROL=\"--admission-control=ServiceAccount,NamespaceLifecycle,NamespaceExists,LimitRanger,ResourceQuota\" # ## Add your own! KUBE_API_ARGS=\"--authorization-mode=RBAC --runtime-config=rbac.authorization.k8s.io/v1beta1 --kubelet-https=true --experimental-bootstrap-token-auth --token-auth-file=/etc/kubernetes/token.csv --service-node-port-range=30000-32767 --tls-cert-file=/etc/kubernetes/ssl/kubernetes.pem --tls-private-key-file=/etc/kubernetes/ssl/kubernetes-key.pem --client-ca-file=/etc/kubernetes/ssl/ca.pem --service-account-key-file=/etc/kubernetes/ssl/ca-key.pem --etcd-cafile=/etc/kubernetes/ssl/ca.pem --etcd-certfile=/etc/kubernetes/ssl/kubernetes.pem --etcd-keyfile=/etc/kubernetes/ssl/kubernetes-key.pem --enable-swagger-ui=true --apiserver-count=3 --audit-log-maxage=30 --audit-log-maxbackup=3 --audit-log-maxsize=100 --audit-log-path=/var/lib/audit.log --event-ttl=1h\" --experimental-bootstrap-token-auth Bootstrap Token Authentication在1.9版本已经变成了正式feature,参数名称改为--enable-bootstrap-token-auth 如果中途修改过--service-cluster-ip-range地址,则必须将default命名空间的kubernetes的service给删除,使用命令:kubectl delete service kubernetes,然后系统会自动用新的ip重建这个service,不然apiserver的log有报错the cluster IP x.x.x.x for service kubernetes/default is not within the service CIDR x.x.x.x/16; please recreate --authorization-mode=RBAC 指定在安全端口使用 RBAC 授权模式,拒绝未通过授权的请求; kube-scheduler、kube-controller-manager 一般和 kube-apiserver 部署在同一台机器上,它们使用非安全端口和 kube-apiserver通信; kubelet、kube-proxy、kubectl 部署在其它 Node 节点上,如果通过安全端口访问 kube-apiserver,则必须先通过 TLS 证书认证,再通过 RBAC 授权; kube-proxy、kubectl 通过在使用的证书里指定相关的 User、Group 来达到通过 RBAC 授权的目的; 如果使用了 kubelet TLS Boostrap 机制,则不能再指定 --kubelet-certificate-authority、--kubelet-client-certificate 和 --kubelet-client-key 选项,否则后续 kube-apiserver 校验 kubelet 证书时出现 ”x509: certificate signed by unknown authority“ 错误; --admission-control 值必须包含 ServiceAccount; --bind-address 不能为 127.0.0.1; runtime-config配置为rbac.authorization.k8s.io/v1beta1,表示运行时的apiVersion; --service-cluster-ip-range 指定 Service Cluster IP 地址段,该地址段不能路由可达; 缺省情况下 kubernetes 对象保存在 etcd /registry 路径下,可以通过 --etcd-prefix 参数进行调整; 如果需要开通http的无认证的接口,则可以增加以下两个参数:--insecure-port=8080 --insecure-bind-address=127.0.0.1。注意,生产上不要绑定到非127.0.0.1的地址上 Kubernetes 1.9 对于Kubernetes1.9集群,需要注意配置KUBE_API_ARGS环境变量中的--authorization-mode=Node,RBAC,增加对Node授权的模式,否则将无法注册node。 --experimental-bootstrap-token-auth Bootstrap Token Authentication在kubernetes 1.9版本已经废弃,参数名称改为--enable-bootstrap-token-auth 完整 unit 见 kube-apiserver.service 启动kube-apiserver systemctl daemon-reload systemctl enable kube-apiserver systemctl start kube-apiserver systemctl status kube-apiserver 配置和启动 kube-controller-manager 创建 kube-controller-manager的serivce配置文件 文件路径/usr/lib/systemd/system/kube-controller-manager.service [Unit] Description=Kubernetes Controller Manager Documentation=https://github.com/GoogleCloudPlatform/kubernetes [Service] EnvironmentFile=-/etc/kubernetes/config EnvironmentFile=-/etc/kubernetes/controller-manager ExecStart=/usr/local/bin/kube-controller-manager \\ $KUBE_LOGTOSTDERR \\ $KUBE_LOG_LEVEL \\ $KUBE_MASTER \\ $KUBE_CONTROLLER_MANAGER_ARGS Restart=on-failure LimitNOFILE=65536 [Install] WantedBy=multi-user.target 配置文件/etc/kubernetes/controller-manager。 ### # The following values are used to configure the kubernetes controller-manager # defaults from config and apiserver should be adequate # Add your own! KUBE_CONTROLLER_MANAGER_ARGS=\"--address=127.0.0.1 --service-cluster-ip-range=10.254.0.0/16 --cluster-name=kubernetes --cluster-signing-cert-file=/etc/kubernetes/ssl/ca.pem --cluster-signing-key-file=/etc/kubernetes/ssl/ca-key.pem --service-account-private-key-file=/etc/kubernetes/ssl/ca-key.pem --root-ca-file=/etc/kubernetes/ssl/ca.pem --leader-elect=true\" --service-cluster-ip-range 参数指定 Cluster 中 Service 的CIDR范围,该网络在各 Node 间必须路由不可达,必须和 kube-apiserver 中的参数一致; --cluster-signing-* 指定的证书和私钥文件用来签名为 TLS BootStrap 创建的证书和私钥; --root-ca-file 用来对 kube-apiserver 证书进行校验,指定该参数后,才会在Pod 容器的 ServiceAccount 中放置该 CA 证书文件; --address 值必须为 127.0.0.1,kube-apiserver 期望 scheduler 和 controller-manager 在同一台机器; 启动 kube-controller-manager systemctl daemon-reload systemctl enable kube-controller-manager systemctl start kube-controller-manager systemctl status kube-controller-manager 我们启动每个组件后可以通过执行命令kubectl get componentstatuses,来查看各个组件的状态; $ kubectl get componentstatuses NAME STATUS MESSAGE ERROR scheduler Unhealthy Get http://127.0.0.1:10251/healthz: dial tcp 127.0.0.1:10251: getsockopt: connection refused controller-manager Healthy ok etcd-2 Healthy {\"health\": \"true\"} etcd-0 Healthy {\"health\": \"true\"} etcd-1 Healthy {\"health\": \"true\"} 如果有组件report unhealthy请参考:https://github.com/kubernetes-incubator/bootkube/issues/64 完整 unit 见 kube-controller-manager.service 配置和启动 kube-scheduler 创建 kube-scheduler的serivce配置文件 文件路径/usr/lib/systemd/system/kube-scheduler.service。 [Unit] Description=Kubernetes Scheduler Plugin Documentation=https://github.com/GoogleCloudPlatform/kubernetes [Service] EnvironmentFile=-/etc/kubernetes/config EnvironmentFile=-/etc/kubernetes/scheduler ExecStart=/usr/local/bin/kube-scheduler \\ $KUBE_LOGTOSTDERR \\ $KUBE_LOG_LEVEL \\ $KUBE_MASTER \\ $KUBE_SCHEDULER_ARGS Restart=on-failure LimitNOFILE=65536 [Install] WantedBy=multi-user.target 配置文件/etc/kubernetes/scheduler。 ### # kubernetes scheduler config # default config should be adequate # Add your own! KUBE_SCHEDULER_ARGS=\"--leader-elect=true --address=127.0.0.1\" --address 值必须为 127.0.0.1,因为当前 kube-apiserver 期望 scheduler 和 controller-manager 在同一台机器; 完整 unit 见 kube-scheduler.service 启动 kube-scheduler systemctl daemon-reload systemctl enable kube-scheduler systemctl start kube-scheduler systemctl status kube-scheduler 验证 master 节点功能 $ kubectl get componentstatuses NAME STATUS MESSAGE ERROR scheduler Healthy ok controller-manager Healthy ok etcd-0 Healthy {\"health\": \"true\"} etcd-1 Healthy {\"health\": \"true\"} etcd-2 Healthy {\"health\": \"true\"} 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/flannel-installation.html":{"url":"practice/flannel-installation.html","title":"安装 flannel 网络插件","keywords":"","body":"安装flannel网络插件 所有的node节点都需要安装网络插件才能让所有的Pod加入到同一个局域网中,本文是安装flannel网络插件的参考文档。 建议直接使用yum安装flanneld,除非对版本有特殊需求,默认安装的是0.7.1版本的flannel。 yum install -y flannel service配置文件/usr/lib/systemd/system/flanneld.service。 [Unit] Description=Flanneld overlay address etcd agent After=network.target After=network-online.target Wants=network-online.target After=etcd.service Before=docker.service [Service] Type=notify EnvironmentFile=/etc/sysconfig/flanneld EnvironmentFile=-/etc/sysconfig/docker-network ExecStart=/usr/bin/flanneld-start \\ -etcd-endpoints=${FLANNEL_ETCD_ENDPOINTS} \\ -etcd-prefix=${FLANNEL_ETCD_PREFIX} \\ $FLANNEL_OPTIONS ExecStartPost=/usr/libexec/flannel/mk-docker-opts.sh -k DOCKER_NETWORK_OPTIONS -d /run/flannel/docker Restart=on-failure [Install] WantedBy=multi-user.target RequiredBy=docker.service /etc/sysconfig/flanneld配置文件: # Flanneld configuration options # etcd url location. Point this to the server where etcd runs FLANNEL_ETCD_ENDPOINTS=\"https://172.20.0.113:2379,https://172.20.0.114:2379,https://172.20.0.115:2379\" # etcd config key. This is the configuration key that flannel queries # For address range assignment FLANNEL_ETCD_PREFIX=\"/kube-centos/network\" # Any additional options that you want to pass FLANNEL_OPTIONS=\"-etcd-cafile=/etc/kubernetes/ssl/ca.pem -etcd-certfile=/etc/kubernetes/ssl/kubernetes.pem -etcd-keyfile=/etc/kubernetes/ssl/kubernetes-key.pem\" 如果是多网卡(例如vagrant环境),则需要在FLANNEL_OPTIONS中增加指定的外网出口的网卡,例如-iface=eth2 在etcd中创建网络配置 执行下面的命令为docker分配IP地址段。 etcdctl --endpoints=https://172.20.0.113:2379,https://172.20.0.114:2379,https://172.20.0.115:2379 \\ --ca-file=/etc/kubernetes/ssl/ca.pem \\ --cert-file=/etc/kubernetes/ssl/kubernetes.pem \\ --key-file=/etc/kubernetes/ssl/kubernetes-key.pem \\ mkdir /kube-centos/network etcdctl --endpoints=https://172.20.0.113:2379,https://172.20.0.114:2379,https://172.20.0.115:2379 \\ --ca-file=/etc/kubernetes/ssl/ca.pem \\ --cert-file=/etc/kubernetes/ssl/kubernetes.pem \\ --key-file=/etc/kubernetes/ssl/kubernetes-key.pem \\ mk /kube-centos/network/config '{\"Network\":\"172.30.0.0/16\",\"SubnetLen\":24,\"Backend\":{\"Type\":\"vxlan\"}}' 如果你要使用host-gw模式,可以直接将vxlan改成host-gw即可。 注:参考网络和集群性能测试那节,最终我们使用的host-gw模式,关于flannel支持的backend模式见:https://github.com/coreos/flannel/blob/master/Documentation/backends.md。 启动flannel systemctl daemon-reload systemctl enable flanneld systemctl start flanneld systemctl status flanneld 现在查询etcd中的内容可以看到: $etcdctl --endpoints=${ETCD_ENDPOINTS} \\ --ca-file=/etc/kubernetes/ssl/ca.pem \\ --cert-file=/etc/kubernetes/ssl/kubernetes.pem \\ --key-file=/etc/kubernetes/ssl/kubernetes-key.pem \\ ls /kube-centos/network/subnets /kube-centos/network/subnets/172.30.14.0-24 /kube-centos/network/subnets/172.30.38.0-24 /kube-centos/network/subnets/172.30.46.0-24 $etcdctl --endpoints=${ETCD_ENDPOINTS} \\ --ca-file=/etc/kubernetes/ssl/ca.pem \\ --cert-file=/etc/kubernetes/ssl/kubernetes.pem \\ --key-file=/etc/kubernetes/ssl/kubernetes-key.pem \\ get /kube-centos/network/config { \"Network\": \"172.30.0.0/16\", \"SubnetLen\": 24, \"Backend\": { \"Type\": \"vxlan\" } } $etcdctl --endpoints=${ETCD_ENDPOINTS} \\ --ca-file=/etc/kubernetes/ssl/ca.pem \\ --cert-file=/etc/kubernetes/ssl/kubernetes.pem \\ --key-file=/etc/kubernetes/ssl/kubernetes-key.pem \\ get /kube-centos/network/subnets/172.30.14.0-24 {\"PublicIP\":\"172.20.0.114\",\"BackendType\":\"vxlan\",\"BackendData\":{\"VtepMAC\":\"56:27:7d:1c:08:22\"}} $etcdctl --endpoints=${ETCD_ENDPOINTS} \\ --ca-file=/etc/kubernetes/ssl/ca.pem \\ --cert-file=/etc/kubernetes/ssl/kubernetes.pem \\ --key-file=/etc/kubernetes/ssl/kubernetes-key.pem \\ get /kube-centos/network/subnets/172.30.38.0-24 {\"PublicIP\":\"172.20.0.115\",\"BackendType\":\"vxlan\",\"BackendData\":{\"VtepMAC\":\"12:82:83:59:cf:b8\"}} $etcdctl --endpoints=${ETCD_ENDPOINTS} \\ --ca-file=/etc/kubernetes/ssl/ca.pem \\ --cert-file=/etc/kubernetes/ssl/kubernetes.pem \\ --key-file=/etc/kubernetes/ssl/kubernetes-key.pem \\ get /kube-centos/network/subnets/172.30.46.0-24 {\"PublicIP\":\"172.20.0.113\",\"BackendType\":\"vxlan\",\"BackendData\":{\"VtepMAC\":\"e6:b2:fd:f6:66:96\"}} 如果可以查看到以上内容证明flannel已经安装完成,下一步是在node节点上安装和配置docker、kubelet、kube-proxy等,请参考下一节部署node节点。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/node-installation.html":{"url":"practice/node-installation.html","title":"部署 node 节点","keywords":"","body":"部署node节点 Kubernetes node节点包含如下组件: Flanneld:参考我之前写的文章Kubernetes基于Flannel的网络配置,之前没有配置TLS,现在需要在service配置文件中增加TLS配置,安装过程请参考上一节安装flannel网络插件。 Docker1.12.5:docker的安装很简单,这里也不说了,但是需要注意docker的配置。 kubelet:直接用二进制文件安装 kube-proxy:直接用二进制文件安装 注意:每台 node 上都需要安装 flannel,master 节点上可以不安装。 步骤简介 确认在上一步中我们安装配置的网络插件flannel已启动且运行正常 安装配置docker后启动 安装配置kubelet、kube-proxy后启动 验证 目录和文件 我们再检查一下三个节点上,经过前几步操作我们已经创建了如下的证书和配置文件。 $ ls /etc/kubernetes/ssl admin-key.pem admin.pem ca-key.pem ca.pem kube-proxy-key.pem kube-proxy.pem kubernetes-key.pem kubernetes.pem $ ls /etc/kubernetes/ apiserver bootstrap.kubeconfig config controller-manager kubelet kube-proxy.kubeconfig proxy scheduler ssl token.csv 配置Docker 如果您使用yum的方式安装的flannel则不需要执行mk-docker-opts.sh文件这一步,参考Flannel官方文档中的Docker Integration。 如果你不是使用yum安装的flannel,那么需要下载flannel github release中的tar包,解压后会获得一个mk-docker-opts.sh文件,到flannel release页面下载对应版本的安装包,该脚本见mk-docker-opts.sh,因为我们使用yum安装所以不需要执行这一步。 这个文件是用来Generate Docker daemon options based on flannel env file。 使用systemctl命令启动flanneld后,会自动执行./mk-docker-opts.sh -i生成如下两个文件环境变量文件: /run/flannel/subnet.env FLANNEL_NETWORK=172.30.0.0/16 FLANNEL_SUBNET=172.30.46.1/24 FLANNEL_MTU=1450 FLANNEL_IPMASQ=false /run/docker_opts.env DOCKER_OPT_BIP=\"--bip=172.30.46.1/24\" DOCKER_OPT_IPMASQ=\"--ip-masq=true\" DOCKER_OPT_MTU=\"--mtu=1450\" Docker将会读取这两个环境变量文件作为容器启动参数。 注意:不论您用什么方式安装的flannel,下面这一步是必不可少的。 yum方式安装的flannel 修改docker的配置文件/usr/lib/systemd/system/docker.service,增加一条环境变量配置: EnvironmentFile=-/run/flannel/docker /run/flannel/docker文件是flannel启动后自动生成的,其中包含了docker启动时需要的参数。 二进制方式安装的flannel 修改docker的配置文件/usr/lib/systemd/system/docker.service,增加如下几条环境变量配置: EnvironmentFile=-/run/docker_opts.env EnvironmentFile=-/run/flannel/subnet.env 这两个文件是mk-docker-opts.sh脚本生成环境变量文件默认的保存位置,docker启动的时候需要加载这几个配置文件才可以加入到flannel创建的虚拟网络里。 所以不论您使用何种方式安装的flannel,将以下配置加入到docker.service中可确保万无一失。 EnvironmentFile=-/run/flannel/docker EnvironmentFile=-/run/docker_opts.env EnvironmentFile=-/run/flannel/subnet.env EnvironmentFile=-/etc/sysconfig/docker EnvironmentFile=-/etc/sysconfig/docker-storage EnvironmentFile=-/etc/sysconfig/docker-network EnvironmentFile=-/run/docker_opts.env 请参考docker.service中的配置。 启动docker 重启了docker后还要重启kubelet,这时又遇到问题,kubelet启动失败。报错: Mar 31 16:44:41 test-002.jimmysong.io kubelet[81047]: error: failed to run Kubelet: failed to create kubelet: misconfiguration: kubelet cgroup driver: \"cgroupfs\" is different from docker cgroup driver: \"systemd\" 这是kubelet与docker的cgroup driver不一致导致的,kubelet启动的时候有个—cgroup-driver参数可以指定为\"cgroupfs\"或者“systemd”。 --cgroup-driver string Driver that the kubelet uses to manipulate cgroups on the host. Possible values: 'cgroupfs', 'systemd' (default \"cgroupfs\") 配置docker的service配置文件/usr/lib/systemd/system/docker.service,设置ExecStart中的--exec-opt native.cgroupdriver=systemd。 安装和配置kubelet kubernets1.8 相对于kubernetes1.6集群必须进行的配置有: 对于kuberentes1.8集群,必须关闭swap,否则kubelet启动将失败。 修改/etc/fstab将,swap系统注释掉。 kubelet 启动时向 kube-apiserver 发送 TLS bootstrapping 请求,需要先将 bootstrap token 文件中的 kubelet-bootstrap 用户赋予 system:node-bootstrapper cluster 角色(role), 然后 kubelet 才能有权限创建认证请求(certificate signing requests): cd /etc/kubernetes kubectl create clusterrolebinding kubelet-bootstrap \\ --clusterrole=system:node-bootstrapper \\ --user=kubelet-bootstrap --user=kubelet-bootstrap 是在 /etc/kubernetes/token.csv 文件中指定的用户名,同时也写入了 /etc/kubernetes/bootstrap.kubeconfig 文件; kubelet 通过认证后向 kube-apiserver 发送 register node 请求,需要先将 kubelet-nodes 用户赋予 system:node cluster角色(role) 和 system:nodes 组(group), 然后 kubelet 才能有权限创建节点请求: kubectl create clusterrolebinding kubelet-nodes \\ --clusterrole=system:node \\ --group=system:nodes 下载最新的kubelet和kube-proxy二进制文件 注意请下载对应的Kubernetes版本的安装包。 wget https://dl.k8s.io/v1.6.0/kubernetes-server-linux-amd64.tar.gz tar -xzvf kubernetes-server-linux-amd64.tar.gz cd kubernetes tar -xzvf kubernetes-src.tar.gz cp -r ./server/bin/{kube-proxy,kubelet} /usr/local/bin/ 创建kubelet的service配置文件 文件位置/usr/lib/systemd/system/kubelet.service。 [Unit] Description=Kubernetes Kubelet Server Documentation=https://github.com/GoogleCloudPlatform/kubernetes After=docker.service Requires=docker.service [Service] WorkingDirectory=/var/lib/kubelet EnvironmentFile=-/etc/kubernetes/config EnvironmentFile=-/etc/kubernetes/kubelet ExecStart=/usr/local/bin/kubelet \\ $KUBE_LOGTOSTDERR \\ $KUBE_LOG_LEVEL \\ $KUBELET_API_SERVER \\ $KUBELET_ADDRESS \\ $KUBELET_PORT \\ $KUBELET_HOSTNAME \\ $KUBE_ALLOW_PRIV \\ $KUBELET_POD_INFRA_CONTAINER \\ $KUBELET_ARGS Restart=on-failure [Install] WantedBy=multi-user.target kubelet的配置文件/etc/kubernetes/kubelet。其中的IP地址更改为你的每台node节点的IP地址。 注意:在启动kubelet之前,需要先手动创建/var/lib/kubelet目录。 下面是kubelet的配置文件/etc/kubernetes/kubelet: kubernetes1.8 相对于kubenrete1.6的配置变动: 对于kuberentes1.8集群中的kubelet配置,取消了KUBELET_API_SERVER的配置,而改用kubeconfig文件来定义master地址,所以请注释掉KUBELET_API_SERVER配置。 ### ## kubernetes kubelet (minion) config # ## The address for the info server to serve on (set to 0.0.0.0 or \"\" for all interfaces) KUBELET_ADDRESS=\"--address=172.20.0.113\" # ## The port for the info server to serve on #KUBELET_PORT=\"--port=10250\" # ## You may leave this blank to use the actual hostname KUBELET_HOSTNAME=\"--hostname-override=172.20.0.113\" # ## location of the api-server ## COMMENT THIS ON KUBERNETES 1.8+ KUBELET_API_SERVER=\"--api-servers=http://172.20.0.113:8080\" # ## pod infrastructure container KUBELET_POD_INFRA_CONTAINER=\"--pod-infra-container-image=jimmysong/pause-amd64:3.0\" # ## Add your own! KUBELET_ARGS=\"--cgroup-driver=systemd --cluster-dns=10.254.0.2 --experimental-bootstrap-kubeconfig=/etc/kubernetes/bootstrap.kubeconfig --kubeconfig=/etc/kubernetes/kubelet.kubeconfig --require-kubeconfig --cert-dir=/etc/kubernetes/ssl --cluster-domain=cluster.local --hairpin-mode promiscuous-bridge --serialize-image-pulls=false\" 如果使用systemd方式启动,则需要额外增加两个参数--runtime-cgroups=/systemd/system.slice --kubelet-cgroups=/systemd/system.slice --experimental-bootstrap-kubeconfig 在1.9版本已经变成了--bootstrap-kubeconfig --address 不能设置为 127.0.0.1,否则后续 Pods 访问 kubelet 的 API 接口时会失败,因为 Pods 访问的 127.0.0.1 指向自己而不是 kubelet; 如果设置了 --hostname-override 选项,则 kube-proxy 也需要设置该选项,否则会出现找不到 Node 的情况; \"--cgroup-driver 配置成 systemd,不要使用cgroup,否则在 CentOS 系统中 kubelet 将启动失败(保持docker和kubelet中的cgroup driver配置一致即可,不一定非使用systemd)。 --experimental-bootstrap-kubeconfig 指向 bootstrap kubeconfig 文件,kubelet 使用该文件中的用户名和 token 向 kube-apiserver 发送 TLS Bootstrapping 请求; 管理员通过了 CSR 请求后,kubelet 自动在 --cert-dir 目录创建证书和私钥文件(kubelet-client.crt 和 kubelet-client.key),然后写入 --kubeconfig 文件; 建议在 --kubeconfig 配置文件中指定 kube-apiserver 地址,如果未指定 --api-servers 选项,则必须指定 --require-kubeconfig 选项后才从配置文件中读取 kube-apiserver 的地址,否则 kubelet 启动后将找不到 kube-apiserver (日志中提示未找到 API Server),kubectl get nodes 不会返回对应的 Node 信息; --require-kubeconfig 在1.10版本被移除,参看PR; --cluster-dns 指定 kubedns 的 Service IP(可以先分配,后续创建 kubedns 服务时指定该 IP),--cluster-domain 指定域名后缀,这两个参数同时指定后才会生效; --cluster-domain 指定 pod 启动时 /etc/resolve.conf 文件中的 search domain ,起初我们将其配置成了 cluster.local.,这样在解析 service 的 DNS 名称时是正常的,可是在解析 headless service 中的 FQDN pod name 的时候却错误,因此我们将其修改为 cluster.local,去掉最后面的 ”点号“ 就可以解决该问题,关于 kubernetes 中的域名/服务名称解析请参见我的另一篇文章。 --kubeconfig=/etc/kubernetes/kubelet.kubeconfig中指定的kubelet.kubeconfig文件在第一次启动kubelet之前并不存在,请看下文,当通过CSR请求后会自动生成kubelet.kubeconfig文件,如果你的节点上已经生成了~/.kube/config文件,你可以将该文件拷贝到该路径下,并重命名为kubelet.kubeconfig,所有node节点可以共用同一个kubelet.kubeconfig文件,这样新添加的节点就不需要再创建CSR请求就能自动添加到kubernetes集群中。同样,在任意能够访问到kubernetes集群的主机上使用kubectl --kubeconfig命令操作集群时,只要使用~/.kube/config文件就可以通过权限认证,因为这里面已经有认证信息并认为你是admin用户,对集群拥有所有权限。 KUBELET_POD_INFRA_CONTAINER 是基础镜像容器,这里我用的是私有镜像仓库地址,大家部署的时候需要修改为自己的镜像。pod-infrastructure镜像是Redhat制作的,大小接近80M,下载比较耗时,其实该镜像并不运行什么具体进程,可以使用Google的pause镜像gcr.io/google_containers/pause-amd64:3.0,这个镜像只有300多K,或者通过DockerHub下载jimmysong/pause-amd64:3.0。 完整 unit 见 kubelet.service 启动kublet systemctl daemon-reload systemctl enable kubelet systemctl start kubelet systemctl status kubelet 通过kublet的TLS证书请求 kubelet 首次启动时向 kube-apiserver 发送证书签名请求,必须通过后 kubernetes 系统才会将该 Node 加入到集群。 查看未授权的 CSR 请求 $ kubectl get csr NAME AGE REQUESTOR CONDITION csr-2b308 4m kubelet-bootstrap Pending $ kubectl get nodes No resources found. 通过 CSR 请求 $ kubectl certificate approve csr-2b308 certificatesigningrequest \"csr-2b308\" approved $ kubectl get nodes NAME STATUS AGE VERSION 10.64.3.7 Ready 49m v1.6.1 自动生成了 kubelet kubeconfig 文件和公私钥 $ ls -l /etc/kubernetes/kubelet.kubeconfig -rw------- 1 root root 2284 Apr 7 02:07 /etc/kubernetes/kubelet.kubeconfig $ ls -l /etc/kubernetes/ssl/kubelet* -rw-r--r-- 1 root root 1046 Apr 7 02:07 /etc/kubernetes/ssl/kubelet-client.crt -rw------- 1 root root 227 Apr 7 02:04 /etc/kubernetes/ssl/kubelet-client.key -rw-r--r-- 1 root root 1103 Apr 7 02:07 /etc/kubernetes/ssl/kubelet.crt -rw------- 1 root root 1675 Apr 7 02:07 /etc/kubernetes/ssl/kubelet.key 假如你更新kubernetes的证书,只要没有更新token.csv,当重启kubelet后,该node就会自动加入到kuberentes集群中,而不会重新发送certificaterequest,也不需要在master节点上执行kubectl certificate approve操作。前提是不要删除node节点上的/etc/kubernetes/ssl/kubelet*和/etc/kubernetes/kubelet.kubeconfig文件。否则kubelet启动时会提示找不到证书而失败。 注意:如果启动kubelet的时候见到证书相关的报错,有个trick可以解决这个问题,可以将master节点上的~/.kube/config文件(该文件在安装kubectl命令行工具这一步中将会自动生成)拷贝到node节点的/etc/kubernetes/kubelet.kubeconfig位置,这样就不需要通过CSR,当kubelet启动后就会自动加入的集群中。 配置 kube-proxy 安装conntrack yum install -y conntrack-tools 创建 kube-proxy 的service配置文件 文件路径/usr/lib/systemd/system/kube-proxy.service。 [Unit] Description=Kubernetes Kube-Proxy Server Documentation=https://github.com/GoogleCloudPlatform/kubernetes After=network.target [Service] EnvironmentFile=-/etc/kubernetes/config EnvironmentFile=-/etc/kubernetes/proxy ExecStart=/usr/local/bin/kube-proxy \\ $KUBE_LOGTOSTDERR \\ $KUBE_LOG_LEVEL \\ $KUBE_MASTER \\ $KUBE_PROXY_ARGS Restart=on-failure LimitNOFILE=65536 [Install] WantedBy=multi-user.target kube-proxy配置文件/etc/kubernetes/proxy。 ### # kubernetes proxy config # default config should be adequate # Add your own! KUBE_PROXY_ARGS=\"--bind-address=172.20.0.113 --hostname-override=172.20.0.113 --kubeconfig=/etc/kubernetes/kube-proxy.kubeconfig --cluster-cidr=10.254.0.0/16\" --hostname-override 参数值必须与 kubelet 的值一致,否则 kube-proxy 启动后会找不到该 Node,从而不会创建任何 iptables 规则; kube-proxy 根据 --cluster-cidr 判断集群内部和外部流量,指定 --cluster-cidr 或 --masquerade-all 选项后 kube-proxy 才会对访问 Service IP 的请求做 SNAT; --kubeconfig 指定的配置文件嵌入了 kube-apiserver 的地址、用户名、证书、秘钥等请求和认证信息; 预定义的 RoleBinding cluster-admin 将User system:kube-proxy 与 Role system:node-proxier 绑定,该 Role 授予了调用 kube-apiserver Proxy 相关 API 的权限; 完整 unit 见 kube-proxy.service 启动 kube-proxy systemctl daemon-reload systemctl enable kube-proxy systemctl start kube-proxy systemctl status kube-proxy 验证测试 我们创建一个nginx的service试一下集群是否可用。 $ kubectl run nginx --replicas=2 --labels=\"run=load-balancer-example\" --image=nginx --port=80 deployment \"nginx\" created $ kubectl expose deployment nginx --type=NodePort --name=example-service service \"example-service\" exposed $ kubectl describe svc example-service Name: example-service Namespace: default Labels: run=load-balancer-example Annotations: Selector: run=load-balancer-example Type: NodePort IP: 10.254.62.207 Port: 80/TCP NodePort: 32724/TCP Endpoints: 172.30.60.2:80,172.30.94.2:80 Session Affinity: None Events: $ curl \"10.254.62.207:80\" Welcome to nginx! body { width: 35em; margin: 0 auto; font-family: Tahoma, Verdana, Arial, sans-serif; } Welcome to nginx! If you see this page, the nginx web server is successfully installed and working. Further configuration is required. For online documentation and support please refer to nginx.org. Commercial support is available at nginx.com. Thank you for using nginx. 访问以下任何一个地址都可以得到nginx的页面。 172.20.0.113:32724 172.20.0.114:32724 172.20.0.115:32724 图 6.2.7.1:nginx欢迎页面 参考 Kubelet 的认证授权 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/kubedns-addon-installation.html":{"url":"practice/kubedns-addon-installation.html","title":"安装 kubedns 插件","keywords":"","body":"安装kubedns插件 官方的yaml文件目录:kubernetes/cluster/addons/dns。 该插件直接使用kubernetes部署,官方的配置文件中包含以下镜像: gcr.io/google_containers/k8s-dns-dnsmasq-nanny-amd64:1.14.1 gcr.io/google_containers/k8s-dns-kube-dns-amd64:1.14.1 gcr.io/google_containers/k8s-dns-sidecar-amd64:1.14.1 我clone了上述镜像,上传到我的私有镜像仓库: harbor-001.jimmysong.io/library/k8s-dns-dnsmasq-nanny-amd64:1.14.1 harbor-001.jimmysong.io/library/k8s-dns-kube-dns-amd64:1.14.1 harbor-001.jimmysong.io/library/k8s-dns-sidecar-amd64:1.14.1 以下yaml配置文件中使用的是私有镜像仓库中的镜像。 kubedns-cm.yaml kubedns-sa.yaml kubedns-controller.yaml kubedns-svc.yaml 已经修改好的 yaml 文件见:../manifests/kubedns 系统预定义的 RoleBinding 预定义的 RoleBinding system:kube-dns 将 kube-system 命名空间的 kube-dns ServiceAccount 与 system:kube-dns Role 绑定, 该 Role 具有访问 kube-apiserver DNS 相关 API 的权限; $ kubectl get clusterrolebindings system:kube-dns -o yaml apiVersion: rbac.authorization.k8s.io/v1beta1 kind: ClusterRoleBinding metadata: annotations: rbac.authorization.kubernetes.io/autoupdate: \"true\" creationTimestamp: 2017-04-11T11:20:42Z labels: kubernetes.io/bootstrapping: rbac-defaults name: system:kube-dns resourceVersion: \"58\" selfLink: /apis/rbac.authorization.k8s.io/v1beta1/clusterrolebindingssystem%3Akube-dns uid: e61f4d92-1ea8-11e7-8cd7-f4e9d49f8ed0 roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: system:kube-dns subjects: - kind: ServiceAccount name: kube-dns namespace: kube-system kubedns-controller.yaml 中定义的 Pods 时使用了 kubedns-sa.yaml 文件定义的 kube-dns ServiceAccount,所以具有访问 kube-apiserver DNS 相关 API 的权限。 配置 kube-dns ServiceAccount 无需修改。 配置 kube-dns 服务 $ diff kubedns-svc.yaml.base kubedns-svc.yaml 30c30 clusterIP: 10.254.0.2 spec.clusterIP = 10.254.0.2,即明确指定了 kube-dns Service IP,这个 IP 需要和 kubelet 的 --cluster-dns 参数值一致; 配置 kube-dns Deployment $ diff kubedns-controller.yaml.base kubedns-controller.yaml 58c58 image: harbor-001.jimmysong.io/library/k8s-dns-kube-dns-amd64:v1.14.1 88c88 - --domain=cluster.local. 92c92 #__PILLAR__FEDERATIONS__DOMAIN__MAP__ 110c110 image: harbor-001.jimmysong.io/library/k8s-dns-dnsmasq-nanny-amd64:v1.14.1 129c129 - --server=/cluster.local./127.0.0.1#10053 148c148 image: harbor-001.jimmysong.io/library/k8s-dns-sidecar-amd64:v1.14.1 161,162c161,162 - --probe=kubedns,127.0.0.1:10053,kubernetes.default.svc.cluster.local.,5,A > - --probe=dnsmasq,127.0.0.1:53,kubernetes.default.svc.cluster.local.,5,A 使用系统已经做了 RoleBinding 的 kube-dns ServiceAccount,该账户具有访问 kube-apiserver DNS 相关 API 的权限; 执行所有定义文件 $ pwd /root/kubedns $ ls *.yaml kubedns-cm.yaml kubedns-controller.yaml kubedns-sa.yaml kubedns-svc.yaml $ kubectl create -f . 检查 kubedns 功能 新建一个 Deployment $ cat >> my-nginx.yaml Export 该 Deployment, 生成 my-nginx 服务 $ kubectl expose deploy my-nginx $ kubectl get services --all-namespaces |grep my-nginx default my-nginx 10.254.179.239 80/TCP 42m 创建另一个 Pod,查看 /etc/resolv.conf 是否包含 kubelet 配置的 --cluster-dns 和 --cluster-domain,是否能够将服务 my-nginx 解析到 Cluster IP 10.254.179.239。 $ kubectl create -f nginx-pod.yaml $ kubectl exec nginx -i -t -- /bin/bash root@nginx:/# cat /etc/resolv.conf nameserver 10.254.0.2 search default.svc.cluster.local. svc.cluster.local. cluster.local. jimmysong.io options ndots:5 root@nginx:/# ping my-nginx PING my-nginx.default.svc.cluster.local (10.254.179.239): 56 data bytes 76 bytes from 119.147.223.109: Destination Net Unreachable ^C--- my-nginx.default.svc.cluster.local ping statistics --- root@nginx:/# ping kubernetes PING kubernetes.default.svc.cluster.local (10.254.0.1): 56 data bytes ^C--- kubernetes.default.svc.cluster.local ping statistics --- 11 packets transmitted, 0 packets received, 100% packet loss root@nginx:/# ping kube-dns.kube-system.svc.cluster.local PING kube-dns.kube-system.svc.cluster.local (10.254.0.2): 56 data bytes ^C--- kube-dns.kube-system.svc.cluster.local ping statistics --- 6 packets transmitted, 0 packets received, 100% packet loss 从结果来看,service名称可以正常解析。 注意:直接ping ClusterIP是ping不通的,ClusterIP是根据IPtables路由到服务的endpoint上,只有结合ClusterIP加端口才能访问到对应的服务。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/dashboard-addon-installation.html":{"url":"practice/dashboard-addon-installation.html","title":"安装 dashboard 插件","keywords":"","body":"安装dashboard插件 注意:本文档中安装的是kubernetes dashboard v1.6.0,安装新版的dashboard请参考升级dashboard。 官方文件目录:https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/dashboard 我们使用的文件如下: $ ls *.yaml dashboard-controller.yaml dashboard-service.yaml dashboard-rbac.yaml 已经修改好的 yaml 文件见:../manifests/dashboard 文件中的kubernetes-dashboard-amd64镜像为本地镜像地址需要修改为对应的镜像地址和版本: kubernetes 1.7.11 可以使用此镜像地址:registry.cn-qingdao.aliyuncs.com/haitao/kubernetes-dashboard-amd64:v1.7.0 替换 dashboard-controller.yaml 文件中的镜像地址。 由于 kube-apiserver 启用了 RBAC 授权,而官方源码目录的 dashboard-controller.yaml 没有定义授权的 ServiceAccount,所以后续访问 API server 的 API 时会被拒绝,web中提示: Forbidden (403) User \"system:serviceaccount:kube-system:default\" cannot list jobs.batch in the namespace \"default\". (get jobs.batch) 增加了一个dashboard-rbac.yaml文件,定义一个名为 dashboard 的 ServiceAccount,然后将它和 Cluster Role view 绑定,如下: apiVersion: v1 kind: ServiceAccount metadata: name: dashboard namespace: kube-system --- kind: ClusterRoleBinding apiVersion: rbac.authorization.k8s.io/v1beta1 metadata: name: dashboard subjects: - kind: ServiceAccount name: dashboard namespace: kube-system roleRef: kind: ClusterRole name: cluster-admin apiGroup: rbac.authorization.k8s.io 然后使用kubectl apply -f dashboard-rbac.yaml创建。 配置dashboard-service $ diff dashboard-service.yaml.orig dashboard-service.yaml 10a11 > type: NodePort 指定端口类型为 NodePort,这样外界可以通过地址 nodeIP:nodePort 访问 dashboard; 配置dashboard-controller $ diff dashboard-controller.yaml.orig dashboard-controller.yaml 23c23 image: harbor-001.jimmysong.io/library/kubernetes-dashboard-amd64:v1.6.0 执行所有定义文件 $ pwd /root/kubernetes/cluster/addons/dashboard $ ls *.yaml dashboard-controller.yaml dashboard-service.yaml $ kubectl create -f . service \"kubernetes-dashboard\" created deployment \"kubernetes-dashboard\" created 检查执行结果 查看分配的 NodePort $ kubectl get services kubernetes-dashboard -n kube-system NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE kubernetes-dashboard 10.254.224.130 80:30312/TCP 25s NodePort 30312映射到 dashboard pod 80端口; 检查 controller $ kubectl get deployment kubernetes-dashboard -n kube-system NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE kubernetes-dashboard 1 1 1 1 3m $ kubectl get pods -n kube-system | grep dashboard kubernetes-dashboard-1339745653-pmn6z 1/1 Running 0 4m 访问dashboard 有以下三种方式: kubernetes-dashboard 服务暴露了 NodePort,可以使用 http://NodeIP:nodePort 地址访问 dashboard 通过 API server 访问 dashboard(https 6443端口和http 8080端口方式) 通过 kubectl proxy 访问 dashboard 通过 kubectl proxy 访问 dashboard 启动代理 $ kubectl proxy --address='172.20.0.113' --port=8086 --accept-hosts='^*$' Starting to serve on 172.20.0.113:8086 需要指定 --accept-hosts 选项,否则浏览器访问 dashboard 页面时提示 “Unauthorized”; 浏览器访问 URL:http://172.20.0.113:8086/ui 自动跳转到:http://172.20.0.113:8086/api/v1/proxy/namespaces/kube-system/services/kubernetes-dashboard/#/workload?namespace=default 通过 API server 访问dashboard 获取集群服务地址列表 $ kubectl cluster-info Kubernetes master is running at https://172.20.0.113:6443 KubeDNS is running at https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-system/services/kube-dns kubernetes-dashboard is running at https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-system/services/kubernetes-dashboard 浏览器访问 URL:https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-system/services/kubernetes-dashboard(浏览器会提示证书验证,因为通过加密通道,以改方式访问的话,需要提前导入证书到你的计算机中)。这是我当时在这遇到的坑:通过 kube-apiserver 访问dashboard,提示User \"system:anonymous\" cannot proxy services in the namespace \"kube-system\". #5,已经解决。 导入证书 将生成的admin.pem证书转换格式 openssl pkcs12 -export -in admin.pem -out admin.p12 -inkey admin-key.pem 将生成的admin.p12证书导入的你的电脑,导出的时候记住你设置的密码,导入的时候还要用到。 如果你不想使用https的话,可以直接访问insecure port 8080端口:http://172.20.0.113:8080/api/v1/proxy/namespaces/kube-system/services/kubernetes-dashboard 图 6.2.9.1:kubernetes dashboard 由于缺少 Heapster 插件,当前 dashboard 不能展示 Pod、Nodes 的 CPU、内存等 metric 图形。 更新 Kubernetes 1.6 版本的 dashboard 的镜像已经到了 v1.6.3 版本,我们可以使用下面的方式更新。 修改 dashboard-controller.yaml 文件中的镜像的版本将 v1.6.0 更改为 v1.6.3。 image: harbor-001.jimmysong.io/library/kubernetes-dashboard-amd64:v1.6.3 然后执行下面的命令: kubectl apply -f dashboard-controller.yaml 即可在线更新 dashboard 的版本。 监听 dashboard Pod 的状态可以看到: kubernetes-dashboard-215087767-2jsgd 0/1 Pending 0 0s kubernetes-dashboard-3966630548-0jj1j 1/1 Terminating 0 1d kubernetes-dashboard-215087767-2jsgd 0/1 Pending 0 0s kubernetes-dashboard-3966630548-0jj1j 1/1 Terminating 0 1d kubernetes-dashboard-215087767-2jsgd 0/1 ContainerCreating 0 0s kubernetes-dashboard-3966630548-0jj1j 0/1 Terminating 0 1d kubernetes-dashboard-3966630548-0jj1j 0/1 Terminating 0 1d kubernetes-dashboard-215087767-2jsgd 1/1 Running 0 6s kubernetes-dashboard-3966630548-0jj1j 0/1 Terminating 0 1d kubernetes-dashboard-3966630548-0jj1j 0/1 Terminating 0 1d kubernetes-dashboard-3966630548-0jj1j 0/1 Terminating 0 1d 新的 Pod 的启动了,旧的 Pod 被终结了。 Dashboard 的访问地址不变,重新访问 http://172.20.0.113:8080/api/v1/proxy/namespaces/kube-system/services/kubernetes-dashboard,可以看到新版的界面: 图 6.2.9.2:V1.6.3版本的dashboard界面 新版本中最大的变化是增加了进入容器内部的入口,可以在页面上进入到容器内部操作,同时又增加了一个搜索框。 关于如何将dashboard从1.6版本升级到1.7版本请参考升级dashboard。 问题 1. 按照教程安装后,发现dashboard pod 无法启动 场景一 kubectl -n kube-system describe pod dashboard-xxxxxxx 图 6.2.9.3:pod无法正常启动 可以尝试删除所有相关“资源”再重试一次,如:secret、serviceaccount、service、pod、deployment 场景二 kubectl describe pod -n kube-system kubernetes-dashboard-7b7bf9bcbd-xxxxx Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal Scheduled 49s default-scheduler Successfully assigned kubernetes-dashboard-7b7bf9bcbd-625cb to 192.168.1.101 Normal SuccessfulMountVolume 49s kubelet, 192.168.1.101 MountVolume.SetUp succeeded for volume \"tmp-volume\" Warning FailedMount 17s (x7 over 49s) kubelet, 192.168.1.101 MountVolume.SetUp failed for volume \"kubernetes-dashboard-certs\" : secrets \"kubernetes-dashboard-certs\" is forbidden: User \"system:node:192.168.1.233\" cannot get secrets in the namespace \"kube-system\": no path found to object Warning FailedMount 17s (x7 over 49s) kubelet, 192.168.1.101 MountVolume.SetUp failed for volume \"kubernetes-dashboard-token-27kdp\" : secrets \"kubernetes-dashboard-token-27kdp\" is forbidden: User \"system:node:192.168.1.233\" cannot get secrets in the namespace \"kube-system\": no path found to object 通过官方文档:RBAC。可以了解到,对于k8s1.8+版本,system:node不会进行默认绑定。因此对于分配到其他node的pod,会出现forbidden。 需要手动bind各个node: kubectl create clusterrolebinding node233 --clusterrole=system:node --user=system:node:192.168.1.233 kubectl describe pod -n kube-system kubernetes-dashboard-7b7bf9bcbd-xxxxx Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal Scheduled 15s default-scheduler Successfully assigned kubernetes-dashboard-7b7bf9bcbd-pq6pk to 192.168.1.101 Normal SuccessfulMountVolume 15s kubelet, 192.168.1.101 MountVolume.SetUp succeeded for volume \"tmp-volume\" Normal SuccessfulMountVolume 15s kubelet, 192.168.1.101 MountVolume.SetUp succeeded for volume \"kubernetes-dashboard-certs\" Normal SuccessfulMountVolume 15s kubelet, 192.168.1.101 MountVolume.SetUp succeeded for volume \"kubernetes-dashboard-token-8rj79\" Normal Pulling 15s kubelet, 192.168.1.101 pulling image \"registry.cn-hangzhou.aliyuncs.com/google_containers/kubernetes-dashboard-amd64:v1.8.3\" 2. 自定义dashboard启动参数 可以在dashboard的YAML文件中配置启动参数,比如设置token的默认过期时间、heapster地址、绑定的证书等。 参考 WebUI(Dashboard) 文档 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/heapster-addon-installation.html":{"url":"practice/heapster-addon-installation.html","title":"安装 heapster 插件","keywords":"","body":"安装heapster插件 准备镜像 官方镜像保存在 gcr.io 中需要翻墙才能下载,请自行拷贝到私有仓库。 准备YAML文件 到 heapster release 页面 下载最新版本的 heapster。 wget https://github.com/kubernetes/heapster/archive/v1.3.0.zip unzip v1.3.0.zip mv v1.3.0.zip heapster-1.3.0 文件目录: heapster-1.3.0/deploy/kube-config/influxdb $ cd heapster-1.3.0/deploy/kube-config/influxdb $ ls *.yaml grafana-deployment.yaml grafana-service.yaml heapster-deployment.yaml heapster-service.yaml influxdb-deployment.yaml influxdb-service.yaml heapster-rbac.yaml 我们自己创建了heapster的rbac配置heapster-rbac.yaml。 已经修改好的 yaml 文件见:../manifests/heapster 配置 grafana-deployment $ diff grafana-deployment.yaml.orig grafana-deployment.yaml 16c16 image: harbor-001.jimmysong.io/library/heapster-grafana-amd64:v4.0.2 40,41c40,41 value: /api/v1/proxy/namespaces/kube-system/services/monitoring-grafana/ > #value: / 如果后续使用 kube-apiserver 或者 kubectl proxy 访问 grafana dashboard,则必须将 GF_SERVER_ROOT_URL 设置为 /api/v1/proxy/namespaces/kube-system/services/monitoring-grafana/,否则后续访问grafana时访问时提示找不到http://172.20.0.113:8086/api/v1/proxy/namespaces/kube-system/services/monitoring-grafana/api/dashboards/home 页面; 配置 heapster-deployment $ diff heapster-deployment.yaml.orig heapster-deployment.yaml 16c16 image: harbor-001.jimmysong.io/library/heapster-amd64:v1.3.0-beta.1 配置 influxdb-deployment influxdb 官方建议使用命令行或 HTTP API 接口来查询数据库,从 v1.1.0 版本开始默认关闭 admin UI,将在后续版本中移除 admin UI 插件。 开启镜像中 admin UI的办法如下:先导出镜像中的 influxdb 配置文件,开启 admin 插件后,再将配置文件内容写入 ConfigMap,最后挂载到镜像中,达到覆盖原始配置的目的: 注意:manifests 目录已经提供了修改后的 ConfigMap 定义文件。 $ # 导出镜像中的 influxdb 配置文件 $ docker run --rm --entrypoint 'cat' -ti lvanneo/heapster-influxdb-amd64:v1.1.1 /etc/config.toml >config.toml.orig $ cp config.toml.orig config.toml $ # 修改:启用 admin 接口 $ vim config.toml $ diff config.toml.orig config.toml 35c35 enabled = true $ # 将修改后的配置写入到 ConfigMap 对象中 $ kubectl create configmap influxdb-config --from-file=config.toml -n kube-system configmap \"influxdb-config\" created $ # 将 ConfigMap 中的配置文件挂载到 Pod 中,达到覆盖原始配置的目的 $ diff influxdb-deployment.yaml.orig influxdb-deployment.yaml 16c16 image: harbor-001.jimmysong.io/library/heapster-influxdb-amd64:v1.1.1 19a20,21 > - mountPath: /etc/ > name: influxdb-config 22a25,27 > - name: influxdb-config > configMap: > name: influxdb-config 配置 monitoring-influxdb Service $ diff influxdb-service.yaml.orig influxdb-service.yaml 12a13 > type: NodePort 15a17,20 > name: http > - port: 8083 > targetPort: 8083 > name: admin 定义端口类型为 NodePort,额外增加了 admin 端口映射,用于后续浏览器访问 influxdb 的 admin UI 界面; 执行所有定义文件 $ pwd /root/heapster-1.3.0/deploy/kube-config/influxdb $ ls *.yaml grafana-service.yaml heapster-rbac.yaml influxdb-cm.yaml influxdb-service.yaml grafana-deployment.yaml heapster-deployment.yaml heapster-service.yaml influxdb-deployment.yaml $ kubectl create -f . deployment \"monitoring-grafana\" created service \"monitoring-grafana\" created deployment \"heapster\" created serviceaccount \"heapster\" created clusterrolebinding \"heapster\" created service \"heapster\" created configmap \"influxdb-config\" created deployment \"monitoring-influxdb\" created service \"monitoring-influxdb\" created 检查执行结果 检查 Deployment $ kubectl get deployments -n kube-system | grep -E 'heapster|monitoring' heapster 1 1 1 1 2m monitoring-grafana 1 1 1 1 2m monitoring-influxdb 1 1 1 1 2m 检查 Pods $ kubectl get pods -n kube-system | grep -E 'heapster|monitoring' heapster-110704576-gpg8v 1/1 Running 0 2m monitoring-grafana-2861879979-9z89f 1/1 Running 0 2m monitoring-influxdb-1411048194-lzrpc 1/1 Running 0 2m 检查 kubernets dashboard 界面,看是显示各 Nodes、Pods 的 CPU、内存、负载等利用率曲线图; 图 6.2.10.1:dashboard-heapster 访问 grafana 通过 kube-apiserver 访问: 获取 monitoring-grafana 服务 URL $ kubectl cluster-info Kubernetes master is running at https://172.20.0.113:6443 Heapster is running at https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-system/services/heapster KubeDNS is running at https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-system/services/kube-dns kubernetes-dashboard is running at https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-system/services/kubernetes-dashboard monitoring-grafana is running at https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-system/services/monitoring-grafana monitoring-influxdb is running at https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-system/services/monitoring-influxdb To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'. 浏览器访问 URL: http://172.20.0.113:8080/api/v1/proxy/namespaces/kube-system/services/monitoring-grafana 通过 kubectl proxy 访问: 创建代理 $ kubectl proxy --address='172.20.0.113' --port=8086 --accept-hosts='^*$' Starting to serve on 172.20.0.113:8086 浏览器访问 URL:http://172.20.0.113:8086/api/v1/proxy/namespaces/kube-system/services/monitoring-grafana 图 6.2.10.2:grafana 访问 influxdb admin UI 获取 influxdb http 8086 映射的 NodePort $ kubectl get svc -n kube-system|grep influxdb monitoring-influxdb 10.254.22.46 8086:32299/TCP,8083:30269/TCP 9m 通过 kube-apiserver 的非安全端口访问 influxdb 的 admin UI 界面: http://172.20.0.113:8080/api/v1/proxy/namespaces/kube-system/services/monitoring-influxdb:8083/ 在页面的 “Connection Settings” 的 Host 中输入 node IP, Port 中输入 8086 映射的 nodePort 如上面的 32299,点击 “Save” 即可(我的集群中的地址是172.20.0.113:32299): 图 6.2.10.3:kubernetes-influxdb-heapster 注意 在安装好 Grafana 之后我们使用的是默认的 template 配置,页面上的 namespace 选择里只有 default 和 kube-system,并不是说其他的 namespace 里的指标没有得到监控,只是我们没有在 Grafana 中开启他它们的显示而已。见 Cannot see other namespaces except, kube-system and default #1279。 图 6.2.10.4:修改grafana模板 将 Templating 中的 namespace 的 Data source 设置为 influxdb-datasource,Refresh 设置为 on Dashboard Load 保存设置,刷新浏览器,即可看到其他 namespace 选项。 参考 使用Heapster获取集群对象的metric数据 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/efk-addon-installation.html":{"url":"practice/efk-addon-installation.html","title":"安装 EFK 插件","keywords":"","body":"安装EFK插件 我们通过在每台node上部署一个以DaemonSet方式运行的fluentd来收集每台node上的日志。Fluentd将docker日志目录/var/lib/docker/containers和/var/log目录挂载到Pod中,然后Pod会在node节点的/var/log/pods目录中创建新的目录,可以区别不同的容器日志输出,该目录下有一个日志文件链接到/var/lib/docker/contianers目录下的容器日志输出。 官方文件目录:cluster/addons/fluentd-elasticsearch $ ls *.yaml es-controller.yaml es-service.yaml fluentd-es-ds.yaml kibana-controller.yaml kibana-service.yaml efk-rbac.yaml 同样EFK服务也需要一个efk-rbac.yaml文件,配置serviceaccount为efk。 已经修改好的 yaml 文件见:../manifests/EFK 配置 es-controller.yaml $ diff es-controller.yaml.orig es-controller.yaml 24c24 - image: harbor-001.jimmysong.io/library/elasticsearch:v2.4.1-2 配置 es-service.yaml 无需配置; 配置 fluentd-es-ds.yaml $ diff fluentd-es-ds.yaml.orig fluentd-es-ds.yaml 26c26 image: harbor-001.jimmysong.io/library/fluentd-elasticsearch:1.22 配置 kibana-controller.yaml $ diff kibana-controller.yaml.orig kibana-controller.yaml 22c22 image: harbor-001.jimmysong.io/library/kibana:v4.6.1-1 给 Node 设置标签 定义 DaemonSet fluentd-es-v1.22 时设置了 nodeSelector beta.kubernetes.io/fluentd-ds-ready=true ,所以需要在期望运行 fluentd 的 Node 上设置该标签; $ kubectl get nodes NAME STATUS AGE VERSION 172.20.0.113 Ready 1d v1.6.0 $ kubectl label nodes 172.20.0.113 beta.kubernetes.io/fluentd-ds-ready=true node \"172.20.0.113\" labeled 给其他两台node打上同样的标签。 执行定义文件 $ kubectl create -f . serviceaccount \"efk\" created clusterrolebinding \"efk\" created replicationcontroller \"elasticsearch-logging-v1\" created service \"elasticsearch-logging\" created daemonset \"fluentd-es-v1.22\" created deployment \"kibana-logging\" created service \"kibana-logging\" created 检查执行结果 $ kubectl get deployment -n kube-system|grep kibana kibana-logging 1 1 1 1 2m $ kubectl get pods -n kube-system|grep -E 'elasticsearch|fluentd|kibana' elasticsearch-logging-v1-mlstp 1/1 Running 0 1m elasticsearch-logging-v1-nfbbf 1/1 Running 0 1m fluentd-es-v1.22-31sm0 1/1 Running 0 1m fluentd-es-v1.22-bpgqs 1/1 Running 0 1m fluentd-es-v1.22-qmn7h 1/1 Running 0 1m kibana-logging-1432287342-0gdng 1/1 Running 0 1m $ kubectl get service -n kube-system|grep -E 'elasticsearch|kibana' elasticsearch-logging 10.254.77.62 9200/TCP 2m kibana-logging 10.254.8.113 5601/TCP 2m kibana Pod 第一次启动时会用较长时间(10-20分钟)来优化和 Cache 状态页面,可以 tailf 该 Pod 的日志观察进度: $ kubectl logs kibana-logging-1432287342-0gdng -n kube-system -f ELASTICSEARCH_URL=http://elasticsearch-logging:9200 server.basePath: /api/v1/proxy/namespaces/kube-system/services/kibana-logging {\"type\":\"log\",\"@timestamp\":\"2017-04-12T13:08:06Z\",\"tags\":[\"info\",\"optimize\"],\"pid\":7,\"message\":\"Optimizing and caching bundles for kibana and statusPage. This may take a few minutes\"} {\"type\":\"log\",\"@timestamp\":\"2017-04-12T13:18:17Z\",\"tags\":[\"info\",\"optimize\"],\"pid\":7,\"message\":\"Optimization of bundles for kibana and statusPage complete in 610.40 seconds\"} {\"type\":\"log\",\"@timestamp\":\"2017-04-12T13:18:17Z\",\"tags\":[\"status\",\"plugin:kibana@1.0.0\",\"info\"],\"pid\":7,\"state\":\"green\",\"message\":\"Status changed from uninitialized to green - Ready\",\"prevState\":\"uninitialized\",\"prevMsg\":\"uninitialized\"} {\"type\":\"log\",\"@timestamp\":\"2017-04-12T13:18:18Z\",\"tags\":[\"status\",\"plugin:elasticsearch@1.0.0\",\"info\"],\"pid\":7,\"state\":\"yellow\",\"message\":\"Status changed from uninitialized to yellow - Waiting for Elasticsearch\",\"prevState\":\"uninitialized\",\"prevMsg\":\"uninitialized\"} {\"type\":\"log\",\"@timestamp\":\"2017-04-12T13:18:19Z\",\"tags\":[\"status\",\"plugin:kbn_vislib_vis_types@1.0.0\",\"info\"],\"pid\":7,\"state\":\"green\",\"message\":\"Status changed from uninitialized to green - Ready\",\"prevState\":\"uninitialized\",\"prevMsg\":\"uninitialized\"} {\"type\":\"log\",\"@timestamp\":\"2017-04-12T13:18:19Z\",\"tags\":[\"status\",\"plugin:markdown_vis@1.0.0\",\"info\"],\"pid\":7,\"state\":\"green\",\"message\":\"Status changed from uninitialized to green - Ready\",\"prevState\":\"uninitialized\",\"prevMsg\":\"uninitialized\"} {\"type\":\"log\",\"@timestamp\":\"2017-04-12T13:18:19Z\",\"tags\":[\"status\",\"plugin:metric_vis@1.0.0\",\"info\"],\"pid\":7,\"state\":\"green\",\"message\":\"Status changed from uninitialized to green - Ready\",\"prevState\":\"uninitialized\",\"prevMsg\":\"uninitialized\"} {\"type\":\"log\",\"@timestamp\":\"2017-04-12T13:18:19Z\",\"tags\":[\"status\",\"plugin:spyModes@1.0.0\",\"info\"],\"pid\":7,\"state\":\"green\",\"message\":\"Status changed from uninitialized to green - Ready\",\"prevState\":\"uninitialized\",\"prevMsg\":\"uninitialized\"} {\"type\":\"log\",\"@timestamp\":\"2017-04-12T13:18:19Z\",\"tags\":[\"status\",\"plugin:statusPage@1.0.0\",\"info\"],\"pid\":7,\"state\":\"green\",\"message\":\"Status changed from uninitialized to green - Ready\",\"prevState\":\"uninitialized\",\"prevMsg\":\"uninitialized\"} {\"type\":\"log\",\"@timestamp\":\"2017-04-12T13:18:19Z\",\"tags\":[\"status\",\"plugin:table_vis@1.0.0\",\"info\"],\"pid\":7,\"state\":\"green\",\"message\":\"Status changed from uninitialized to green - Ready\",\"prevState\":\"uninitialized\",\"prevMsg\":\"uninitialized\"} {\"type\":\"log\",\"@timestamp\":\"2017-04-12T13:18:19Z\",\"tags\":[\"listening\",\"info\"],\"pid\":7,\"message\":\"Server running at http://0.0.0.0:5601\"} {\"type\":\"log\",\"@timestamp\":\"2017-04-12T13:18:24Z\",\"tags\":[\"status\",\"plugin:elasticsearch@1.0.0\",\"info\"],\"pid\":7,\"state\":\"yellow\",\"message\":\"Status changed from yellow to yellow - No existing Kibana index found\",\"prevState\":\"yellow\",\"prevMsg\":\"Waiting for Elasticsearch\"} {\"type\":\"log\",\"@timestamp\":\"2017-04-12T13:18:29Z\",\"tags\":[\"status\",\"plugin:elasticsearch@1.0.0\",\"info\"],\"pid\":7,\"state\":\"green\",\"message\":\"Status changed from yellow to green - Kibana index ready\",\"prevState\":\"yellow\",\"prevMsg\":\"No existing Kibana index found\"} 访问 kibana 通过 kube-apiserver 访问: 获取 monitoring-grafana 服务 URL $ kubectl cluster-info Kubernetes master is running at https://172.20.0.113:6443 Elasticsearch is running at https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-system/services/elasticsearch-logging Heapster is running at https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-system/services/heapster Kibana is running at https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-system/services/kibana-logging KubeDNS is running at https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-system/services/kube-dns kubernetes-dashboard is running at https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-system/services/kubernetes-dashboard monitoring-grafana is running at https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-system/services/monitoring-grafana monitoring-influxdb is running at https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-system/services/monitoring-influxdb 浏览器访问 URL: https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-system/services/kibana-logging/app/kibana 通过 kubectl proxy 访问: 创建代理 $ kubectl proxy --address='172.20.0.113' --port=8086 --accept-hosts='^*$' Starting to serve on 172.20.0.113:8086 浏览器访问 URL:http://172.20.0.113:8086/api/v1/proxy/namespaces/kube-system/services/kibana-logging 在 Settings -> Indices 页面创建一个 index(相当于 mysql 中的一个 database),选中 Index contains time-based events,使用默认的 logstash-* pattern,点击 Create ; 可能遇到的问题 如果你在这里发现Create按钮是灰色的无法点击,且Time-filed name中没有选项,fluentd要读取/var/log/containers/目录下的log日志,这些日志是从/var/lib/docker/containers/${CONTAINER_ID}/${CONTAINER_ID}-json.log链接过来的,查看你的docker配置,—log-dirver需要设置为json-file格式,默认的可能是journald,参考docker logging。 图 6.2.11.1:es-setting 创建Index后,可以在 Discover 下看到 ElasticSearch logging 中汇聚的日志; 图 6.2.11.2:es-home 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/install-kubernetes-with-kubeadm.html":{"url":"practice/install-kubernetes-with-kubeadm.html","title":"生产级的 Kubernetes 简化管理工具 kubeadm","keywords":"","body":"生产级的Kubernetes简化管理工具kubeadm Kubeadm 在2018年12月3日发布的 Kubernetes 1.13 版本中已经宣布 GA,可以支持生产。本文是对 kubeadmin 的先关介绍,详细信息请参考 Overview of kubeadm。 基本介绍 kubeadm 是一个工具包,可帮助您以简单,合理安全和可扩展的方式引导最佳实践Kubernetes群集。它还支持为您管理Bootstrap Tokens并升级/降级群集。 kubeadm的目标是建立一个通过Kubernetes一致性测试Kubernetes Conformance tests的最小可行集群 ,但不会安装其他功能插件。 它在设计上并未为您安装网络解决方案,需要用户自行安装第三方符合CNI的网络解决方案(如flanal,calico,canal等)。 kubeadm可以在多种设备上运行,可以是Linux笔记本电脑,虚拟机,物理/云服务器或Raspberry Pi。这使得kubeadm非常适合与不同种类的配置系统(例如Terraform,Ansible等)集成。 kubeadm是一种简单的方式让新用户开始尝试Kubernetes,也可能是第一次让现有用户轻松测试他们的应用程序并缝合到一起的方式,也可以作为其他生态系统中的构建块,或者具有更大范围的安装工具。 可以在支持安装deb或rpm软件包的操作系统上非常轻松地安装kubeadm。SIG集群生命周期SIG Cluster Lifecycle kubeadm的SIG相关维护者提供了预编译的这些软件包,也可以在其他操作系统上使用。 kubeadm 成熟度 分类 成熟度 Level Command line UX beta Implementation beta Config file API alpha Self-hosting alpha kubeadm alpha subcommands alpha CoreDNS alpha DynamicKubeletConfig alpha kubeadm的整体功能状态为 Beta,即将在2018 年推向 General Availability(GA)。一些子功能(如自托管或配置文件API)仍在积极开发中。随着这个工具的发展,创建集群的实现可能会稍微改变,但总体实现应该相当稳定。根据kubeadm alpha定义,任何命令 都在alpha级别上受支持。 支持时间表 Kubernetes版本通常支持九个月,在此期间,如果发现严重的错误或安全问题,可能会从发布分支发布补丁程序版本。这里是最新的Kubernetes版本和支持时间表; 这也适用于 kubeadm. Kubernetes version Release month End-of-life-month v1.6.x March 2017 December 2017 v1.7.x June 2017 March 2018 v1.8.x September 2017 June 2018 v1.9.x December 2017 September 2018 v1.10.x March 2018 December 2018 v1.11.x June 2018 March 2019 v1.12.x September 2018 June 2019 v1.13.x December 2018 September 2019 参考 Overview of kubeadm 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/install-kubernetes-on-ubuntu-server-16.04-with-kubeadm.html":{"url":"practice/install-kubernetes-on-ubuntu-server-16.04-with-kubeadm.html","title":"使用 kubeadm 在 Ubuntu Server 16.04 上快速构建测试集群","keywords":"","body":"用kubeadm在Ubuntu上快速构建Kubernetes测试集群 本文将介绍如何在Ubuntu server 16.04版本上安装kubeadm,并利用kubeadm快速的在Ubuntu server 版本 16.04上构建一个kubernetes的基础的测试集群,用来做学习和测试用途,当前(2018-04-14)最新的版本是1.10.1。参考文档包括kubernetes官方网站的kubeadm安装文档以及利用kubeadm创建集群这两个文档。 生产用途的环境,需要考虑各个组件的高可用,建议参考Kubernetes的官方的相关的安装文档。 概述 本次安装建议至少4台服务器或者虚拟机,每台服务器4G内存,2个CPU核心以上,基本架构为1台master节点,3台slave节点。整个安装过程将在Ubuntu服务器上安装完kubeadm,以及安装kubernetes的基本集群,包括canal网络,另后台存储可参考本书的最佳实践中的存储管理内容。 本次安装一共4个节点,节点信息如下: 角色 主机名 IP地址 Master Ubuntu-master 192.168.5.200 Slave ubuntu-1 192.168.5.201 Slave ubuntu-2 192.168.5.202 Slave ubuntu-3 192.168.5.203 准备工作 默认方式安装Ubuntu Server 版本 16.04 配置主机名映射,每个节点 # cat /etc/hosts 127.0.0.1 localhost 192.168.0.200 Ubuntu-master 192.168.0.201 Ubuntu-1 192.168.0.202 Ubuntu-2 192.168.0.203 Ubuntu-3 如果连接gcr网站不方便,无法下载镜像,会导致安装过程卡住,可以下载我导出的镜像包,我导出的镜像网盘链接,解压缩以后是多个个tar包,使用docker load 导入各个文件即可)。在所有节点上安装kubeadm 查看apt安装源如下配置,使用阿里云的系统和kubernetes的源。 $ cat /etc/apt/sources.list # 系统安装源 deb http://mirrors.aliyun.com/ubuntu/ xenial main restricted deb http://mirrors.aliyun.com/ubuntu/ xenial-updates main restricted deb http://mirrors.aliyun.com/ubuntu/ xenial universe deb http://mirrors.aliyun.com/ubuntu/ xenial-updates universe deb http://mirrors.aliyun.com/ubuntu/ xenial multiverse deb http://mirrors.aliyun.com/ubuntu/ xenial-updates multiverse deb http://mirrors.aliyun.com/ubuntu/ xenial-backports main restricted universe multiverse # kubeadm及kubernetes组件安装源 deb https://mirrors.aliyun.com/kubernetes/apt kubernetes-xenial main 安装docker,可以使用系统源的的docker.io软件包,版本1.13.1,我的系统里是已经安装好最新的版本了。 # apt-get install docker.io Reading package lists... Done Building dependency tree Reading state information... Done docker.io is already the newest version (1.13.1-0ubuntu1~16.04.2). 0 upgraded, 0 newly installed, 0 to remove and 4 not upgraded. 更新源,可以不理会gpg的报错信息。 # apt-get update Hit:1 http://mirrors.aliyun.com/ubuntu xenial InRelease Hit:2 http://mirrors.aliyun.com/ubuntu xenial-updates InRelease Hit:3 http://mirrors.aliyun.com/ubuntu xenial-backports InRelease Get:4 https://mirrors.aliyun.com/kubernetes/apt kubernetes-xenial InRelease [8,993 B] Ign:4 https://mirrors.aliyun.com/kubernetes/apt kubernetes-xenial InRelease Fetched 8,993 B in 0s (20.7 kB/s) Reading package lists... Done W: GPG error: https://mirrors.aliyun.com/kubernetes/apt kubernetes-xenial InRelease: The following signatures couldn't be verified because the public key is not available: NO_PUBKEY 6A030B21BA07F4FB W: The repository 'https://mirrors.aliyun.com/kubernetes/apt kubernetes-xenial InRelease' is not signed. N: Data from such a repository can't be authenticated and is therefore potentially dangerous to use. N: See apt-secure(8) manpage for repository creation and user configuration details. 强制安装kubeadm,kubectl,kubelet软件包。 # apt-get install -y kubelet kubeadm kubectl --allow-unauthenticated Reading package lists... Done Building dependency tree Reading state information... Done The following additional packages will be installed: kubernetes-cni socat The following NEW packages will be installed: kubeadm kubectl kubelet kubernetes-cni socat 0 upgraded, 5 newly installed, 0 to remove and 4 not upgraded. Need to get 56.9 MB of archives. After this operation, 410 MB of additional disk space will be used. WARNING: The following packages cannot be authenticated! kubernetes-cni kubelet kubectl kubeadm Authentication warning overridden. Get:1 http://mirrors.aliyun.com/ubuntu xenial/universe amd64 socat amd64 1.7.3.1-1 [321 kB] Get:2 https://mirrors.aliyun.com/kubernetes/apt kubernetes-xenial/main amd64 kubernetes-cni amd64 0.6.0-00 [5,910 kB] Get:3 https://mirrors.aliyun.com/kubernetes/apt kubernetes-xenial/main amd64 kubelet amd64 1.10.1-00 [21.1 MB] Get:4 https://mirrors.aliyun.com/kubernetes/apt kubernetes-xenial/main amd64 kubectl amd64 1.10.1-00 [8,906 kB] Get:5 https://mirrors.aliyun.com/kubernetes/apt kubernetes-xenial/main amd64 kubeadm amd64 1.10.1-00 [20.7 MB] Fetched 56.9 MB in 5s (11.0 MB/s) Use of uninitialized value $_ in lc at /usr/share/perl5/Debconf/Template.pm line 287. Selecting previously unselected package kubernetes-cni. (Reading database ... 191799 files and directories currently installed.) Preparing to unpack .../kubernetes-cni_0.6.0-00_amd64.deb ... Unpacking kubernetes-cni (0.6.0-00) ... Selecting previously unselected package socat. Preparing to unpack .../socat_1.7.3.1-1_amd64.deb ... Unpacking .... .... kubeadm安装完以后,就可以使用它来快速安装部署Kubernetes集群了。 使用kubeadm安装Kubernetes集群 在做好了准备工作之后,下面介绍如何使用 kubeadm 安装 Kubernetes 集群,我们将首先安装 master 节点,然后将 slave 节点一个个加入到集群中去。 使用kubeadmin初始化master节点 因为使用要使用canal,因此需要在初始化时加上网络配置参数,设置kubernetes的子网为10.244.0.0/16,注意此处不要修改为其他地址,因为这个值与后续的canal的yaml值要一致,如果修改,请一并修改。 这个下载镜像的过程涉及翻墙,因为会从gcr的站点下载容器镜像。。。(如果大家翻墙不方便的话,可以用我在上文准备工作中提到的导出的镜像)。 如果有能够连接gcr站点的网络,那么整个安装过程非常简单。 # kubeadm init --pod-network-cidr=10.244.0.0/16 --apiserver-advertise-address=192.168.0.200 [init] Using Kubernetes version: v1.10.1 [init] Using Authorization modes: [Node RBAC] [preflight] Running pre-flight checks. [WARNING FileExisting-crictl]: crictl not found in system path Suggestion: go get github.com/kubernetes-incubator/cri-tools/cmd/crictl [preflight] Starting the kubelet service [certificates] Generated ca certificate and key. [certificates] Generated apiserver certificate and key. [certificates] apiserver serving cert is signed for DNS names [ubuntu-master kubernetes kubernetes.default kubernetes.default.svc kubernetes.default.svc.cluster.local] and IPs [10.96.0.1 192.168.0.200] [certificates] Generated apiserver-kubelet-client certificate and key. [certificates] Generated etcd/ca certificate and key. [certificates] Generated etcd/server certificate and key. [certificates] etcd/server serving cert is signed for DNS names [localhost] and IPs [127.0.0.1] [certificates] Generated etcd/peer certificate and key. [certificates] etcd/peer serving cert is signed for DNS names [ubuntu-master] and IPs [192.168.0.200] [certificates] Generated etcd/healthcheck-client certificate and key. [certificates] Generated apiserver-etcd-client certificate and key. [certificates] Generated sa key and public key. [certificates] Generated front-proxy-ca certificate and key. [certificates] Generated front-proxy-client certificate and key. [certificates] Valid certificates and keys now exist in \"/etc/kubernetes/pki\" [kubeconfig] Wrote KubeConfig file to disk: \"/etc/kubernetes/admin.conf\" [kubeconfig] Wrote KubeConfig file to disk: \"/etc/kubernetes/kubelet.conf\" [kubeconfig] Wrote KubeConfig file to disk: \"/etc/kubernetes/controller-manager.conf\" [kubeconfig] Wrote KubeConfig file to disk: \"/etc/kubernetes/scheduler.conf\" [controlplane] Wrote Static Pod manifest for component kube-apiserver to \"/etc/kubernetes/manifests/kube-apiserver.yaml\" [controlplane] Wrote Static Pod manifest for component kube-controller-manager to \"/etc/kubernetes/manifests/kube-controller-manager.yaml\" [controlplane] Wrote Static Pod manifest for component kube-scheduler to \"/etc/kubernetes/manifests/kube-scheduler.yaml\" [etcd] Wrote Static Pod manifest for a local etcd instance to \"/etc/kubernetes/manifests/etcd.yaml\" [init] Waiting for the kubelet to boot up the control plane as Static Pods from directory \"/etc/kubernetes/manifests\". [init] This might take a minute or longer if the control plane images have to be pulled. [apiclient] All control plane components are healthy after 28.003828 seconds [uploadconfig] Storing the configuration used in ConfigMap \"kubeadm-config\" in the \"kube-system\" Namespace [markmaster] Will mark node ubuntu-master as master by adding a label and a taint [markmaster] Master ubuntu-master tainted and labelled with key/value: node-role.kubernetes.io/master=\"\" [bootstraptoken] Using token: rw4enn.mvk547juq7qi2b5f [bootstraptoken] Configured RBAC rules to allow Node Bootstrap tokens to post CSRs in order for nodes to get long term certificate credentials [bootstraptoken] Configured RBAC rules to allow the csrapprover controller automatically approve CSRs from a Node Bootstrap Token [bootstraptoken] Configured RBAC rules to allow certificate rotation for all node client certificates in the cluster [bootstraptoken] Creating the \"cluster-info\" ConfigMap in the \"kube-public\" namespace [addons] Applied essential addon: kube-dns [addons] Applied essential addon: kube-proxy Your Kubernetes master has initialized successfully! To start using your cluster, you need to run the following as a regular user: mkdir -p $HOME/.kube sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config sudo chown $(id -u):$(id -g) $HOME/.kube/config You should now deploy a pod network to the cluster. Run \"kubectl apply -f [podnetwork].yaml\" with one of the options listed at: https://kubernetes.io/docs/concepts/cluster-administration/addons/ You can now join any number of machines by running the following on each node as root: kubeadm join 192.168.0.200:6443 --token rw4enn.mvk547juq7qi2b5f --discovery-token-ca-cert-hash sha256:ba260d5191213382a806a9a7d92c9e6bb09061847c7914b1ac584d0c69471579 执行如下命令来配置kubectl。 mkdir -p $HOME/.kube sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config sudo chown $(id -u):$(id -g) $HOME/.kube/config 这样master的节点就配置好了,并且可以使用kubectl来进行各种操作了,根据上面的提示接着往下做,将slave节点加入到集群。 Slave节点加入集群 在slave节点执行如下的命令,将slave节点加入集群,正常的返回信息如下: #kubeadm join 192.168.0.200:6443 --token rw4enn.mvk547juq7qi2b5f --discovery-token-ca-cert-hash sha256:ba260d5191213382a806a9a7d92c9e6bb09061847c7914b1ac584d0c69471579 [preflight] Running pre-flight checks. [WARNING FileExisting-crictl]: crictl not found in system path Suggestion: go get github.com/kubernetes-incubator/cri-tools/cmd/crictl [discovery] Trying to connect to API Server \"192.168.0.200:6443\" [discovery] Created cluster-info discovery client, requesting info from \"https://192.168.0.200:6443\" [discovery] Requesting info from \"https://192.168.0.200:6443\" again to validate TLS against the pinned public key [discovery] Cluster info signature and contents are valid and TLS certificate validates against pinned roots, will use API Server \"192.168.0.200:6443\" [discovery] Successfully established connection with API Server \"192.168.0.200:6443\" This node has joined the cluster: * Certificate signing request was sent to master and a response was received. * The Kubelet was informed of the new secure connection details. Run 'kubectl get nodes' on the master to see this node join the cluster. 等待节点加入完毕。加入中状态。 # kubectl get node NAME STATUS ROLES AGE VERSION ubuntu-1 NotReady 6m v1.10.1 ubuntu-2 NotReady 6m v1.10.1 ubuntu-3 NotReady 6m v1.10.1 ubuntu-master NotReady master 10m v1.10.1 在master节点查看信息如下状态为节点加入完毕。 root@Ubuntu-master:~# kubectl get pod -n kube-system -o wide NAME READY STATUS RESTARTS AGE IP NODE etcd-ubuntu-master 1/1 Running 0 21m 192.168.0.200 ubuntu-master kube-apiserver-ubuntu-master 1/1 Running 0 21m 192.168.0.200 ubuntu-master kube-controller-manager-ubuntu-master 1/1 Running 0 22m 192.168.0.200 ubuntu-master kube-dns-86f4d74b45-wkfk2 0/3 Pending 0 22m kube-proxy-6ddb4 1/1 Running 0 22m 192.168.0.200 ubuntu-master kube-proxy-7ngb9 1/1 Running 0 17m 192.168.0.202 ubuntu-2 kube-proxy-fkhhx 1/1 Running 0 18m 192.168.0.201 ubuntu-1 kube-proxy-rh4lq 1/1 Running 0 18m 192.168.0.203 ubuntu-3 kube-scheduler-ubuntu-master 1/1 Running 0 21m 192.168.0.200 ubuntu-master kubedns组件需要在网络插件完成安装以后会自动安装完成。 安装网络插件canal 从canal官方文档参考,如下网址下载2个文件并且安装,其中一个是配置canal的RBAC权限,一个是部署canal的DaemonSet。 # kubectl apply -f https://docs.projectcalico.org/v3.0/getting-started/kubernetes/installation/hosted/canal/rbac.yaml clusterrole.rbac.authorization.k8s.io \"calico\" created clusterrole.rbac.authorization.k8s.io \"flannel\" created clusterrolebinding.rbac.authorization.k8s.io \"canal-flannel\" created clusterrolebinding.rbac.authorization.k8s.io \"canal-calico\" created # kubectl apply -f https://docs.projectcalico.org/v3.0/getting-started/kubernetes/installation/hosted/canal/canal.yaml configmap \"canal-config\" created daemonset.extensions \"canal\" created customresourcedefinition.apiextensions.k8s.io \"felixconfigurations.crd.projectcalico.org\" created customresourcedefinition.apiextensions.k8s.io \"bgpconfigurations.crd.projectcalico.org\" created customresourcedefinition.apiextensions.k8s.io \"ippools.crd.projectcalico.org\" created customresourcedefinition.apiextensions.k8s.io \"clusterinformations.crd.projectcalico.org\" created customresourcedefinition.apiextensions.k8s.io \"globalnetworkpolicies.crd.projectcalico.org\" created customresourcedefinition.apiextensions.k8s.io \"networkpolicies.crd.projectcalico.org\" created serviceaccount \"canal\" created 查看canal的安装状态。 # kubectl get pod -n kube-system -o wide NAME READY STATUS RESTARTS AGE IP NODE canal-fc94k 3/3 Running 10 4m 192.168.0.201 ubuntu-1 canal-rs2wp 3/3 Running 10 4m 192.168.0.200 ubuntu-master canal-tqd4l 3/3 Running 10 4m 192.168.0.202 ubuntu-2 canal-vmpnr 3/3 Running 10 4m 192.168.0.203 ubuntu-3 etcd-ubuntu-master 1/1 Running 0 28m 192.168.0.200 ubuntu-master kube-apiserver-ubuntu-master 1/1 Running 0 28m 192.168.0.200 ubuntu-master kube-controller-manager-ubuntu-master 1/1 Running 0 29m 192.168.0.200 ubuntu-master kube-dns-86f4d74b45-wkfk2 3/3 Running 0 28m 10.244.2.2 ubuntu-3 kube-proxy-6ddb4 1/1 Running 0 28m 192.168.0.200 ubuntu-master kube-proxy-7ngb9 1/1 Running 0 24m 192.168.0.202 ubuntu-2 kube-proxy-fkhhx 1/1 Running 0 24m 192.168.0.201 ubuntu-1 kube-proxy-rh4lq 1/1 Running 0 24m 192.168.0.203 ubuntu-3 kube-scheduler-ubuntu-master 1/1 Running 0 28m 192.168.0.200 ubuntu-master 可以看到canal和kube-dns都已经运行正常,一个基本功能正常的测试环境就部署完毕了。 此时查看集群的节点状态,版本为最新的版本v1.10.1。 # kubectl get node NAME STATUS ROLES AGE VERSION ubuntu-1 Ready 27m v1.10.1 ubuntu-2 Ready 27m v1.10.1 ubuntu-3 Ready 27m v1.10.1 ubuntu-master Ready master 31m v1.10.1 让master也运行pod(默认master不运行pod),这样在测试环境做是可以的,不建议在生产环境如此操作。 #kubectl taint nodes --all node-role.kubernetes.io/master- node \"ubuntu-master\" untainted taint \"node-role.kubernetes.io/master:\" not found taint \"node-role.kubernetes.io/master:\" not found taint \"node-role.kubernetes.io/master:\" not found 后续如果想要集群其他功能启用,请参考后续文章。 参考 Overview of kubeadm 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/service-discovery-and-loadbalancing.html":{"url":"practice/service-discovery-and-loadbalancing.html","title":"服务发现与负载均衡","keywords":"","body":"服务发现与负载均衡 Kubernetes在设计之初就充分考虑了针对容器的服务发现与负载均衡机制,提供了Service资源,并通过kube-proxy配合cloud provider来适应不同的应用场景。随着kubernetes用户的激增,用户场景的不断丰富,又产生了一些新的负载均衡机制。目前,kubernetes中的负载均衡大致可以分为以下几种机制,每种机制都有其特定的应用场景: Service:直接用Service提供cluster内部的负载均衡,并借助cloud provider提供的LB提供外部访问 Ingress Controller:还是用Service提供cluster内部的负载均衡,但是通过自定义LB提供外部访问 Service Load Balancer:把load balancer直接跑在容器中,实现Bare Metal的Service Load Balancer Custom Load Balancer:自定义负载均衡,并替代kube-proxy,一般在物理部署Kubernetes时使用,方便接入公司已有的外部服务 Service Service是对一组提供相同功能的Pods的抽象,并为它们提供一个统一的入口。借助Service,应用可以方便的实现服务发现与负载均衡,并实现应用的零宕机升级。Service通过标签来选取服务后端,一般配合Replication Controller或者Deployment来保证后端容器的正常运行。 Service有三种类型: ClusterIP:默认类型,自动分配一个仅cluster内部可以访问的虚拟IP NodePort:在ClusterIP基础上为Service在每台机器上绑定一个端口,这样就可以通过:NodePort来访问该服务 LoadBalancer:在NodePort的基础上,借助cloud provider创建一个外部的负载均衡器,并将请求转发到:NodePort 另外,也可以将已有的服务以Service的形式加入到Kubernetes集群中来,只需要在创建Service的时候不指定Label selector,而是在Service创建好后手动为其添加endpoint。 Ingress Controller Service虽然解决了服务发现和负载均衡的问题,但它在使用上还是有一些限制,比如 对外访问的时候,NodePort类型需要在外部搭建额外的负载均衡,而LoadBalancer要求kubernetes必须跑在支持的cloud provider上面 Ingress就是为了解决这些限制而引入的新资源,主要用来将服务暴露到cluster外面,并且可以自定义服务的访问策略。比如想要通过负载均衡器实现不同子域名到不同服务的访问: foo.bar.com --| |-> foo.bar.com s1:80 | 178.91.123.132 | bar.foo.com --| |-> bar.foo.com s2:80 可以这样来定义Ingress: apiVersion: extensions/v1beta1 kind: Ingress metadata: name: test spec: rules: - host: foo.bar.com http: paths: - backend: serviceName: s1 servicePort: 80 - host: bar.foo.com http: paths: - backend: serviceName: s2 servicePort: 80 注意: Ingress本身并不会自动创建负载均衡器,cluster中需要运行一个ingress controller来根据Ingress的定义来管理负载均衡器。目前社区提供了nginx和gce的参考实现。 Service Load Balancer 在Ingress出现以前,Service Load Balancer是推荐的解决Service局限性的方式。Service Load Balancer将haproxy跑在容器中,并监控service和endpoint的变化,通过容器IP对外提供4层和7层负载均衡服务。 社区提供的Service Load Balancer支持四种负载均衡协议:TCP、HTTP、HTTPS和SSL TERMINATION,并支持ACL访问控制。 Custom Load Balancer 虽然Kubernetes提供了丰富的负载均衡机制,但在实际使用的时候,还是会碰到一些复杂的场景是它不能支持的,比如: 接入已有的负载均衡设备 多租户网络情况下,容器网络和主机网络是隔离的,这样kube-proxy就不能正常工作 这个时候就可以自定义组件,并代替kube-proxy来做负载均衡。基本的思路是监控kubernetes中service和endpoints的变化,并根据这些变化来配置负载均衡器。比如weave flux、nginx plus、kube2haproxy等。 Endpoints 有几种情况下需要用到没有selector的service。 使用kubernetes集群外部的数据库时 service中用到了其他namespace或kubernetes集群中的service 在kubernetes的工作负载与集群外的后端之间互相迁移 可以这样定义一个没有selector的service。 kind: Service apiVersion: v1 metadata: name: my-service spec: ports: - protocol: TCP port: 80 targetPort: 9376 定义一个Endpoints来对应该service。 kind: Endpoints apiVersion: v1 metadata: name: my-service subsets: - addresses: - ip: 1.2.3.4 ports: - port: 9376 访问没有selector的service跟访问有selector的service时没有任何区别。 使用kubernetes时有一个很常见的需求,就是当数据库部署在kubernetes集群之外的时候,集群内的service如何访问数据库呢?当然你可以直接使用数据库的IP地址和端口号来直接访问,有没有什么优雅的方式呢?你需要用到ExternalName Service。 kind: Service apiVersion: v1 metadata: name: my-service namespace: prod spec: type: ExternalName externalName: my.database.example.com ports: - port: 12345 这个例子中,在kubernetes集群内访问my-service实际上会重定向到my.database.example.com:12345这个地址。 参考资料 https://kubernetes.io/docs/concepts/services-networking/service/ http://kubernetes.io/docs/user-guide/ingress/ https://github.com/kubernetes/contrib/tree/master/service-loadbalancer https://www.nginx.com/blog/load-balancing-kubernetes-services-nginx-plus/ https://github.com/weaveworks/flux https://github.com/AdoHe/kube2haproxy 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/traefik-ingress-installation.html":{"url":"practice/traefik-ingress-installation.html","title":"安装 Traefik ingress","keywords":"","body":"安装traefik ingress Ingress简介 如果你还不了解,ingress是什么,可以先看下我翻译的Kubernetes官网上ingress的介绍Kubernetes Ingress解析。 理解Ingress 简单的说,ingress就是从kubernetes集群外访问集群的入口,将用户的URL请求转发到不同的service上。Ingress相当于nginx、apache等负载均衡方向代理服务器,其中还包括规则定义,即URL的路由信息,路由信息得的刷新由Ingress controller来提供。 理解Ingress Controller Ingress Controller 实质上可以理解为是个监视器,Ingress Controller 通过不断地跟 kubernetes API 打交道,实时的感知后端 service、pod 等变化,比如新增和减少 pod,service 增加与减少等;当得到这些变化信息后,Ingress Controller 再结合下文的 Ingress 生成配置,然后更新反向代理负载均衡器,并刷新其配置,达到服务发现的作用。 部署Traefik 介绍traefik Traefik是一款开源的反向代理与负载均衡工具。它最大的优点是能够与常见的微服务系统直接整合,可以实现自动化动态配置。目前支持Docker, Swarm, Mesos/Marathon, Mesos, Kubernetes, Consul, Etcd, Zookeeper, BoltDB, Rest API等等后端模型。 以下配置文件可以在kubernetes-handbookGitHub仓库中的../manifests/traefik-ingress/目录下找到。 创建ingress-rbac.yaml 将用于service account验证。 apiVersion: v1 kind: ServiceAccount metadata: name: ingress namespace: kube-system --- kind: ClusterRoleBinding apiVersion: rbac.authorization.k8s.io/v1beta1 metadata: name: ingress subjects: - kind: ServiceAccount name: ingress namespace: kube-system roleRef: kind: ClusterRole name: cluster-admin apiGroup: rbac.authorization.k8s.io 创建名为traefik-ingress的ingress,文件名ingress.yaml apiVersion: extensions/v1beta1 kind: Ingress metadata: name: traefik-ingress namespace: default spec: rules: - host: traefik.nginx.io http: paths: - path: / backend: serviceName: my-nginx servicePort: 80 - host: traefik.frontend.io http: paths: - path: / backend: serviceName: frontend servicePort: 80 这其中的backend中要配置default namespace中启动的service名字,如果你没有配置namespace名字,默认使用default namespace,如果你在其他namespace中创建服务想要暴露到kubernetes集群外部,可以创建新的ingress.yaml文件,同时在文件中指定该namespace,其他配置与上面的文件格式相同。。path就是URL地址后的路径,如traefik.frontend.io/path,service将会接受path这个路径,host最好使用service-name.filed1.filed2.domain-name这种类似主机名称的命名方式,方便区分服务。 根据你自己环境中部署的service的名字和端口自行修改,有新service增加时,修改该文件后可以使用kubectl replace -f ingress.yaml来更新。 我们现在集群中已经有两个service了,一个是nginx,另一个是官方的guestbook例子。 创建DaemonSet 我们使用DaemonSet类型来部署Traefik,并使用nodeSelector来限定Traefik所部署的主机。 apiVersion: extensions/v1beta1 kind: DaemonSet metadata: name: traefik-ingress-lb namespace: kube-system labels: k8s-app: traefik-ingress-lb spec: template: metadata: labels: k8s-app: traefik-ingress-lb name: traefik-ingress-lb spec: terminationGracePeriodSeconds: 60 hostNetwork: true restartPolicy: Always serviceAccountName: ingress containers: - image: traefik name: traefik-ingress-lb resources: limits: cpu: 200m memory: 30Mi requests: cpu: 100m memory: 20Mi ports: - name: http containerPort: 80 hostPort: 80 - name: admin containerPort: 8580 hostPort: 8580 args: - --web - --web.address=:8580 - --kubernetes nodeSelector: edgenode: \"true\" 注意:我们使用了nodeSelector选择边缘节点来调度traefik-ingress-lb运行在它上面,所有你需要使用: kubectl label nodes 172.20.0.113 edgenode=true kubectl label nodes 172.20.0.114 edgenode=true kubectl label nodes 172.20.0.115 edgenode=true 给三个node打标签,这样traefik的pod才会调度到这几台主机上,否则会一直处于pending状态。 关于使用Traefik作为边缘节点请参考边缘节点配置。 Traefik UI 使用下面的yaml配置来创建Traefik的Web UI。 apiVersion: v1 kind: Service metadata: name: traefik-web-ui namespace: kube-system spec: selector: k8s-app: traefik-ingress-lb ports: - name: web port: 80 targetPort: 8580 --- apiVersion: extensions/v1beta1 kind: Ingress metadata: name: traefik-web-ui namespace: kube-system spec: rules: - host: traefik-ui.local http: paths: - path: / backend: serviceName: traefik-web-ui servicePort: web 配置完成后就可以启动treafik ingress了。 kubectl create -f . 我查看到traefik的pod在172.20.0.115这台节点上启动了。 访问该地址http://172.20.0.115:8580/将可以看到dashboard。 图 6.4.1.1:kubernetes-dashboard 左侧黄色部分部分列出的是所有的rule,右侧绿色部分是所有的backend。 测试 在集群的任意一个节点上执行。假如现在我要访问nginx的\"/\"路径。 $ curl -H Host:traefik.nginx.io http://172.20.0.115/ Welcome to nginx! body { width: 35em; margin: 0 auto; font-family: Tahoma, Verdana, Arial, sans-serif; } Welcome to nginx! If you see this page, the nginx web server is successfully installed and working. Further configuration is required. For online documentation and support please refer to nginx.org. Commercial support is available at nginx.com. Thank you for using nginx. 如果你需要在kubernetes集群以外访问就需要设置DNS,或者修改本机的hosts文件。 在其中加入: 172.20.0.115 traefik.nginx.io 172.20.0.115 traefik.frontend.io 所有访问这些地址的流量都会发送给172.20.0.115这台主机,就是我们启动traefik的主机。 Traefik会解析http请求header里的Host参数将流量转发给Ingress配置里的相应service。 修改hosts后就就可以在kubernetes集群外访问以上两个service,如下图: 图 6.4.1.2:traefik-nginx 图 6.4.1.3:traefik-guestbook 参考 Traefik简介 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/distributed-load-test.html":{"url":"practice/distributed-load-test.html","title":"分布式负载测试","keywords":"","body":"分布式负载测试 该教程描述如何在Kubernetes中进行分布式负载均衡测试,包括一个web应用、docker镜像和Kubernetes controllers/services。关于分布式负载测试的更多资料请查看Distributed Load Testing Using Kubernetes 。 准备 不需要GCE及其他组件,你只需要有一个kubernetes集群即可。 如果你还没有kubernetes集群,可以参考kubernetes-handbook部署一个。 部署Web应用 本文中使用的镜像、kubernetes应用的yaml配置来自我的另一个项目,请参考:https://github.com/rootsongjc/distributed-load-testing-using-kubernetes sample-webapp 目录下包含一个简单的web测试应用。我们将其构建为docker镜像,在kubernetes中运行。 在kubernetes上部署sample-webapp。 $ git clone https://github.com/rootsongjc/distributed-load-testing-using-kubernetes.git $ cd kubernetes-config $ kubectl create -f sample-webapp-controller.yaml $ kubectl create -f sample-webapp-service.yaml 部署Locust的Controller和Service locust-master和locust-work使用同样的docker镜像,修改cotnroller中spec.template.spec.containers.env字段中的value为你sample-webapp service的名字。 - name: TARGET_HOST value: http://sample-webapp:8000 创建Controller Docker镜像(可选) locust-master和locust-work controller使用的都是locust-tasks docker镜像。你可以直接下载gcr.io/cloud-solutions-images/locust-tasks,也可以自己编译。自己编译大概要花几分钟时间,镜像大小为820M。 $ docker build -t jimmysong/locust-tasks:latest . $ docker push jimmysong/locust-tasks:latest 每个controller的yaml的spec.template.spec.containers.image 字段指定的是我的镜像: image: jimmysong/locust-tasks:latest 部署locust-master $ kubectl create -f locust-master-controller.yaml $ kubectl create -f locust-master-service.yaml 部署locust-worker Now deploy locust-worker-controller: $ kubectl create -f locust-worker-controller.yaml 你可以很轻易的给work扩容,通过命令行方式: $ kubectl scale --replicas=20 replicationcontrollers locust-worker 当然你也可以通过WebUI:Dashboard - Workloads - Replication Controllers - ServiceName - Scale来扩容。 图 6.4.2.1:使用dashboard来扩容 配置Traefik 参考kubernetes的traefik ingress安装,在ingress.yaml中加入如下配置: - host: traefik.locust.io http: paths: - path: / backend: serviceName: locust-master servicePort: 8089 然后执行kubectl replace -f ingress.yaml即可更新traefik。 通过Traefik的dashboard就可以看到刚增加的traefik.locust.io节点。 图 6.4.2.2:Traefik的UI 执行测试 打开http://traefik.locust.io页面,点击Edit输入伪造的用户数和用户每秒发送的请求个数,点击Start Swarming就可以开始测试了。 图 6.4.2.3:Locust启动界面 在测试过程中调整sample-webapp的pod个数(默认设置了1个pod),观察pod的负载变化情况。 图 6.4.2.4:Dashboard查看页面 从一段时间的观察中可以看到负载被平均分配给了3个pod。 在locust的页面中可以实时观察也可以下载测试结果。 图 6.4.2.5:Locust测试结果页面 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/network-and-cluster-perfermance-test.html":{"url":"practice/network-and-cluster-perfermance-test.html","title":"网络和集群性能测试","keywords":"","body":"Kubernetes网络和集群性能测试 准备 测试环境 在以下几种环境下进行测试: Kubernetes集群node节点上通过Cluster IP方式访问 Kubernetes集群内部通过service访问 Kubernetes集群外部通过traefik ingress暴露的地址访问 测试地址 Cluster IP: 10.254.149.31 Service Port:8000 Ingress Host:traefik.sample-webapp.io 测试工具 Locust:一个简单易用的用户负载测试工具,用来测试web或其他系统能够同时处理的并发用户数。 curl kubemark 测试程序:sample-webapp,源码见Github kubernetes的分布式负载测试 测试说明 通过向sample-webapp发送curl请求获取响应时间,直接curl后的结果为: $ curl \"http://10.254.149.31:8000/\" Welcome to the \"Distributed Load Testing Using Kubernetes\" sample web app 网络延迟测试 场景一、 Kubernetes集群node节点上通过Cluster IP访问 测试命令 curl -o /dev/null -s -w '%{time_connect} %{time_starttransfer} %{time_total}' \"http://10.254.149.31:8000/\" 10组测试结果 No time_connect time_starttransfer time_total 1 0.000 0.003 0.003 2 0.000 0.002 0.002 3 0.000 0.002 0.002 4 0.000 0.002 0.002 5 0.000 0.002 0.002 6 0.000 0.002 0.002 7 0.000 0.002 0.002 8 0.000 0.002 0.002 9 0.000 0.002 0.002 10 0.000 0.002 0.002 平均响应时间:2ms 时间指标说明 单位:秒 time_connect:建立到服务器的 TCP 连接所用的时间 time_starttransfer:在发出请求之后,Web 服务器返回数据的第一个字节所用的时间 time_total:完成请求所用的时间 场景二、Kubernetes集群内部通过service访问 测试命令 curl -o /dev/null -s -w '%{time_connect} %{time_starttransfer} %{time_total}' \"http://sample-webapp:8000/\" 10组测试结果 No time_connect time_starttransfer time_total 1 0.004 0.006 0.006 2 0.004 0.006 0.006 3 0.004 0.006 0.006 4 0.004 0.006 0.006 5 0.004 0.006 0.006 6 0.004 0.006 0.006 7 0.004 0.006 0.006 8 0.004 0.006 0.006 9 0.004 0.006 0.006 10 0.004 0.006 0.006 平均响应时间:6ms 场景三、在公网上通过traefik ingress访问 测试命令 curl -o /dev/null -s -w '%{time_connect} %{time_starttransfer} %{time_total}' \"http://traefik.sample-webapp.io\" >>result 10组测试结果 No time_connect time_starttransfer time_total 1 0.043 0.085 0.085 2 0.052 0.093 0.093 3 0.043 0.082 0.082 4 0.051 0.093 0.093 5 0.068 0.188 0.188 6 0.049 0.089 0.089 7 0.051 0.113 0.113 8 0.055 0.120 0.120 9 0.065 0.126 0.127 10 0.050 0.111 0.111 平均响应时间:110ms 测试结果 在这三种场景下的响应时间测试结果如下: Kubernetes集群node节点上通过Cluster IP方式访问:2ms Kubernetes集群内部通过service访问:6ms Kubernetes集群外部通过traefik ingress暴露的地址访问:110ms 注意:执行测试的node节点/Pod与serivce所在的pod的距离(是否在同一台主机上),对前两个场景可以能会有一定影响。 网络性能测试 网络使用flannel的vxlan模式。 使用iperf进行测试。 服务端命令: iperf -s -p 12345 -i 1 -M 客户端命令: iperf -c ${server-ip} -p 12345 -i 1 -t 10 -w 20K 场景一、主机之间 [ ID] Interval Transfer Bandwidth [ 3] 0.0- 1.0 sec 598 MBytes 5.02 Gbits/sec [ 3] 1.0- 2.0 sec 637 MBytes 5.35 Gbits/sec [ 3] 2.0- 3.0 sec 664 MBytes 5.57 Gbits/sec [ 3] 3.0- 4.0 sec 657 MBytes 5.51 Gbits/sec [ 3] 4.0- 5.0 sec 641 MBytes 5.38 Gbits/sec [ 3] 5.0- 6.0 sec 639 MBytes 5.36 Gbits/sec [ 3] 6.0- 7.0 sec 628 MBytes 5.26 Gbits/sec [ 3] 7.0- 8.0 sec 649 MBytes 5.44 Gbits/sec [ 3] 8.0- 9.0 sec 638 MBytes 5.35 Gbits/sec [ 3] 9.0-10.0 sec 652 MBytes 5.47 Gbits/sec [ 3] 0.0-10.0 sec 6.25 GBytes 5.37 Gbits/sec 场景二、不同主机的Pod之间(使用flannel的vxlan模式) [ ID] Interval Transfer Bandwidth [ 3] 0.0- 1.0 sec 372 MBytes 3.12 Gbits/sec [ 3] 1.0- 2.0 sec 345 MBytes 2.89 Gbits/sec [ 3] 2.0- 3.0 sec 361 MBytes 3.03 Gbits/sec [ 3] 3.0- 4.0 sec 397 MBytes 3.33 Gbits/sec [ 3] 4.0- 5.0 sec 405 MBytes 3.40 Gbits/sec [ 3] 5.0- 6.0 sec 410 MBytes 3.44 Gbits/sec [ 3] 6.0- 7.0 sec 404 MBytes 3.39 Gbits/sec [ 3] 7.0- 8.0 sec 408 MBytes 3.42 Gbits/sec [ 3] 8.0- 9.0 sec 451 MBytes 3.78 Gbits/sec [ 3] 9.0-10.0 sec 387 MBytes 3.25 Gbits/sec [ 3] 0.0-10.0 sec 3.85 GBytes 3.30 Gbits/sec 场景三、Node与非同主机的Pod之间(使用flannel的vxlan模式) [ ID] Interval Transfer Bandwidth [ 3] 0.0- 1.0 sec 372 MBytes 3.12 Gbits/sec [ 3] 1.0- 2.0 sec 420 MBytes 3.53 Gbits/sec [ 3] 2.0- 3.0 sec 434 MBytes 3.64 Gbits/sec [ 3] 3.0- 4.0 sec 409 MBytes 3.43 Gbits/sec [ 3] 4.0- 5.0 sec 382 MBytes 3.21 Gbits/sec [ 3] 5.0- 6.0 sec 408 MBytes 3.42 Gbits/sec [ 3] 6.0- 7.0 sec 403 MBytes 3.38 Gbits/sec [ 3] 7.0- 8.0 sec 423 MBytes 3.55 Gbits/sec [ 3] 8.0- 9.0 sec 376 MBytes 3.15 Gbits/sec [ 3] 9.0-10.0 sec 451 MBytes 3.78 Gbits/sec [ 3] 0.0-10.0 sec 3.98 GBytes 3.42 Gbits/sec 场景四、不同主机的Pod之间(使用flannel的host-gw模式) [ ID] Interval Transfer Bandwidth [ 5] 0.0- 1.0 sec 530 MBytes 4.45 Gbits/sec [ 5] 1.0- 2.0 sec 576 MBytes 4.84 Gbits/sec [ 5] 2.0- 3.0 sec 631 MBytes 5.29 Gbits/sec [ 5] 3.0- 4.0 sec 580 MBytes 4.87 Gbits/sec [ 5] 4.0- 5.0 sec 627 MBytes 5.26 Gbits/sec [ 5] 5.0- 6.0 sec 578 MBytes 4.85 Gbits/sec [ 5] 6.0- 7.0 sec 584 MBytes 4.90 Gbits/sec [ 5] 7.0- 8.0 sec 571 MBytes 4.79 Gbits/sec [ 5] 8.0- 9.0 sec 564 MBytes 4.73 Gbits/sec [ 5] 9.0-10.0 sec 572 MBytes 4.80 Gbits/sec [ 5] 0.0-10.0 sec 5.68 GBytes 4.88 Gbits/sec 场景五、Node与非同主机的Pod之间(使用flannel的host-gw模式) [ ID] Interval Transfer Bandwidth [ 3] 0.0- 1.0 sec 570 MBytes 4.78 Gbits/sec [ 3] 1.0- 2.0 sec 552 MBytes 4.63 Gbits/sec [ 3] 2.0- 3.0 sec 598 MBytes 5.02 Gbits/sec [ 3] 3.0- 4.0 sec 580 MBytes 4.87 Gbits/sec [ 3] 4.0- 5.0 sec 590 MBytes 4.95 Gbits/sec [ 3] 5.0- 6.0 sec 594 MBytes 4.98 Gbits/sec [ 3] 6.0- 7.0 sec 598 MBytes 5.02 Gbits/sec [ 3] 7.0- 8.0 sec 606 MBytes 5.08 Gbits/sec [ 3] 8.0- 9.0 sec 596 MBytes 5.00 Gbits/sec [ 3] 9.0-10.0 sec 604 MBytes 5.07 Gbits/sec [ 3] 0.0-10.0 sec 5.75 GBytes 4.94 Gbits/sec 网络性能对比综述 使用Flannel的vxlan模式实现每个pod一个IP的方式,会比宿主机直接互联的网络性能损耗30%~40%,符合网上流传的测试结论。而flannel的host-gw模式比起宿主机互连的网络性能损耗大约是10%。 Vxlan会有一个封包解包的过程,所以会对网络性能造成较大的损耗,而host-gw模式是直接使用路由信息,网络损耗小。 Kubernete的性能测试 参考Kubernetes集群性能测试中的步骤,对kubernetes的性能进行测试。 我的集群版本是Kubernetes1.6.0,首先克隆代码,将kubernetes目录复制到$GOPATH/src/k8s.io/下然后执行: $ ./hack/generate-bindata.sh /usr/local/src/k8s.io/kubernetes /usr/local/src/k8s.io/kubernetes Generated bindata file : test/e2e/generated/bindata.go has 13498 test/e2e/generated/bindata.go lines of lovely automated artifacts No changes in generated bindata file: pkg/generated/bindata.go /usr/local/src/k8s.io/kubernetes $ make WHAT=\"test/e2e/e2e.test\" ... +++ [0425 17:01:34] Generating bindata: test/e2e/generated/gobindata_util.go /usr/local/src/k8s.io/kubernetes /usr/local/src/k8s.io/kubernetes/test/e2e/generated /usr/local/src/k8s.io/kubernetes/test/e2e/generated +++ [0425 17:01:34] Building go targets for linux/amd64: test/e2e/e2e.test $ make ginkgo +++ [0425 17:05:57] Building the toolchain targets: k8s.io/kubernetes/hack/cmd/teststale k8s.io/kubernetes/vendor/github.com/jteeuwen/go-bindata/go-bindata +++ [0425 17:05:57] Generating bindata: test/e2e/generated/gobindata_util.go /usr/local/src/k8s.io/kubernetes /usr/local/src/k8s.io/kubernetes/test/e2e/generated /usr/local/src/k8s.io/kubernetes/test/e2e/generated +++ [0425 17:05:58] Building go targets for linux/amd64: vendor/github.com/onsi/ginkgo/ginkgo $ export KUBERNETES_PROVIDER=local $ export KUBECTL_PATH=/usr/bin/kubectl $ go run hack/e2e.go -v -test --test_args=\"--host=http://172.20.0.113:8080 --ginkgo.focus=\\[Feature:Performance\\]\" >>log.txt 测试结果 Apr 25 18:27:31.461: INFO: API calls latencies: { \"apicalls\": [ { \"resource\": \"pods\", \"verb\": \"POST\", \"latency\": { \"Perc50\": 2148000, \"Perc90\": 13772000, \"Perc99\": 14436000, \"Perc100\": 0 } }, { \"resource\": \"services\", \"verb\": \"DELETE\", \"latency\": { \"Perc50\": 9843000, \"Perc90\": 11226000, \"Perc99\": 12391000, \"Perc100\": 0 } }, ... Apr 25 18:27:31.461: INFO: [Result:Performance] { \"version\": \"v1\", \"dataItems\": [ { \"data\": { \"Perc50\": 2.148, \"Perc90\": 13.772, \"Perc99\": 14.436 }, \"unit\": \"ms\", \"labels\": { \"Resource\": \"pods\", \"Verb\": \"POST\" } }, ... 2.857: INFO: Running AfterSuite actions on all node Apr 26 10:35:32.857: INFO: Running AfterSuite actions on node 1 Ran 2 of 606 Specs in 268.371 seconds SUCCESS! -- 2 Passed | 0 Failed | 0 Pending | 604 Skipped PASS Ginkgo ran 1 suite in 4m28.667870101s Test Suite Passed 从kubemark输出的日志中可以看到API calls latencies和Performance。 日志里显示,创建90个pod用时40秒以内,平均创建每个pod耗时0.44秒。 不同type的资源类型API请求耗时分布 Resource Verb 50% 90% 99% services DELETE 8.472ms 9.841ms 38.226ms endpoints PUT 1.641ms 3.161ms 30.715ms endpoints GET 931µs 10.412ms 27.97ms nodes PATCH 4.245ms 11.117ms 18.63ms pods PUT 2.193ms 2.619ms 17.285ms 从log.txt日志中还可以看到更多详细请求的测试指标。 图 6.4.3.1:kubernetes-dashboard 注意事项 测试过程中需要用到docker镜像存储在GCE中,需要翻墙下载,我没看到哪里配置这个镜像的地址。该镜像副本已上传时速云: 用到的镜像有如下两个: gcr.io/google_containers/pause-amd64:3.0 gcr.io/google_containers/serve_hostname:v1.4 Locust测试 请求统计 Method Name # requests # failures Median response time Average response time Min response time Max response time Average Content Size Requests/s POST /login 5070 78 59000 80551 11218 202140 54 1.17 POST /metrics 5114232 85879 63000 82280 29518 331330 94 1178.77 None Total 5119302 85957 63000 82279 11218 331330 94 1179.94 响应时间分布 Name # requests 50% 66% 75% 80% 90% 95% 98% 99% 100% POST /login 5070 59000 125000 140000 148000 160000 166000 174000 176000 202140 POST /metrics 5114993 63000 127000 142000 149000 160000 166000 172000 176000 331330 None Total 5120063 63000 127000 142000 149000 160000 166000 172000 176000 331330 以上两个表格都是瞬时值。请求失败率在2%左右。 Sample-webapp起了48个pod。 Locust模拟10万用户,每秒增长100个。 图 6.4.3.2:locust测试页面 关于Locust的使用请参考Github:https://github.com/rootsongjc/distributed-load-testing-using-kubernetes 参考 基于 Python 的性能测试工具 locust (与 LR 的简单对比) Locust docs Kubernetes集群性能测试 CoreOS是如何将Kubernetes的性能提高10倍的 运用Kubernetes进行分布式负载测试 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/edge-node-configuration.html":{"url":"practice/edge-node-configuration.html","title":"边缘节点配置","keywords":"","body":"边缘节点配置 前言 为了配置kubernetes中的traefik ingress的高可用,对于kubernetes集群以外只暴露一个访问入口,需要使用keepalived排除单点问题。本文参考了kube-keepalived-vip,但并没有使用容器方式安装,而是直接在node节点上安装。 定义 首先解释下什么叫边缘节点(Edge Node),所谓的边缘节点即集群内部用来向集群外暴露服务能力的节点,集群外部的服务通过该节点来调用集群内部的服务,边缘节点是集群内外交流的一个Endpoint。 边缘节点要考虑两个问题 边缘节点的高可用,不能有单点故障,否则整个kubernetes集群将不可用 对外的一致暴露端口,即只能有一个外网访问IP和端口 架构 为了满足边缘节点的以上需求,我们使用keepalived来实现。 在Kubernetes中添加了service的同时,在DNS中增加一个记录,这条记录需要跟ingress中的host字段相同,IP地址即VIP的地址,本示例中是172.20.0.119,这样集群外部就可以通过service的DNS名称来访问服务了。 选择Kubernetes的三个node作为边缘节点,并安装keepalived,下图展示了边缘节点的配置,同时展示了向Kubernetes中添加服务的过程。 图 6.4.4.1:边缘节点架构 准备 复用kubernetes测试集群的三台主机。 172.20.0.113 172.20.0.114 172.20.0.115 安装 使用keepalived管理VIP,VIP是使用IPVS创建的,IPVS 已经成为linux内核的模块,不需要安装 LVS的工作原理请参考:http://www.cnblogs.com/codebean/archive/2011/07/25/2116043.html 不使用镜像方式安装了,直接手动安装,指定三个节点为边缘节点(Edge node)。 因为我们的测试集群一共只有三个node,所有在在三个node上都要安装keepalived和ipvsadmin。 yum install keepalived ipvsadm 配置说明 需要对原先的traefik ingress进行改造,从以Deployment方式启动改成DeamonSet。还需要指定一个与node在同一网段的IP地址作为VIP,我们指定成172.20.0.119,配置keepalived前需要先保证这个IP没有被分配。。 Traefik以DaemonSet的方式启动 通过nodeSelector选择边缘节点 通过hostPort暴露端口 当前VIP漂移到了172.20.0.115上 Traefik根据访问的host和path配置,将流量转发到相应的service上 配置keepalived 参考基于keepalived 实现VIP转移,lvs,nginx的高可用,配置keepalived。 keepalived的官方配置文档见:http://keepalived.org/pdf/UserGuide.pdf 配置文件/etc/keepalived/keepalived.conf文件内容如下: ! Configuration File for keepalived global_defs { notification_email { root@localhost } notification_email_from kaadmin@localhost smtp_server 127.0.0.1 smtp_connect_timeout 30 router_id LVS_DEVEL } vrrp_instance VI_1 { state MASTER interface eth0 virtual_router_id 51 priority 100 advert_int 1 authentication { auth_type PASS auth_pass 1111 } virtual_ipaddress { 172.20.0.119 } } virtual_server 172.20.0.119 80{ delay_loop 6 lb_algo loadbalance lb_kind DR nat_mask 255.255.255.0 persistence_timeout 0 protocol TCP real_server 172.20.0.113 80{ weight 1 TCP_CHECK { connect_timeout 3 } } real_server 172.20.0.114 80{ weight 1 TCP_CHECK { connect_timeout 3 } } real_server 172.20.0.115 80{ weight 1 TCP_CHECK { connect_timeout 3 } } } Realserver的IP和端口即traefik供外网访问的IP和端口。 将以上配置分别拷贝到另外两台node的/etc/keepalived目录下。 我们使用转发效率最高的lb_kind DR直接路由方式转发,使用TCP_CHECK来检测real_server的health。 设置keepalived为开机自启动: chkconfig keepalived on 启动keepalived systemctl start keepalived 三台node都启动了keepalived后,观察eth0的IP,会在三台node的某一台上发现一个VIP是172.20.0.119。 $ ip addr show eth0 2: eth0: mtu 1500 qdisc mq state UP qlen 1000 link/ether f4:e9:d4:9f:6b:a0 brd ff:ff:ff:ff:ff:ff inet 172.20.0.115/17 brd 172.20.127.255 scope global eth0 valid_lft forever preferred_lft forever inet 172.20.0.119/32 scope global eth0 valid_lft forever preferred_lft forever 关掉拥有这个VIP主机上的keepalived,观察VIP是否漂移到了另外两台主机的其中之一上。 改造Traefik 在这之前我们启动的traefik使用的是deployment,只启动了一个pod,无法保证高可用(即需要将pod固定在某一台主机上,这样才能对外提供一个唯一的访问地址),现在使用了keepalived就可以通过VIP来访问traefik,同时启动多个traefik的pod保证高可用。 配置文件traefik.yaml内容如下: apiVersion: extensions/v1beta1 kind: DaemonSet metadata: name: traefik-ingress-lb namespace: kube-system labels: k8s-app: traefik-ingress-lb spec: template: metadata: labels: k8s-app: traefik-ingress-lb name: traefik-ingress-lb spec: terminationGracePeriodSeconds: 60 hostNetwork: true restartPolicy: Always serviceAccountName: ingress containers: - image: traefik name: traefik-ingress-lb resources: limits: cpu: 200m memory: 30Mi requests: cpu: 100m memory: 20Mi ports: - name: http containerPort: 80 hostPort: 80 - name: admin containerPort: 8580 hostPort: 8580 args: - --web - --web.address=:8580 - --kubernetes nodeSelector: edgenode: \"true\" 注意,我们使用了nodeSelector选择边缘节点来调度traefik-ingress-lb运行在它上面,所有你需要使用: kubectl label nodes 172.20.0.113 edgenode=true kubectl label nodes 172.20.0.114 edgenode=true kubectl label nodes 172.20.0.115 edgenode=true 给三个node打标签。 查看DaemonSet的启动情况: $ kubectl -n kube-system get ds NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE-SELECTOR AGE traefik-ingress-lb 3 3 3 3 3 edgenode=true 2h 现在就可以在外网通过172.20.0.119:80来访问到traefik ingress了。 使用域名访问Kubernetes中的服务 现在我们已经部署了以下服务: 三个边缘节点,使用Traefik作为Ingress controller 使用keepalived做的VIP(虚拟IP)172.20.0.119 这样在访问该IP的时候通过指定不同的Host来路由到kubernetes后端服务。这种方式访问每个Service时都需要指定Host,而同一个项目中的服务一般会在同一个Ingress中配置,使用Path来区分Service已经足够,这时候只要为VIP(172.20.0.119)来配置一个域名,所有的外部访问直接通过该域名来访问即可。 如下图所示: 图 6.4.4.2:使用域名来访问Kubernetes中的服务 参考 kube-keepalived-vip http://www.keepalived.org/ LVS简介及使用 基于keepalived 实现VIP转移,lvs,nginx的高可用 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/nginx-ingress-installation.html":{"url":"practice/nginx-ingress-installation.html","title":"安装 Nginx ingress","keywords":"","body":"安装Nginx ingress Nginx ingress 使用ConfigMap来管理Nginx配置,nginx是大家熟知的代理和负载均衡软件,比起Traefik来说功能更加强大. 我们使用helm来部署,chart保存在私有的仓库中,请确保您已经安装和配置好helm,helm安装使用见使用Helm管理kubernetes应用。 镜像准备 安装时需要用到的镜像有: sophos/nginx-vts-exporter:v0.6 gcr.io/google_containers/nginx-ingress-controller:0.9.0-beta.15 gcr.io/google_containers/defaultbackend:1.3 所有的安装时需要的配置保存在../manifests/nginx-ingress目录下。 步骤详解 安装nginx-ingress chart到本地repo中 修改values.yaml配置,启用RBAC支持,相关配置见nginx-ingress chart。 helm package . 查看niginx-ingress $ helm search nginx-ingress NAME VERSION DESCRIPTION local/nginx-ingress 0.8.9 An nginx Ingress controller that uses ConfigMap... stable/nginx-ingress 0.8.9 An nginx Ingress controller that uses ConfigMap... stable/nginx-lego 0.3.0 Chart for nginx-ingress-controller and kube-lego 使用helm部署nginx-ingress $ helm install --name nginx-ingress local/nginx-ingress NAME: nginx-ingress LAST DEPLOYED: Fri Oct 27 18:26:58 2017 NAMESPACE: default STATUS: DEPLOYED RESOURCES: ==> rbac.authorization.k8s.io/v1beta1/Role NAME KIND nginx-ingress-nginx-ingress Role.v1beta1.rbac.authorization.k8s.io ==> rbac.authorization.k8s.io/v1beta1/RoleBinding nginx-ingress-nginx-ingress RoleBinding.v1beta1.rbac.authorization.k8s.io ==> v1/Service NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE nginx-ingress-nginx-ingress-controller 10.254.100.108 80:30484/TCP,443:31053/TCP 1s nginx-ingress-nginx-ingress-default-backend 10.254.58.156 80/TCP 1s ==> extensions/v1beta1/Deployment NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE nginx-ingress-nginx-ingress-default-backend 1 1 1 0 1s nginx-ingress-nginx-ingress-controller 1 1 1 0 1s ==> v1/ConfigMap NAME DATA AGE nginx-ingress-nginx-ingress-controller 1 1s ==> v1/ServiceAccount NAME SECRETS AGE nginx-ingress-nginx-ingress 1 1s ==> rbac.authorization.k8s.io/v1beta1/ClusterRole NAME KIND nginx-ingress-nginx-ingress ClusterRole.v1beta1.rbac.authorization.k8s.io ==> rbac.authorization.k8s.io/v1beta1/ClusterRoleBinding nginx-ingress-nginx-ingress ClusterRoleBinding.v1beta1.rbac.authorization.k8s.io NOTES: The nginx-ingress controller has been installed. Get the application URL by running these commands: export HTTP_NODE_PORT=$(kubectl --namespace default get services -o jsonpath=\"{.spec.ports[0].nodePort}\" nginx-ingress-nginx-ingress-controller) export HTTPS_NODE_PORT=$(kubectl --namespace default get services -o jsonpath=\"{.spec.ports[1].nodePort}\" nginx-ingress-nginx-ingress-controller) export NODE_IP=$(kubectl --namespace default get nodes -o jsonpath=\"{.items[0].status.addresses[1].address}\") echo \"Visit http://$NODE_IP:$HTTP_NODE_PORT to access your application via HTTP.\" echo \"Visit https://$NODE_IP:$HTTPS_NODE_PORT to access your application via HTTPS.\" An example Ingress that makes use of the controller: apiVersion: extensions/v1beta1 kind: Ingress metadata: annotations: kubernetes.io/ingress.class: nginx name: example namespace: foo spec: rules: - host: www.example.com http: paths: - backend: serviceName: exampleService servicePort: 80 path: / # This section is only required if TLS is to be enabled for the Ingress tls: - hosts: - www.example.com secretName: example-tls If TLS is enabled for the Ingress, a Secret containing the certificate and key must also be provided: apiVersion: v1 kind: Secret metadata: name: example-tls namespace: foo data: tls.crt: tls.key: type: kubernetes.io/tls 访问Nginx 首先获取Nginx的地址,从我们使用helm安装nginx-ingress命令的输出中那个可以看到提示,根据提示执行可以看到nginx的http和https地址: export HTTP_NODE_PORT=$(kubectl --namespace default get services -o jsonpath=\"{.spec.ports[0].nodePort}\" nginx-ingress-nginx-ingress-controller) export HTTPS_NODE_PORT=$(kubectl --namespace default get services -o jsonpath=\"{.spec.ports[1].nodePort}\" nginx-ingress-nginx-ingress-controller) export NODE_IP=$(kubectl --namespace default get nodes -o jsonpath=\"{.items[0].status.addresses[1].address}\") echo \"Visit http://$NODE_IP:$HTTP_NODE_PORT to access your application via HTTP.\" echo \"Visit https://$NODE_IP:$HTTPS_NODE_PORT to access your application via HTTPS.\" Visit http://172.20.0.113:30484 to access your application via HTTP. Visit https://172.20.0.113:31053 to access your application via HTTPS. http地址:http://172.20.0.113:30484 https地址:https://172.20.0.113:31053 我们分别在http和https地址上测试一下: /healthz返回200 /返回404错误 curl -v http://172.20.0.113:30484/healthz # 返回200 curl -v http://172.20.0.113:30484/ # 返回404 curl -v --insecure http://172.20.0.113:30484/healthz # 返回200 curl -v --insecure http://172.20.0.113:30484/ # 返回404 删除nginx-ingress helm delete --purge nginx-ingress 使用--purge参数可以彻底删除release不留下记录,否则下一次部署的时候不能使用重名的release。 参考 Ingress-nginx github Nginx chart configuration 使用Helm管理kubernetes应用 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/dns-installation.html":{"url":"practice/dns-installation.html","title":"安装配置 DNS","keywords":"","body":"安装配置 DNS DNS 组件作为 Kubernetes 中服务注册和发现的一个必要组件,起着举足轻重的作用,是我们在安装好 Kubernetes 集群后部署的第一个容器化应用。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/configuring-dns.html":{"url":"practice/configuring-dns.html","title":"安装配置 Kube-dns","keywords":"","body":"安装配置kube-dns 在我们安装Kubernetes集群的时候就已经安装了kube-dns插件,这个插件也是官方推荐安装的。通过将 Service 注册到 DNS 中,Kuberentes 可以为我们提供一种简单的服务注册发现与负载均衡方式。 CoreDNS作为CNCF中的托管的一个项目,在Kuberentes1.9版本中,使用kubeadm方式安装的集群可以通过以下命令直接安装CoreDNS。 kubeadm init --feature-gates=CoreDNS=true 您也可以使用CoreDNS替换Kubernetes插件kube-dns,可以使用 Pod 部署也可以独立部署,请参考Using CoreDNS for Service Discovery,下文将介绍如何配置kube-dns。 kube-dns kube-dns是Kubernetes中的一个内置插件,目前作为一个独立的开源项目维护,见https://github.com/kubernetes/dns。 下文中给出了配置 DNS Pod 的提示和定义 DNS 解析过程以及诊断 DNS 问题的指南。 前提要求 Kubernetes 1.6 及以上版本。 集群必须使用 kube-dns 插件进行配置。 kube-dns 介绍 从 Kubernetes v1.3 版本开始,使用 cluster add-on 插件管理器回自动启动内置的 DNS。 Kubernetes DNS pod 中包括 3 个容器: kubedns:kubedns 进程监视 Kubernetes master 中的 Service 和 Endpoint 的变化,并维护内存查找结构来服务DNS请求。 dnsmasq:dnsmasq 容器添加 DNS 缓存以提高性能。 sidecar:sidecar 容器在执行双重健康检查(针对 dnsmasq 和 kubedns)时提供单个健康检查端点(监听在10054端口)。 DNS pod 具有静态 IP 并作为 Kubernetes 服务暴露出来。该静态 IP 分配后,kubelet 会将使用 --cluster-dns = 标志配置的 DNS 传递给每个容器。 DNS 名称也需要域名。本地域可以使用标志 --cluster-domain = 在 kubelet 中配置。 Kubernetes集群DNS服务器基于 SkyDNS 库。它支持正向查找(A 记录),服务查找(SRV 记录)和反向 IP 地址查找(PTR 记录) kube-dns 支持的 DNS 格式 kube-dns 将分别为 service 和 pod 生成不同格式的 DNS 记录。 Service A记录:生成my-svc.my-namespace.svc.cluster.local域名,解析成 IP 地址,分为两种情况: 普通 Service:解析成 ClusterIP Headless Service:解析为指定 Pod 的 IP 列表 SRV记录:为命名的端口(普通 Service 或 Headless Service)生成 _my-port-name._my-port-protocol.my-svc.my-namespace.svc.cluster.local 的域名 Pod A记录:生成域名 pod-ip.my-namespace.pod.cluster.local kube-dns 存根域名 可以在 Pod 中指定 hostname 和 subdomain:hostname.custom-subdomain.default.svc.cluster.local,例如: apiVersion: v1 kind: Pod metadata: name: busybox labels: name: busybox spec: hostname: busybox-1 subdomain: busybox-subdomain containers: name: busybox - image: busybox command: - sleep - \"3600\" 该 Pod 的域名是 busybox-1.busybox-subdomain.default.svc.cluster.local。 继承节点的 DNS 运行 Pod 时,kubelet 将预先配置集群 DNS 服务器到 Pod 中,并搜索节点自己的 DNS 设置路径。如果节点能够解析特定于较大环境的 DNS 名称,那么 Pod 应该也能够解析。请参阅下面的已知问题以了解警告。 如果您不想要这个,或者您想要为 Pod 设置不同的 DNS 配置,您可以给 kubelet 指定 --resolv-conf 标志。将该值设置为 \"\" 意味着 Pod 不继承 DNS。将其设置为有效的文件路径意味着 kubelet 将使用此文件而不是 /etc/resolv.conf 用于 DNS 继承。 配置存根域和上游 DNS 服务器 通过为 kube-dns (kube-system:kube-dns)提供一个 ConfigMap,集群管理员能够指定自定义存根域和上游 nameserver。 例如,下面的 ConfigMap 建立了一个 DNS 配置,它具有一个单独的存根域和两个上游 nameserver: apiVersion: v1 kind: ConfigMap metadata: name: kube-dns namespace: kube-system data: stubDomains: | {“acme.local”: [“1.2.3.4”]} upstreamNameservers: | [“8.8.8.8”, “8.8.4.4”] 如上面指定的那样,带有“.acme.local”后缀的 DNS 请求被转发到 1.2.3.4 处监听的 DNS。Google Public DNS 为上游查询提供服务。 下表描述了如何将具有特定域名的查询映射到其目标DNS服务器: 域名 响应查询的服务器 kubernetes.default.svc.cluster.local kube-dns foo.acme.local 自定义 DNS (1.2.3.4) widget.com 上游 DNS (8.8.8.8 或 8.8.4.4) 查看 ConfigMap 选项获取更多关于配置选项格式的详细信息。 对 Pod 的影响 自定义的上游名称服务器和存根域不会影响那些将自己的 dnsPolicy 设置为 Default 或者 None 的 Pod。 如果 Pod 的 dnsPolicy 设置为 “ClusterFirst”,则其名称解析将按其他方式处理,具体取决于存根域和上游 DNS 服务器的配置。 未进行自定义配置:没有匹配上配置的集群域名后缀的任何请求,例如 “www.kubernetes.io”,将会被转发到继承自节点的上游 nameserver。 进行自定义配置:如果配置了存根域和上游 DNS 服务器(和在前面例子配置的一样),DNS 查询将根据下面的流程进行路由: 查询首先被发送到 kube-dns 中的 DNS 缓存层。 从缓存层,检查请求的后缀,并转发到合适的 DNS 上,基于如下的示例: 具有集群后缀的名字(例如 “.cluster.local”):请求被发送到 kube-dns。 具有存根域后缀的名字(例如 “.acme.local”):请求被发送到配置的自定义 DNS 解析器(例如:监听在 1.2.3.4)。 不具有能匹配上后缀的名字(例如 “widget.com”):请求被转发到上游 DNS(例如:Google 公共 DNS 服务器,8.8.8.8 和 8.8.4.4)。 图 6.4.6.1.1:DNS lookup flow ConfigMap 选项 kube-dns kube-system:kube-dns ConfigMap 的选项如下所示: 字段 格式 描述 stubDomains(可选) 使用 DNS 后缀 key 的 JSON map(例如 “acme.local”),以及 DNS IP 的 JSON 数组作为 value。 目标 nameserver 可能是一个 Kubernetes Service。例如,可以运行自己的 dnsmasq 副本,将 DNS 名字暴露到 ClusterDNS namespace 中。 upstreamNameservers(可选) DNS IP 的 JSON 数组。 注意:如果指定,则指定的值会替换掉被默认从节点的 /etc/resolv.conf 中获取到的 nameserver。限制:最多可以指定三个上游 nameserver。 示例 示例:存根域 在这个例子中,用户有一个 Consul DNS 服务发现系统,他们希望能够与 kube-dns 集成起来。 Consul 域名服务器地址为 10.150.0.1,所有的 Consul 名字具有后缀 .consul.local。 要配置 Kubernetes,集群管理员只需要简单地创建一个 ConfigMap 对象,如下所示: apiVersion: v1 kind: ConfigMap metadata: name: kube-dns namespace: kube-system data: stubDomains: | {“consul.local”: [“10.150.0.1”]} 注意,集群管理员不希望覆盖节点的上游 nameserver,所以他们不会指定可选的 upstreamNameservers 字段。 示例:上游 nameserver 在这个示例中,集群管理员不希望显式地强制所有非集群 DNS 查询进入到他们自己的 nameserver 172.16.0.1。 而且这很容易实现:他们只需要创建一个 ConfigMap,upstreamNameservers 字段指定期望的 nameserver 即可。 apiVersion: v1 kind: ConfigMap metadata: name: kube-dns namespace: kube-system data: upstreamNameservers: | [“172.16.0.1”] 调试 DNS 解析 创建一个简单的 Pod 用作测试环境 创建一个名为 busybox.yaml 的文件,其中包括以下内容: apiVersion: v1 kind: Pod metadata: name: busybox namespace: default spec: containers: - name: busybox image: busybox command: - sleep - \"3600\" imagePullPolicy: IfNotPresent restartPolicy: Always 使用该文件创建 Pod 并验证其状态: $ kubectl create -f busybox.yaml pod \"busybox\" created $ kubectl get pods busybox NAME READY STATUS RESTARTS AGE busybox 1/1 Running 0 该 Pod 运行后,您可以在它的环境中执行 `nslookup`。如果您看到类似如下的输出,表示 DNS 正在正确工作。 ```bash $ kubectl exec -ti busybox -- nslookup kubernetes.default Server: 10.0.0.10 Address 1: 10.0.0.10 Name: kubernetes.default Address 1: 10.0.0.1 如果 nslookup 命令失败,检查如下内容: 首先检查本地 DNS 配置 查看下 resolv.conf 文件。 $ kubectl exec busybox cat /etc/resolv.conf 验证搜索路径和名称服务器设置如下(请注意,搜索路径可能因不同的云提供商而异): search default.svc.cluster.local svc.cluster.local cluster.local google.internal c.gce_project_id.internal nameserver 10.0.0.10 options ndots:5 如果看到如下错误表明错误来自 kube-dns 或相关服务: $ kubectl exec -ti busybox -- nslookup kubernetes.default Server: 10.0.0.10 Address 1: 10.0.0.10 nslookup: can't resolve 'kubernetes.default' 或者 $ kubectl exec -ti busybox -- nslookup kubernetes.default Server: 10.0.0.10 Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local nslookup: can't resolve 'kubernetes.default' 检查 DNS pod 是否在运行 使用 kubectl get pods 命令验证 DNS pod 是否正在运行。 $ kubectl get pods --namespace=kube-system -l k8s-app=kube-dns NAME READY STATUS RESTARTS AGE ... kube-dns-v19-ezo1y 3/3 Running 0 1h ... 如果您看到没有 Pod 运行或者 Pod 处于 失败/完成 状态,DNS 插件可能没有部署到您的当前环境中,您需要手动部署。 检查 DNS pod 中的错误 使用 kubectl logs 命令查看 DNS 守护进程的日志。 $ kubectl logs --namespace=kube-system $(kubectl get pods --namespace=kube-system -l k8s-app=kube-dns -o name) -c kubedns $ kubectl logs --namespace=kube-system $(kubectl get pods --namespace=kube-system -l k8s-app=kube-dns -o name) -c dnsmasq $ kubectl logs --namespace=kube-system $(kubectl get pods --namespace=kube-system -l k8s-app=kube-dns -o name) -c sidecar 看看有没有可疑的日志。以字母“W”,“E”,“F”开头的代表警告、错误和失败。请搜索具有这些日志级别的条目,并使用 kubernetes issues来报告意外错误。 DNS 服务启动了吗? 使用 kubectl get service 命令验证 DNS 服务是否启动。 $ kubectl get svc --namespace=kube-system NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE ... kube-dns 10.0.0.10 53/UDP,53/TCP 1h ... 如果您已经创建了该服务或它本应该默认创建但没有出现,参考调试服务获取更多信息。 DNS 端点暴露出来了吗? 您可以使用kubectl get endpoints命令验证 DNS 端点是否被暴露。 $ kubectl get ep kube-dns --namespace=kube-system NAME ENDPOINTS AGE kube-dns 10.180.3.17:53,10.180.3.17:53 1h 如果您没有看到端点,查看调试服务文档中的端点部分。 获取更多的 Kubernetes DNS 示例,请参考 Kubernetes GitHub 仓库中的cluster-dns示例。 已知问题 Kubernetes安装时不会将节点的 resolv.conf 文件配置为默认使用集群 DNS,因为该过程本身是特定于发行版的。这一步应该放到最后实现。 Linux 的 libc 不可思议的卡住(查看该2005年起暴出来的bug)限制只能有 3 个 DNS nameserver 记录和 6 个 DNS search 记录。Kubernetes 需要消耗 1 个 nameserver 记录和 3 个 search 记录。这意味着如果本地安装已经使用 3 个 nameserver 或使用 3 个以上的 search 记录,那么其中一些设置将会丢失。有个部分解决该问题的方法,就是节点可以运行 dnsmasq,它将提供更多的 nameserver 条目,但不会有更多的 search 条目。您也可以使用 kubelet 的 --resolv-conf 标志。 如果您使用的是 Alpine 3.3 或更低版本作为基础映像,由于已知的 Alpine 问题,DNS 可能无法正常工作。点击这里查看更多信息。 Kubernetes 集群联邦(多可用区支持) Kubernetes 1.3 版本起引入了支持多站点 Kubernetes 安装的集群联邦支持。这需要对 Kubernetes 集群 DNS 服务器处理 DNS 查询的方式进行一些小的(向后兼容的)更改,以便于查找联邦服务(跨多个 Kubernetes 集群)。 参考 Configure DNS Service Service 和 Pod 的 DNS 自动扩容集群中的 DNS 服务 Using CoreDNS for Service Discovery 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/coredns.html":{"url":"practice/coredns.html","title":"安装配置 CoreDNS","keywords":"","body":"安装配置CoreDNS CoreDNS可以在具有标准的Kube-DNS的Kubernetes集群中运行。作为Kubernetes 的插件使用,CoreDNS将从 Kubernetes集群中读取区(zone)数据。它实现了为Kubernetes的DNS服务发现定义的规范:Kubernetes DNS-Based Service Discovery。 部署CoreDNS 部署 CoreDNS 需要使用到官方提供的两个文件 deploy.sh和coredns.yaml.sed(这两个文件已经放入manifest的coredns目录中) deploy.sh 是一个用于在已经运行kube-dns的集群中生成运行CoreDNS部署文件(manifest)的工具脚本。它使用 coredns.yaml.sed文件作为模板,创建一个ConfigMap和CoreDNS的deployment,然后更新集群中已有的kube-dns 服务的selector使用CoreDNS的deployment。重用已有的服务并不会在服务的请求中发生冲突。 deploy.sh文件并不会删除kube-dns的deployment或者replication controller。如果要删除kube-dns,你必须在部署CoreDNS后手动的删除kube-dns。 你需要仔细测试manifest文件,以确保它能够对你的集群正常运行。这依赖于你的怎样构建你的集群以及你正在运行的集群版本。 对manifest文件做一些修改是有比要的。 在最佳的案例场景中,使用CoreDNS替换Kube-DNS只需要使用下面的两个命令: $ ./deploy.sh | kubectl apply -f - $ kubectl delete --namespace=kube-system deployment kube-dns 注意:我们建议在部署CoreDNS后删除kube-dns。否则如果CoreDNS和kube-dns同时运行,服务查询可能会随机的在CoreDNS和kube-dns之间产生。 对于非RBAC部署,你需要编辑生成的结果yaml文件: 从yaml文件的Deployment部分删除 serviceAccountName: coredns 删除 ServiceAccount、 ClusterRole和 ClusterRoleBinding 部分 参考 Kubernetes DNS-Based Service Discovery 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/operation.html":{"url":"practice/operation.html","title":"运维管理","keywords":"","body":"运维管理 将集群部署到生产环境后就不得不考虑运维管理问题。运维管理问题主要包括如下几个方面: 监控:包括 kubernetes 本身组件和 Pod、应用的监控 日志收集:包括 kubernetes 本身组件的日志,应用的日志 审计:用户对集群操作的审计 安全:用户权限的管理和镜像漏洞扫描 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/master-ha.html":{"url":"practice/master-ha.html","title":"Master 节点高可用","keywords":"","body":"Master节点高可用 作者:mendickxiao 经过部署Kubernetes集群章节我们已经可以顺利的部署一个集群用于开发和测试,但是要应用到生产就就不得不考虑master节点的高可用问题,因为现在我们的master节点上的几个服务kube-apiserver、kube-scheduler和kube-controller-manager都是单点的而且都位于同一个节点上,一旦master节点宕机,虽然不应答当前正在运行的应用,将导致kubernetes集群无法变更。本文将引导你创建一个高可用的master节点。 在大神gzmzj的ansible创建kubernetes集群神作中有讲到如何配置多个Master,但是在实践过程中还是遇到不少坑。需要将坑填上才能工作。 神作链接地址:集群规划和基础参数设定。 按照神作的描述,实际上是通过keepalived + haproxy实现的,其中keepalived是提供一个VIP,通过VIP关联所有的Master节点;然后haproxy提供端口转发功能。由于VIP还是存在Master的机器上的,默认配置API Server的端口是6443,所以我们需要将另外一个端口关联到这个VIP上,一般用8443。 图 6.5.1.1:Master HA架构图 根据神作的实践,我发现需要在Master手工安装keepalived, haproxy。 yum install keepalived yum install haproxy 需要将HAProxy默认的配置文件balance从source修改为roundrobin方式。haproxy的配置文件haproxy.cfg默认路径是/etc/haproxy/haproxy.cfg。另外需要手工创建/run/haproxy的目录,否则haproxy会启动失败。 注意 bind绑定的就是VIP对外的端口号,这里是8443。 balance指定的负载均衡方式是roundrobin方式,默认是source方式。在我的测试中,source方式不工作。 server指定的就是实际的Master节点地址以及真正工作的端口号,这里是6443。有多少台Master就写多少条记录。 # haproxy.cfg sample global log /dev/log local0 log /dev/log local1 notice chroot /var/lib/haproxy *stats socket /run/haproxy/admin.sock mode 660 level admin stats timeout 30s user haproxy group haproxy daemon nbproc 1 defaults log global timeout connect 5000 timeout client 50000 timeout server 50000 listen kube-master **bind 0.0.0.0:8443** mode tcp option tcplog **balance roundrobin** server s1 **Master 1的IP地址**:6443 check inter 10000 fall 2 rise 2 weight 1 server s2 **Master 2的IP地址**:6443 check inter 10000 fall 2 rise 2 weight 1 修改keepalived的配置文件,配置正确的VIP。keepalived的配置文件keepalived.conf的默认路径是/etc/keepalived/keepalived.conf 注意 priority决定哪个Master是主,哪个Master是次。数字大的是主,数字小的是次。数字越大优先级越高。 virtual_router_id决定当前VIP的路由号,实际上VIP提供了一个虚拟的路由功能,该VIP在同一个子网内必须是唯一。 virtual_ipaddress提供的就是VIP的地址,该地址在子网内必须是空闲未必分配的。 state 决定初始化时节点的状态, 建议 priority 最高的节点设置为 MASTER。 # keepalived.cfg sample global_defs { router_id lb-backup } vrrp_instance VI-kube-master { state BACKUP **priority 110** dont_track_primary interface eth0 **virtual_router_id 51** advert_int 3 virtual_ipaddress { **10.86.13.36** } } 配置好后,那么先启动主Master的keepalived和haproxy。 systemctl enable keepalived systemctl start keepalived systemctl enable haproxy systemctl start haproxy 然后使用ip a s命令查看是否有VIP地址分配。如果看到VIP地址已经成功分配在eth0网卡上,说明keepalived启动成功。 [root@kube32 ~]# ip a s 1: lo: mtu 65536 qdisc noqueue state UNKNOWN qlen 1 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: eth0: mtu 1500 qdisc mq state UP qlen 1000 link/ether 00:50:56:a9:d5:be brd ff:ff:ff:ff:ff:ff inet 10.86.13.32/23 brd 10.86.13.255 scope global eth0 valid_lft forever preferred_lft forever **inet 10.86.13.36/32 scope global eth0** valid_lft forever preferred_lft forever inet6 fe80::250:56ff:fea9:d5be/64 scope link valid_lft forever preferred_lft forever 更保险方法还可以通过systemctl status keepalived -l看看keepalived的状态 [root@kube32 ~]# systemctl status keepalived -l ● keepalived.service - LVS and VRRP High Availability Monitor Loaded: loaded (/usr/lib/systemd/system/keepalived.service; enabled; vendor preset: disabled) Active: active (running) since Thu 2018-02-01 10:24:51 CST; 1 months 16 days ago Main PID: 13448 (keepalived) Memory: 6.0M CGroup: /system.slice/keepalived.service ├─13448 /usr/sbin/keepalived -D ├─13449 /usr/sbin/keepalived -D └─13450 /usr/sbin/keepalived -D Mar 20 04:51:15 kube32 Keepalived_vrrp[13450]: VRRP_Instance(VI-kube-master) Dropping received VRRP packet... **Mar 20 04:51:18 kube32 Keepalived_vrrp[13450]: (VI-kube-master): ip address associated with VRID 51 not present in MASTER advert : 10.86.13.36 Mar 20 04:51:18 kube32 Keepalived_vrrp[13450]: bogus VRRP packet received on eth0 !!!** 然后通过systemctl status haproxy -l看haproxy的状态 [root@kube32 ~]# systemctl status haproxy -l ● haproxy.service - HAProxy Load Balancer Loaded: loaded (/usr/lib/systemd/system/haproxy.service; enabled; vendor preset: disabled) Active: active (running) since Thu 2018-02-01 10:33:22 CST; 1 months 16 days ago Main PID: 15116 (haproxy-systemd) Memory: 3.2M CGroup: /system.slice/haproxy.service ├─15116 /usr/sbin/haproxy-systemd-wrapper -f /etc/haproxy/haproxy.cfg -p /run/haproxy.pid ├─15117 /usr/sbin/haproxy -f /etc/haproxy/haproxy.cfg -p /run/haproxy.pid -Ds └─15118 /usr/sbin/haproxy -f /etc/haproxy/haproxy.cfg -p /run/haproxy.pid -Ds 这个时候通过kubectl version命令,可以获取到kubectl的服务器信息。 [root@kube32 ~]# kubectl version **Client Version: version.Info{Major:\"1\", Minor:\"9\", GitVersion:\"v1.9.1\", GitCommit:\"3a1c9449a956b6026f075fa3134ff92f7d55f812\", GitTreeState:\"clean\", BuildDate:\"2018-01-03T22:31:01Z\", GoVersion:\"go1.9.2\", Compiler:\"gc\", Platform:\"linux/amd64\"} Server Version: version.Info{Major:\"1\", Minor:\"9\", GitVersion:\"v1.9.1\", GitCommit:\"3a1c9449a956b6026f075fa3134ff92f7d55f812\", GitTreeState:\"clean\", BuildDate:\"2018-01-03T22:18:41Z\", GoVersion:\"go1.9.2\", Compiler:\"gc\", Platform:\"linux/amd64\"}** 这个时候说明你的keepalived和haproxy都是成功的。这个时候你可以依次将你其他Master节点的keepalived和haproxy启动。 此时,你通过ip a s命令去查看其中一台Master(非主Master)的时候,你看不到VIP,这个是正常的,因为VIP永远只在主Master节点上,只有当主Master节点挂掉后,才会切换到其他Master节点上。 [root@kube31 ~]# ip a s 1: lo: mtu 65536 qdisc noqueue state UNKNOWN qlen 1 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: eth0: mtu 1500 qdisc mq state UP qlen 1000 link/ether 00:50:56:a9:07:23 brd ff:ff:ff:ff:ff:ff inet 10.86.13.31/23 brd 10.86.13.255 scope global eth0 valid_lft forever preferred_lft forever inet6 fe80::250:56ff:fea9:723/64 scope link valid_lft forever preferred_lft forever 在我的实践过程中,通过大神的脚本快速启动多个Master节点,会导致主Master始终获取不了VIP,当时的报错非常奇怪。后来经过我的研究发现,主Master获取VIP是需要时间的,如果多个Master同时启动,会导致冲突。这个不知道是否算是Keepalived的Bug。但是最稳妥的方式还是先启动一台主Master,等VIP确定后再启动其他Master比较靠谱。 Kubernetes通过Keepalived + Haproxy实现多个Master的高可用部署,你实际上可以采用其他方式,如外部的负载均衡方式。实际上Kubernetes的多个Master是没有主从的,都可以提供一致性服务。Keepalived + Haproxy实际上就是提供了一个简单的负载均衡方式。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/service-rolling-update.html":{"url":"practice/service-rolling-update.html","title":"服务滚动升级","keywords":"","body":"服务滚动升级 当有镜像发布新版本,新版本服务上线时如何实现服务的滚动和平滑升级? 如果你使用ReplicationController创建的pod可以使用kubectl rollingupdate命令滚动升级,如果使用的是Deployment创建的Pod可以直接修改yaml文件后执行kubectl apply即可。 Deployment已经内置了RollingUpdate strategy,因此不用再调用kubectl rollingupdate命令,升级的过程是先创建新版的pod将流量导入到新pod上后销毁原来的旧的pod。 Rolling Update适用于Deployment、Replication Controller,官方推荐使用Deployment而不再使用Replication Controller。 ReplicationController与Deployment的关系 ReplicationController和Deployment的RollingUpdate命令有些不同,但是实现的机制是一样的,关于这两个kind的关系我引用了ReplicationController与Deployment的区别中的部分内容如下,详细区别请查看原文。 ReplicationController Replication Controller为Kubernetes的一个核心内容,应用托管到Kubernetes之后,需要保证应用能够持续的运行,Replication Controller就是这个保证的key,主要的功能如下: 确保pod数量:它会确保Kubernetes中有指定数量的Pod在运行。如果少于指定数量的pod,Replication Controller会创建新的,反之则会删除掉多余的以保证Pod数量不变。 确保pod健康:当pod不健康,运行出错或者无法提供服务时,Replication Controller也会杀死不健康的pod,重新创建新的。 弹性伸缩 :在业务高峰或者低峰期的时候,可以通过Replication Controller动态的调整pod的数量来提高资源的利用率。同时,配置相应的监控功能(Hroizontal Pod Autoscaler),会定时自动从监控平台获取Replication Controller关联pod的整体资源使用情况,做到自动伸缩。 滚动升级:滚动升级为一种平滑的升级方式,通过逐步替换的策略,保证整体系统的稳定,在初始化升级的时候就可以及时发现和解决问题,避免问题不断扩大。 Deployment Deployment同样为Kubernetes的一个核心内容,主要职责同样是为了保证pod的数量和健康,90%的功能与Replication Controller完全一样,可以看做新一代的Replication Controller。但是,它又具备了Replication Controller之外的新特性: Replication Controller全部功能:Deployment继承了上面描述的Replication Controller全部功能。 事件和状态查看:可以查看Deployment的升级详细进度和状态。 回滚:当升级pod镜像或者相关参数的时候发现问题,可以使用回滚操作回滚到上一个稳定的版本或者指定的版本。 版本记录: 每一次对Deployment的操作,都能保存下来,给予后续可能的回滚使用。 暂停和启动:对于每一次升级,都能够随时暂停和启动。 多种升级方案:Recreate:删除所有已存在的pod,重新创建新的; RollingUpdate:滚动升级,逐步替换的策略,同时滚动升级时,支持更多的附加参数,例如设置最大不可用pod数量,最小升级间隔时间等等。 创建测试镜像 我们来创建一个特别简单的web服务,当你访问网页时,将输出一句版本信息。通过区分这句版本信息输出我们就可以断定升级是否完成。 所有配置和代码见../manifests/test/rolling-update-test目录。 Web服务的代码main.go package main import ( \"fmt\" \"log\" \"net/http\" ) func sayhello(w http.ResponseWriter, r *http.Request) { fmt.Fprintf(w, \"This is version 1.\") //这个写入到w的是输出到客户端的 } func main() { http.HandleFunc(\"/\", sayhello) //设置访问的路由 log.Println(\"This is version 1.\") err := http.ListenAndServe(\":9090\", nil) //设置监听的端口 if err != nil { log.Fatal(\"ListenAndServe: \", err) } } 创建Dockerfile FROM alpine:3.5 MAINTAINER Jimmy Song ADD hellov2 / ENTRYPOINT [\"/hellov2\"] 注意修改添加的文件的名称。 创建Makefile 修改镜像仓库的地址为你自己的私有镜像仓库地址。 修改Makefile中的TAG为新的版本号。 all: build push clean .PHONY: build push clean TAG = v1 # Build for linux amd64 build: GOOS=linux GOARCH=amd64 go build -o hello${TAG} main.go docker build -t harbor-001.jimmysong.io/library/hello:${TAG} . push: docker push harbor-001.jimmysong.io/library/hello:${TAG} # Clean clean: rm -f hello${TAG} 编译 make all 分别修改main.go中的输出语句、Dockerfile中的文件名称和Makefile中的TAG,创建两个版本的镜像。 测试 我们使用Deployment部署服务来测试。 配置文件rolling-update-test.yaml: apiVersion: extensions/v1beta1 kind: Deployment metadata: name: rolling-update-test spec: replicas: 3 template: metadata: labels: app: rolling-update-test spec: containers: - name: rolling-update-test image: harbor-001.jimmysong.io/library/hello:v1 ports: - containerPort: 9090 --- apiVersion: v1 kind: Service metadata: name: rolling-update-test labels: app: rolling-update-test spec: ports: - port: 9090 protocol: TCP name: http selector: app: rolling-update-test 部署service kubectl create -f rolling-update-test.yaml 修改traefik ingress配置 在ingress.yaml文件中增加新service的配置。 - host: rolling-update-test.traefik.io http: paths: - path: / backend: serviceName: rolling-update-test servicePort: 9090 修改本地的host配置,增加一条配置: 172.20.0.119 rolling-update-test.traefik.io 注意:172.20.0.119是我们之前使用keepalived创建的VIP。 打开浏览器访问 http://rolling-update-test.traefik.io 将会看到以下输出: This is version 1. 滚动升级 只需要将rolling-update-test.yaml文件中的image改成新版本的镜像名,然后执行: kubectl apply -f rolling-update-test.yaml 也可以参考Kubernetes Deployment Concept中的方法,直接设置新的镜像。 kubectl set image deployment/rolling-update-test rolling-update-test=harbor-001.jimmysong.io/library/hello:v2 或者使用kubectl edit deployment/rolling-update-test修改镜像名称后保存。 使用以下命令查看升级进度: kubectl rollout status deployment/rolling-update-test 升级完成后在浏览器中刷新http://rolling-update-test.traefik.io将会看到以下输出: This is version 2. 说明滚动升级成功。 使用ReplicationController创建的Pod如何RollingUpdate 以上讲解使用Deployment创建的Pod的RollingUpdate方式,那么如果使用传统的ReplicationController创建的Pod如何Update呢? 举个例子: $ kubectl -n spark-cluster rolling-update zeppelin-controller --image harbor-001.jimmysong.io/library/zeppelin:0.7.1 Created zeppelin-controller-99be89dbbe5cd5b8d6feab8f57a04a8b Scaling up zeppelin-controller-99be89dbbe5cd5b8d6feab8f57a04a8b from 0 to 1, scaling down zeppelin-controller from 1 to 0 (keep 1 pods available, don't exceed 2 pods) Scaling zeppelin-controller-99be89dbbe5cd5b8d6feab8f57a04a8b up to 1 Scaling zeppelin-controller down to 0 Update succeeded. Deleting old controller: zeppelin-controller Renaming zeppelin-controller-99be89dbbe5cd5b8d6feab8f57a04a8b to zeppelin-controller replicationcontroller \"zeppelin-controller\" rolling updated 只需要指定新的镜像即可,当然你可以配置RollingUpdate的策略。 参考 Rolling update机制解析 Running a Stateless Application Using a Deployment 使用kubernetes的deployment进行RollingUpdate 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/app-log-collection.html":{"url":"practice/app-log-collection.html","title":"应用日志收集","keywords":"","body":"应用日志收集 前言 在进行日志收集的过程中,我们首先想到的是使用Logstash,因为它是ELK stack中的重要成员,但是在测试过程中发现,Logstash是基于JDK的,在没有产生日志的情况单纯启动Logstash就大概要消耗500M内存,在每个Pod中都启动一个日志收集组件的情况下,使用logstash有点浪费系统资源,经人推荐我们选择使用Filebeat替代,经测试单独启动Filebeat容器大约会消耗12M内存,比起logstash相当轻量级。 方案选择 Kubernetes官方提供了EFK的日志收集解决方案,但是这种方案并不适合所有的业务场景,它本身就有一些局限性,例如: 所有日志都必须是out前台输出,真实业务场景中无法保证所有日志都在前台输出 只能有一个日志输出文件,而真实业务场景中往往有多个日志输出文件 Fluentd并不是常用的日志收集工具,我们更习惯用logstash,现使用filebeat替代 我们已经有自己的ELK集群且有专人维护,没有必要再在kubernetes上做一个日志收集服务 基于以上几个原因,我们决定使用自己的ELK集群。 Kubernetes集群中的日志收集解决方案 编号 方案 优点 缺点 1 每个app的镜像中都集成日志收集组件 部署方便,kubernetes的yaml文件无须特别配置,可以为每个app自定义日志收集配置 强耦合,不方便应用和日志收集组件升级和维护且会导致镜像过大 2 单独创建一个日志收集组件跟app的容器一起运行在同一个pod中 低耦合,扩展性强,方便维护和升级 需要对kubernetes的yaml文件进行单独配置,略显繁琐 3 将所有的Pod的日志都挂载到宿主机上,每台主机上单独起一个日志收集Pod 完全解耦,性能最高,管理起来最方便 需要统一日志收集规则,目录和输出方式 综合以上优缺点,我们选择使用方案二。 该方案在扩展性、个性化、部署和后期维护方面都能做到均衡,因此选择该方案。 图 6.5.3.1:filebeat日志收集架构图 我们创建了自己的filebeat镜像。创建过程和使用方式见 https://github.com/rootsongjc/docker-images,您可以使用该仓库中的源码创建镜像。 测试 我们部署一个应用filebeat来收集日志的功能测试。 创建应用yaml文件filebeat-test.yaml。 apiVersion: extensions/v1beta1 kind: Deployment metadata: name: filebeat-test namespace: default spec: replicas: 3 template: metadata: labels: k8s-app: filebeat-test spec: containers: - image: harbor-001.jimmysong.io/library/filebeat:5.4.0 name: filebeat volumeMounts: - name: app-logs mountPath: /log - name: filebeat-config mountPath: /etc/filebeat/ - image: harbor-001.jimmysong.io/library/analytics-docker-test:Build_8 name : app ports: - containerPort: 80 volumeMounts: - name: app-logs mountPath: /usr/local/TalkingData/logs volumes: - name: app-logs emptyDir: {} - name: filebeat-config configMap: name: filebeat-config --- apiVersion: v1 kind: Service metadata: name: filebeat-test labels: app: filebeat-test spec: ports: - port: 80 protocol: TCP name: http selector: run: filebeat-test --- apiVersion: v1 kind: ConfigMap metadata: name: filebeat-config data: filebeat.yml: | filebeat.prospectors: - input_type: log paths: - \"/log/*\" - \"/log/usermange/common/*\" output.elasticsearch: hosts: [\"172.23.5.255:9200\"] username: \"elastic\" password: \"changeme\" index: \"filebeat-docker-test\" 说明 该文件中包含了配置文件filebeat的配置文件的ConfigMap,因此不需要再定义环境变量。 当然你也可以不同ConfigMap,通过传统的传递环境变量的方式来配置filebeat。 例如对filebeat的容器进行如下配置: containers: - image: harbor-001.jimmysong.io/library/filebeat:5.4.0 name: filebeat volumeMounts: - name: app-logs mountPath: /log env: - name: PATHS value: \"/log/*\" - name: ES_SERVER value: 172.23.5.255:9200 - name: INDEX value: logstash-docker - name: INPUT_TYPE value: log 目前使用这种方式会有个问题,及时PATHS只能传递单个目录,如果想传递多个目录需要修改filebeat镜像的docker-entrypoint.sh脚本,对该环境变量进行解析增加filebeat.yml文件中的PATHS列表。 推荐使用ConfigMap,这样filebeat的配置就能够更灵活。 注意事项 将app的/usr/local/TalkingData/logs目录挂载到filebeat的/log目录下。 该文件可以在manifests/test/filebeat-test.yaml找到。 我使用了自己的私有镜像仓库,测试时请换成自己的应用镜像。 Filebeat的环境变量的值配置请参考https://github.com/rootsongjc/docker-images 创建应用 部署Deployment kubectl create -f filebeat-test.yaml 查看http://172.23.5.255:9200/_cat/indices将可以看到列表有这样的indices: green open filebeat-docker-test 7xPEwEbUQRirk8oDX36gAA 5 1 2151 0 1.6mb 841.8kb 访问Kibana的web页面,查看filebeat-2017.05.17的索引,可以看到filebeat收集到了app日志。 图 6.5.3.2:Kibana页面 点开每个日志条目,可以看到以下详细字段: 图 6.5.3.3:filebeat收集的日志详细信息 _index值即我们在YAML文件的configMap中配置的index值 beat.hostname和beat.name即pod的名称 source表示filebeat容器中的日志目录 我们可以通过人为得使index = service name,这样就可以方便的收集和查看每个service的日志。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/configuration-best-practice.html":{"url":"practice/configuration-best-practice.html","title":"配置最佳实践","keywords":"","body":"配置最佳实践 本文档旨在汇总和强调用户指南、快速开始文档和示例中的最佳实践。该文档会很活跃并持续更新中。如果你觉得很有用的最佳实践但是本文档中没有包含,欢迎给我们提Pull Request。 通用配置建议 定义配置文件的时候,指定最新的稳定API版本(目前是V1)。 在配置文件push到集群之前应该保存在版本控制系统中。这样当需要的时候能够快速回滚,必要的时候也可以快速的创建集群。 使用YAML格式而不是JSON格式的配置文件。在大多数场景下它们都可以作为数据交换格式,但是YAML格式比起JSON更易读和配置。 尽量将相关的对象放在同一个配置文件里。这样比分成多个文件更容易管理。 为了简化和最小化配置,也为了防止错误发生,不要指定不必要的默认配置。例如,省略掉ReplicationController的selector和label,如果你希望它们跟podTemplate中的label一样的话,因为那些配置默认是podTemplate的label产生的。 将资源对象的描述放在一个annotation中可以更好的内省。 裸的Pods vs Replication Controllers和 Jobs 如果有其他方式替代“裸的“ pod(如没有绑定到replication controller 上的pod),那么就使用其他选择。在node节点出现故障时,裸奔的pod不会被重新调度。Replication Controller总是会重新创建pod,除了明确指定了restartPolicy: Never 的场景。Job 也许是比较合适的选择。 Services 通常最好在创建相关的replication controllers之前先创建service ,你也可以在创建Replication Controller的时候不指定replica数量(默认是1),创建service后,在通过Replication Controller来扩容。这样可以在扩容很多个replica之前先确认pod是正常的。 除非十分必要的情况下(如运行一个node daemon),不要使用hostPort(用来指定暴露在主机上的端口号)。当你给Pod绑定了一个hostPort,该pod可被调度到的主机的受限了,因为端口冲突。如果是为了调试目的来通过端口访问的话,你可以使用 kubectl proxy 和 apiserver proxy 或者 kubectl port-forward。你可使用 Service 来对外暴露服务。如果你确实需要将pod的端口暴露到主机上,考虑使用 NodePort service。 跟hostPort一样的原因,避免使用 hostNetwork。 如果你不需要kube-proxy的负载均衡的话,可以考虑使用使用headless services。 使用Label 定义 labels 来指定应用或Deployment的 semantic attributes 。例如,不是将label附加到一组pod来显式表示某些服务(例如,service:myservice),或者显式地表示管理pod的replication controller(例如,controller:mycontroller),附加label应该是标示语义属性的标签, 例如{app:myapp,tier:frontend,phase:test,deployment:v3}。 这将允许您选择适合上下文的对象组——例如,所有的”tier:frontend“pod的服务或app是“myapp”的所有“测试”阶段组件。 可以通过简单地从其service的选择器中省略特定于发行版本的标签,而不是更新服务的选择器来完全匹配replication controller的选择器,来实现跨越多个部署的服务,例如滚动更新。 为了滚动升级的方便,在Replication Controller的名字中包含版本信息,例如作为名字的后缀。设置一个version标签页是很有用的。滚动更新创建一个新的controller而不是修改现有的controller。因此,version含混不清的controller名字就可能带来问题。查看Rolling Update Replication Controller文档获取更多关于滚动升级命令的信息。 注意 Deployment 对象不需要再管理 replication controller 的版本名。Deployment 中描述了对象的期望状态,如果对spec的更改被应用了话,Deployment controller 会以控制的速率来更改实际状态到期望状态。(Deployment目前是 extensions API Group的一部分)。 利用label做调试。因为Kubernetes replication controller和service使用label来匹配pods,这允许你通过移除pod中的label的方式将其从一个controller或者service中移除,原来的controller会创建一个新的pod来取代移除的pod。这是一个很有用的方式,帮你在一个隔离的环境中调试之前的“活着的” pod。查看 kubectl label 命令。 容器镜像 默认容器镜像拉取策略 是 IfNotPresent, 当本地已存在该镜像的时候 Kubelet 不会再从镜像仓库拉取。如果你希望总是从镜像仓库中拉取镜像的话,在yaml文件中指定镜像拉取策略为Always( imagePullPolicy: Always)或者指定镜像的tag为 :latest 。 如果你没有将镜像标签指定为:latest,例如指定为myimage:v1,当该标签的镜像进行了更新,kubelet也不会拉取该镜像。你可以在每次镜像更新后都生成一个新的tag(例如myimage:v2),在配置文件中明确指定该版本。 注意: 在生产环境下部署容器应该尽量避免使用:latest标签,因为这样很难追溯到底运行的是哪个版本的容器和回滚。 使用kubectl 尽量使用 kubectl create -f 。kubeclt会自动查找该目录下的所有后缀名为.yaml、.yml和.json文件并将它们传递给create命令。 使用 kubectl delete 而不是 stop. Delete 是 stop的超集,stop 已经被弃用。 使用 kubectl bulk 操作(通过文件或者label)来get和delete。查看label selectors 和 using labels effectively。 使用 kubectl run 和 expose 命令快速创建只有单个容器的Deployment。查看 quick start guide中的示例。 参考 Configuration Best Practices 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/monitor.html":{"url":"practice/monitor.html","title":"集群及应用监控","keywords":"","body":"集群及应用监控 在前面的安装heapster插件章节,我们已经谈到Kubernetes本身提供了监控插件作为集群和容器监控的选择,但是在实际使用中,因为种种原因,再考虑到跟我们自身的监控系统集成,我们准备重新造轮子。 针对kubernetes集群和应用的监控,相较于传统的虚拟机和物理机的监控有很多不同,因此对于传统监控需要有很多改造的地方,需要关注以下三个方面: Kubernetes集群本身的监控,主要是kubernetes的各个组件 kubernetes集群中Pod的监控,Pod的CPU、内存、网络、磁盘等监控 集群内部应用的监控,针对应用本身的监控 Kubernetes集群中的监控 图 6.5.5.1:Kubernetes集群中的监控 跟物理机器和虚拟机的监控不同,在kubernetes集群中的监控复杂度更高一些,因为多了一个虚拟化层,当然这个跟直接监控docker容器又不一样,kubernetes在docker之上又抽象了一层service的概念。 在kubernetes中的监控需要考虑到这几个方面: 应该给Pod打上哪些label,这些label将成为监控的metrics。 当应用的Pod漂移了之后怎么办?因为要考虑到Pod的生命周期比虚拟机和物理机短的多,如何持续监控应用的状态? 更多的监控项,kubernetes本身、容器、应用等。 监控指标的来源,是通过heapster收集后汇聚还是直接从每台主机的docker上取? 容器的命名规则 首先我们需要清楚使用cAdvisor收集的数据的格式和字段信息。 当我们通过cAdvisor获取到了容器的信息后,例如访问${NODE_IP}:4194/api/v1.3/docker获取的json结果中的某个容器包含如下字段: \"labels\": { \"annotation.io.kubernetes.container.hash\": \"f47f0602\", \"annotation.io.kubernetes.container.ports\": \"[{\\\"containerPort\\\":80,\\\"protocol\\\":\\\"TCP\\\"}]\", \"annotation.io.kubernetes.container.restartCount\": \"0\", \"annotation.io.kubernetes.container.terminationMessagePath\": \"/dev/termination-log\", \"annotation.io.kubernetes.container.terminationMessagePolicy\": \"File\", \"annotation.io.kubernetes.pod.terminationGracePeriod\": \"30\", \"io.kubernetes.container.logpath\": \"/var/log/pods/d8a2e995-3617-11e7-a4b0-ecf4bbe5d414/php-redis_0.log\", \"io.kubernetes.container.name\": \"php-redis\", \"io.kubernetes.docker.type\": \"container\", \"io.kubernetes.pod.name\": \"frontend-2337258262-771lz\", \"io.kubernetes.pod.namespace\": \"default\", \"io.kubernetes.pod.uid\": \"d8a2e995-3617-11e7-a4b0-ecf4bbe5d414\", \"io.kubernetes.sandbox.id\": \"843a0f018c0cef2a5451434713ea3f409f0debc2101d2264227e814ca0745677\" }, 这些信息其实都是kubernetes创建容器时给docker container打的Labels,使用docker inspect $conainer_name命令同样可以看到上述信息。 你是否想过这些label跟容器的名字有什么关系?当你在node节点上执行docker ps看到的容器名字又对应哪个应用的Pod呢? 在kubernetes代码中pkg/kubelet/dockertools/docker.go中的BuildDockerName方法定义了容器的名称规范。 这段容器名称定义代码如下: // Creates a name which can be reversed to identify both full pod name and container name. // This function returns stable name, unique name and a unique id. // Although rand.Uint32() is not really unique, but it's enough for us because error will // only occur when instances of the same container in the same pod have the same UID. The // chance is really slim. func BuildDockerName(dockerName KubeletContainerName, container *v1.Container) (string, string, string) { containerName := dockerName.ContainerName + \".\" + strconv.FormatUint(kubecontainer.HashContainerLegacy(container), 16) stableName := fmt.Sprintf(\"%s_%s_%s_%s\", containerNamePrefix, containerName, dockerName.PodFullName, dockerName.PodUID) UID := fmt.Sprintf(\"%08x\", rand.Uint32()) return stableName, fmt.Sprintf(\"%s_%s\", stableName, UID), UID } // Unpacks a container name, returning the pod full name and container name we would have used to // construct the docker name. If we are unable to parse the name, an error is returned. func ParseDockerName(name string) (dockerName *KubeletContainerName, hash uint64, err error) { // For some reason docker appears to be appending '/' to names. // If it's there, strip it. name = strings.TrimPrefix(name, \"/\") parts := strings.Split(name, \"_\") if len(parts) == 0 || parts[0] != containerNamePrefix { err = fmt.Errorf(\"failed to parse Docker container name %q into parts\", name) return nil, 0, err } if len(parts) 1 { hash, err = strconv.ParseUint(nameParts[1], 16, 32) if err != nil { glog.Warningf(\"invalid container hash %q in container %q\", nameParts[1], name) } } podFullName := parts[2] + \"_\" + parts[3] podUID := types.UID(parts[4]) return &KubeletContainerName{podFullName, podUID, containerName}, hash, nil } 我们可以看到容器名称中包含如下几个字段,中间用下划线隔开,至少有6个字段,未来可能添加更多字段。 下面的是四个基本字段。 containerNamePrefix_containerName_PodFullName_PodUID 所有kubernetes启动的容器的containerNamePrefix都是k8s。 Kubernetes启动的docker容器的容器名称规范,下面以官方示例guestbook为例,Deployment 名为 frontend中启动的名为php-redis的docker容器的副本书为3。 Deployment frontend的配置如下: apiVersion: extensions/v1beta1 kind: Deployment metadata: name: frontend spec: template: metadata: labels: app: guestbook tier: frontend spec: containers: - name: php-redis image: harbor-001.jimmysong.io/library/gb-frontend:v4 resources: requests: cpu: 100m memory: 100Mi env: - name: GET_HOSTS_FROM value: dns ports: - containerPort: 80 我们选取三个实例中的一个运行php-redis的docker容器。 k8s_php-redis_frontend-2337258262-154p7_default_d8a2e2dd-3617-11e7-a4b0-ecf4bbe5d414_0 containerNamePrefix:k8s containerName:php-redis podFullName:frontend-2337258262-154p7 computeHash:154p7 deploymentName:frontend replicaSetName:frontend-2337258262 namespace:default podUID:d8a2e2dd-3617-11e7-a4b0-ecf4bbe5d414 kubernetes容器命名规则解析,见下图所示。 图 6.5.5.2:kubernetes的容器命名规则示意图 使用Heapster进行集群监控 Heapster是kubernetes官方提供的监控方案,我们在前面的章节中已经讲解了如何部署和使用heapster,见安装Heapster插件。 但是Grafana显示的指标只根据Namespace和Pod两层来分类,实在有些单薄,我们希望通过应用的label增加service这一层分类。架构图如下: 图 6.5.5.3:Heapster架构图(改进版) 在不改变原有架构的基础上,通过应用的label来区分不同应用的pod。 应用监控 Kubernetes中应用的监控架构如图: 图 6.5.5.4:应用监控架构图 这种方式有以下几个要点: 访问kubernetes API获取应用Pod的IP和端口 Pod labels作为监控metric的tag 直接访问应用的Pod的IP和端口获取应用监控数据 metrics发送到OWL中存储和展示 应用拓扑状态图 对于复杂的应用编排和依赖关系,我们希望能够有清晰的图标一览应用状态和拓扑关系,因此我们用到了Weaveworks开源的scope。 安装scope 我们在kubernetes集群上使用standalone方式安装,详情参考Installing Weave Scope。 使用scope.yaml文件安装scope,该服务安装在kube-system namespace下。 $ kubectl apply -f scope.yaml 创建一个新的Ingress:kube-system.yaml,配置如下: apiVersion: extensions/v1beta1 kind: Ingress metadata: name: traefik-ingress namespace: kube-system spec: rules: - host: scope.weave.io http: paths: - path: / backend: serviceName: weave-scope-app servicePort: 80 执行kubectl apply -f kube-system.yaml后在你的主机上的/etc/hosts文件中添加一条记录: 172.20.0.119 scope.weave.io 在浏览器中访问scope.weave.io就可以访问到scope了,详见边缘节点配置。 图 6.5.5.5:应用拓扑图 如上图所示,scope可以监控kubernetes集群中的一系列资源的状态、资源使用情况、应用拓扑、scale、还可以直接通过浏览器进入容器内部调试等。 参考 Monitoring in the Kubernetes Era 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/data-persistence-problem.html":{"url":"practice/data-persistence-problem.html","title":"数据持久化问题","keywords":"","body":"数据落盘问题的由来 这本质上是数据持久化问题,对于有些应用依赖持久化数据,比如应用自身产生的日志需要持久化存储的情况,需要保证容器里的数据不丢失,在Pod挂掉后,其他应用依然可以访问到这些数据,因此我们需要将数据持久化存储起来。 数据落盘问题解决方案 下面以一个应用的日志收集为例,该日志需要持久化收集到ElasticSearch集群中,如果不考虑数据丢失的情形,可以直接使用前面提到的应用日志收集一节中的方法,但考虑到Pod挂掉时logstash(或filebeat)并没有收集完该pod内日志的情形,我们想到了如下这种解决方案,示意图如下: 图 6.5.6.1:日志持久化收集解决方案示意图 首先需要给数据落盘的应用划分node,即这些应用只调用到若干台主机上 给这若干台主机增加label 使用deamonset方式在这若干台主机上启动logstash的Pod(使用nodeSelector来限定在这几台主机上,我们在边缘节点启动的treafik也是这种模式) 将应用的数据通过volume挂载到宿主机上 Logstash(或者filebeat)收集宿主机上的数据,数据持久化不会丢失 Side-effect 首先kubernetes本身就提供了数据持久化的解决方案statefulset,不过需要用到公有云的存储或其他分布式存储,这一点在我们的私有云环境里被否定了。 需要管理主机的label,增加运维复杂度,但是具体问题具体对待 必须保证应用启动顺序,需要先启动logstash 为主机打label使用nodeSelector的方式限制了资源调度的范围 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/manage-compute-resources-container.html":{"url":"practice/manage-compute-resources-container.html","title":"管理容器的计算资源","keywords":"","body":"管理容器的计算资源 当您定义 Pod 的时候可以选择为每个容器指定需要的 CPU 和内存(RAM)大小。当为容器指定了资源请求后,调度器就能够更好的判断出将容器调度到哪个节点上。如果您还为容器指定了资源限制,节点上的资源就可以按照指定的方式做竞争。 资源类型 CPU 和 memory 都是 资源类型。资源类型具有基本单位。CPU 的单位是 core,memory 的单位是 byte。 CPU和内存统称为计算资源,也可以称为资源。计算资源的数量是可以被请求、分配和消耗的可测量的。它们与 API 资源 不同。 API 资源(如 Pod 和 Service)是可通过 Kubernetes API server 读取和修改的对象。 Pod 和 容器的资源请求和限制 Pod 中的每个容器都可以指定以下的一个或者多个值: spec.containers[].resources.limits.cpu spec.containers[].resources.limits.memory spec.containers[].resources.requests.cpu spec.containers[].resources.requests.memory 尽管只能在个别容器上指定请求和限制,但是我们可以方便地计算出 Pod 资源请求和限制。特定资源类型的Pod 资源请求/限制是 Pod 中每个容器的该类型的资源请求/限制的总和。 CPU 的含义 CPU 资源的限制和请求以 cpu 为单位。 Kubernetes 中的一个 cpu 等于: 1 AWS vCPU 1 GCP Core 1 Azure vCore 1 Hyperthread 在带有超线程的裸机 Intel 处理器上 允许浮点数请求。具有 spec.containers[].resources.requests.cpu 为 0.5 的容器保证了一半 CPU 要求 1 CPU的一半。表达式 0.1 等价于表达式 100m,可以看作 “100 millicpu”。有些人说成是“一百毫 cpu”,其实说的是同样的事情。具有小数点(如 0.1)的请求由 API 转换为100m,精度不超过 1m。因此,可能会优先选择 100m 的形式。 CPU 总是要用绝对数量,不可以使用相对数量;0.1 的 CPU 在单核、双核、48核的机器中的意义是一样的。 内存的含义 内存的限制和请求以字节为单位。您可以使用以下后缀之一作为平均整数或定点整数表示内存:E,P,T,G,M,K。您还可以使用两个字母的等效的幂数:Ei,Pi,Ti ,Gi,Mi,Ki。例如,以下代表大致相同的值: 128974848, 129e6, 129M, 123Mi 下面是个例子。 以下 Pod 有两个容器。每个容器的请求为 0.25 cpu 和 64MiB(226 字节)内存,每个容器的限制为 0.5 cpu 和 128MiB 内存。您可以说该 Pod 请求 0.5 cpu 和 128 MiB 的内存,限制为 1 cpu 和 256MiB 的内存。 apiVersion: v1 kind: Pod metadata: name: frontend spec: containers: - name: db image: mysql resources: requests: memory: \"64Mi\" cpu: \"250m\" limits: memory: \"128Mi\" cpu: \"500m\" - name: wp image: wordpress resources: requests: memory: \"64Mi\" cpu: \"250m\" limits: memory: \"128Mi\" cpu: \"500m\" 具有资源请求的 Pod 如何调度 当您创建一个 Pod 时,Kubernetes 调度程序将为 Pod 选择一个节点。每个节点具有每种资源类型的最大容量:可为 Pod 提供的 CPU 和内存量。调度程序确保对于每种资源类型,调度的容器的资源请求的总和小于节点的容量。请注意,尽管节点上的实际内存或 CPU 资源使用量非常低,但如果容量检查失败,则调度程序仍然拒绝在该节点上放置 Pod。当资源使用量稍后增加时,例如在请求率的每日峰值期间,这可以防止节点上的资源短缺。 具有资源限制的 Pod 如何运行 当 kubelet 启动一个 Pod 的容器时,它会将 CPU 和内存限制传递到容器运行时。 当使用 Docker 时: spec.containers[].resources.requests.cpu 的值将转换成 millicore 值,这是个浮点数,并乘以1024,这个数字中的较大者或2用作 docker run 命令中的 --cpu-shares 标志的值。 spec.containers[].resources.limits.cpu 被转换成 millicore 值。被乘以 100000 然后 除以 1000。这个数字用作 docker run 命令中的 --cpu-quota 标志的值。[--cpu-quota ] 标志被设置成了 100000,表示测量配额使用的默认100ms 周期。如果 [--cpu-cfs-quota] 标志设置为 true,则 kubelet 会强制执行 cpu 限制。从 Kubernetes 1.2 版本起,此标志默认为 true。 spec.containers[].resources.limits.memory 被转换为整型,作为 docker run 命令中的 --memory 标志的值。 如果容器超过其内存限制,则可能会被终止。如果可重新启动,则与所有其他类型的运行时故障一样,kubelet 将重新启动它。 如果一个容器超过其内存请求,那么当节点内存不足时,它的 Pod 可能被逐出。 容器可能被允许也可能不被允许超过其 CPU 限制时间。但是,由于 CPU 使用率过高,不会被杀死。 要确定容器是否由于资源限制而无法安排或被杀死,请参阅疑难解答]部分。 监控计算资源使用 Pod 的资源使用情况被报告为 Pod 状态的一部分。 如果为集群配置了可选监控,则可以从监控系统检索 Pod 资源的使用情况。 疑难解答 我的 Pod 处于 pending 状态且事件信息显示 failedScheduling 如果调度器找不到任何该 Pod 可以匹配的节点,则该 Pod 将保持不可调度状态,直到找到一个可以被调度到的位置。每当调度器找不到 Pod 可以调度的地方时,会产生一个事件,如下所示: $ kubectl describe pod frontend | grep -A 3 Events Events: FirstSeen LastSeen Count From Subobject PathReason Message 36s 5s 6 {scheduler } FailedScheduling Failed for reason PodExceedsFreeCPU and possibly others 在上述示例中,由于节点上的 CPU 资源不足,名为 “frontend” 的 Pod 将无法调度。由于内存不足(PodExceedsFreeMemory),类似的错误消息也可能会导致失败。一般来说,如果有这种类型的消息而处于 pending 状态,您可以尝试如下几件事情: $ kubectl describe nodes e2e-test-minion-group-4lw4 Name: e2e-test-minion-group-4lw4 [ ... lines removed for clarity ...] Capacity: alpha.kubernetes.io/nvidia-gpu: 0 cpu: 2 memory: 7679792Ki pods: 110 Allocatable: alpha.kubernetes.io/nvidia-gpu: 0 cpu: 1800m memory: 7474992Ki pods: 110 [ ... lines removed for clarity ...] Non-terminated Pods: (5 in total) Namespace Name CPU Requests CPU Limits Memory Requests Memory Limits --------- ---- ------------ ---------- --------------- ------------- kube-system fluentd-gcp-v1.38-28bv1 100m (5%) 0 (0%) 200Mi (2%) 200Mi (2%) kube-system kube-dns-3297075139-61lj3 260m (13%) 0 (0%) 100Mi (1%) 170Mi (2%) kube-system kube-proxy-e2e-test-... 100m (5%) 0 (0%) 0 (0%) 0 (0%) kube-system monitoring-influxdb-grafana-v4-z1m12 200m (10%) 200m (10%) 600Mi (8%) 600Mi (8%) kube-system node-problem-detector-v0.1-fj7m3 20m (1%) 200m (10%) 20Mi (0%) 100Mi (1%) Allocated resources: (Total limits may be over 100 percent, i.e., overcommitted.) CPU Requests CPU Limits Memory Requests Memory Limits ------------ ---------- --------------- ------------- 680m (34%) 400m (20%) 920Mi (12%) 1070Mi (14%) 我的容器被终结了 您的容器可能因为资源枯竭而被终结了。要查看容器是否因为遇到资源限制而被杀死,请在相关的 Pod 上调用 kubectl describe pod: [12:54:41] $ kubectl describe pod simmemleak-hra99 Name: simmemleak-hra99 Namespace: default Image(s): saadali/simmemleak Node: kubernetes-node-tf0f/10.240.216.66 Labels: name=simmemleak Status: Running Reason: Message: IP: 10.244.2.75 Replication Controllers: simmemleak (1/1 replicas created) Containers: simmemleak: Image: saadali/simmemleak Limits: cpu: 100m memory: 50Mi State: Running Started: Tue, 07 Jul 2015 12:54:41 -0700 Last Termination State: Terminated Exit Code: 1 Started: Fri, 07 Jul 2015 12:54:30 -0700 Finished: Fri, 07 Jul 2015 12:54:33 -0700 Ready: False Restart Count: 5 Conditions: Type Status Ready False Events: FirstSeen LastSeen Count From SubobjectPath Reason Message Tue, 07 Jul 2015 12:53:51 -0700 Tue, 07 Jul 2015 12:53:51 -0700 1 {scheduler } scheduled Successfully assigned simmemleak-hra99 to kubernetes-node-tf0f Tue, 07 Jul 2015 12:53:51 -0700 Tue, 07 Jul 2015 12:53:51 -0700 1 {kubelet kubernetes-node-tf0f} implicitly required container POD pulled Pod container image \"gcr.io/google_containers/pause:0.8.0\" already present on machine Tue, 07 Jul 2015 12:53:51 -0700 Tue, 07 Jul 2015 12:53:51 -0700 1 {kubelet kubernetes-node-tf0f} implicitly required container POD created Created with docker id 6a41280f516d Tue, 07 Jul 2015 12:53:51 -0700 Tue, 07 Jul 2015 12:53:51 -0700 1 {kubelet kubernetes-node-tf0f} implicitly required container POD started Started with docker id 6a41280f516d Tue, 07 Jul 2015 12:53:51 -0700 Tue, 07 Jul 2015 12:53:51 -0700 1 {kubelet kubernetes-node-tf0f} spec.containers{simmemleak} created Created with docker id 87348f12526a 在上面的例子中,Restart Count: 5 意味着 Pod 中的 simmemleak 容器被终止并重启了五次。 您可以使用 kubectl get pod 命令加上 -o go-template=... 选项来获取之前终止容器的状态。 [13:59:01] $ kubectl get pod -o go-template='{{range.status.containerStatuses}}{{\"Container Name: \"}}{{.name}}{{\"\\r\\nLastState: \"}}{{.lastState}}{{end}}' simmemleak-60xbc Container Name: simmemleak LastState: map[terminated:map[exitCode:137 reason:OOM Killed startedAt:2015-07-07T20:58:43Z finishedAt:2015-07-07T20:58:43Z containerID:docker://0e4095bba1feccdfe7ef9fb6ebffe972b4b14285d5acdec6f0d3ae8a22fad8b2]] 您可以看到容器因为 reason:OOM killed 被终止,OOM 表示 Out Of Memory。 不透明整型资源(Alpha功能) Kubernetes 1.5 版本中引入不透明整型资源。不透明的整型资源允许集群运维人员发布新的节点级资源,否则系统将不了解这些资源。 用户可以在 Pod 的 spec 中消费这些资源,就像 CPU 和内存一样。调度器负责资源计量,以便在不超过可用量的同时分配给 Pod。 注意: 不透明整型资源在 kubernetes 1.5 中还是 Alpha 版本。只实现了资源计量,节点级别的隔离还处于积极的开发阶段。 不透明整型资源是以 pod.alpha.kubernetes.io/opaque-int-resource- 为前缀的资源。API server 将限制这些资源的数量为整数。有效 数量的例子有 3、3000m 和 3Ki。无效数量的例子有 0.5 和 1500m。 申请使用不透明整型资源需要两步。首先,集群运维人员必须在一个或多个节点上通告每个节点不透明的资源。然后,用户必须在 Pod 中请求不透明资源。 要发布新的不透明整型资源,集群运维人员应向 API server 提交 PATCH HTTP请求,以指定集群中节点的status.capacity 的可用数量。在此操作之后,节点的 status.capacity 将包括一个新的资源。 status.allocatable 字段由 kubelet 异步地使用新资源自动更新。请注意,由于调度器在评估 Pod 适应度时使用节点 status.allocatable 值,所以在使用新资源修补节点容量和请求在该节点上调度资源的第一个 pod 之间可能会有短暂的延迟。 示例 这是一个 HTTP 请求,master 节点是 k8s-master,在 k8s-node-1 节点上通告 5 个 “foo” 资源。 PATCH /api/v1/nodes/k8s-node-1/status HTTP/1.1 Accept: application/json Content-Type: application/json-patch+json Host: k8s-master:8080 [ { \"op\": \"add\", \"path\": \"/status/capacity/pod.alpha.kubernetes.io~1opaque-int-resource-foo\", \"value\": \"5\" } ] curl --header \"Content-Type: application/json-patch+json\" \\ --request PATCH \\ --data '[{\"op\": \"add\", \"path\": \"/status/capacity/pod.alpha.kubernetes.io~1opaque-int-resource-foo\", \"value\": \"5\"}]' \\ http://k8s-master:8080/api/v1/nodes/k8s-node-1/status 注意: 在前面的请求中,~1 是 patch 路径中 / 字符的编码。JSON-Patch 中的操作路径值被解释为 JSON-Pointer。更多详细信息请参阅 IETF RFC 6901, section 3。 apiVersion: v1 kind: Pod metadata: name: my-pod spec: containers: - name: my-container image: myimage resources: requests: cpu: 2 pod.alpha.kubernetes.io/opaque-int-resource-foo: 1 计划改进 在 kubernetes 1.5 版本中仅允许在容器上指定资源量。计划改进对所有容器在 Pod 中共享资源的计量,如 emptyDir volume。 在 kubernetes 1.5 版本中仅支持容器对 CPU 和内存的申请和限制。计划增加新的资源类型,包括节点磁盘空间资源和一个可支持自定义资源类型的框架。 Kubernetes 通过支持通过多级别的 服务质量 来支持资源的过度使用。 在 kubernetes 1.5 版本中,一个 CPU 单位在不同的云提供商和同一云提供商的不同机器类型中的意味都不同。例如,在 AWS 上,节点的容量报告为 ECU,而在 GCE 中报告为逻辑内核。我们计划修改 cpu 资源的定义,以便在不同的提供商和平台之间保持一致。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/federation.html":{"url":"practice/federation.html","title":"集群联邦","keywords":"","body":"集群联邦 Kubernetes 从 1.8 版本起就声称单集群最多可支持 5000 个节点和 15 万个 Pod,我相信很少有公司会部署如此庞大的一个单集群,总有很多情况下因为各种各样的原因我们可能会部署多个集群,但是有时候有想将他们统一起来管理,这时候就需要用到集群联邦(Federation)。 为什么要使用 federation Federation 使管理多个集群变得简单。它通过提供两个主要构建模块来实现: 跨集群同步资源:Federation 提供了在多个集群中保持资源同步的能力。例如,可以保证同一个 deployment 在多个集群中存在。 跨集群服务发现:Federation 提供了自动配置 DNS 服务以及在所有集群后端上进行负载均衡的能力。例如,可以提供一个全局 VIP 或者 DNS 记录,通过它可以访问多个集群后端。 Federation 还可以提供一些其它用例: 高可用:通过在集群间分布负载并自动配置 DNS 服务和负载均衡,federation 最大限度地减少集群故障的影响。 避免厂商锁定:通过更简单的跨集群应用迁移方式,federation 可以防止集群厂商锁定。 Federation 对于单个集群没有用处。基于下面这些原因你可能会需要多个集群: 低延迟:通过在多个区域部署集群可以最大限度减少区域近端用户的延迟。 故障隔离:拥有多个小集群可能比单个大集群更利于故障隔离(例如:在云服务提供商的不同可用区中的多个集群)。 可伸缩性:单个集群有可伸缩性限制(对于大多数用户这不是典型场景。更多细节请参考 Kubernetes 弹性伸缩与性能目标)。 混合云:你可以在不同的云服务提供商或本地数据中心中拥有多个集群。 警告 虽然 federation 有很多吸引人的使用案例,但也有一些注意事项: 增加网络带宽和成本:federation 控制平面监控所有集群以确保当前状态符合预期。如果集群在云服务提供商的不同区域或者不同的云服务提供商上运行时,这将导致明显的网络成本增加。 减少跨集群隔离:federation 控制平面中的 bug 可能影响所有集群。通过在 federation 中实现最少的逻辑可以缓解这种情况。只要有可能,它就将尽力把工作委托给 kubernetes 集群中的控制平面。这种设计和实现在安全性及避免多集群停止运行上也是错误的。 成熟度:federation 项目相对比较新,还不是很成熟。并不是所有资源都可用,许多仍然处于 alpha 状态。 Issue 88 列举了团队目前正忙于解决的与系统相关的已知问题。 混合云能力 Kubernetes 集群 federation 可以包含运行在不同云服务提供商(例如 Google Cloud、AWS)及本地(例如在 OpenStack 上)的集群。你只需要按需在适合的云服务提供商和 / 或地点上简单的创建集群,然后向 Federation API Server 注册每个集群的 API endpoint 和凭据即可。 此后,你的 API 资源就可以跨越不同的集群和云服务提供商。 单个集群范围 在诸如 Google Compute Engine 或者 Amazon Web Services 等 IaaS 服务提供商中,虚拟机存在于 区域(Zone) 或 可用区(Availability Zone) 上。我们建议 Kubernetes 集群中的所有虚拟机应该位于相同的可用区,因为: 与拥有单个全局 Kubernetes 集群相比,单点故障更少。 与跨可用区集群相比,推测单区域集群的可用性属性更容易。 当 Kubernetes 开发人员设计系统时(例如对延迟,带宽或相关故障进行假设),它们假设所有的机器都在一个单一的数据中心,或以其它方式紧密连接。 在每个可用区域同时拥有多个集群也是可以的,但总体而言,我们认为少一点更好。 选择较少集群的理由是: 某些情况下,在一个集群中拥有更多的节点可以改进 Pod 的装箱打包(较少资源碎片)。 减少运维开销(尽管随着运维工具和流程的成熟,优势已经减少)。 减少每个集群固定资源成本的开销,例如 apiserver 虚拟机(但对于大中型集群的整体集群成本来说百分比很小)。 拥有多个集群的原因包括: 严格的安全策略要求将一类工作与另一类工作隔离开来(但是,请参见下面的分区集群(Partitioning Clusters))。 对新的 Kubernetes 发行版或其它集群软件进行灰度测试。 选择正确的集群数量 Kubernetes 集群数量的选择可能是一个相对静态的选择,只是偶尔重新设置。相比之下,依据负载情况和增长,集群的节点数量和 service 的 pod 数量可能会经常变化。 要选择集群的数量,首先要确定使用哪些区域,以便为所有终端用户提供足够低的延迟,以在 Kubernetes 上运行服务,如果你使用内容分发网络(Content Distribution Network,CDN),则 CDN 托管内容的时延要求不需要考虑。法律问题也可能影响到这一点。例如,拥有全球客户群的公司可能会决定在美国、欧盟、亚太和南亚地区拥有集群。我们将选择的区域数量称为 R。 其次,决定在整体仍然可用的前提下,可以同时有多少集群不可用。将不可用集群的数量称为 U。如果你不能确定,那么 1 是一个不错的选择。 如果在集群故障的情形下允许负载均衡将流量引导到任何区域,则至少需要有比 R 或 U + 1 数量更大的集群。如果不行的话(例如希望在集群发生故障时对所有用户确保低延迟),那么你需要有数量为 R * (U + 1) 的集群(R 个区域,每个中有 U + 1 个集群)。无论如何,请尝试将每个集群放在不同的区域中。 最后,如果你的任何集群需要比 Kubernetes 集群最大建议节点数更多的节点,那么你可能需要更多的集群。 Kubernetes v1.3 支持最多 1000 个节点的集群。 Kubernetes v1.8 支持最多 5000 个节点的集群。 注意:Federation V1 版本已经归档不再维护和更新,且官方也不再推荐继续使用。如果需要了解更多的 Federation 资料,请参考:Kubernetes Federation v2。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/storage.html":{"url":"practice/storage.html","title":"存储管理","keywords":"","body":"存储管理 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/glusterfs.html":{"url":"practice/glusterfs.html","title":"GlusterFS","keywords":"","body":"GlusterFS GlusterFS是Scale-Out存储解决方案Gluster的核心,它是一个开源的分布式文件系统,具有强大的横向扩展能力,通过扩展能够支持数PB存储容量和处理数千客户端。GlusterFS借助TCP/IP或InfiniBand RDMA网络将物理分布的存储资源聚集在一起,使用单一全局命名空间来管理数据。GlusterFS基于可堆叠的用户空间设计,可为各种不同的数据负载提供优异的性能。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/using-glusterfs-for-persistent-storage.html":{"url":"practice/using-glusterfs-for-persistent-storage.html","title":"使用 GlusterFS 做持久化存储","keywords":"","body":"使用glusterfs做持久化存储 我们复用kubernetes的三台主机做glusterfs存储。 以下步骤参考自:https://www.xf80.com/2017/04/21/kubernetes-glusterfs/(该网站已无法访问) 安装glusterfs 我们直接在物理机上使用yum安装,如果你选择在kubernetes上安装,请参考:https://github.com/gluster/gluster-kubernetes/blob/master/docs/setup-guide.md # 先安装 gluster 源 $ yum install centos-release-gluster -y # 安装 glusterfs 组件 $ yum install -y glusterfs glusterfs-server glusterfs-fuse glusterfs-rdma glusterfs-geo-replication glusterfs-devel ## 创建 glusterfs 目录 $ mkdir /opt/glusterd ## 修改 glusterd 目录 $ sed -i 's/var\\/lib/opt/g' /etc/glusterfs/glusterd.vol # 启动 glusterfs $ systemctl start glusterd.service # 设置开机启动 $ systemctl enable glusterd.service #查看状态 $ systemctl status glusterd.service 配置 glusterfs # 配置 hosts $ vi /etc/hosts 172.20.0.113 test-001.jimmysong.io 172.20.0.114 test-002.jimmysong.io 172.20.0.115 test-003.jimmysong.io # 开放端口 $ iptables -I INPUT -p tcp --dport 24007 -j ACCEPT # 创建存储目录 $ mkdir /opt/gfs_data # 添加节点到 集群 # 执行操作的本机不需要probe 本机 [root@test-001 ~]# gluster peer probe test-002.jimmysong.io gluster peer probe test-003.jimmysong.io # 查看集群状态 $ gluster peer status Number of Peers: 2 Hostname: test-002.jimmysong.io Uuid: f25546cc-2011-457d-ba24-342554b51317 State: Peer in Cluster (Connected) Hostname: test-003.jimmysong.io Uuid: 42b6cad1-aa01-46d0-bbba-f7ec6821d66d State: Peer in Cluster (Connected) 配置 volume GlusterFS中的volume的模式有很多中,包括以下几种: 分布卷(默认模式):即DHT, 也叫 分布卷: 将文件以hash算法随机分布到 一台服务器节点中存储。 复制模式:即AFR, 创建volume 时带 replica x 数量: 将文件复制到 replica x 个节点中。 条带模式:即Striped, 创建volume 时带 stripe x 数量: 将文件切割成数据块,分别存储到 stripe x 个节点中 ( 类似raid 0 )。 分布式条带模式:最少需要4台服务器才能创建。 创建volume 时 stripe 2 server = 4 个节点: 是DHT 与 Striped 的组合型。 分布式复制模式:最少需要4台服务器才能创建。 创建volume 时 replica 2 server = 4 个节点:是DHT 与 AFR 的组合型。 条带复制卷模式:最少需要4台服务器才能创建。 创建volume 时 stripe 2 replica 2 server = 4 个节点: 是 Striped 与 AFR 的组合型。 三种模式混合: 至少需要8台 服务器才能创建。 stripe 2 replica 2 , 每4个节点 组成一个 组。 这几种模式的示例图参考:CentOS7安装GlusterFS。 因为我们只有三台主机,在此我们使用默认的分布卷模式。请勿在生产环境上使用该模式,容易导致数据丢失。 # 创建分布卷 $ gluster volume create k8s-volume transport tcp test-001.jimmysong.io:/opt/gfs_data test-002.jimmysong.io:/opt/gfs_data test-003.jimmysong.io:/opt/gfs_data force # 查看volume状态 $ gluster volume info Volume Name: k8s-volume Type: Distribute Volume ID: 9a3b0710-4565-4eb7-abae-1d5c8ed625ac Status: Created Snapshot Count: 0 Number of Bricks: 3 Transport-type: tcp Bricks: Brick1: test-001.jimmysong.io:/opt/gfs_data Brick2: test-002.jimmysong.io:/opt/gfs_data Brick3: test-003.jimmysong.io:/opt/gfs_data Options Reconfigured: transport.address-family: inet nfs.disable: on # 启动 分布卷 $ gluster volume start k8s-volume Glusterfs调优 # 开启 指定 volume 的配额 $ gluster volume quota k8s-volume enable # 限制 指定 volume 的配额 $ gluster volume quota k8s-volume limit-usage / 1TB # 设置 cache 大小, 默认32MB $ gluster volume set k8s-volume performance.cache-size 4GB # 设置 io 线程, 太大会导致进程崩溃 $ gluster volume set k8s-volume performance.io-thread-count 16 # 设置 网络检测时间, 默认42s $ gluster volume set k8s-volume network.ping-timeout 10 # 设置 写缓冲区的大小, 默认1M $ gluster volume set k8s-volume performance.write-behind-window-size 1024MB Kubernetes中配置glusterfs 以下用到的所有yaml和json配置文件可以在../manifests/glusterfs中找到。注意替换其中私有镜像地址为你自己的镜像地址。 kubernetes安装客户端 # 在所有 k8s node 中安装 glusterfs 客户端 $ yum install -y glusterfs glusterfs-fuse # 配置 hosts $ vi /etc/hosts 172.20.0.113 test-001.jimmysong.io 172.20.0.114 test-002.jimmysong.io 172.20.0.115 test-003.jimmysong.io 因为我们glusterfs跟kubernetes集群复用主机,因为此这一步可以省去。 配置 endpoints $ curl -O https://raw.githubusercontent.com/kubernetes/examples/master/volumes/glusterfs/glusterfs-endpoints.json # 修改 endpoints.json ,配置 glusters 集群节点ip # 每一个 addresses 为一个 ip 组 { \"addresses\": [ { \"ip\": \"172.22.0.113\" } ], \"ports\": [ { \"port\": 1990 } ] }, # 导入 glusterfs-endpoints.json $ kubectl apply -f glusterfs-endpoints.json # 查看 endpoints 信息 $ kubectl get ep 配置 service $ curl -O https://raw.githubusercontent.com/kubernetes/examples/master/volumes/glusterfs/glusterfs-service.json # service.json 里面查找的是 enpointes 的名称与端口,端口默认配置为 1,我改成了1990 # 导入 glusterfs-service.json $ kubectl apply -f glusterfs-service.json # 查看 service 信息 $ kubectl get svc 创建测试 pod $ curl -O https://raw.githubusercontent.com/kubernetes/examples/master/volumes/glusterfs/glusterfs-pod.json # 编辑 glusterfs-pod.json # 修改 volumes 下的 path 为上面创建的 volume 名称 \"path\": \"k8s-volume\" # 导入 glusterfs-pod.json $ kubectl apply -f glusterfs-pod.json # 查看 pods 状态 $ kubectl get pods NAME READY STATUS RESTARTS AGE glusterfs 1/1 Running 0 1m # 查看 pods 所在 node $ kubectl describe pods/glusterfs # 登陆 node 物理机,使用 df 可查看挂载目录 $ df -h 172.20.0.113:k8s-volume 1073741824 0 1073741824 0% 172.20.0.113:k8s-volume 1.0T 0 1.0T 0% /var/lib/kubelet/pods/3de9fc69-30b7-11e7-bfbd-8af1e3a7c5bd/volumes/kubernetes.io~glusterfs/glusterfsvol 配置PersistentVolume PersistentVolume(PV)和 PersistentVolumeClaim(PVC)是kubernetes提供的两种API资源,用于抽象存储细节。管理员关注于如何通过pv提供存储功能而无需关注用户如何使用,同样的用户只需要挂载PVC到容器中而不需要关注存储卷采用何种技术实现。 PVC和PV的关系跟pod和node关系类似,前者消耗后者的资源。PVC可以向PV申请指定大小的存储资源并设置访问模式。 PV属性 storage容量 读写属性:分别为ReadWriteOnce:单个节点读写; ReadOnlyMany:多节点只读 ; ReadWriteMany:多节点读写 $ cat glusterfs-pv.yaml apiVersion: v1 kind: PersistentVolume metadata: name: gluster-dev-volume spec: capacity: storage: 8Gi accessModes: - ReadWriteMany glusterfs: endpoints: \"glusterfs-cluster\" path: \"k8s-volume\" readOnly: false # 导入PV $ kubectl apply -f glusterfs-pv.yaml # 查看 pv $ kubectl get pv NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM STORAGECLASS REASON AGE gluster-dev-volume 8Gi RWX Retain Available 3s PVC属性 访问属性与PV相同 容量:向PV申请的容量 配置PVC $ cat glusterfs-pvc.yaml kind: PersistentVolumeClaim apiVersion: v1 metadata: name: glusterfs-nginx spec: accessModes: - ReadWriteMany resources: requests: storage: 8Gi # 导入 pvc $ kubectl apply -f glusterfs-pvc.yaml # 查看 pvc $ kubectl get pv NAME STATUS VOLUME CAPACITY ACCESSMODES STORAGECLASS AGE glusterfs-nginx Bound gluster-dev-volume 8Gi RWX 4s 创建 nginx deployment 挂载 volume $ vi nginx-deployment.yaml apiVersion: extensions/v1beta1 kind: Deployment metadata: name: nginx-dm spec: replicas: 2 template: metadata: labels: name: nginx spec: containers: - name: nginx image: nginx:alpine imagePullPolicy: IfNotPresent ports: - containerPort: 80 volumeMounts: - name: gluster-dev-volume mountPath: \"/usr/share/nginx/html\" volumes: - name: gluster-dev-volume persistentVolumeClaim: claimName: glusterfs-nginx # 导入 deployment $ kubectl apply -f nginx-deployment.yaml # 查看 deployment $ kubectl get pods |grep nginx-dm nginx-dm-3698525684-g0mvt 1/1 Running 0 6s nginx-dm-3698525684-hbzq1 1/1 Running 0 6s # 查看 挂载 $ kubectl exec -it nginx-dm-3698525684-g0mvt -- df -h|grep k8s-volume 172.20.0.113:k8s-volume 1.0T 0 1.0T 0% /usr/share/nginx/html # 创建文件 测试 $ kubectl exec -it nginx-dm-3698525684-g0mvt -- touch /usr/share/nginx/html/index.html $ kubectl exec -it nginx-dm-3698525684-g0mvt -- ls -lt /usr/share/nginx/html/index.html -rw-r--r-- 1 root root 0 May 4 11:36 /usr/share/nginx/html/index.html # 验证 glusterfs # 因为我们使用分布卷,所以可以看到某个节点中有文件 [root@test-001 ~] ls /opt/gfs_data/ [root@test-002 ~] ls /opt/gfs_data/ index.html [root@test-003 ~] ls /opt/gfs_data/ 参考 CentOS 7 安装 GlusterFS 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/using-heketi-gluster-for-persistent-storage.html":{"url":"practice/using-heketi-gluster-for-persistent-storage.html","title":"使用 Heketi 作为 Kubernetes 的持久存储 GlusterFS 的 external provisioner","keywords":"","body":"使用Heketi作为kubernetes的持久存储GlusterFS的external provisioner(Kubernetes集成GlusterFS集群和Heketi) 本文翻译自heketi的github网址官方文档(大部分为google翻译,少许人工调整,括号内为个人注解)其中注意事项部分为其他网上查询所得。 本文的整个过程将在kubernetes集群上的3个或以上节点安装glusterfs的服务端集群(DaemonSet方式),并将heketi以deployment的方式部署到kubernetes集群。在我的示例部分有StorageClass和PVC的样例。本文介绍的Heketi,GlusterFS这2个组件与kubernetes集成只适合用于测试验证环境,并不适合生产环境,请注意这一点。 Heketi是一个具有resetful接口的glusterfs管理程序,作为kubernetes的Storage存储的external provisioner。 “Heketi提供了一个RESTful管理界面,可用于管理GlusterFS卷的生命周期。借助Heketi,像OpenStack Manila,Kubernetes和OpenShift这样的云服务可以动态地配置GlusterFS卷和任何支持的持久性类型。Heketi将自动确定整个集群的brick位置,确保将brick及其副本放置在不同的故障域中。Heketi还支持任意数量的GlusterFS集群,允许云服务提供网络文件存储,而不受限于单个GlusterFS集群。” 注意事项 安装Glusterfs客户端:每个kubernetes集群的节点需要安装gulsterfs的客户端,如ubuntu系统的apt-get install glusterfs-client。 加载内核模块:每个kubernetes集群的节点运行modprobe dm_thin_pool,加载内核模块。 至少三个slave节点:至少需要3个kubernetes slave节点用来部署glusterfs集群,并且这3个slave节点每个节点需要至少一个空余的磁盘。 概述 本指南支持在Kubernetes集群中集成,部署和管理GlusterFS 容器化的存储节点。这使得Kubernetes管理员可以为其用户提供可靠的共享存储。 跟这个话题相关的另一个重要资源是gluster-kubernetes 项目。它专注于在Kubernetes集群中部署GlusterFS,并提供简化的工具来完成此任务。它包含一个安装指南 setup guide。它还包括一个样例 Hello World。其中包含一个使用动态配置(dynamically-provisioned)的GlusterFS卷进行存储的Web server pod示例。对于那些想要测试或学习更多关于此主题的人,请按照主README 的快速入门说明 进行操作。 本指南旨在展示Heketi在Kubernetes环境中管理Gluster的最简单示例。这是为了强调这种配置的主要组成组件,因此并不适合生产环境。 基础设施要求 正在运行的Kubernetes集群,至少有三个Kubernetes工作节点,每个节点至少有一个可用的裸块设备(如EBS卷或本地磁盘). 用于运行GlusterFS Pod的三个Kubernetes节点必须为GlusterFS通信打开相应的端口(如果开启了防火墙的情况下,没开防火墙就不需要这些操作)。在每个节点上运行以下命令。iptables -N heketi iptables -A heketi -p tcp -m state --state NEW -m tcp --dport 24007 -j ACCEPT iptables -A heketi -p tcp -m state --state NEW -m tcp --dport 24008 -j ACCEPT iptables -A heketi -p tcp -m state --state NEW -m tcp --dport 2222 -j ACCEPT iptables -A heketi -p tcp -m state --state NEW -m multiport --dports 49152:49251 -j ACCEPT service iptables save 客户端安装 Heketi提供了一个CLI客户端,为用户提供了一种管理Kubernetes中GlusterFS的部署和配置的方法。 在客户端机器上下载并安装Download and install the heketi-cli。 Glusterfs和Heketi在Kubernetes集群中的部署过程 以下所有文件都位于下方extras/kubernetes (git clone https://github.com/heketi/heketi.git)。 部署 GlusterFS DaemonSet $ kubectl create -f glusterfs-daemonset.json 通过运行如下命令获取节点名称: $ kubectl get nodes 通过设置storagenode=glusterfs节点上的标签,将gluster容器部署到指定节点上。 $ kubectl label node storagenode=glusterfs 根据需要重复打标签的步骤。验证Pod在节点上运行至少应运行3个Pod(因此至少需要给3个节点打标签)。 $ kubectl get pods 接下来,我们将为Heketi创建一个服务帐户(service-account): $ kubectl create -f heketi-service-account.json 我们现在必须给该服务帐户的授权绑定相应的权限来控制gluster的pod。我们通过为我们新创建的服务帐户创建群集角色绑定(cluster role binding)来完成此操作。 $ kubectl create clusterrolebinding heketi-gluster-admin --clusterrole=edit --serviceaccount=default:heketi-service-account 现在我们需要创建一个Kubernetes secret来保存我们Heketi实例的配置。必须将配置文件的执行程序设置为 kubernetes才能让Heketi server控制gluster pod(配置文件的默认配置)。除此这些,可以尝试配置的其他选项。 $ kubectl create secret generic heketi-config-secret --from-file=./heketi.json 接下来,我们需要部署一个初始(bootstrap)Pod和一个服务来访问该Pod。在你用git克隆的repo中,会有一个heketi-bootstrap.json文件。 提交文件并验证一切正常运行,如下所示: # kubectl create -f heketi-bootstrap.json service \"deploy-heketi\" created deployment \"deploy-heketi\" created # kubectl get pods NAME READY STATUS RESTARTS AGE deploy-heketi-1211581626-2jotm 1/1 Running 0 35m glusterfs-ip-172-20-0-217.ec2.internal-1217067810-4gsvx 1/1 Running 0 1h glusterfs-ip-172-20-0-218.ec2.internal-2001140516-i9dw9 1/1 Running 0 1h glusterfs-ip-172-20-0-219.ec2.internal-2785213222-q3hba 1/1 Running 0 1h 当Bootstrap heketi服务正在运行,我们配置端口转发,以便我们可以使用Heketi CLI与服务进行通信。使用heketi pod的名称,运行下面的命令: kubectl port-forward deploy-heketi-1211581626-2jotm :8080 如果在运行命令的系统上本地端口8080是空闲的,则可以运行port-forward命令,以便绑定到8080以方便使用(2个命令二选一即可,我选择第二个): kubectl port-forward deploy-heketi-1211581626-2jotm 8080:8080 现在通过对Heketi服务运行示例查询来验证端口转发是否正常。该命令应该已经打印了将从其转发的本地端口。将其合并到URL中以测试服务,如下所示: curl http://localhost:8080/hello Handling connection for 8080 Hello from heketi 最后,为Heketi CLI客户端设置一个环境变量,以便它知道Heketi服务器的地址。 export HEKETI_CLI_SERVER=http://localhost:8080 接下来,我们将向Heketi提供有关要管理的GlusterFS集群的信息。通过拓扑文件提供这些信息。克隆的repo中有一个示例拓扑文件,名为topology-sample.json。拓扑指定运行GlusterFS容器的Kubernetes节点以及每个节点的相应原始块设备。 确保hostnames/manage指向如下所示的确切名称kubectl get nodes得到的主机名(如ubuntu-1),并且hostnames/storage是存储网络的IP地址(对应ubuntu-1的ip地址)。 IMPORTANT: 重要提示,目前,必须使用与服务器版本匹配的Heketi-cli版本加载拓扑文件。另外,Heketi pod 带有可以通过 kubectl exec ...访问的heketi-cli副本。 修改拓扑文件以反映您所做的选择,然后如下所示部署它(修改主机名,IP,block 设备的名称 如xvdg): heketi-client/bin/heketi-cli topology load --json=topology-sample.json Handling connection for 57598 Found node ip-172-20-0-217.ec2.internal on cluster e6c063ba398f8e9c88a6ed720dc07dd2 Adding device /dev/xvdg ... OK Found node ip-172-20-0-218.ec2.internal on cluster e6c063ba398f8e9c88a6ed720dc07dd2 Adding device /dev/xvdg ... OK Found node ip-172-20-0-219.ec2.internal on cluster e6c063ba398f8e9c88a6ed720dc07dd2 Adding device /dev/xvdg ... OK 接下来,我们将使用heketi为其存储其数据库提供一个卷(不要怀疑,就是使用这个命令,openshift和kubernetes通用,此命令生成heketi-storage.json文件): # heketi-client/bin/heketi-cli setup-openshift-heketi-storage # kubectl create -f heketi-storage.json Pitfall: 注意,如果在运行setup-openshift-heketi-storage子命令时heketi-cli报告“无空间”错误,则可能无意中运行topology load命令的时候服务端和heketi-cli的版本不匹配造成的。停止正在运行的heketi pod(kubectl scale deployment deploy-heketi --replicas=0),手动删除存储块设备中的任何签名,然后继续运行heketi pod(kubectl scale deployment deploy-heketi --replicas=1)。然后用匹配版本的heketi-cli重新加载拓扑,然后重试该步骤。 等到作业完成后,删除bootstrap Heketi实例相关的组件: # kubectl delete all,service,jobs,deployment,secret --selector=\"deploy-heketi\" 创建长期使用的Heketi实例(存储持久化的): # kubectl create -f heketi-deployment.json service \"heketi\" created deployment \"heketi\" created 这样做了以后,heketi db将使用GlusterFS卷,并且每当heketi pod重新启动时都不会重置(数据不会丢失,存储持久化)。 使用诸如heketi-cli cluster list和的命令heketi-cli volume list 来确认先前建立的集群存在,并且heketi可以列出在bootstrap阶段创建的db存储卷。 使用样例 有两种方法来调配存储。常用的方法是设置一个StorageClass,让Kubernetes为提交的PersistentVolumeClaim自动配置存储。或者,可以通过Kubernetes手动创建和管理卷(PVs),或直接使用heketi-cli中的卷。 参考gluster-kubernetes hello world example 获取关于 storageClass 的更多信息. 我的示例(非翻译部分内容) topology文件:我的例子(3个节点,ubuntu-1(192.168.5.191),ubuntu-2(192.168.5.192),ubuntu-3(192.168.5.193),每个节点2个磁盘用来做存储(sdb,sdc)) # cat topology-sample.json { \"clusters\": [ { \"nodes\": [ { \"node\": { \"hostnames\": { \"manage\": [ \"ubuntu-1\" ], \"storage\": [ \"192.168.5.191\" ] }, \"zone\": 1 }, \"devices\": [ \"/dev/sdb\", \"/dev/sdc\" ] }, { \"node\": { \"hostnames\": { \"manage\": [ \"ubuntu-2\" ], \"storage\": [ \"192.168.5.192\" ] }, \"zone\": 1 }, \"devices\": [ \"/dev/sdb\", \"/dev/sdc\" ] }, { \"node\": { \"hostnames\": { \"manage\": [ \"ubuntu-3\" ], \"storage\": [ \"192.168.5.193\" ] }, \"zone\": 1 }, \"devices\": [ \"/dev/sdb\", \"/dev/sdc\" ] } ] } ] } 确认glusterfs和heketi的pod运行正常 # kubectl get pod NAME READY STATUS RESTARTS AGE glusterfs-gf5zc 1/1 Running 2 8h glusterfs-ngc55 1/1 Running 2 8h glusterfs-zncjs 1/1 Running 0 2h heketi-5c8ffcc756-x9gnv 1/1 Running 5 7h StorageClass yaml文件示例 # cat storage-class-slow.yaml apiVersion: storage.k8s.io/v1 kind: StorageClass metadata: name: slow #-------------SC的名字 provisioner: kubernetes.io/glusterfs parameters: resturl: \"http://10.103.98.75:8080\" #-------------heketi service的cluster ip 和端口 restuser: \"admin\" #-------------随便填,因为没有启用鉴权模式 gidMin: \"40000\" gidMax: \"50000\" volumetype: \"replicate:3\" #-------------申请的默认为3副本模式 PVC举例 # cat pvc-sample.yaml kind: PersistentVolumeClaim apiVersion: v1 metadata: name: myclaim annotations: volume.beta.kubernetes.io/storage-class: \"slow\" #-------------sc的名字,需要与storageclass的名字一致 spec: accessModes: - ReadWriteOnce resources: requests: storage: 1Gi 查看创建的pvc和pv # kubectl get pvc|grep myclaim NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE myclaim Bound pvc-e98e9117-3ed7-11e8-b61d-08002795cb26 1Gi RWO slow 28s # kubectl get pv|grep myclaim NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE pvc-e98e9117-3ed7-11e8-b61d-08002795cb26 1Gi RWO Delete Bound default/myclaim slow 1m 可以将slow的sc设置为默认,这样平台分配存储的时候可以自动从glusterfs集群分配pv # kubectl patch storageclass slow -p '{\"metadata\": {\"annotations\":{\"storageclass.kubernetes.io/is-default-class\":\"true\"}}}' storageclass.storage.k8s.io \"slow\" patched # kubectl get sc NAME PROVISIONER AGE default fuseim.pri/ifs 1d slow (default) kubernetes.io/glusterfs 6h 容量限额测试 已经通过Helm 部署的一个mysql2 实例,使用存储2G,信息查看如下: # helm list NAME REVISION UPDATED STATUS CHART NAMESPACE mysql2 1 Thu Apr 12 15:27:11 2018 DEPLOYED mysql-0.3.7 default 查看PVC和PV,大小2G,mysql2-mysql # kubectl get pvc NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE mysql2-mysql Bound pvc-ea4ae3e0-3e22-11e8-8bb6-08002795cb26 2Gi RWO slow 19h # kubectl get pv NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE pvc-ea4ae3e0-3e22-11e8-8bb6-08002795cb26 2Gi RWO Delete Bound default/mysql2-mysql slow 19h 查看mysql的pod # kubectl get pod|grep mysql2 mysql2-mysql-56d64f5b77-j2v84 1/1 Running 2 19h 进入mysql所在容器 # kubectl exec -it mysql2-mysql-56d64f5b77-j2v84 /bin/bash 查看挂载路径,查看挂载信息 root@mysql2-mysql-56d64f5b77-j2v84:/#cd /var/lib/mysql root@mysql2-mysql-56d64f5b77-j2v84:/var/lib/mysql# root@mysql2-mysql-56d64f5b77-j2v84:/var/lib/mysql# df -h Filesystem Size Used Avail Use% Mounted on none 48G 9.2G 37G 21% / tmpfs 1.5G 0 1.5G 0% /dev tmpfs 1.5G 0 1.5G 0% /sys/fs/cgroup /dev/mapper/ubuntu--1--vg-root 48G 9.2G 37G 21% /etc/hosts shm 64M 0 64M 0% /dev/shm 192.168.5.191:vol_2c2227ee65b64a0225aa9bce848a9925 2.0G 264M 1.8G 13% /var/lib/mysql tmpfs 1.5G 12K 1.5G 1% /run/secrets/kubernetes.io/serviceaccount tmpfs 1.5G 0 1.5G 0% /sys/firmware 使用dd写入数据,写入一段时间以后,空间满了,会报错(报错信息有bug,不是报空间满了,而是报文件系统只读,应该是glusterfs和docker配合的问题) root@mysql2-mysql-56d64f5b77-j2v84:/var/lib/mysql# dd if=/dev/zero of=test.img bs=8M count=300 dd: error writing 'test.img': Read-only file system dd: closing output file 'test.img': Input/output error 查看写满以后的文件大小 root@mysql2-mysql-56d64f5b77-j2v84:/var/lib/mysql# ls -l total 2024662 -rw-r----- 1 mysql mysql 56 Apr 12 07:27 auto.cnf -rw-r----- 1 mysql mysql 1329 Apr 12 07:27 ib_buffer_pool -rw-r----- 1 mysql mysql 50331648 Apr 12 12:05 ib_logfile0 -rw-r----- 1 mysql mysql 50331648 Apr 12 07:27 ib_logfile1 -rw-r----- 1 mysql mysql 79691776 Apr 12 12:05 ibdata1 -rw-r----- 1 mysql mysql 12582912 Apr 12 12:05 ibtmp1 drwxr-s--- 2 mysql mysql 8192 Apr 12 07:27 mysql drwxr-s--- 2 mysql mysql 8192 Apr 12 07:27 performance_schema drwxr-s--- 2 mysql mysql 8192 Apr 12 07:27 sys -rw-r--r-- 1 root mysql 1880887296 Apr 13 02:47 test.img 查看挂载信息(挂载信息显示bug,应该是glusterfs的bug) root@mysql2-mysql-56d64f5b77-j2v84:/var/lib/mysql# df -h Filesystem Size Used Avail Use% Mounted on none 48G 9.2G 37G 21% / tmpfs 1.5G 0 1.5G 0% /dev tmpfs 1.5G 0 1.5G 0% /sys/fs/cgroup /dev/mapper/ubuntu--1--vg-root 48G 9.2G 37G 21% /etc/hosts shm 64M 0 64M 0% /dev/shm 192.168.5.191:vol_2c2227ee65b64a0225aa9bce848a9925 2.0G -16E 0 100% /var/lib/mysql tmpfs 1.5G 12K 1.5G 1% /run/secrets/kubernetes.io/serviceaccount tmpfs 1.5G 0 1.5G 0% /sys/firmware 查看文件夹大小,为2G # du -h 25M ./mysql 825K ./performance_schema 496K ./sys 2.0G . 如上说明glusterfs的限额作用是起效的,限制在2G的空间大小。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/storage-for-containers-using-glusterfs-with-openshift.html":{"url":"practice/storage-for-containers-using-glusterfs-with-openshift.html","title":"在 OpenShift 中使用 GlusterFS 做持久化存储","keywords":"","body":"在OpenShift中使用GlusterFS做持久化存储 概述 本文由Daniel Messer(Technical Marketing Manager Storage @RedHat)和Keith Tenzer(Solutions Architect @RedHat)共同撰写。 Storage for Containers Overview – Part I Storage for Containers using Gluster – Part II Storage for Containers using Container Native Storage – Part III Storage for Containers using Ceph – Part IV Storage for Containers using NetApp ONTAP NAS – Part V Storage for Containers using NetApp SolidFire – Part VI Gluster作为Container-Ready Storage(CRS) 在本文中,我们将介绍容器存储的首选以及如何部署它。 Kusternet和OpenShift支持GlusterFS已经有一段时间了。 GlusterFS的适用性很好,可用于所有的部署场景:裸机、虚拟机、内部部署和公共云。 在容器中运行GlusterFS的新特性将在本系列后面讨论。 GlusterFS是一个分布式文件系统,内置了原生协议(GlusterFS)和各种其他协议(NFS,SMB,...)。 为了与OpenShift集成,节点将通过FUSE使用原生协议,将GlusterFS卷挂在到节点本身上,然后将它们绑定到目标容器中。 OpenShift / Kubernetes具有实现请求、释放和挂载、卸载GlusterFS卷的原生程序。 CRS概述 在存储方面,根据OpenShift / Kubernetes的要求,还有一个额外的组件管理集群,称为“heketi”。 这实际上是一个用于GlusterFS的REST API,它还提供CLI版本。 在以下步骤中,我们将在3个GlusterFS节点中部署heketi,使用它来部署GlusterFS存储池,将其连接到OpenShift,并使用它来通过PersistentVolumeClaims为容器配置存储。 我们将总共部署4台虚拟机。 一个用于OpenShift(实验室设置),另一个用于GlusterFS。 注意:您的系统应至少需要有四核CPU,16GB RAM和20 GB可用磁盘空间。 部署OpenShift 首先你需要先部署OpenShift。最有效率的方式是直接在虚拟机中部署一个All-in-One环境,部署指南见 the “OpenShift Enterprise 3.4 all-in-one Lab Environment” article.。 确保你的OpenShift虚拟机可以解析外部域名。编辑/etc/dnsmasq.conf文件,增加下面的Google DNS: server=8.8.8.8 重启: # systemctl restart dnsmasq # ping -c1 google.com 部署Gluster GlusterFS至少需要有以下配置的3台虚拟机: RHEL 7.3 2 CPUs 2 GB内存 30 GB磁盘存储给操作系统 10 GB磁盘存储给GlusterFS bricks 修改/etc/hosts文件,定义三台虚拟机的主机名。 例如(主机名可以根据你自己的环境自由调整) # cat /etc/hosts 127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4 ::1 localhost localhost.localdomain localhost6 localhost6.localdomain6 172.16.99.144 ocp-master.lab ocp-master 172.16.128.7 crs-node1.lab crs-node1 172.16.128.8 crs-node2.lab crs-node2 172.16.128.9 crs-node3.lab crs-node3 在3台GlusterFS虚拟机上都执行以下步骤: # subscription-manager repos --disable=\"*\" # subscription-manager repos --enable=rhel-7-server-rpms 如果你已经订阅了GlusterFS那么可以直接使用,开启rh-gluster-3-for-rhel-7-server-rpms的yum源。 如果你没有的话,那么可以通过EPEL使用非官方支持的GlusterFS的社区源。 # yum -y install http://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm # rpm --import http://dl.fedoraproject.org/pub/epel/RPM-GPG-KEY-EPEL-7 在/etc/yum.repos.d/目录下创建glusterfs-3.10.repo文件: [glusterfs-3.10] name=glusterfs-3.10 description=\"GlusterFS 3.10 Community Version\" baseurl=https://buildlogs.centos.org/centos/7/storage/x86_64/gluster-3.10/ gpgcheck=0 enabled=1 验证源已经被激活。 # yum repolist 现在可以开始安装GlusterFS了。 # yum -y install glusterfs-server 需要为GlusterFS peers打开几个基本TCP端口,以便与OpenShift进行通信并提供存储: # firewall-cmd --add-port=24007-24008/tcp --add-port=49152-49664/tcp --add-port=2222/tcp # firewall-cmd --runtime-to-permanent 现在我们可以启动GlusterFS的daemon进程了: # systemctl enable glusterd # systemctl start glusterd 完成。GlusterFS已经启动并正在运行。其他配置将通过heketi完成。 在GlusterFS的一台虚拟机上安装heketi [root@crs-node1 ~]# yum -y install heketi heketi-client 更新EPEL 如果你没有Red Hat Gluster Storage订阅的话,你可以从EPEL中获取heketi。 在撰写本文时,2016年10月那时候还是3.0.0-1.el7版本,它不适用于OpenShift 3.4。 你将需要更新到更新的版本: [root@crs-node1 ~]# yum -y install wget [root@crs-node1 ~]# wget https://github.com/heketi/heketi/releases/download/v4.0.0/heketi-v4.0.0.linux.amd64.tar.gz [root@crs-node1 ~]# tar -xzf heketi-v4.0.0.linux.amd64.tar.gz [root@crs-node1 ~]# systemctl stop heketi [root@crs-node1 ~]# cp heketi/heketi* /usr/bin/ [root@crs-node1 ~]# chown heketi:heketi /usr/bin/heketi* 在/etc/systemd/system/heketi.service中创建v4版本的heketi二进制文件的更新语法文件: [Unit] Description=Heketi Server [Service] Type=simple WorkingDirectory=/var/lib/heketi EnvironmentFile=-/etc/heketi/heketi.json User=heketi ExecStart=/usr/bin/heketi --config=/etc/heketi/heketi.json Restart=on-failure StandardOutput=syslog StandardError=syslog [Install] WantedBy=multi-user.target [root@crs-node1 ~]# systemctl daemon-reload [root@crs-node1 ~]# systemctl start heketi Heketi使用SSH来配置GlusterFS的所有节点。创建SSH密钥对,将公钥拷贝到所有3个节点上(包括你登陆的第一个节点): [root@crs-node1 ~]# ssh-keygen -f /etc/heketi/heketi_key -t rsa -N '' [root@crs-node1 ~]# ssh-copy-id -i /etc/heketi/heketi_key.pub root@crs-node1.lab [root@crs-node1 ~]# ssh-copy-id -i /etc/heketi/heketi_key.pub root@crs-node2.lab [root@crs-node1 ~]# ssh-copy-id -i /etc/heketi/heketi_key.pub root@crs-node3.lab [root@crs-node1 ~]# chown heketi:heketi /etc/heketi/heketi_key* 剩下唯一要做的事情就是配置heketi来使用SSH。 编辑/etc/heketi/heketi.json文件使它看起来像下面这个样子(改变的部分突出显示下划线): { \"_port_comment\":\"Heketi Server Port Number\", \"port\":\"8080\", \"_use_auth\":\"Enable JWT authorization. Please enable for deployment\", \"use_auth\":false, \"_jwt\":\"Private keys for access\", \"jwt\":{ \"_admin\":\"Admin has access to all APIs\", \"admin\":{ \"key\":\"My Secret\" }, \"_user\":\"User only has access to /volumes endpoint\", \"user\":{ \"key\":\"My Secret\" } }, \"_glusterfs_comment\":\"GlusterFS Configuration\", \"glusterfs\":{ \"_executor_comment\":[ \"Execute plugin. Possible choices: mock, ssh\", \"mock: This setting is used for testing and development.\", \" It will not send commands to any node.\", \"ssh: This setting will notify Heketi to ssh to the nodes.\", \" It will need the values in sshexec to be configured.\", \"kubernetes: Communicate with GlusterFS containers over\", \" Kubernetes exec api.\" ], \"executor\":\"ssh\", \"_sshexec_comment\":\"SSH username and private key file information\", \"sshexec\":{ \"keyfile\":\"/etc/heketi/heketi_key\", \"user\":\"root\", \"port\":\"22\", \"fstab\":\"/etc/fstab\" }, \"_kubeexec_comment\":\"Kubernetes configuration\", \"kubeexec\":{ \"host\":\"https://kubernetes.host:8443\", \"cert\":\"/path/to/crt.file\", \"insecure\":false, \"user\":\"kubernetes username\", \"password\":\"password for kubernetes user\", \"namespace\":\"OpenShift project or Kubernetes namespace\", \"fstab\":\"Optional: Specify fstab file on node. Default is /etc/fstab\" }, \"_db_comment\":\"Database file name\", \"db\":\"/var/lib/heketi/heketi.db\", \"_loglevel_comment\":[ \"Set log level. Choices are:\", \" none, critical, error, warning, info, debug\", \"Default is warning\" ], \"loglevel\":\"debug\" } } 完成。heketi将监听8080端口,我们来确认下防火墙规则允许它监听该端口: # firewall-cmd --add-port=8080/tcp # firewall-cmd --runtime-to-permanent 重启heketi: # systemctl enable heketi # systemctl restart heketi 测试它是否在运行: # curl http://crs-node1.lab:8080/hello Hello from Heketi 很好。heketi上场的时候到了。 我们将使用它来配置我们的GlusterFS存储池。 该软件已经在我们所有的虚拟机上运行,但并未被配置。 要将其改造为满足我们需求的存储系统,需要在拓扑文件中描述我们所需的GlusterFS存储池,如下所示: # vi topology.json { \"clusters\": [ { \"nodes\": [ { \"node\": { \"hostnames\": { \"manage\": [ \"crs-node1.lab\" ], \"storage\": [ \"172.16.128.7\" ] }, \"zone\": 1 }, \"devices\": [ \"/dev/sdb\" ] }, { \"node\": { \"hostnames\": { \"manage\": [ \"crs-node2.lab\" ], \"storage\": [ \"172.16.128.8\" ] }, \"zone\": 1 }, \"devices\": [ \"/dev/sdb\" ] }, { \"node\": { \"hostnames\": { \"manage\": [ \"crs-node3.lab\" ], \"storage\": [ \"172.16.128.9\" ] }, \"zone\": 1 }, \"devices\": [ \"/dev/sdb\" ] } ] } ] } 该文件格式比较简单,基本上是告诉heketi要创建一个3节点的集群,其中每个节点包含的配置有FQDN,IP地址以及至少一个将用作GlusterFS块的备用块设备。 现在将该文件发送给heketi: # export HEKETI_CLI_SERVER=http://crs-node1.lab:8080 # heketi-cli topology load --json=topology.json Creating cluster ... ID: 78cdb57aa362f5284bc95b2549bc7e7d Creating node crs-node1.lab ... ID: ffd7671c0083d88aeda9fd1cb40b339b Adding device /dev/sdb ... OK Creating node crs-node2.lab ... ID: 8220975c0a4479792e684584153050a9 Adding device /dev/sdb ... OK Creating node crs-node3.lab ... ID: b94f14c4dbd8850f6ac589ac3b39cc8e Adding device /dev/sdb ... OK 现在heketi已经配置了3个节点的GlusterFS存储池。很简单!你现在可以看到3个虚拟机都已经成功构成了GlusterFS中的可信存储池(Trusted Stroage Pool)。 [root@crs-node1 ~]# gluster peer status Number of Peers: 2 Hostname: crs-node2.lab Uuid: 93b34946-9571-46a8-983c-c9f128557c0e State: Peer in Cluster (Connected) Other names: crs-node2.lab Hostname: 172.16.128.9 Uuid: e3c1f9b0-be97-42e5-beda-f70fc05f47ea State: Peer in Cluster (Connected) 现在回到OpenShift! 将Gluster与OpenShift集成 为了集成OpenShift,需要两样东西:一个动态的Kubernetes Storage Provisioner和一个StorageClass。 Provisioner在OpenShift中开箱即用。 实际上关键的是如何将存储挂载到容器上。 StorageClass是OpenShift中的用户可以用来实现的PersistentVolumeClaims的实体,它反过来能够触发一个Provisioner实现实际的配置,并将结果表示为Kubernetes PersistentVolume(PV)。 就像OpenShift中的其他组件一样,StorageClass也简单的用YAML文件定义: # cat crs-storageclass.yaml kind: StorageClass apiVersion: storage.k8s.io/v1beta1 metadata: name: container-ready-storage annotations: storageclass.beta.kubernetes.io/is-default-class: \"true\" provisioner: kubernetes.io/glusterfs parameters: resturl: \"http://crs-node1.lab:8080\" restauthenabled: \"false\" 我们的provisioner是kubernetes.io/glusterfs,将它指向我们的heketi实例。 我们将类命名为“container-ready-storage”,同时使其成为所有没有显示指定StorageClass的PersistentVolumeClaim的默认StorageClass。 为你的GlusterFS池创建StorageClass: # oc create -f crs-storageclass.yaml 在OpenShift中使用Gluster 我们来看下如何在OpenShift中使用GlusterFS。首先在OpenShift虚拟机中创建一个测试项目。 # oc new-project crs-storage --display-name=\"Container-Ready Storage\" 这会向Kubernetes/OpenShift发出storage请求,请求一个PersistentVolumeClaim(PVC)。 这是一个简单的对象,它描述最少需要多少容量和应该提供哪种访问模式(非共享,共享,只读)。 它通常是应用程序模板的一部分,但我们只需创建一个独立的PVC: # cat crs-claim.yaml apiVersion: v1 kind: PersistentVolumeClaim metadata: name: my-crs-storage namespace: crs-storage spec: accessModes: - ReadWriteOnce resources: requests: storage: 1Gi 发送该请求: # oc create -f crs-claim.yaml 观察在OpenShfit中,PVC正在以动态创建volume的方式实现: # oc get pvc NAME STATUS VOLUME CAPACITY ACCESSMODES AGE my-crs-storage Bound pvc-41ad5adb-107c-11e7-afae-000c2949cce7 1Gi RWO 58s 太棒了! 你现在可以在OpenShift中使用存储容量,而不需要直接与存储系统进行任何交互。 我们来看看创建的volume: # oc get pv/pvc-41ad5adb-107c-11e7-afae-000c2949cce7 Name: pvc-41ad5adb-107c-11e7-afae-000c2949cce7 Labels: StorageClass: container-ready-storage Status: Bound Claim: crs-storage/my-crs-storage Reclaim Policy: Delete Access Modes: RWO Capacity: 1Gi Message: Source: Type: Glusterfs (a Glusterfs mount on the host that shares a pod's lifetime) EndpointsName: gluster-dynamic-my-crs-storage Path: vol_85e444ee3bc154de084976a9aef16025 ReadOnly: false What happened in the background was that when the PVC reached the system, our default StorageClass reached out to the GlusterFS Provisioner with the volume specs from the PVC. The provisioner in turn communicates with our heketi instance which facilitates the creation of the GlusterFS volume, which we can trace in it’s log messages: 该volume是根据PVC中的定义特别创建的。 在PVC中,我们没有明确指定要使用哪个StorageClass,因为heketi的GlusterFS StorageClass已经被定义为系统范围的默认值。 在后台发生的情况是,当PVC到达系统时,默认的StorageClass请求具有该PVC中volume声明规格的GlusterFS Provisioner。 Provisioner又与我们的heketi实例通信,这有助于创建GlusterFS volume,我们可以在其日志消息中追踪: [root@crs-node1 ~]# journalctl -l -u heketi.service ... Mar 24 11:25:52 crs-node1.lab heketi[2598]: [heketi] DEBUG 2017/03/24 11:25:52 /src/github.com/heketi/heketi/apps/glusterfs/volume_entry.go:298: Volume to be created on cluster e Mar 24 11:25:52 crs-node1.lab heketi[2598]: [heketi] INFO 2017/03/24 11:25:52 Creating brick 9e791b1daa12af783c9195941fe63103 Mar 24 11:25:52 crs-node1.lab heketi[2598]: [heketi] INFO 2017/03/24 11:25:52 Creating brick 3e06af2f855bef521a95ada91680d14b Mar 24 11:25:52 crs-node1.lab heketi[2598]: [heketi] INFO 2017/03/24 11:25:52 Creating brick e4daa240f1359071e3f7ea22618cfbab ... Mar 24 11:25:52 crs-node1.lab heketi[2598]: [sshexec] INFO 2017/03/24 11:25:52 Creating volume vol_85e444ee3bc154de084976a9aef16025 replica 3 ... Mar 24 11:25:53 crs-node1.lab heketi[2598]: Result: volume create: vol_85e444ee3bc154de084976a9aef16025: success: please start the volume to access data ... Mar 24 11:25:55 crs-node1.lab heketi[2598]: Result: volume start: vol_85e444ee3bc154de084976a9aef16025: success ... Mar 24 11:25:55 crs-node1.lab heketi[2598]: [asynchttp] INFO 2017/03/24 11:25:55 Completed job c3d6c4f9fc74796f4a5262647dc790fe in 3.176522702s ... 成功! 大约用了3秒钟,GlusterFS池就配置完成了,并配置了一个volume。 默认值是replica 3,这意味着数据将被复制到3个不同节点的3个块上(用GlusterFS作为后端存储)。 该过程是通过Heketi在OpenShift进行编排的。 你也可以从GlusterFS的角度看到有关volume的信息: [root@crs-node1 ~]# gluster volume list vol_85e444ee3bc154de084976a9aef16025 [root@crs-node1 ~]# gluster volume info vol_85e444ee3bc154de084976a9aef16025 Volume Name: vol_85e444ee3bc154de084976a9aef16025 Type: Replicate Volume ID: a32168c8-858e-472a-b145-08c20192082b Status: Started Snapshot Count: 0 Number of Bricks: 1 x 3 = 3 Transport-type: tcp Bricks: Brick1: 172.16.128.8:/var/lib/heketi/mounts/vg_147b43f6f6903be8b23209903b7172ae/brick_9e791b1daa12af783c9195941fe63103/brick Brick2: 172.16.128.9:/var/lib/heketi/mounts/vg_72c0f520b0c57d807be21e9c90312f85/brick_3e06af2f855bef521a95ada91680d14b/brick Brick3: 172.16.128.7:/var/lib/heketi/mounts/vg_67314f879686de975f9b8936ae43c5c5/brick_e4daa240f1359071e3f7ea22618cfbab/brick Options Reconfigured: transport.address-family: inet nfs.disable: on 请注意,GlusterFS中的卷名称如何对应于OpenShift中Kubernetes Persistent Volume的“路径”。 或者,你也可以使用OpenShift UI来配置存储,这样可以很方便地在系统中的所有已知的StorageClasses中进行选择: 图 6.6.1.3.1:创建存储 图 6.6.1.3.2:Screen Shot 2017-03-24 at 11.09.34.png 让我们做点更有趣的事情,在OpenShift中运行工作负载。 在仍运行着crs-storage项目的OpenShift虚拟机中执行: # oc get templates -n openshift 你应该可以看到一个应用程序和数据库模板列表,这个列表将方便你更轻松的使用OpenShift来部署你的应用程序项目。 我们将使用MySQL来演示如何在OpenShift上部署具有持久化和弹性存储的有状态应用程序。 Mysql-persistent模板包含一个用于MySQL数据库目录的1G空间的PVC。 为了演示目的,可以直接使用默认值。 # oc process mysql-persistent -n openshift | oc create -f - 等待部署完成。你可以通过UI或者命令行观察部署进度: # oc get pods NAME READY STATUS RESTARTS AGE mysql-1-h4afb 1/1 Running 0 2m 好了。我们已经使用这个模板创建了一个service,secrets、PVC和pod。我们来使用它(你的pod名字将跟我的不同): # oc rsh mysql-1-h4afb 你已经成功的将它挂载到MySQL的pod上。我们连接一下数据库试试: sh-4.2$ mysql -u $MYSQL_USER -p$MYSQL_PASSWORD -h $HOSTNAME $MYSQL_DATABASE 这点很方便,所有重要的配置,如MySQL凭据,数据库名称等都是pod模板中的环境变量的一部分,因此可以在pod中作为shell的环境变量。 我们来创建一些数据: mysql> show databases; +--------------------+ | Database | +--------------------+ | information_schema | | sampledb | +--------------------+ 2 rows in set (0.02 sec) mysql> \\u sampledb Database changed mysql> CREATE TABLE IF NOT EXISTS equipment ( -> equip_id int(5) NOT NULL AUTO_INCREMENT, -> type varchar(50) DEFAULT NULL, -> install_date DATE DEFAULT NULL, -> color varchar(20) DEFAULT NULL, -> working bool DEFAULT NULL, -> location varchar(250) DEFAULT NULL, -> PRIMARY KEY(equip_id) -> ); Query OK, 0 rows affected (0.13 sec) mysql> INSERT INTO equipment (type, install_date, color, working, location) -> VALUES -> (\"Slide\", Now(), \"blue\", 1, \"Southwest Corner\"); Query OK, 1 row affected, 1 warning (0.01 sec) mysql> SELECT * FROM equipment; +----------+-------+--------------+-------+---------+------------------+ | equip_id | type | install_date | color | working | location | +----------+-------+--------------+-------+---------+------------------+ | 1 | Slide | 2017-03-24 | blue | 1 | Southwest Corner | +----------+-------+--------------+-------+---------+------------------+ 1 row in set (0.00 sec) 很好,数据库运行正常。 你想看下数据存储在哪里吗?很简单!查看刚使用模板创建的mysql volume: # oc get pvc/mysql NAME STATUS VOLUME CAPACITY ACCESSMODES AGE mysql Bound pvc-a678b583-1082-11e7-afae-000c2949cce7 1Gi RWO 11m # oc describe pv/pvc-a678b583-1082-11e7-afae-000c2949cce7 Name: pvc-a678b583-1082-11e7-afae-000c2949cce7 Labels: StorageClass: container-ready-storage Status: Bound Claim: crs-storage/mysql Reclaim Policy: Delete Access Modes: RWO Capacity: 1Gi Message: Source: Type: Glusterfs (a Glusterfs mount on the host that shares a pod's lifetime) EndpointsName: gluster-dynamic-mysql Path: vol_6299fc74eee513119dafd43f8a438db1 ReadOnly: false GlusterFS的volume名字是vol_6299fc74eee513119dafd43f8a438db1。回到你的GlusterFS虚拟机中,输入: # gluster volume info vol_6299fc74eee513119dafd43f8a438db Volume Name: vol_6299fc74eee513119dafd43f8a438db1 Type: Replicate Volume ID: 4115918f-28f7-4d4a-b3f5-4b9afe5b391f Status: Started Snapshot Count: 0 Number of Bricks: 1 x 3 = 3 Transport-type: tcp Bricks: Brick1: 172.16.128.7:/var/lib/heketi/mounts/vg_67314f879686de975f9b8936ae43c5c5/brick_f264a47aa32be5d595f83477572becf8/brick Brick2: 172.16.128.8:/var/lib/heketi/mounts/vg_147b43f6f6903be8b23209903b7172ae/brick_f5731fe7175cbe6e6567e013c2591343/brick Brick3: 172.16.128.9:/var/lib/heketi/mounts/vg_72c0f520b0c57d807be21e9c90312f85/brick_ac6add804a6a467cd81cd1404841bbf1/brick Options Reconfigured: transport.address-family: inet nfs.disable: on 你可以看到数据是如何被复制到3个GlusterFS块的。我们从中挑一个(最好挑选你刚登陆的那台虚拟机并查看目录): # ll /var/lib/heketi/mounts/vg_67314f879686de975f9b8936ae43c5c5/brick_f264a47aa32be5d595f83477572becf8/brick total 180300 -rw-r-----. 2 1000070000 2001 56 Mar 24 12:11 auto.cnf -rw-------. 2 1000070000 2001 1676 Mar 24 12:11 ca-key.pem -rw-r--r--. 2 1000070000 2001 1075 Mar 24 12:11 ca.pem -rw-r--r--. 2 1000070000 2001 1079 Mar 24 12:12 client-cert.pem -rw-------. 2 1000070000 2001 1680 Mar 24 12:12 client-key.pem -rw-r-----. 2 1000070000 2001 352 Mar 24 12:12 ib_buffer_pool -rw-r-----. 2 1000070000 2001 12582912 Mar 24 12:20 ibdata1 -rw-r-----. 2 1000070000 2001 79691776 Mar 24 12:20 ib_logfile0 -rw-r-----. 2 1000070000 2001 79691776 Mar 24 12:11 ib_logfile1 -rw-r-----. 2 1000070000 2001 12582912 Mar 24 12:12 ibtmp1 drwxr-s---. 2 1000070000 2001 8192 Mar 24 12:12 mysql -rw-r-----. 2 1000070000 2001 2 Mar 24 12:12 mysql-1-h4afb.pid drwxr-s---. 2 1000070000 2001 8192 Mar 24 12:12 performance_schema -rw-------. 2 1000070000 2001 1676 Mar 24 12:12 private_key.pem -rw-r--r--. 2 1000070000 2001 452 Mar 24 12:12 public_key.pem drwxr-s---. 2 1000070000 2001 62 Mar 24 12:20 sampledb -rw-r--r--. 2 1000070000 2001 1079 Mar 24 12:11 server-cert.pem -rw-------. 2 1000070000 2001 1676 Mar 24 12:11 server-key.pem drwxr-s---. 2 1000070000 2001 8192 Mar 24 12:12 sys 你可以在这里看到MySQL数据库目录。 它使用GlusterFS作为后端存储,并作为绑定挂载给MySQL容器使用。 如果你检查OpenShift VM上的mount表,你将会看到GlusterFS的mount。 总结 在这里我们是在OpenShift之外创建了一个简单但功能强大的GlusterFS存储池。 该池可以独立于应用程序扩展和收缩。 该池的整个生命周期由一个简单的称为heketi的前端管理,你只需要在部署增长时进行手动干预。 对于日常配置操作,使用它的API与OpenShifts动态配置器交互,无需开发人员直接与基础架构团队进行交互。 o这就是我们如何将存储带入DevOps世界 - 无痛苦,并在OpenShift PaaS系统的开发人员工具中直接提供。 GlusterFS和OpenShift可跨越所有环境:裸机,虚拟机,私有和公共云(Azure,Google Cloud,AWS ...),确保应用程序可移植性,并避免云供应商锁定。 祝你愉快在容器中使用GlusterFS! (c) 2017 Keith Tenzer 原文链接:https://keithtenzer.com/2017/03/24/storage-for-containers-using-gluster-part-ii/ 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/glusterd-2.0.html":{"url":"practice/glusterd-2.0.html","title":"GlusterD-2.0","keywords":"","body":"GlusterD-2.0 GlusterD-2.0是Gluster的组成部分,用来做分布式管理引擎。Gluster 是一种免费的开源软件可扩展网络文件系统。它是更加适合云原生开发人员使用的基础架构。Gluster的设计可满足各种规模的安装环境的需求,拥有灵活的部署选项,可适用于各种环境和基础架构中,比如裸机硬件、虚拟机、容器和公有云。 GlusterD-2.0是针对Gluster的分布式管理引擎,可以为可信任存储池中的服务器提供更好的扩展能力。GlusterD-2.0是一种引入了多项改进的架构重写模式,可以让Gluster更具可扩展性,同时更易于配置、使用、集成和维护,尤其是适用于大规模部署。 GlusterD-2.0包含一组用于卷和成员操作的ReSTful界面,允许将DevOps实践用于基础架构的自动化及使用。GlusterD-2.0还集成了嵌入式etcd库,因此它可以为可信任存储池中的状态管理提供更高的一致性。GlusterD-2.0还提供了更加灵活的插件框架,能够让开发人员更轻松地添加更多指标。 可以与Kubernetes更紧密地集成 利用动态配置工具Heketi实现管理GlusterFS卷的生命周期。Heketi的最新版本引入了多项新特性,能够使Gluster更紧密地集成Kubernetes,这些新性能包括:支持配置基于Gluster块的持久卷和扩展持久卷、为持久卷自定义卷名称、Gluster卷的Prometheus指标集、更强的设备管理能力,以及更丰富的数据库。 协议变更:得益于全新的在线远程过程调用 (RPC) 版本。新的RPC版本改进了XDR构造,并且增加了更多已定义的成员和新的目录,从而优化了编码和解码流程。 关于 GlusterD-2.0 的更多细节请参考 https://github.com/gluster/glusterd2 。 参考 新品Gluster 4.0:更强容器集成能力 Gluster 官网 GlusterD-2.0 Github开源地址 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/ceph.html":{"url":"practice/ceph.html","title":"Ceph","keywords":"","body":"Ceph的简要介绍 本文参考翻译自这篇文章的部分内容。 Ceph是一个开源的分布式对象,块和文件存储。该项目诞生于2003年,是塞奇·韦伊的博士论文的结果,然后在2006年在LGPL 2.1许可证发布。Ceph已经与Linux内核KVM集成,并且默认包含在许多GNU / Linux发行版中。 介绍 当前的工作负载和基础设施需要不同的数据访问方法(对象,块,文件),Ceph支持所有这些方法。它旨在具有可扩展性,并且没有单点故障。它是一款开源软件,可以在生产环境,通用硬件上运行。 RADOS (可靠的自动分布式对象存储)是Ceph的核心组件。RADOS对象和当今流行的对象之间存在着重要的区别,例如Amazon S3,OpenStack Swift或Ceph的RADOS对象网关提供的对象。从2005年到2010年,对象存储设备(OSD)成为一个流行的概念。这些OSD提供了强大的一致性,提供不同的接口,并且每个对象通常驻留在单个设备上。 在RADOS中有几种操作对象的方法: 在用C,C ++,Java,PHP和Python编写的应用程序中使用客户端库(librados) 使用命令行工具'rados' 使用与S3(Amazon)和Swift(OpenStack)兼容的现有API RADOS是一个由Ceph节点组成的集群。有两种类型的节点: Ceph存储设备节点 Ceph监控节点 每个Ceph存储设备节点运行一个或多个Ceph OSD守护进程,每个磁盘设备一个。OSD是一个Linux进程(守护进程),可处理与其分配的磁盘(HDD或SSD)相关的所有操作。所述OSD守护程序访问本地文件系统来存储数据和元数据,而不是直接与磁盘通信。Ceph常用的文件系统是XFS,btrfs和ext4。每个OSD还需要一个日志,用于对RADOS对象进行原子更新。日志可能驻留在单独的磁盘上(通常是SSD以提高性能),但同一个磁盘可以被同一节点上的多个OSD使用。 该Ceph的监控节点上运行的单个Ceph的监控守护。Ceph Monitor守护程序维护集群映射的主副本。虽然Ceph集群可以与单个监控节点一起工作,但需要更多设备来确保高可用性。建议使用三个或更多Ceph Monitor节点,因为它们使用法定数量来维护集群映射。需要大多数Monitor来确认仲裁数,因此建议使用奇数个Monitor。例如,3个或4个Monitor都可以防止单个故障,而5个Monitor可以防止两个故障。 Ceph OSD守护进程和Ceph客户端可以感知群集,因此每个Ceph OSD守护进程都可以直接与其他Ceph OSD守护进程和Ceph监视器进行通信。此外,Ceph客户端可直接与Ceph OSD守护进程通信以读取和写入数据。 Ceph对象网关守护进程(radosgw) 提供了两个API: API与Amazon S3 RESTful AP的子集兼容 API与OpenStack Swift API的子集兼容 如果RADOS和radosgw为客户提供对象存储服务,那么Ceph如何被用作块和文件存储? Ceph中的分布式块存储(Ceph RDB)实现为对象存储顶部的薄层。Ceph RADOS块设备(RBD)存储分布在群集中多个Ceph OSD上的数据。RBD利用RADOS功能,如快照,复制和一致性。RBD使用Linux内核模块或librbd库与RADOS通信。此外,KVM管理程序可以利用librbd允许虚拟机访问Ceph卷。 Ceph文件系统(CephFS)是一个符合POSIX的文件系统,使用Ceph集群来存储其数据。所述Ceph的文件系统要求Ceph的集群中的至少一个Ceph的元数据服务器(MDS)。MDS处理所有文件操作,例如文件和目录列表,属性,所有权等。MDS利用RADOS对象来存储文件系统数据和属性。它可以水平扩展,因此您可以将更多的Ceph元数据服务器添加到您的群集中,以支持更多的文件系统操作客户端。 Kubernetes和Ceph Kubernetes支持Ceph的块存储(Ceph RBD)和文件存储(CephFS)作为Kubernetes的持久存储后端。Kubernetes自带Ceph RBD的internal provisioner,可以配置动态提供,如果要使用CephFS作为动态存储提供,需要安装外置的provisioner。 与Ceph相关的Kubernetes StorageClass的官方文档介绍 Volume Plugin Internal Provisioner Config Example AWSElasticBlockStore ✓ AWS AzureFile ✓ Azure File AzureDisk ✓ Azure Disk CephFS - - Cinder ✓ OpenStack Cinder FC - - FlexVolume - - Flocker ✓ - GCEPersistentDisk ✓ GCE Glusterfs ✓ Glusterfs iSCSI - - PhotonPersistentDisk ✓ - Quobyte ✓ Quobyte NFS - - RBD ✓ Ceph RBD VsphereVolume ✓ vSphere PortworxVolume ✓ Portworx Volume ScaleIO ✓ ScaleIO StorageOS ✓ StorageOS Local - Local 后续文档将介绍Kubernetes如何与Ceph RDB 和 CephFS集成。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/ceph-helm-install-guide-zh.html":{"url":"practice/ceph-helm-install-guide-zh.html","title":"用 Helm 托管安装 Ceph 集群并提供后端存储","keywords":"","body":"用Helm托管安装Ceph集群并提供后端存储 安装 ceph-helm 项目可让你在Kubernetes 环境以托管方式部署Ceph . 本文档假定Kubernetes 环境已经可用。 当前的限制 Public网络和Cluster网络必须是同一个网络 如果 storage class 用户标识不是admin, 则必须在Ceph集群中手动创建用户并在Kubernetes中创建其secret ceph-mgr只能运行1个replica 安装并使用Helm 请访问Helm官网的说明安装Helm。 Helm通过从本地读取Kubernetes配置文件来查找Kubernetes集群; 确保文件已下载和且helm客户端可以访问。 Kubernetes群集必须配置并运行Tiller服务器,并且须将本地Helm客户端网络可达。要在本地运行Tiller并将Helm连接到它,请运行如下命令(此命令会在Kubernetes集群部署一个tiller实例): $ helm init ceph-helm项目默认使用本地的Helm repo来存储charts。要启动本地Helm repo服务器,请运行: $ helm serve & $ helm repo add local http://localhost:8879/charts 添加Ceph-Helm charts到本地repo $ git clone https://github.com/ceph/ceph-helm $ cd ceph-helm/ceph $ make 配置Ceph集群 创建一个包含Ceph配置的ceph-overrides.yaml文件。这个文件可能存在于任何地方,本文档默认此文件在用户的home目录中。 $ cat ~/ceph-overrides.yaml network: public: 172.21.0.0/20 cluster: 172.21.0.0/20 osd_devices: - name: dev-sdd device: /dev/sdd zap: \"1\" - name: dev-sde device: /dev/sde zap: \"1\" storageclass: name: ceph-rbd pool: rbd user_id: k8s 注意 如果未设置日志(journal)设备,它将与device设备同位置。另ceph-helm/ceph/ceph/values.yaml文件包含所有可配置的选项。 创建Ceph 集群的namespace 默认情况下,ceph-helm组件在Kubernetes的ceph namespace中运行。如果要自定义,请自定义namespace的名称,默认namespace请运行: $ kubectl create namespace ceph 配置RBAC权限 Kubernetes> = v1.6使RBAC成为默认的admission controller。ceph-helm要为每个组件提供RBAC角色和权限: $ kubectl create -f ~/ceph-helm/ceph/rbac.yaml rbac.yaml文件假定Ceph集群将部署在ceph命名空间中。 给Kubelet节点打标签 需要设置以下标签才能部署Ceph集群: ceph-mon=enabled ceph-mgr=enabled ceph-osd=enabled ceph-osd-device-=enabled ceph-osd-device-标签是基于我们的ceph-overrides.yaml中定义的osd_devices名称值创建的。从我们下面的例子中,我们将得到以下两个标签:ceph-osd-device-dev-sdb和ceph-osd-device-dev-sdc。 每个 Ceph Monitor节点: $ kubectl label node ceph-mon=enabled ceph-mgr=enabled 每个 OSD node节点: $ kubectl label node ceph-osd=enabled ceph-osd-device-dev-sdb=enabled ceph-osd-device-dev-sdc=enabled Ceph 部署 运行helm install命令来部署Ceph: $ helm install --name=ceph local/ceph --namespace=ceph -f ~/ceph-overrides.yaml NAME: ceph LAST DEPLOYED: Wed Oct 18 22:25:06 2017 NAMESPACE: ceph STATUS: DEPLOYED RESOURCES: ==> v1/Secret NAME TYPE DATA AGE ceph-keystone-user-rgw Opaque 7 1s ==> v1/ConfigMap NAME DATA AGE ceph-bin-clients 2 1s ceph-bin 24 1s ceph-etc 1 1s ceph-templates 5 1s ==> v1/Service NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE ceph-mon None 6789/TCP 1s ceph-rgw 10.101.219.239 8088/TCP 1s ==> v1beta1/DaemonSet NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE-SELECTOR AGE ceph-mon 3 3 0 3 0 ceph-mon=enabled 1s ceph-osd-dev-sde 3 3 0 3 0 ceph-osd-device-dev-sde=enabled,ceph-osd=enabled 1s ceph-osd-dev-sdd 3 3 0 3 0 ceph-osd-device-dev-sdd=enabled,ceph-osd=enabled 1s ==> v1beta1/Deployment NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE ceph-mds 1 1 1 0 1s ceph-mgr 1 1 1 0 1s ceph-mon-check 1 1 1 0 1s ceph-rbd-provisioner 2 2 2 0 1s ceph-rgw 1 1 1 0 1s ==> v1/Job NAME DESIRED SUCCESSFUL AGE ceph-mgr-keyring-generator 1 0 1s ceph-mds-keyring-generator 1 0 1s ceph-osd-keyring-generator 1 0 1s ceph-rgw-keyring-generator 1 0 1s ceph-mon-keyring-generator 1 0 1s ceph-namespace-client-key-generator 1 0 1s ceph-storage-keys-generator 1 0 1s ==> v1/StorageClass NAME TYPE ceph-rbd ceph.com/rbd helm install的输出显示了将要部署的不同类型的资源。 将使用ceph-rbd-provisioner Pod创建ceph.com/rbd类型的名为ceph-rbd的StorageClass。这允许创建PVC时自动提供RBD。第一次挂载时,RBD设备将被格式化(format)。所有RBD设备都将使用ext4文件系统。ceph.com/rbd不支持fsType选项。默认情况下,RBD将使用镜像格式2和镜像分层特性。可以在values文件中覆盖以下storageclass的默认值: storageclass: name: ceph-rbd pool: rbd user_id: k8s user_secret_name: pvc-ceph-client-key image_format: \"2\" image_features: layering 使用下面的命令检查所有Pod是否正常运行。这可能需要几分钟时间: $ kubectl -n ceph get pods NAME READY STATUS RESTARTS AGE ceph-mds-3804776627-976z9 0/1 Pending 0 1m ceph-mgr-3367933990-b368c 1/1 Running 0 1m ceph-mon-check-1818208419-0vkb7 1/1 Running 0 1m ceph-mon-cppdk 3/3 Running 0 1m ceph-mon-t4stn 3/3 Running 0 1m ceph-mon-vqzl0 3/3 Running 0 1m ceph-osd-dev-sdd-6dphp 1/1 Running 0 1m ceph-osd-dev-sdd-6w7ng 1/1 Running 0 1m ceph-osd-dev-sdd-l80vv 1/1 Running 0 1m ceph-osd-dev-sde-6dq6w 1/1 Running 0 1m ceph-osd-dev-sde-kqt0r 1/1 Running 0 1m ceph-osd-dev-sde-lp2pf 1/1 Running 0 1m ceph-rbd-provisioner-2099367036-4prvt 1/1 Running 0 1m ceph-rbd-provisioner-2099367036-h9kw7 1/1 Running 0 1m ceph-rgw-3375847861-4wr74 0/1 Pending 0 1m 注意 因为我们没有用ceph-rgw = enabled或ceph-mds = enabled 给节点打标签(ceph对象存储特性需要ceph-rgw,cephfs特性需要ceph-mds),因此MDS和RGW Pod都处于pending状态,一旦其他Pod都在运行状态,请用如下命令从某个MON节点检查Ceph的集群状态: $ kubectl -n ceph exec -ti ceph-mon-cppdk -c ceph-mon -- ceph -s cluster: id: e8f9da03-c2d2-4ad3-b807-2a13d0775504 health: HEALTH_OK services: mon: 3 daemons, quorum mira115,mira110,mira109 mgr: mira109(active) osd: 6 osds: 6 up, 6 in data: pools: 0 pools, 0 pgs objects: 0 objects, 0 bytes usage: 644 MB used, 5555 GB / 5556 GB avail pgs: 配置一个POD以便从Ceph申请使用一个持久卷 为〜/ ceph-overwrite.yaml中定义的k8s用户创建一个密钥环,并将其转换为base64: $ kubectl -n ceph exec -ti ceph-mon-cppdk -c ceph-mon -- bash # ceph auth get-or-create-key client.k8s mon 'allow r' osd 'allow rwx pool=rbd' | base64 QVFCLzdPaFoxeUxCRVJBQUVEVGdHcE9YU3BYMVBSdURHUEU0T0E9PQo= # exit 编辑ceph namespace中存在的用户secret: $ kubectl -n ceph edit secrets/pvc-ceph-client-key 将base64值复制到key位置的值并保存:: apiVersion: v1 data: key: QVFCLzdPaFoxeUxCRVJBQUVEVGdHcE9YU3BYMVBSdURHUEU0T0E9PQo= kind: Secret metadata: creationTimestamp: 2017-10-19T17:34:04Z name: pvc-ceph-client-key namespace: ceph resourceVersion: \"8665522\" selfLink: /api/v1/namespaces/ceph/secrets/pvc-ceph-client-key uid: b4085944-b4f3-11e7-add7-002590347682 type: kubernetes.io/rbd 我们创建一个在default namespace中使用RBD的Pod。将用户secret从ceph namespace复制到default namespace: $ kubectl -n ceph get secrets/pvc-ceph-client-key -o json | jq '.metadata.namespace = \"default\"' | kubectl create -f - secret \"pvc-ceph-client-key\" created $ kubectl get secrets NAME TYPE DATA AGE default-token-r43wl kubernetes.io/service-account-token 3 61d pvc-ceph-client-key kubernetes.io/rbd 1 20s 创建并初始化RBD池: $ kubectl -n ceph exec -ti ceph-mon-cppdk -c ceph-mon -- ceph osd pool create rbd 256 pool 'rbd' created $ kubectl -n ceph exec -ti ceph-mon-cppdk -c ceph-mon -- rbd pool init rbd 重要 重要的 Kubernetes使用RBD内核模块将RBD映射到主机。Luminous需要CRUSH_TUNABLES 5(Jewel)。这些可调参数的最小内核版本是4.5。如果您的内核不支持这些可调参数,请运行ceph osd crush tunables hammer。 重要 由于RBD映射到主机系统上。主机需要能够解析由kube-dns服务管理的ceph-mon.ceph.svc.cluster.local名称。要获得kube-dns服务的IP地址,运行kubectl -n kube-system get svc/kube-dns。 创建一个PVC: $ cat pvc-rbd.yaml kind: PersistentVolumeClaim apiVersion: v1 metadata: name: ceph-pvc spec: accessModes: - ReadWriteOnce resources: requests: storage: 20Gi storageClassName: ceph-rbd $ kubectl create -f pvc-rbd.yaml persistentvolumeclaim \"ceph-pvc\" created $ kubectl get pvc NAME STATUS VOLUME CAPACITY ACCESSMODES STORAGECLASS AGE ceph-pvc Bound pvc-1c2ada50-b456-11e7-add7-002590347682 20Gi RWO ceph-rbd 3s 检查集群上是否已创建RBD: $ kubectl -n ceph exec -ti ceph-mon-cppdk -c ceph-mon -- rbd ls kubernetes-dynamic-pvc-1c2e9442-b456-11e7-9bd2-2a4159ce3915 $ kubectl -n ceph exec -ti ceph-mon-cppdk -c ceph-mon -- rbd info kubernetes-dynamic-pvc-1c2e9442-b456-11e7-9bd2-2a4159ce3915 rbd image 'kubernetes-dynamic-pvc-1c2e9442-b456-11e7-9bd2-2a4159ce3915': size 20480 MB in 5120 objects order 22 (4096 kB objects) block_name_prefix: rbd_data.10762ae8944a format: 2 features: layering flags: create_timestamp: Wed Oct 18 22:45:59 2017 创建一个使用此PVC的Pod: $ cat pod-with-rbd.yaml kind: Pod apiVersion: v1 metadata: name: mypod spec: containers: - name: busybox image: busybox command: - sleep - \"3600\" volumeMounts: - mountPath: \"/mnt/rbd\" name: vol1 volumes: - name: vol1 persistentVolumeClaim: claimName: ceph-pvc $ kubectl create -f pod-with-rbd.yaml pod \"mypod\" created 检查Pod: $ kubectl get pods NAME READY STATUS RESTARTS AGE mypod 1/1 Running 0 17s $ kubectl exec mypod -- mount | grep rbd /dev/rbd0 on /mnt/rbd type ext4 (rw,relatime,stripe=1024,data=ordered) 日志 可以通过kubectl logs [-f]命令访问OSD和Monitor日志。Monitors有多个日志记录流,每个流都可以从ceph-mon Pod中的容器访问。 在ceph-mon Pod中有3个容器运行:ceph-mon,相当于物理机上的ceph-mon.hostname.log,cluster-audit-log-tailer相当于物理机上的ceph.audit.log,cluster-log-tailer相当于物理机上的ceph.log或ceph -w。每个容器都可以通过--container或-c选项访问。例如,要访问cluster-tail-log,可以运行: $ kubectl -n ceph logs ceph-mon-cppdk -c cluster-log-tailer 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/using-ceph-for-persistent-storage.html":{"url":"practice/using-ceph-for-persistent-storage.html","title":"使用 Ceph 做持久化存储","keywords":"","body":"使用Ceph做持久化存储创建MySQL集群 本文中用到的 yaml 文件可以在 ../manifests/mariadb-cluster 目录下找到。 下面我们以部署一个高可用的 MySQL 集群为例,讲解如何使用 Ceph 做数据持久化,其中使用 StorageClass 动态创建 PV,Ceph 集群我们使用 kubernetes 集群外部的已有的集群,我们没有必要重新部署了。 在 1.4 以后,kubernetes 提供了一种更加方便的动态创建 PV 的方式;也就是说使用 StoragaClass 时无需预先创建固定大小的 PV,等待使用者创建 PVC 来使用;而是直接创建 PVC 即可分配使用。 使用 kubernetes 集群外部的 Ceph 存储 在部署 kubernetes 之前我们就已经有了 Ceph 集群,因此我们可以直接拿来用。但是 kubernetes 的所有节点(尤其是 master 节点)上依然需要安装 ceph 客户端。 yum install -y ceph-common 还需要将 ceph 的配置文件 ceph.conf 放在所有节点的 /etc/ceph 目录下。 Kubernetes 使用 ceph 存储需要用到如下配置: Monitors: Ceph montors 列表 Path:作为挂载的根路径,默认是 / User:RADOS用户名,默认是 admin secretFile:keyring 文件路径,默认是 /etc/ceph/user.secret,我们 Ceph 集群提供的文件是 ceph.client.admin.keyring,将在下面用到 secretRef:Ceph 认证 secret 的引用,如果配置了将会覆盖 secretFile。 readOnly:该文件系统是否只读。 Galera Cluster介绍 Galera是一个MySQL(也支持MariaDB,Percona)的同步多主集群软件。 从用户视角看,一组Galera集群可以看作一个具有多入口的MySQL库,用户可以同时从多个IP读写这个库。目前Galera已经得到广泛应用,例如Openstack中,在集群规模不大的情况下,稳定性已经得到了实践考验。真正的multi-master,即所有节点可以同时读写数据库。 详细步骤 以下步骤包括创建 Ceph 的配置 和 MySQL 的配置两部分。 配置 Ceph 关于 Ceph 的 yaml 文件可以在 ../manifest/mariadb-cluster 目录下找到。 1. 生成 Ceph secret 使用 Ceph 管理员提供给你的 ceph.client.admin.keyring 文件,我们将它放在了 /etc/ceph 目录下,用来生成 secret。 grep key /etc/ceph/ceph.client.admin.keyring |awk '{printf \"%s\", $NF}'|base64 将获得加密后的 key:QVFDWDA2aFo5TG5TQnhBQVl1b0lUL2V3YlRSaEtwVEhPWkxvUlE9PQ==,我们将在后面用到。 2. 创建租户namespace 创建 galera-namespace.yaml 文件内容为: apiVersion: v1 kind: Namespace metadata: name: galera 3. 创建 Ceph secret 创建 ceph-secret.yaml 文件内容为: apiVersion: v1 kind: Secret metadata: name: ceph-secret namespace: galera type: \"kubernetes.io/rbd\" data: key: QVFDWDA2aFo5TG5TQnhBQVl1b0lUL2V3YlRSaEtwVEhPWkxvUlE9PQ== 4. 创建 StorageClass 创建 ceph-class.yaml 文件内容为: apiVersion: storage.k8s.io/v1 kind: StorageClass metadata: name: ceph-web provisioner: kubernetes.io/rbd parameters: monitors: 172.28.7.98,172.28.7.99,172.28.7.100 adminId: admin adminSecretName: ceph-secret adminSecretNamespace: galera pool: rbd #此处默认是rbd池,生产上建议自己创建存储池隔离 userId: admin userSecretName: ceph-secret 此配置请参考 kubernetes 官方文档:https://kubernetes.io/docs/concepts/storage/persistent-volumes/#ceph-rbd 配置 MySQL 1. 创建 MySQL 配置文件 创建 mysql-config.yaml 文件内容为: apiVersion: v1 kind: ConfigMap metadata: name: mysql-config-vol namespace: galera labels: app: mysql data: mariadb.cnf: | [client] default-character-set = utf8 [mysqld] character-set-server = utf8 collation-server = utf8_general_ci # InnoDB optimizations innodb_log_file_size = 64M galera.cnf: | [galera] user = mysql bind-address = 0.0.0.0 # Optimizations innodb_flush_log_at_trx_commit = 0 sync_binlog = 0 expire_logs_days = 7 # Required settings default_storage_engine = InnoDB binlog_format = ROW innodb_autoinc_lock_mode = 2 query_cache_size = 0 query_cache_type = 0 # MariaDB Galera settings #wsrep_debug=ON wsrep_on=ON wsrep_provider=/usr/lib/galera/libgalera_smm.so wsrep_sst_method=rsync # Cluster settings (automatically updated) wsrep_cluster_address=gcomm:// wsrep_cluster_name=galera wsrep_node_address=127.0.0.1 2. 创建 MySQL root 用户和密码 创建加密密码 $ echo -n jimmysong|base64 amltbXlzb25n 注意:一定要用-n 去掉换行符,不然会报错。 创建 root 用户 $ echo -n root |base64 cm9vdA== 创建 MySQL secret 创建 mysql-secret.yaml 文件内容为: apiVersion: v1 kind: Secret metadata: name: mysql-secrets namespace: galera labels: app: mysql data: # Root password: changeit run echo -n jimmysong|base64 root-password: amltbXlzb25n # Root user: root root-user: cm9vdA== 3. 创建 yaml 配置文件 创建 MySQL 的 yaml 文件 galera-mariadb.yaml 内容为: apiVersion: v1 kind: Service metadata: annotations: service.alpha.kubernetes.io/tolerate-unready-endpoints: \"true\" name: mysql namespace: galera labels: app: mysql tier: data spec: ports: - port: 3306 name: mysql clusterIP: None selector: app: mysql --- apiVersion: apps/v1beta1 kind: StatefulSet metadata: name: mysql namespace: galera spec: serviceName: \"mysql\" replicas: 3 template: metadata: labels: app: mysql tier: data annotations: pod.beta.kubernetes.io/init-containers: '[ { \"name\": \"galera-init\", \"image\": \"harbor-001.jimmysong.io/library/k8s-galera-init:latest\", \"args\": [\"-service=mysql\"], \"env\": [ { \"name\": \"POD_NAMESPACE\", \"valueFrom\": { \"fieldRef\": { \"apiVersion\": \"v1\", \"fieldPath\": \"metadata.namespace\" } } }, { \"name\": \"SAFE_TO_BOOTSTRAP\", \"value\": \"1\" }, { \"name\": \"DEBUG\", \"value\": \"1\" } ], \"volumeMounts\": [ { \"name\": \"config\", \"mountPath\": \"/etc/mysql/conf.d\" }, { \"name\": \"data\", \"mountPath\": \"/var/lib/mysql\" } ] } ]' spec: terminationGracePeriodSeconds: 10 containers: - name: mysql image: harbor-001.jimmysong.io/library/mariadb:10.1 imagePullPolicy: IfNotPresent ports: - containerPort: 3306 name: mysql - containerPort: 4444 name: sst - containerPort: 4567 name: replication - containerPort: 4568 name: ist env: - name: MYSQL_ROOT_PASSWORD valueFrom: secretKeyRef: name: mysql-secrets key: root-password - name: MYSQL_ROOT_USER valueFrom: secretKeyRef: name: mysql-secrets key: root-user - name: MYSQL_INITDB_SKIP_TZINFO value: \"yes\" livenessProbe: exec: command: [\"sh\", \"-c\", \"mysql -u\\\"${MYSQL_ROOT_USER:-root}\\\" -p\\\"${MYSQL_ROOT_PASSWORD}\\\" -e 'show databases;'\"] initialDelaySeconds: 60 timeoutSeconds: 5 readinessProbe: exec: command: [\"sh\", \"-c\", \"mysql -u\\\"${MYSQL_ROOT_USER:-root}\\\" -p\\\"${MYSQL_ROOT_PASSWORD}\\\" -e 'show databases;'\"] initialDelaySeconds: 20 timeoutSeconds: 5 volumeMounts: - name: config mountPath: /etc/mysql/conf.d - name: data mountPath: /var/lib/mysql volumes: - name: config configMap: name: mysql-config-vol imagePullSecrets: - name: \"registrykey\" volumeClaimTemplates: - metadata: name: data annotations: volume.beta.kubernetes.io/storage-class: \"ceph-web\" #引用ceph class 的类 spec: accessModes: [ \"ReadWriteOnce\" ] resources: requests: storage: 3Gi 部署 MySQL 集群 在 /etc/mariadb-cluster 目录下执行: kubectl create -f . 验证 存在 issue,参考 Error creating rbd image: executable file not found in $PATH#38923 问题记录 如果没有安装 ceph-common 的话,kubernetes 在创建 PVC 的时候会有如下报错信息: Events: FirstSeen LastSeen Count From SubObjectPath Type Reason Message --------- -------- ----- ---- ------------- -------- ------ ------- 1h 12s 441 {persistentvolume-controller } Warning ProvisioningFailed Failed to provision volume with StorageClass \"ceph-web\": failed to create rbd image: executable file not found in $PATH, command output: 检查 kube-controller-manager 的日志将看到如下错误信息: journalctl -xe -u kube-controller-manager ... rbd_util.go:364] failed to create rbd image, output ... rbd.go:317] rbd: create volume failed, err: failed to create rbd image: executable file not found in $PATH, command output: 这是因为 kube-controller-manager 主机上没有安装 ceph-common 的缘故。 但是安装了 ceph-common 之后依然有问题: Sep 4 15:25:36 bj-xg-oam-kubernetes-001 kube-controller-manager: W0904 15:25:36.032128 13211 rbd_util.go:364] failed to create rbd image, output Sep 4 15:25:36 bj-xg-oam-kubernetes-001 kube-controller-manager: W0904 15:25:36.032201 13211 rbd_util.go:364] failed to create rbd image, output Sep 4 15:25:36 bj-xg-oam-kubernetes-001 kube-controller-manager: W0904 15:25:36.032252 13211 rbd_util.go:364] failed to create rbd image, output Sep 4 15:25:36 bj-xg-oam-kubernetes-001 kube-controller-manager: E0904 15:25:36.032276 13211 rbd.go:317] rbd: create volume failed, err: failed to create rbd image: fork/exec /usr/bin/rbd: invalid argument, command output: 该问题尚未解决,参考 Error creating rbd image: executable file not found in $PATH#38923 从日志记录来看追查到 pkg/volume/rbd/rbd.go 的 func (r *rbdVolumeProvisioner) Provision() (*v1.PersistentVolume, error) { 方法对 ceph-class.yaml 中的参数进行了验证和处理后调用了 pkg/volume/rbd/rdb_utils.go 文件第 344 行 CreateImage 方法(kubernetes v1.6.1版本): func (util *RBDUtil) CreateImage(p *rbdVolumeProvisioner) (r *v1.RBDVolumeSource, size int, err error) { var output []byte capacity := p.options.PVC.Spec.Resources.Requests[v1.ResourceName(v1.ResourceStorage)] volSizeBytes := capacity.Value() // convert to MB that rbd defaults on sz := int(volume.RoundUpSize(volSizeBytes, 1024*1024)) volSz := fmt.Sprintf(\"%d\", sz) // rbd create l := len(p.rbdMounter.Mon) // pick a mon randomly start := rand.Int() % l // iterate all monitors until create succeeds. for i := start; i 该方法调用失败。 参考 https://kubernetes.io/docs/concepts/storage/persistent-volumes/#ceph-rbd Error creating rbd image: executable file not found in $PATH#38923 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/rbd-provisioner.html":{"url":"practice/rbd-provisioner.html","title":"使用 rbd-provisioner 提供 rbd 持久化存储","keywords":"","body":"使用rbd-provisioner提供rbd持久化存储 rbd-provisioner为kubernetes 1.5+版本提供了类似于kubernetes.io/rbd的ceph rbd持久化存储动态配置实现。 一些用户会使用kubeadm来部署集群,或者将kube-controller-manager以容器的方式运行。这种方式下,kubernetes在创建使用ceph rbd pv/pvc时没任何问题,但使用dynamic provisioning自动管理存储生命周期时会报错。提示\"rbd: create volume failed, err: failed to create rbd image: executable file not found in $PATH:\"。 问题来自gcr.io提供的kube-controller-manager容器镜像未打包ceph-common组件,缺少了rbd命令,因此无法通过rbd命令为pod创建rbd image,查了github的相关文章,目前kubernetes官方在kubernetes-incubator/external-storage项目通过External Provisioners的方式来解决此类问题。 本文主要针对该问题,通过rbd-provisioner的方式,解决ceph rbd的dynamic provisioning问题。 参考链接RBD Volume Provisioner for Kubernetes 1.5+ 部署rbd-provisioner 首先得在kubernetes集群中安装rbd-provisioner,github仓库链接https://github.com/kubernetes-incubator/external-storage [root@k8s01 ~]# git clone https://github.com/kubernetes-incubator/external-storage.git [root@k8s01 ~]# cd external-storage/ceph/rbd/deploy [root@k8s01 deploy]# NAMESPACE=kube-system [root@k8s01 deploy]# sed -r -i \"s/namespace: [^ ]+/namespace: $NAMESPACE/g\" ./rbac/clusterrolebinding.yaml ./rbac/rolebinding.yaml [root@k8s01 deploy]# kubectl -n $NAMESPACE apply -f ./rbac 根据自己需要,修改rbd-provisioner的namespace; 部署完成后检查rbd-provisioner deployment,确保已经正常部署; [root@k8s01 ~]# kubectl describe deployments.apps -n kube-system rbd-provisioner Name: rbd-provisioner Namespace: kube-system CreationTimestamp: Sat, 13 Oct 2018 20:08:45 +0800 Labels: app=rbd-provisioner Annotations: deployment.kubernetes.io/revision: 1 kubectl.kubernetes.io/last-applied-configuration: {\"apiVersion\":\"extensions/v1beta1\",\"kind\":\"Deployment\",\"metadata\":{\"annotations\":{},\"name\":\"rbd-provisioner\",\"namespace\":\"kube-system\"},\"s... Selector: app=rbd-provisioner Replicas: 1 desired | 1 updated | 1 total | 1 available | 0 unavailable StrategyType: Recreate MinReadySeconds: 0 Pod Template: Labels: app=rbd-provisioner Service Account: rbd-provisioner Containers: rbd-provisioner: Image: quay.io/external_storage/rbd-provisioner:latest Port: Host Port: Environment: PROVISIONER_NAME: ceph.com/rbd Mounts: Volumes: Conditions: Type Status Reason ---- ------ ------ Available True MinimumReplicasAvailable OldReplicaSets: NewReplicaSet: rbd-provisioner-db574c5c (1/1 replicas created) Events: 创建storageclass 部署完rbd-provisioner,还需要创建StorageClass。创建SC前,我们还需要创建相关用户的secret; [root@k8s01 ~]# vi secrets.yaml apiVersion: v1 kind: Secret metadata: name: ceph-admin-secret namespace: kube-system type: \"kubernetes.io/rbd\" data: # ceph auth get-key client.admin | base64 key: QVFCdng4QmJKQkFsSFJBQWl1c1o0TGdOV250NlpKQ1BSMHFCa1E9PQ== --- apiVersion: v1 kind: Secret metadata: name: ceph-secret namespace: kube-system type: \"kubernetes.io/rbd\" data: # ceph auth add client.kube mon 'allow r' osd 'allow rwx pool=kube' # ceph auth get-key client.kube | base64 key: QVFCTHdNRmJueFZ4TUJBQTZjd1MybEJ2Q0JUcmZhRk4yL2tJQVE9PQ== [root@k8s01 ~]# kubectl create -f secrets.yaml [root@k8s01 ~]# vi secrets-default.yaml apiVersion: v1 kind: Secret metadata: name: ceph-secret type: \"kubernetes.io/rbd\" data: # ceph auth add client.kube mon 'allow r' osd 'allow rwx pool=kube' # ceph auth get-key client.kube | base64 key: QVFCTHdNRmJueFZ4TUJBQTZjd1MybEJ2Q0JUcmZhRk4yL2tJQVE9PQ== [root@k8s01 ~]# kubectl create -f secrets-default.yaml -n default 创建secret保存client.admin和client.kube用户的key,client.admin和client.kube用户的secret可以放在kube-system namespace,但如果其他namespace需要使用ceph rbd的dynamic provisioning功能的话,要在相应的namespace创建secret来保存client.kube用户key信息; [root@k8s01 ~]# vi ceph-rbd-sc.yaml apiVersion: storage.k8s.io/v1beta1 kind: StorageClass metadata: name: ceph-rbd annotations: storageclass.beta.kubernetes.io/is-default-class: \"true\" provisioner: ceph.com/rbd parameters: monitors: 172.16.16.81,172.16.16.82,172.16.16.83 adminId: admin adminSecretName: ceph-admin-secret adminSecretNamespace: kube-system pool: rbd userId: kube userSecretName: ceph-secret fsType: ext4 imageFormat: \"2\" imageFeatures: \"layering\" [root@k8s01 ~]# kubectl create -f ceph-rbd-sc.yaml 其他设置和普通的ceph rbd StorageClass一致,但provisioner需要设置为ceph.com/rbd,不是默认的kubernetes.io/rbd,这样rbd的请求将由rbd-provisioner来处理; 考虑到兼容性,建议尽量关闭rbd image feature,并且kubelet节点的ceph-common版本尽量和ceph服务器端保持一致,我的环境都使用的L版本; 测试ceph rbd自动分配 在kube-system和default namespace分别创建pod,通过启动一个busybox实例,将ceph rbd镜像挂载到/usr/share/busybox; [root@k8s01 ~]# vi test-pod.yaml apiVersion: v1 kind: Pod metadata: name: ceph-pod1 spec: containers: - name: ceph-busybox image: busybox command: [\"sleep\", \"60000\"] volumeMounts: - name: ceph-vol1 mountPath: /usr/share/busybox readOnly: false volumes: - name: ceph-vol1 persistentVolumeClaim: claimName: ceph-claim --- kind: PersistentVolumeClaim apiVersion: v1 metadata: name: ceph-claim spec: accessModes: - ReadWriteOnce resources: requests: storage: 2Gi [root@k8s01 ~]# kubectl create -f test-pod.yaml -n kube-system pod/ceph-pod1 created persistentvolumeclaim/ceph-claim created [root@k8s01 ~]# kubectl create -f test-pod.yaml -n default pod/ceph-pod1 created persistentvolumeclaim/ceph-claim created 检查pv和pvc的创建状态,是否都已经创建; [root@k8s01 ~]# kubectl get pvc NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE ceph-claim Bound pvc-ee0f1c35-cef7-11e8-8484-005056a33f16 2Gi RWO ceph-rbd 25s [root@k8s01 ~]# kubectl get pvc -n kube-system NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE ceph-claim Bound pvc-ea377cad-cef7-11e8-8484-005056a33f16 2Gi RWO ceph-rbd 36s [root@k8s01 ~]# kubectl get pv NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE pvc-ea377cad-cef7-11e8-8484-005056a33f16 2Gi RWO Delete Bound kube-system/ceph-claim ceph-rbd 40s pvc-ee0f1c35-cef7-11e8-8484-005056a33f16 2Gi RWO Delete Bound default/ceph-claim ceph-rbd 32s 在ceph服务器上,检查rbd镜像创建情况和镜像的信息; [root@k8s01 ~]# rbd ls --pool rbd kubernetes-dynamic-pvc-ea390cbf-cef7-11e8-aa22-0a580af40202 kubernetes-dynamic-pvc-eef5814f-cef7-11e8-aa22-0a580af40202 [root@k8s01 ~]# rbd info rbd/kubernetes-dynamic-pvc-ea390cbf-cef7-11e8-aa22-0a580af40202 rbd image 'kubernetes-dynamic-pvc-ea390cbf-cef7-11e8-aa22-0a580af40202': size 2048 MB in 512 objects order 22 (4096 kB objects) block_name_prefix: rbd_data.456876b8b4567 format: 2 features: layering flags: create_timestamp: Sat Oct 13 22:54:41 2018 [root@k8s01 ~]# rbd info rbd/kubernetes-dynamic-pvc-eef5814f-cef7-11e8-aa22-0a580af40202 rbd image 'kubernetes-dynamic-pvc-eef5814f-cef7-11e8-aa22-0a580af40202': size 2048 MB in 512 objects order 22 (4096 kB objects) block_name_prefix: rbd_data.ad6c6b8b4567 format: 2 features: layering flags: create_timestamp: Sat Oct 13 22:54:49 2018 检查busybox内的文件系统挂载和使用情况,确认能正常工作; [root@k8s01 ~]# kubectl exec -it ceph-pod1 mount |grep rbd /dev/rbd0 on /usr/share/busybox type ext4 (rw,seclabel,relatime,stripe=1024,data=ordered) [root@k8s01 ~]# kubectl exec -it -n kube-system ceph-pod1 mount |grep rbd /dev/rbd0 on /usr/share/busybox type ext4 (rw,seclabel,relatime,stripe=1024,data=ordered) [root@k8s01 ~]# kubectl exec -it -n kube-system ceph-pod1 df |grep rbd /dev/rbd0 1998672 6144 1976144 0% /usr/share/busybox [root@k8s01 ~]# kubectl exec -it ceph-pod1 df |grep rbd /dev/rbd0 1998672 6144 1976144 0% /usr/share/busybox 测试删除pod能否自动删除pv和pvc,生产环境中谨慎,设置好回收策略; [root@k8s01 ~]# kubectl delete -f test-pod.yaml pod \"ceph-pod1\" deleted persistentvolumeclaim \"ceph-claim\" deleted [root@k8s01 ~]# kubectl delete -f test-pod.yaml -n kube-system pod \"ceph-pod1\" deleted persistentvolumeclaim \"ceph-claim\" deleted [root@k8s01 ~]# kubectl get pv No resources found. [root@k8s01 ~]# kubectl get pvc No resources found. [root@k8s01 ~]# kubectl get pvc -n kube-system No resources found. ceph服务器上的rbd image也已清除,自动回收成功; [root@k8s01 ~]# rbd ls --pool rbd 确认之前创建的rbd images都已经删除; 总结 大部分情况下,我们无需使用rbd provisioner来提供ceph rbd的dynamic provisioning能力。经测试,在OpenShift、Rancher、SUSE CaaS以及本Handbook的二进制文件方式部署,在安装好ceph-common软件包的情况下,定义StorageClass时使用kubernetes.io/rbd即可正常使用ceph rbd provisioning功能。 参考 RBD Volume Provisioner for Kubernetes 1.5+ 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/openebs.html":{"url":"practice/openebs.html","title":"OpenEBS","keywords":"","body":"OpenEBS OpenEBS是一款使用Go语言编写的基于容器的块存储开源软件。OpenEBS使得在容器中运行关键性任务和需要数据持久化的负载变得更可靠。 OpenEBS由CloudByte研发,这是一家专业做容器化存储的公司,OpenEBS是其一款开源产品,CloudByte将其在企业级容器存储的经验付诸到该项目中。这个项目的愿景也很简单,就是让需要持久化存储的工作负载中的存储服务能够直接集成在环境中,存储服务可以自动管理,将存储的细节隐藏起来,就像存储系统是另一套基础架构一样。 我们知道AWS中提供了EBS(Elastic Block Storage),适用于 Amazon EC2 的持久性块存储,可以满足要求最苛刻的应用程序在功能和性能方面的要求,OpenEBS即其开源实现。 简介 使用OpenEBS,你可以将有持久化数据的容器,像对待其他普通容器一样来对待。OpenEBS本身也是通过容器来部署的,支持Kubernetes、Swarm、Mesos、Rancher编排调度,存储服务可以分派给每个pod、应用程序、集群或者容器级别,包括: 跨节点的数据持久化 跨可用区和云厂商的数据同步 使用商业硬件和容器引擎来提供高可扩展的块存储 与容器编排引擎集成,开发者的应用程序可以自动的配置OpenEBS 基于CloudByte在BSD的容器化经验,为用户提供OpenEBS的QoS保证 架构 OpenEBS存储控制器本身就运行在容器中。OpenEBS Volume由一个或多个以微服务方式运行的容器组成。这种存储控制器功能基于微服务架构——每个卷的数据由其自己的一组容器来提供,而不是由一个统一的同时为多个卷提供控制的,单体(monolithic)存储控制器来提供。这就是OpenEBS与传统存储设备的本质区别。 OpenEBS的架构可以分为数据平面(Data Plane)和控制平面(Control Plane)两部分: 数据平面:为应用程序提供数据存储 控制平面:管理OpenEBS卷容器,这通常会用到容器编排软件的功能 数据平面 下图是OpenEBS对应在Kubernetes集群上部署的架构图。其中,黄色部分是OpenEBS持久化存储卷,通过Kubernetes的PV来创建,使用iSCSI来实现,数据保存在node节点上或者云中的卷(如EBS、GPD等),这取决于您的集群部署在哪里。OpenEBS的卷完全独立于用户的应用的生命周期来管理,这也是Kuberentes中的PV的基本思路。 图 6.6.4.1:OpenEBS集群数据平面(图片来自https://github.com/openebs/openebs/blob/master/contribute/design/README.md) OpenEBS卷为容器提供持久化存储,具有针对系统故障的弹性,更快地访问存储,快照和备份功能。此外,它还提供了监控使用情况和执行QoS策略的机制。 存储数据的磁盘称为存储后端,可以是主机目录,附加块设备或远程磁盘。每个OpenEBS卷包含一个iSCSI目标容器(在上图中表示为openebs-vol1)和一个或多个副本容器(openebs-vol1-R1和openebs-vol1-R2)。 应用程序pod通过iSCSI目标容器访问存储,iSCSI目标容器将数据复制到其所有副本。在发生节点故障时,iSCSI目标容器将从剩余的其中一个在线节点上启动,并通过连接到可用副本容器来提供数据。 源码 该部分的实现包括两个容器: openebs/jiva:存储控制功能,包括复制逻辑 openebs/gotgt:由openebs/jiva使用的iSCSI目标功能 控制平面 OpenEBS控制平面又叫做存储编排或maya。目的是为了创建超融合的OpenEBS,将其挂载到如Kubernetes、Swarm、Nomad等容器编排调度引擎上,用来扩展特定的容器编排系统提供的存储功能。 图 6.6.4.2:OpenEBS集群的控制平面(图片来自https://github.com/openebs/openebs/blob/master/contribute/design/README.md) OpenEBS的控制平面也是基于微服务的,它的服务可以分成以下几个部分: 容器编排插件,用于增加强容器编排框架的功能: Kubernetes动态配置:openebs-provisioner Kubernetes-dashboard:openebs-dashboard 扩展的schema:基于Kubernetes的CRD(自定义资源类型),存储OpenEBS相关的配置数据 集群服务,提供OpenEBS特定的存储智能,如: maya-apiserver:包含执行卷操作的API,可将请求转换为容器编排系统特定的操作 maya-mulebot:使用收集的信息来建议优化的布局和事件处理提示 maya-connect:允许将监控数据上传到maya-cloud,以便进一步进行存储访问模式分析 节点服务,提供OpenEBS特定的随kubelet一起运行的存储智能,如: maya-agent:包括存储管理功能 通过使用prometheus、heapster、grafana和jaegar进行上述服务,可以添加监控和跟踪功能。 源码 openebs/maya:所有特定的二进制代码(非插件)都存储在这个仓库中,比如maya-apiserver、maya-agent、maya-mulebot、maya-connect、mayactl等等。 openebs-dashboard:kubernetes-dashboard项目的分支,扩展了存储功能。 openebs-provisioner:来自Kubernetes孵化器项目的OpenEBS K8s Provisioner。 参考 https://www.openebs.io/ https://github.com/openebs/openebs Data Scientists adopting tools and solutions that allow them to focus more on Data Science and less on the infrastructure around them 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/using-openebs-for-persistent-storage.html":{"url":"practice/using-openebs-for-persistent-storage.html","title":"使用 OpenEBS 做持久化存储","keywords":"","body":"使用OpenEBS做持久化存储 本文将指导您如何在Kubernetes集群上安装OpenEBS作为持久化存储。 我们将使用Operator的方式来安装OpenEBS,安装之前需要先确认您的节点上已经安装了iSCSI。 先决条件 OpenEBS依赖与iSCSI做存储管理,因此需要先确保您的集群上已有安装openiscsi。 注意:如果您使用kubeadm,容器方式安装的kublet,那么其中会自带iSCSI,不需要再手动安装,如果是直接使用二进制形式在裸机上安装的kubelet,则需要自己安装iSCSI。 iSCSI( Internet Small Computer System Interface 互联网小型计算机系统接口)是一种基于TCP/IP 的协议,用来建立和管理IP存储设备、主机和客户机等之间的相互连接,并创建存储区域网络(SAN)。SAN 使得SCSI 协议应用于高速数据传输网络成为可能,这种传输以数据块级别(block-level)在多个数据存储网络间进行。SCSI 结构基于C/S模式,其通常应用环境是:设备互相靠近,并且这些设备由SCSI 总线连接。 OpenEBS需要使用iSCSI作为存储协议,而CentOS上默认是没有安装该软件的,因此我们需要手动安装。 iSCSI中包括两种类型的角色: target:用来提供存储(server) initiator:使用存储的客户端(client) 下图在Kubernetes中使用iSCSI的架构图(图片来源:http://rootfs.github.io/iSCSI-Kubernetes/)。 图 6.6.4.1.1:Kubernetes iSCSI架构 安装iSCSI服务十分简单,不需要额外的配置,只要安装后启动服务即可。 在每个node节点上执行下面的命令: yum -y install iscsi-initiator-utils systemctl enable iscsid systemctl start iscsid 快速开始 使用Operator运行OpenEBS服务: wget https://raw.githubusercontent.com/openebs/openebs/master/k8s/openebs-operator.yaml kubectl apply -f openebs-operator.yaml 使用默认或自定义的storageclass: wget https://raw.githubusercontent.com/openebs/openebs/master/k8s/openebs-storageclasses.yaml kubectl apply -f openebs-storageclasses.yaml 用到的镜像有: openebs/m-apiserver:0.5.1-RC1 openebs/openebs-k8s-provisioner:0.5.1-RC2 openebs/jiva:0.5.1-RC1 openebs/m-exporter:0.5.0 测试 下面使用OpenEBS官方文档中的示例,安装Jenkins测试 wget https://raw.githubusercontent.com/openebs/openebs/master/k8s/demo/jenkins/jenkins.yml kubectl apply -f jenkins.yml 查看PV和PVC $ kubectl get pv NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE pvc-8e203e86-f1e5-11e7-aa47-f4e9d49f8ed0 5G RWO Delete Bound default/jenkins-claim openebs-standard 1h $ kubectl get pvc kubectl get pvc NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE jenkins-claim Bound pvc-8e203e86-f1e5-11e7-aa47-f4e9d49f8ed0 5G RWO openebs-standard 1h 查看Jenkins pod Events: Type Reason Age From Message ---- ------ ---- ---- ------- Warning FailedScheduling 29m (x2 over 29m) default-scheduler PersistentVolumeClaim is not bound: \"jenkins-claim\" (repeated 3 times) Normal Scheduled 29m default-scheduler Successfully assigned jenkins-668dfbd847-vhg4c to 172.20.0.115 Normal SuccessfulMountVolume 29m kubelet, 172.20.0.115 MountVolume.SetUp succeeded for volume \"default-token-3l9f0\" Warning FailedMount 27m kubelet, 172.20.0.115 Unable to mount volumes for pod \"jenkins-668dfbd847-vhg4c_default(8e2ad467-f1e5-11e7-aa47-f4e9d49f8ed0)\": timeout expired waiting for volumes to attach/mount for pod \"default\"/\"jenkins-668dfbd847-vhg4c\". list of unattached/unmounted volumes=[jenkins-home] Warning FailedSync 27m kubelet, 172.20.0.115 Error syncing pod Normal SuccessfulMountVolume 26m kubelet, 172.20.0.115 MountVolume.SetUp succeeded for volume \"pvc-8e203e86-f1e5-11e7-aa47-f4e9d49f8ed0\" Normal Pulling 26m kubelet, 172.20.0.115 pulling image \"harbor-001.jimmysong.io/library/jenkins:lts\" Normal Pulled 26m kubelet, 172.20.0.115 Successfully pulled image \"harbor-001.jimmysong.io/library/jenkins:lts\" Normal Created 26m kubelet, 172.20.0.115 Created container Normal Started 26m kubelet, 172.20.0.115 Started container 启动成功。Jenkins配置使用的是NodePort方式访问,现在访问集群中任何一个节点的Jenkins service的NodePort即可。 存储策略 OpenEBS的存储策略使用StorageClaass实现,包括如下的StorageClass: openebs-cassandra openebs-es-data-sc openebs-jupyter openebs-kafka openebs-mongodb openebs-percona openebs-redis openebs-standalone openebs-standard openebs-zk 参考 CentOS 7.x 下配置iSCSI网络存储 Configure iSCSI Initiator RHEL7: Configure a system as either an iSCSI target or initiator that persistently mounts an iSCSI target. 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/rook.html":{"url":"practice/rook.html","title":"Rook","keywords":"","body":"Rook Rook是一款云原生环境下的开源分布式存储编排系统,目前已进入CNCF孵化。Rook的官方网站是https://rook.io。 Rook是什么? Rook将分布式存储软件转变为自我管理,自我缩放和自我修复的存储服务。它通过自动化部署,引导、配置、供应、扩展、升级、迁移、灾难恢复、监控和资源管理来实现。 Rook使用基础的云原生容器管理、调度和编排平台提供的功能来履行其职责。 Rook利用扩展点深入融入云原生环境,为调度、生命周期管理、资源管理、安全性、监控和用户体验提供无缝体验。 Rook现在处于alpha状态,并且最初专注于在Kubernetes之上运行Ceph。Ceph是一个分布式存储系统,提供文件、数据块和对象存储,可以部署在大型生产集群中。Rook计划在未来的版本中增加对除Ceph之外的其他存储系统以及Kubernetes之外的其他云原生环境的支持。 部署 可以使用helm或直接用yaml文件两种方式来部署rook operator。 使用helm部署 helm init -i jimmysong/kubernetes-helm-tiller:v2.8.1 helm repo add rook-alpha https://charts.rook.io/alpha helm install rook-alpha/rook --name rook --namespace rook-system 直接使用yaml文件部署 kubectl apply -f rook-operator.yaml 不论使用那种方式部署的rook operator,都会在rook-agent中看到rook-agent用户无法列出集群中某些资源的错误,可以通过为rook-agent的分配cluster-admin权限临时解决,详见Issue 1472。 使用如下yanl文件创建一个ClusterRoleBinding并应用到集群中。 kind: ClusterRoleBinding apiVersion: rbac.authorization.k8s.io/v1beta1 metadata: name: rookagent-clusterrolebinding subjects: - kind: ServiceAccount name: rook-agent namespace: rook-system roleRef: kind: ClusterRole name: cluster-admin apiGroup: \"\" 部署rook cluster 创建完rook operator后,我们再部署rook cluster。 rook-cluster.yaml配置如下: apiVersion: v1 kind: Namespace metadata: name: rook --- apiVersion: rook.io/v1alpha1 kind: Cluster metadata: name: rook namespace: rook spec: versionTag: v0.6.2 dataDirHostPath: /var/lib/rook storage: useAllNodes: true useAllDevices: false storeConfig: storeType: bluestore databaseSizeMB: 1024 journalSizeMB: 1024 注意:需要手动指定versionTag,因为该镜像repo中没有latest标签,如不指定的话Pod将出现镜像拉取错误。 执行下面的命令部署rook集群。 kubectl apply -f rook-cluster.yaml rook集群运行在rook namespace下,查看rook集群中的pod: $ kubectl -n rook get pod NAME READY STATUS RESTARTS AGE rook-api-848df956bf-q6zf2 1/1 Running 0 4m rook-ceph-mgr0-cfccfd6b8-cpk5p 1/1 Running 0 4m rook-ceph-mon0-t496l 1/1 Running 0 6m rook-ceph-mon1-zcn7v 1/1 Running 0 5m rook-ceph-mon3-h97qx 1/1 Running 0 3m rook-ceph-osd-557tn 1/1 Running 0 4m rook-ceph-osd-74frb 1/1 Running 0 4m rook-ceph-osd-zf7rg 1/1 Running 1 4m rook-tools 1/1 Running 0 2m 部署StorageClass StorageClass rook-block的yaml文件(rook-storage.yaml)如下: apiVersion: rook.io/v1alpha1 kind: Pool metadata: name: replicapool namespace: rook spec: replicated: size: 1 # For an erasure-coded pool, comment out the replication size above and uncomment the following settings. # Make sure you have enough OSDs to support the replica size or erasure code chunks. #erasureCoded: # dataChunks: 2 # codingChunks: 1 --- apiVersion: storage.k8s.io/v1 kind: StorageClass metadata: name: rook-block provisioner: rook.io/block parameters: pool: replicapool # Specify the Rook cluster from which to create volumes. # If not specified, it will use `rook` as the name of the cluster. # This is also the namespace where the cluster will be clusterName: rook # Specify the filesystem type of the volume. If not specified, it will use `ext4`. # fstype: ext4 我们在下面的示例中将使用rook-block这个StorageClass来创建PV。 工具 部署rook操作工具pod,该工具pod的yaml文件(rook-tools.yaml)如下: apiVersion: v1 kind: Pod metadata: name: rook-tools namespace: rook-system spec: dnsPolicy: ClusterFirstWithHostNet serviceAccountName: rook-operator containers: - name: rook-tools image: rook/toolbox:master imagePullPolicy: IfNotPresent env: - name: ROOK_ADMIN_SECRET valueFrom: secretKeyRef: name: rook-ceph-mon key: admin-secret securityContext: privileged: true volumeMounts: - mountPath: /dev name: dev - mountPath: /sys/bus name: sysbus - mountPath: /lib/modules name: libmodules - name: mon-endpoint-volume mountPath: /etc/rook hostNetwork: false volumes: - name: dev hostPath: path: /dev - name: sysbus hostPath: path: /sys/bus - name: libmodules hostPath: path: /lib/modules - name: mon-endpoint-volume configMap: name: rook-ceph-mon-endpoints items: - key: endpoint path: mon-endpoints ConfigMap和Secret中的配置项内容是自定义的。 使用下面的命令部署工具pod: kubectl apply -f rook-tools.yaml 这是一个独立的pod,没有使用其他高级的controller来管理,我们将它部署在rook-system的namespace下。 kubectl -n rook exec -it rook-tools bash 使用下面的命令查看rook集群状态。 $ rookctl status OVERALL STATUS: OK USAGE: TOTAL USED DATA AVAILABLE 37.95 GiB 1.50 GiB 0 B 36.45 GiB MONITORS: NAME ADDRESS IN QUORUM STATUS rook-ceph-mon0 10.254.162.99:6790/0 true UNKNOWN MGRs: NAME STATUS rook-ceph-mgr0 Active OSDs: TOTAL UP IN FULL NEAR FULL 1 1 1 false false PLACEMENT GROUPS (0 total): STATE COUNT none $ ceph df GLOBAL: SIZE AVAIL RAW USED %RAW USED 38861M 37323M 1537M 3.96 POOLS: NAME ID USED %USED MAX AVAIL OBJECTS 示例 官方提供了使用rook作为典型的LAMP(Linux + Apache + MySQL + PHP)应用Wordpress的存储后端的示例的yaml文件mysql.yaml和wordpress.yaml,使用下面的命令创建。 kubectl apply -f mysql.yaml kubectl apply -f wordpress.yaml Wordpress要依赖于MySQL,所以要先创建MySQL。 在创建wordpress的时候可能遇到该错误rook flexvolume failing to attach volumes #1147,该问题尚未解决。 清理 如果使用helm部署,则执行下面的命令: helm delete --purge rook helm delete daemonset rook-agent 如果使用yaml文件直接部署,则使用kubectl delete -f加当初使用的yaml文件即可删除集群。 参考 Operator Helm Chart Creating Rook Clusters 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/nfs.html":{"url":"practice/nfs.html","title":"NFS","keywords":"","body":"NFS(Network File System)网络文件系统 NFS(Network File System)即网络文件系统,是FreeBSD支持的文件系统中的一种,它允许网络中的计算机之间通过TCP/IP网络共享资源。在NFS的应用中,本地NFS的客户端应用可以透明地读写位于远端NFS服务器上的文件,就像访问本地文件一样。在Linux系统中,NFS也作为一种简单的网络共享文件系统而存在。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/using-nfs-for-persistent-storage.html":{"url":"practice/using-nfs-for-persistent-storage.html","title":"利用 NFS 动态提供 Kubernetes 后端存储卷","keywords":"","body":"利用NFS动态提供Kubernetes后端存储卷 本文翻译自nfs-client-provisioner的说明文档,本文将介绍使用nfs-client-provisioner这个应用,利用NFS Server给Kubernetes作为持久存储的后端,并且动态提供PV。前提条件是有已经安装好的NFS服务器,并且NFS服务器与Kubernetes的Slave节点都能网络连通。 所有下文用到的文件来自于git clone https://github.com/kubernetes-incubator/external-storage.git的nfs-client目录。 nfs-client-provisioner nfs-client-provisioner 是一个Kubernetes的简易NFS的外部provisioner,本身不提供NFS,需要现有的NFS服务器提供存储 PV以 ${namespace}-${pvcName}-${pvName}的命名格式提供(在NFS服务器上) PV回收的时候以 archieved-${namespace}-${pvcName}-${pvName} 的命名格式(在NFS服务器上) 安装部署 修改deployment文件并部署 deploy/deployment.yaml 需要修改的地方只有NFS服务器所在的IP地址(10.10.10.60),以及NFS服务器共享的路径(/ifs/kubernetes),两处都需要修改为你实际的NFS服务器和共享目录 kind: Deployment apiVersion: extensions/v1beta1 metadata: name: nfs-client-provisioner spec: replicas: 1 strategy: type: Recreate template: metadata: labels: app: nfs-client-provisioner spec: serviceAccountName: nfs-client-provisioner containers: - name: nfs-client-provisioner image: quay.io/external_storage/nfs-client-provisioner:latest volumeMounts: - name: nfs-client-root mountPath: /persistentvolumes env: - name: PROVISIONER_NAME value: fuseim.pri/ifs - name: NFS_SERVER value: 10.10.10.60 - name: NFS_PATH value: /ifs/kubernetes volumes: - name: nfs-client-root nfs: server: 10.10.10.60 path: /ifs/kubernetes 修改StorageClass文件并部署 deploy/class.yaml 此处可以不修改,或者修改provisioner的名字,需要与上面的deployment的PROVISIONER_NAME名字一致。 apiVersion: storage.k8s.io/v1 kind: StorageClass metadata: name: managed-nfs-storage provisioner: fuseim.pri/ifs 授权 如果您的集群启用了RBAC,或者您正在运行OpenShift,则必须授权provisioner。 如果你在非默认的“default”名称空间/项目之外部署,可以编辑deploy/auth/clusterrolebinding.yaml或编辑`oadm policy“指令。 如果启用了RBAC 需要执行如下的命令来授权。 $ kubectl create -f deploy/auth/serviceaccount.yaml serviceaccount \"nfs-client-provisioner\" created $ kubectl create -f deploy/auth/clusterrole.yaml clusterrole \"nfs-client-provisioner-runner\" created $ kubectl create -f deploy/auth/clusterrolebinding.yaml clusterrolebinding \"run-nfs-client-provisioner\" created $ kubectl patch deployment nfs-client-provisioner -p '{\"spec\":{\"template\":{\"spec\":{\"serviceAccount\":\"nfs-client-provisioner\"}}}}' 测试 测试创建PVC kubectl create -f deploy/test-claim.yaml 测试创建POD kubectl create -f deploy/test-pod.yaml 在NFS服务器上的共享目录下的卷子目录中检查创建的NFS PV卷下是否有\"SUCCESS\" 文件。 删除测试POD kubectl delete -f deploy/test-pod.yaml 删除测试PVC kubectl delete -f deploy/test-claim.yaml 在NFS服务器上的共享目录下查看NFS的PV卷回收以后是否名字以archived开头。 我的示例 NFS服务器配置 # cat /etc/exports /media/docker *(no_root_squash,rw,sync,no_subtree_check) nfs-deployment.yaml示例 NFS服务器的地址是ubuntu-master,共享出来的路径是/media/docker,其他不需要修改。 # cat nfs-deployment.yaml kind: Deployment apiVersion: extensions/v1beta1 metadata: name: nfs-client-provisioner spec: replicas: 1 strategy: type: Recreate template: metadata: labels: app: nfs-client-provisioner spec: serviceAccountName: nfs-client-provisioner containers: - name: nfs-client-provisioner image: quay.io/external_storage/nfs-client-provisioner:latest volumeMounts: - name: nfs-client-root mountPath: /persistentvolumes env: - name: PROVISIONER_NAME value: fuseim.pri/ifs - name: NFS_SERVER value: ubuntu-master - name: NFS_PATH value: /media/docker volumes: - name: nfs-client-root nfs: server: ubuntu-master path: /media/docker StorageClass示例 可以修改Class的名字,我的改成了default。 # cat class.yaml apiVersion: storage.k8s.io/v1 kind: StorageClass metadata: name: default provisioner: fuseim.pri/ifs 查看StorageClass # kubectl get sc NAME PROVISIONER AGE default fuseim.pri/ifs 2d 设置这个default名字的SC为Kubernetes的默认存储后端 # kubectl patch storageclass default -p '{\"metadata\": {\"annotations\":{\"storageclass.kubernetes.io/is-default-class\":\"true\"}}}' storageclass.storage.k8s.io \"default\" patched # kubectl get sc NAME PROVISIONER AGE default (default) fuseim.pri/ifs 2d 测试创建PVC 查看pvc文件 # cat test-claim.yaml kind: PersistentVolumeClaim apiVersion: v1 metadata: name: test-claim spec: accessModes: - ReadWriteMany resources: requests: storage: 1Mi 创建PVC # kubectl apply -f test-claim.yaml persistentvolumeclaim \"test-claim\" created root@Ubuntu-master:~/kubernetes/nfs# kubectl get pvc|grep test test-claim Bound pvc-fe3cb938-3f15-11e8-b61d-08002795cb26 1Mi RWX default 10s # kubectl get pv|grep test pvc-fe3cb938-3f15-11e8-b61d-08002795cb26 1Mi RWX Delete Bound default/test-claim default 58s 启动测试POD POD文件如下,作用就是在test-claim的PV里touch一个SUCCESS文件。 # cat test-pod.yaml kind: Pod apiVersion: v1 metadata: name: test-pod spec: containers: - name: test-pod image: gcr.io/google_containers/busybox:1.24 command: - \"/bin/sh\" args: - \"-c\" - \"touch /mnt/SUCCESS && exit 0 || exit 1\" volumeMounts: - name: nfs-pvc mountPath: \"/mnt\" restartPolicy: \"Never\" volumes: - name: nfs-pvc persistentVolumeClaim: claimName: test-claim 启动POD,一会儿POD就是completed状态,说明执行完毕。 # kubectl apply -f test-pod.yaml pod \"test-pod\" created kubectl get pod|grep test test-pod 0/1 Completed 0 40s 我们去NFS共享目录查看有没有SUCCESS文件。 # cd default-test-claim-pvc-fe3cb938-3f15-11e8-b61d-08002795cb26 # ls SUCCESS 说明部署正常,并且可以动态分配NFS的共享卷。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/monitoring.html":{"url":"practice/monitoring.html","title":"集群与应用监控","keywords":"","body":"监控 Kubernetes 使得管理复杂环境变得更简单,但是对 kubernetes 本身的各种组件还有运行在 kubernetes 集群上的各种应用程序做到很好的洞察就很难了。Kubernetes 本身对应用程序的做了很多抽象,在生产环境下对这些不同的抽象组件的健康就是迫在眉睫的事情。 我们在安装 kubernetes 集群的时候,默认安装了 kubernetes 官方提供的 heapster 插件,可以对 kubernetes 集群上的应用进行简单的监控,获取 pod 级别的内存、CPU和网络监控信息,同时还能够通过 API 监控 kubernetes 中的基本资源监控指标。 然而,Prometheus 的出现让人眼前一亮,与 kubernetes 一样同样为 CNCF 中的项目,而且是第一个加入到 CNCF 中的项目。 Prometheus 是由 SoundCloud 开源监控告警解决方案,从 2012 年开始编写代码,再到 2015 年 GitHub 上开源以来,已经吸引了 9k+ 关注,以及很多大公司的使用;2016 年 Prometheus 成为继 k8s 后,第二名 CNCF(Cloud Native Computing Foundation) 成员。 作为新一代开源解决方案,很多理念与 Google SRE 运维之道不谋而合。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/heapster.html":{"url":"practice/heapster.html","title":"Heapster","keywords":"","body":"Heapster Heapster作为kubernetes安装过程中默认安装的一个插件,见安装heapster插件。这对于集群监控十分有用,同时在Horizontal Pod Autoscaling中也用到了,HPA将Heapster作为Resource Metrics API,向其获取metric,做法是在kube-controller-manager 中配置--api-server指向kube-aggregator,也可以使用heapster来实现,通过在启动heapster的时候指定--api-server=true。 Heapster可以收集Node节点上的cAdvisor数据,还可以按照kubernetes的资源类型来集合资源,比如Pod、Namespace域,可以分别获取它们的CPU、内存、网络和磁盘的metric。默认的metric数据聚合时间间隔是1分钟。 注意 :Kubernetes 1.11 不建议使用 Heapster,就 SIG Instrumentation 而言,这是为了转向新的 Kubernetes 监控模型的持续努力的一部分。仍使用 Heapster 进行自动扩展的集群应迁移到 metrics-server 和自定义指标 API。 参考 metrics-server - github.com 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/using-heapster-to-get-object-metrics.html":{"url":"practice/using-heapster-to-get-object-metrics.html","title":"使用 Heapster 获取集群和对象的 metric 数据","keywords":"","body":"使用Heapster获取集群对象的metric数据 Heapster作为kubernetes安装过程中默认安装的一个插件,见安装heapster插件。这对于集群监控十分有用,同时在Horizontal Pod Autoscaling中也用到了,HPA将Heapster作为Resource Metrics API,向其获取metric,做法是在kube-controller-manager 中配置--api-server指向kube-aggregator,也可以使用heapster来实现,通过在启动heapster的时候指定--api-server=true。 Heapster可以收集Node节点上的cAdvisor数据,还可以按照kubernetes的资源类型来集合资源,比如Pod、Namespace域,可以分别获取它们的CPU、内存、网络和磁盘的metric。默认的metric数据聚合时间间隔是1分钟。 架构 下面是Heapster架构图: 图 6.7.1.1.1:Heapster架构图 Heapser是用Go语言开发Kubernetes集群计算资源使用情况的数据采集工具,编译后可以直接以一个二进制文件运行,通过向heapster传递的参数来指定数据采集行为,这些数据可以选择多种sink方式,例如Graphite、influxDB、OpenTSDB、ElasticSearch、Kafka等。 使用案例 Heapster使用起来很简单,本身就是二进制文件,直接使用命令行启动,也可以放在容器里运行,在作为kubernetes插件运行时,我们是直接放在容器中的,见安装heapster插件。 运行 下面是heapster的启动参数: Flag Description --allowed-users string comma-separated list of allowed users --alsologtostderr log to standard error as well as files --api-server Enable API server for the Metrics API. If set, the Metrics API will be served on --insecure-port (internally) and --secure-port (externally). --authentication-kubeconfig string kubeconfig file pointing at the 'core' kubernetes server with enough rights to create tokenaccessreviews.authentication.k8s.io. --authentication-token-webhook-cache-ttl duration The duration to cache responses from the webhook token authenticator. (default 10s) --authorization-kubeconfig string kubeconfig file pointing at the ‘core' kubernetes server with enough rights to create subjectaccessreviews.authorization.k8s.io --authorization-webhook-cache-authorized-ttl duration The duration to cache 'authorized' responses from the webhook authorizer. (default 10s) --authorization-webhook-cache-unauthorized-ttl duration The duration to cache 'unauthorized' responses from the webhook authorizer. (default 10s) --bind-address ip The IP address on which to listen for the --secure-port port. The associated interface(s) must be reachable by the rest of the cluster, and by CLI/web clients. If blank, all interfaces will be used (0.0.0.0). (default 0.0.0.0) --cert-dir string The directory where the TLS certs are located (by default /var/run/kubernetes). If --tls-cert-file and --tls-private-key-file are provided, this flag will be ignored. (default \"/var/run/kubernetes\") --client-ca-file string If set, any request presenting a client certificate signed by one of the authorities in the client-ca-file is authenticated with an identity corresponding to the CommonName of the client certificate. --contention-profiling Enable contention profiling. Requires --profiling to be set to work. --disable-export Disable exporting metrics in api/v1/metric-export --enable-swagger-ui Enables swagger ui on the apiserver at /swagger-ui --heapster-port int port used by the Heapster-specific APIs (default 8082) --historical-source string which source type to use for the historical API (should be exactly the same as one of the sink URIs), or empty to disable the historical API --label-seperator string seperator used for joining labels (default \",\") --listen-ip string IP to listen on, defaults to all IPs --log-backtrace-at traceLocation when logging hits line file:N, emit a stack trace (default :0) --log-dir string If non-empty, write log files in this directory --log-flush-frequency duration Maximum number of seconds between log flushes (default 5s) --logtostderr log to standard error instead of files (default true) --max-procs int max number of CPUs that can be used simultaneously. Less than 1 for default (number of cores) --metric-resolution duration The resolution at which heapster will retain metrics. (default 1m0s) --profiling Enable profiling via web interface host:port/debug/pprof/ (default true) --requestheader-allowed-names stringSlice List of client certificate common names to allow to provide usernames in headers specified by --requestheader-username-headers. If empty, any client certificate validated by the authorities in --requestheader-client-ca-file is allowed. --requestheader-client-ca-file string Root certificate bundle to use to verify client certificates on incoming requests before trusting usernames in headers specified by --requestheader-username-headers --requestheader-extra-headers-prefix stringSlice List of request header prefixes to inspect. X-Remote-Extra- is suggested. (default [x-remote-extra-]) --requestheader-group-headers stringSlice List of request headers to inspect for groups. X-Remote-Group is suggested. (default [x-remote-group]) --requestheader-username-headers stringSlice List of request headers to inspect for usernames. X-Remote-User is common. (default [x-remote-user]) --secure-port int The port on which to serve HTTPS with authentication and authorization. If 0, don't serve HTTPS at all. (default 6443) --sink *flags.Uris external sink(s) that receive data (default []) --source *flags.Uris source(s) to watch (default []) --stderrthreshold severity logs at or above this threshold go to stderr (default 2) --tls-ca-file string If set, this certificate authority will used for secure access from Admission Controllers. This must be a valid PEM-encoded CA bundle. Altneratively, the certificate authority can be appended to the certificate provided by --tls-cert-file. --tls-cert string file containing TLS certificate --tls-cert-file string File containing the default x509 Certificate for HTTPS. (CA cert, if any, concatenated after server cert). If HTTPS serving is enabled, and --tls-cert-file and --tls-private-key-file are not provided, a self-signed certificate and key are generated for the public address and saved to /var/run/kubernetes. --tls-client-ca string file containing TLS client CA for client cert validation --tls-key string file containing TLS key --tls-private-key-file string File containing the default x509 private key matching --tls-cert-file. --tls-sni-cert-key namedCertKey A pair of x509 certificate and private key file paths, optionally suffixed with a list of domain patterns which are fully qualified domain names, possibly with prefixed wildcard segments. If no domain patterns are provided, the names of the certificate are extracted. Non-wildcard matches trump over wildcard matches, explicit domain patterns trump over extracted names. For multiple key/certificate pairs, use the --tls-sni-cert-key multiple times. Examples: \"example.key,example.crt\" or \"*.foo.com,foo.com:foo.key,foo.crt\". (default []) --v Level log level for V logs --version print version info and exit --vmodule moduleSpec comma-separated list of pattern=N settings for file-filtered logging Version version: v1.4.0 commit: 546ab66f API使用 Heapster提供RESTful API接口,下面以获取spark-cluster namespace的memory usage为例讲解Heapster API的使用。 构造URL地址 https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-system/services/heapster/api/v1/model/namespaces/spark-cluster/metrics/memory/usage?start=2017-10-16T09:14:00Z&end=2017-10-16T09:16:00Z 结果 访问该地址获取的结果是这样的: { \"metrics\": [ { \"timestamp\": \"2017-10-16T09:14:00Z\", \"value\": 322592768 }, { \"timestamp\": \"2017-10-16T09:15:00Z\", \"value\": 322592768 }, { \"timestamp\": \"2017-10-16T09:16:00Z\", \"value\": 322592768 } ], \"latestTimestamp\": \"2017-10-16T09:16:00Z\" } 注意:Heapster中查询的所有值都是以最小单位为单位,比如CPU为1milicore,内存为B。 第一部分:Heapster API地址 https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-system/services/heapster/ 可以使用下面的命令获取: $ kubectl cluster-info Heapster is running at https://172.20.0.113:6443/api/v1/proxy/namespaces/kube-system/services/heapster ... 第二部分:Heapster API参数 /api/v1/model/namespaces/spark-cluster/metrics/memory/usage 表示查询的是spark-cluster namespace中的memory/usage的metrics。 第三部分:时间片 ?start=2017-10-16T09:14:00Z&end=2017-10-16T09:16:00Z 查询参数为时间片:包括start和end。使用RFC-3339时间格式,在Linux系统中可以这样获取: $ date --rfc-3339=\"seconds\" 2017-10-16 17:23:20+08:00 该时间中的空格替换成T,最后的+08:00替换成Z代表时区。可以只指定start时间,end时间自动设置为当前时间。 参考 kubernetes metrics Heapster metric model Heapster storage schema 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/prometheus.html":{"url":"practice/prometheus.html","title":"Prometheus","keywords":"","body":"Prometheus Prometheus 是由 SoundCloud 开源监控告警解决方案,从 2012 年开始编写代码,2015 年 GitHub 上开源,2016 年 Prometheus 成为继 Kubernetes 之后,成为 CNCF (Cloud Native Computing Foundation)中的第二个项目成员,也是第二个正式毕业的项目。作为新一代开源解决方案,Prometheus 的很多设计理念与 Google SRE 运维之道不谋而合。 监控作为可观察性实践(监控、日志、追踪)中的关键一环,相较以往的系统监控,在云原生时代产生了诸多变化。一是微服务和容器化,导致监控对象和指标的指数级增加;二是监控对象的生命周期更加短暂,导致监控数据量和复杂度的成倍增加。这就需要一款统一监控指标和数据查询语言的工具,Prometheus 应运而生了。Pemetheus 可以很方便的与众多开源项目集成,帮助我们了解系统和服务的运行状态,另一方面分析其收集的大数据,可以帮助我们进行系统优化和作出决策。它不仅是可以应用在 IT 领域,对于任何需要收集指标数据的情形下都可以使用。 主要功能 多维 数据模型(时序由 metric 名字和 k/v 的 labels 构成)。 灵活的查询语句(PromQL)。 无依赖存储,支持 local 和 remote 不同模型。 采用 http 协议,使用 pull 模式,拉取数据,简单易懂。 监控目标,可以采用服务发现或静态配置的方式。 支持多种统计数据模型,图形化友好。 核心组件 Prometheus Server, 主要用于抓取数据和存储时序数据,另外还提供查询和 Alert Rule 配置管理。 client libraries,用于对接 Prometheus Server, 可以查询和上报数据。 push gateway ,用于批量,短期的监控数据的汇总节点,主要用于业务数据汇报等。 各种汇报数据的 exporters ,例如汇报机器数据的 node_exporter, 汇报 MongoDB 信息的 MongoDB exporter 等等。 用于告警通知管理的 alertmanager 。 基础架构 一图胜千言,先来张官方的架构图: 图 6.7.2.1:Prometheus 架构图 从这个架构图,也可以看出 Prometheus 的主要模块包含:Server、Exporters、Pushgateway、PromQL、Alertmanager、WebUI 等。 它大致使用逻辑是这样: Prometheus server 定期从静态配置的 target 或者服务发现的 target 拉取数据。 当新拉取的数据大于配置内存缓存区的时候,Prometheus 会将数据持久化到磁盘(如果使用 remote storage 将持久化到云端)。 Prometheus 可以配置 rule,然后定时查询数据,当条件触发的时候,会将 alert 推送到配置的 Alertmanager。 Alertmanager 收到警告的时候,可以根据配置,聚合、去重、降噪,最后发送警告。 可以使用 API、Prometheus Console 或者 Grafana 查询和聚合数据。 注意 Prometheus 的数据是基于时序的 float64 的值,如果你的数据值还有其他类型,Prometheus 则无法满足。 Prometheus 不适合做审计计费,因为它的数据是按一定时间采集的,关注的更多是系统的运行瞬时状态以及趋势,即使有少量数据没有采集也能容忍,但是审计计费需要记录每个请求,并且数据长期存储,这个和 Prometheus 无法满足,可能需要采用专门的审计系统。 参考 Prometheus practice - github.com Prometheus overview - prometheus.io 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/using-prometheus-to-monitor-kuberentes-cluster.html":{"url":"practice/using-prometheus-to-monitor-kuberentes-cluster.html","title":"使用 Prometheus 监控 kubernetes 集群","keywords":"","body":"使用Prometheus监控kubernetes集群 我们使用 Giantswarm 开源的 kubernetes-promethues 来监控 kubernetes 集群,所有的 YAML 文件可以在 ../manifests/prometheus 目录下找到。 需要用到的镜像有: harbor-001.jimmysong.io/library/prometheus-alertmanager:v0.7.1 harbor-001.jimmysong.io/library/grafana:4.2.0 harbor-001.jimmysong.io/library/giantswarm-tiny-tools:latest harbor-001.jimmysong.io/library/prom-prometheus:v1.7.0 harbor-001.jimmysong.io/library/kube-state-metrics:v1.0.1 harbor-001.jimmysong.io/library/dockermuenster-caddy:0.9.3 harbor-001.jimmysong.io/library/prom-node-exporter:v0.14.0 注:所有镜像都是从官方镜像仓库下载下。 部署 我将部署时需要用的的配置文件分成了 namespace、serviceaccount、configmaps、clusterrolebinding 和最后的部署 prometheus、grafana 的过程。 ## 创建 monitoring namespaece kubectl create -f prometheus-monitoring-ns.yaml ## 创建 serviceaccount kubectl create -f prometheus-monitoring-serviceaccount.yaml ## 创建 configmaps kubectl create -f prometheus-configmaps.yaml ## 创建 clusterrolebinding kubectl create clusterrolebinding kube-state-metrics --clusterrole=cluster-admin --serviceaccount=monitoring:kube-state-metrics kubectl create clusterrolebinding prometheus --clusterrole=cluster-admin --serviceaccount=monitoring:prometheus ## 部署 Prometheus kubectl create -f prometheus-monitoring.yaml 访问 kubernetes 任何一个 node 上的 Grafana service 的 nodeport: 图 6.7.2.1.1:Grafana页面 该图中的数据显示明显有问题,还需要修正。 prometheus-monitoring.yaml 文件中有一个 Job 就是用来导入 grafana dashboard 配置信息的,如果该 Job 执行失败,可以单独在在 monitoring 的 namespace 中启动一个容器,将 manifests/prometheus 目录下的 json 文件复制到容器中,然后进入容器 json 文件的目录下执行: for file in *-datasource.json ; do if [ -e \"$file\" ] ; then echo \"importing $file\" && curl --silent --fail --show-error \\ --request POST http://admin:admin@grafana:3000/api/datasources \\ --header \"Content-Type: application/json\" \\ --data-binary \"@$file\" ; echo \"\" ; fi done ; for file in *-dashboard.json ; do if [ -e \"$file\" ] ; then echo \"importing $file\" && ( echo '{\"dashboard\":'; \\ cat \"$file\"; \\ echo ',\"overwrite\":true,\"inputs\":[{\"name\":\"DS_PROMETHEUS\",\"type\":\"datasource\",\"pluginId\":\"prometheus\",\"value\":\"prometheus\"}]}' ) \\ | jq -c '.' \\ | curl --silent --fail --show-error \\ --request POST http://admin:admin@grafana:3000/api/dashboards/import \\ --header \"Content-Type: application/json\" \\ --data-binary \"@-\" ; echo \"\" ; fi done 这样也可以向 grafana 中导入 dashboard。 存在的问题 该项目的代码中存在几个问题。 1. RBAC 角色授权问题 需要用到两个 clusterrolebinding: kube-state-metrics,对应的serviceaccount是kube-state-metrics prometheus,对应的 serviceaccount是 prometheus-k8s 在部署 Prometheus 之前应该先创建 serviceaccount、clusterrole、clusterrolebinding 等对象,否则在安装过程中可能因为权限问题而导致各种错误,所以这些配置应该写在一个单独的文件中,而不应该跟其他部署写在一起,即使要写在一个文件中,也应该写在文件的最前面,因为使用 kubectl 部署的时候,kubectl 不会判断 YAML 文件中的资源依赖关系,只是简单的从头部开始执行部署,因此写在文件前面的对象会先部署。 解决方法 也可以绕过复杂的 RBAC 设置,直接使用下面的命令将对应的 serviceaccount 设置成 admin 权限,如下: kubectl create clusterrolebinding kube-state-metrics --clusterrole=cluster-admin --serviceaccount=monitoring:kube-state-metrics kubectl create clusterrolebinding prometheus --clusterrole=cluster-admin --serviceaccount=monitoring:prometheus 参考 RBAC——基于角色的访问控制 2. API 兼容问题 从 kube-state-metrics 日志中可以看出用户 kube-state-metrics 没有权限访问如下资源类型: *v1.Job *v1.PersistentVolumeClaim *v1beta1.StatefulSet *v2alpha1.CronJob 而在我们使用的 kubernetes 1.6.0 版本的集群中 API 路径跟 kube-state-metrics 中不同,无法 list 以上三种资源对象的资源。 3. Job 中的权限认证问题 在 grafana-import-dashboards 这个 job 中有个 init-containers 其中指定的 command 执行错误,应该使用 curl -sX GET -H \"Authorization:bearer `cat /var/run/secrets/kubernetes.io/serviceaccount/token`\" -k https://kubernetes.default/api/v1/namespaces/monitoring/endpoints/grafana 不需要指定 csr 文件,只需要 token 即可。 参考 Kubernetes Setup for Prometheus and Grafana RBAC——基于角色的访问控制 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/promql.html":{"url":"practice/promql.html","title":"Prometheus 查询语言 PromQL 使用说明","keywords":"","body":"Prometheus 查询语言 PromQL 使用说明 目前很多云原生应用使用了 Prometheus 作为监控,例如在 Istio 中查询 Prometheus 指标。 Prometheus 提供了一种功能表达式语言,允许用户实时选择和汇总时间序列数据。表达式的结果可以显示为图形、表格数据或者由外部系统通过 RESTful API 消费。 表达式语言数据类型 Prometheus 查询语言简称 PromQL,其中包含以下四类数据类型: Instant vector(即时向量):一组时间序列,拥有共同的时间戳,每个时间序列中都包含一个样本。 Range vector(范围向量):一组时间序列,其中每个时间序列都包含一系列时间范围内的数据点。 Scalar(标量):一个简单的浮点值。 String(字符串):一个简单的字符串,目前暂未使用。 示例 可以通过 Prometheus web 页面查询。 图 6.7.2.2.1:Prometheus 的查询页面 还可以使用 HTTP API 直接请求查询,例如你使用 kubernetes-vagrant-centos-cluster 部署了 Istio,会默认安装 Prometheus,你可以在浏览器中请求 http://prometheus.istio.jimmysong.io/api/v1/query?query=http_requests_total{job=%22kubernetes-nodes%22},将会看到如下格式的 json 返回值。 { \"status\": \"success\", \"data\": { \"resultType\": \"vector\", \"result\": [ { \"metric\": { \"__name__\": \"http_requests_total\", \"beta_kubernetes_io_arch\": \"amd64\", \"beta_kubernetes_io_os\": \"linux\", \"code\": \"200\", \"handler\": \"prometheus\", \"instance\": \"node1\", \"job\": \"kubernetes-nodes\", \"kubernetes_io_hostname\": \"node1\", \"method\": \"get\" }, \"value\": [ 1539861026.814, \"556\" ] }, { \"metric\": { \"__name__\": \"http_requests_total\", \"beta_kubernetes_io_arch\": \"amd64\", \"beta_kubernetes_io_os\": \"linux\", \"code\": \"200\", \"handler\": \"prometheus\", \"instance\": \"node2\", \"job\": \"kubernetes-nodes\", \"kubernetes_io_hostname\": \"node2\", \"method\": \"get\" }, \"value\": [ 1539861026.814, \"555\" ] }, { \"metric\": { \"__name__\": \"http_requests_total\", \"beta_kubernetes_io_arch\": \"amd64\", \"beta_kubernetes_io_os\": \"linux\", \"code\": \"200\", \"handler\": \"prometheus\", \"instance\": \"node3\", \"job\": \"kubernetes-nodes\", \"kubernetes_io_hostname\": \"node3\", \"method\": \"get\" }, \"value\": [ 1539861026.814, \"556\" ] } ] } } HTTP API 说明 上面是对最常用也是比较简单的即时查询,下面是对以上返回结果的简要说明。 status:可以为 success 和 error, 如果为 error,则不会显示 data 字段,而显示 errorType 和 error。 resultType:返回结果类型,可以为 matrix、vector、scalar 或 string。 metric:即时查询的到的监控 metric,其中的项为 label,可以在查询 URL 中增加标签选择器来过滤 metric。 value :第一个数字是 UNIX 格式的时间戳,例如 1539861026.814 表示的是北京时间 2018/10/18 19:10:26.814(注意:小数点后毫秒数)。Prometheus 中的 metric 时间都是以 UTC(协调世界时间)为单位的,无法调整时区,需要在前端展示时自己来调整。 您也可以查询一个时间段、根据标签选择一组 metric、Prometheus 中的 target、rule、metadata 等配置进行查询。关于 Prometheus RESTful API 的详细用法请参考 HTTP API。 参考 QUERYING PROMETHEUS - prometheus.io Setting up a distributed Kubernetes cluster along with Istio service mesh locally with Vagrant and VirtualBox - github.com 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/vistio-visualize-your-istio-mesh.html":{"url":"practice/vistio-visualize-your-istio-mesh.html","title":"使用 Vistio 监控 Istio 服务网格中的流量","keywords":"","body":"使用Vistio监控Istio服务网格中的流量 Vistio GitHub地址:https://github.com/nmnellis/vistio Vizceral是Netflix发布的一个开源项目,用于近乎实时地监控应用程序和集群之间的网络流量。Vistio是使用Vizceral对Istio和网格监控的改进。它利用Istio Mixer生成的指标,然后将其输入Prometheus。Vistio查询Prometheus并将数据存储在本地以允许重播流量。 Vizceral有两个可视化级别,全局可视化和集群级别可视化。在全局范围内(如上所示),您可以通过Istio Ingress Gateway等入口点将从Internet到Istio服务网格网络的网络流量可视化,或者您可以在Istio服务网格网络中显示总网络流量。 在集群级别(如下所示),您可以可视化内部网格的流量。通过设置警告和错误级别警报,当应用程序出现问题时可以被快速检测出来。 图 6.7.3.1:Vistio的集群级别可视化 在Istio服务网格中安装Vistio 依赖 Prometheus Istio 0.7或更高版本 假设 以下Demo使得这些假设更容易部署。如果您的环境设置不同,则可能需要将代码下载到本地并编辑一些文件。 Prometheus部署在istio-system namespace下,可以通过http://prometheus.istio-system:9090地址访问 Istio mixer启用了istio_request_count metric Kubernetes集群包含有standard StorageClass 为了便于部署已安装了Helm(可选) 前言 如果您还尚未部署服务网格,可以按照Istio Bookinfo Demo 中的说明部署Istio及其示例应用程序。您需要能够在应用程序之间生成流量。要测试指标是否从Mixer正确发送到Prometheus,您可以运行以下Prometheus查询istio_request_count,应该会看到多个条目。 图 6.7.3.2:Prometheus查询 部署Vistio 我们直接使用kubectl命令来部署。 使用kubectl部署 kubectl apply -f https://raw.githubusercontent.com/rootsongjc/kubernetes-handbook/master/manifests/vistio/vistio-mesh-only.yaml -n default 验证和暴露Vistio Web/API 验证应用程序已经启动并在运行。使用kubectl port-forward命令暴露应用程序。 验证vistio-api kubectl describe statefulset vistio-api -n default 日志检查(可选的) 您应该能够从vistio-api的日志中查看是否存在与Prometheus的连接/查询相关的错误。 kubectl logs -n default -c vistio-api $(kubectl -n default get pod -l app=vistio-api -o jsonpath='{.items[0].metadata.name}') 验证vistio-web kubectl describe deployment vistio-web -n default 暴露vistio-api 我们使用kubectl port-forward将vistio-api暴露到http://localhost:9191。 kubectl -n default port-forward $(kubectl -n default get pod -l app=vistio-api -o jsonpath='{.items[0].metadata.name}') 9091:9091 & 验证visito-api vistio-web调用vistio-api来渲染服务网格。访问http://localhost:9091/graph您应该会看到类似下列的输出。 图 6.7.3.3:vistio-api的期望输出 暴露Vistio 在另一个命令行终端中,暴露Vizcera UI到http://localhost:8080。 kubectl -n default port-forward $(kubectl -n default get pod -l app=vistio-web -o jsonpath='{.items[0].metadata.name}') 8080:8080 & 访问Vistio 如果一切都已经启动并准备就绪,您就可以访问Vistio UI,开始探索服务网格网络,访问http://localhost:8080您将会看到类似下图的输出。 图 6.7.3.4:Vistio主页面 探索 在全局范围内,您将看到Istio网格内所有请求的总和。如果您部署了istio-ingressgateway,则可以选择显示通过其他配置从网格外部接收的流量,参考使用Ingress Gateway部署Vistio。 如果您点击istio-mesh气泡,您将能够查看您的网状网络。 图 6.7.3.5:istio mesh的网络流量 在您的Istio网格中,您可以使用许多可视化工具来帮助您查明故障的应用程序。 图 6.7.3.6:查明网络问题 使用屏幕右上方的过滤器可以快速过滤出错误率较高的应用程序。通过高级配置,当错误率超过特定值时,也可以触发警报。警报将显示给定应用程序的当前错误率趋势。 问题排查 访问http://localhost:9091/graph,如果您从vistio-api中看到以下输出,表示某些功能无法正常工作。正确的输出显示在教程上面。 图 6.7.3.7:vistio api的不正确输出 1. 检查vistio-api日志中是否有错误——在大多数情况下,vistio-api将记录与Prometheus通信时遇到的任何问题。 kubectl logs -n default -c vistio-api $(kubectl -n default get pod -l app=vistio-api -o jsonpath='{.items[0].metadata.name}') 2. 验证Prometheus查询——vistio-api使用以下查询检索其数据。您应该确保Prometheus内部的数据都存在。 # Global Level Query sum(rate(istio_request_count[1m])) by (response_code) # Cluster Level Query sum(rate(istio_request_count[1m])) by (source_service,destination_service,response_code) 3. 提交Issue——如果遇到问题无法解决请提交Issue:https://github.com/nmnellis/vistio/issues 参考 https://github.com/nmnellis/vistio Vistio—使用Netflix的Vizceral可视化Istio service mesh 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/distributed-tracing.html":{"url":"practice/distributed-tracing.html","title":"分布式追踪","keywords":"","body":"分布式追踪 当我将单体应用拆成多个微服务之后,如何监控服务之间的依赖关系和调用链,以判断应用在哪个服务环节出了问题,哪些地方可以优化?这就需要用到分布式追踪(Distributed Tracing)。 CNCF 提出了分布式追踪的标准 OpenTracing,它提供用厂商中立的 API,并提供 Go、Java、JavaScript、Python、Ruby、PHP、Objective-C、C++ 和 C# 这九种语言的库。 同时 CNCF 中还有个端到端的支持 OpenTracing API 的分布式追踪项目 Jaeger。 参考 OpenTracing 官方网站 Jaeger 官方网站 Apache SkyWalking 官方网站 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/opentracing.html":{"url":"practice/opentracing.html","title":"OpenTracing","keywords":"","body":"OpenTracing OpenTracing 是 CNCF 提出的分布式追踪的标准,它提供用厂商中立的 API,并提供 Go、Java、JavaScript、Python、Ruby、PHP、Objective-C、C++ 和 C# 这九种语言的库。 目前支持 Tracer 包括 Zipkin、Skywalking、Jaeger 等,支持的框架包括 gRPC、MOTAN、django、Flask、Sharding-JDBC 等,详见 OpenTracing 官网。 Jaeger 是遵循 OpenTracing 的一种实现。 图 6.8.1.1:Jaeger UI 关于 OpenTracing 的详细约定请参考: OpenTracing 语义规范(Semantic Specification) OpenTracing 语义约定(Semantic Conventions) 基本术语 如下是 OpenTracing 中定义的基本术语。 Trace Trace 通常指一次完整的调用链。如上文中的 Jaeger UI 截图就是 Istio 官方提供的 Bookinfo 示例 的追踪中对 productpage 的调用链分析。 Span 每个 trace 都由一系列 Span 组成,一个 span 可以理解为两个微服务之间的调用,如同 Chrome 检查器中查看网络访问瀑布一样。 图 6.8.1.2:Chrome Inspector 根据 OpenTracing 的规格约定,每个 Span 都要包含以下状态: 操作名称:可以是访问的一个 URL。必填。例如 localhost:8808/。 起/止时间戳:也可以使用起始时间和持续时间来表示。必填。例如 1540273832696773。 Tags:一组键值对集合,Semantic Conventions 有一些常用约定。必填。例如 http.protocol。 Logs:一组键值对集合,用于记录调用日志。可选填。 SpanContext:在进程间通信时携带的 span 信息,指整个 trace。 示例 下面是 Jaeger 收集的来自 Bookinfo 示例 中的 productpage 的调用链追踪数据。 { \"data\": [ { \"traceID\": \"aaccbe962478cf93\", \"spans\": [ { \"traceID\": \"aaccbe962478cf93\", \"spanID\": \"fa36a9cbd60b4ae5\", \"operationName\": \"details.default.svc.cluster.local:9080/*\", \"references\": [ { \"refType\": \"CHILD_OF\", \"traceID\": \"aaccbe962478cf93\", \"spanID\": \"2\" } ], \"startTime\": 1540273832696773, \"duration\": 8171, \"tags\": [ { \"key\": \"component\", \"type\": \"string\", \"value\": \"proxy\" }, { \"key\": \"node_id\", \"type\": \"string\", \"value\": \"sidecar~172.33.5.11~productpage-v1-8584c875d8-4jgwg.default~default.svc.cluster.local\" } ... ], \"logs\": [], \"processID\": \"p1\", \"warnings\": null }, ... ], \"processes\": { \"p1\": { \"serviceName\": \"productpage\", \"tags\": [ { \"key\": \"ip\", \"type\": \"string\", \"value\": \"172.33.5.11\" } ] }, ... }, \"warnings\": null } ], \"total\": 0, \"limit\": 0, \"offset\": 0, \"errors\": null } 在开发应用时需要使用兼容 OpenTracing API 的 Tracing 实现库,例如 Jaeger 来实现自动的分布式追踪。 参考 OpenTracing 官方网站 OpenTracing 语义规范(Semantic Specification) OpenTracing 语义约定(Semantic Conventions) 开放分布式追踪(OpenTracing)入门与 Jaeger 实现 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/services-management-tool.html":{"url":"practice/services-management-tool.html","title":"服务编排管理","keywords":"","body":"服务编排管理 Kubernetes虽然提供了多种容器编排对象,例如Deployment、StatefulSet、DeamonSet、Job等,还有多种基础资源封装例如ConfigMap、Secret、Serivce等,但是一个应用往往有多个服务,有的可能还要依赖持久化存储,当这些服务之间直接互相依赖,需要有一定的组合的情况下,使用YAML文件的方式配置应用往往十分繁琐还容易出错,这时候就需要服务编排工具。 服务编排管理工具就是构建在kubernetes的基础object之上,统筹各个服务之间的关系和依赖的。目前常用到的工具是 Helm。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/helm.html":{"url":"practice/helm.html","title":"使用 Helm 管理 Kubernetes 应用","keywords":"","body":"使用Helm管理kubernetes应用 Helm 是一个 Kubernetes 应用的包管理工具,用来管理 chart——预先配置好的安装包资源,有点类似于 Ubuntu 的 APT 和 CentOS 中的 YUM。2019 年 11 月 13 日,Helm 3 发布,2020 年 4 月 30 日,从 CNCF 中毕业。本文基于 Helm 3。 Helm chart 是用来封装 Kubernetes 原生应用程序的 YAML 文件,可以在你部署应用的时候自定义应用程序的一些 metadata,便与应用程序的分发。 Helm 和 chart 的主要作用是: 应用程序封装 版本管理 依赖检查 便于应用程序分发 下面是 Helm 的架构图。 图 6.9.1.1:Helm 架构图(来自 IBM Developer Blog) Helm 可以安装本地或者远程的 chart,当 chart 安装到 Kubernetes 中后就会创建一个 release,每次更新该 chart 的配置并执行 helm upgrade, release 的版本数就会加 1。同一个 chart 可以部署多次。 安装 Helm 前提要求 Kubernetes 1.5 以上版本 执行 helm 命令的主机可以访问到 Kubernetes 集群 请参考 Helm 官方文档安装,对于 Mac 用户可以直接运行 brew install helm 安装即可。 Chart 说明 下面我们将一步步创建一个 chart 来说明其组织结构。 首先使用 helm create mychart 创建一个名为 mychart 的示例,我们再使用 tree mychart 命令看一下 chart 的目录结构。 mychart ├── Chart.yaml ├── charts # 该目录保存其他依赖的 chart(子 chart) ├── templates # chart 配置模板,用于渲染最终的 Kubernetes YAML 文件 │ ├── NOTES.txt # 用户运行 helm install 时候的提示信息 │ ├── _helpers.tpl # 用于创建模板时的帮助类 │ ├── deployment.yaml # Kubernetes deployment 配置 │ ├── ingress.yaml # Kubernetes ingress 配置 │ ├── service.yaml # Kubernetes service 配置 │ ├── serviceaccount.yaml # Kubernetes serviceaccount 配置 │ └── tests │ └── test-connection.yaml └── values.yaml # 定义 chart 模板中的自定义配置的默认值,可以在执行 helm install 或 helm update 的时候覆盖 以上仅为 helm 为我们自动创建的目录结构,我们还可以在 templates 目录加其他 Kubernetes 对象的配置,比如 ConfigMap、DaemonSet 等。 我们查看下使用 helm create 命令自动生成的 templates/service.yaml 文件。 apiVersion: v1 kind: Service metadata: name: {{ include \"mychart.fullname\" . }} labels: {{- include \"mychart.labels\" . | nindent 4 }} spec: type: {{ .Values.service.type }} ports: - port: {{ .Values.service.port }} targetPort: http protocol: TCP name: http selector: {{- include \"mychart.selectorLabels\" . | nindent 4 }} 可以看到其中有很多{{ }} 包围的字段,这是使用的 Go template 创建的自定义字段,其中 mychart 开头的都是在 _helpers.tpl 中生成的定义。 例如 _helpers.tpl 中对 chart.fullname 的定义: {{/* Create a default fully qualified app name. We truncate at 63 chars because some Kubernetes name fields are limited to this (by the DNS naming spec). If release name contains chart name it will be used as a full name. */}} {{- define \"mychart.fullname\" -}} {{- if .Values.fullnameOverride -}} {{- .Values.fullnameOverride | trunc 63 | trimSuffix \"-\" -}} {{- else -}} {{- $name := default .Chart.Name .Values.nameOverride -}} {{- if contains $name .Release.Name -}} {{- .Release.Name | trunc 63 | trimSuffix \"-\" -}} {{- else -}} {{- printf \"%s-%s\" .Release.Name $name | trunc 63 | trimSuffix \"-\" -}} {{- end -}} {{- end -}} {{- end -}} 我们再看下 values.yaml 文件中有这样的一段配置: service: type: ClusterIP port: 80 在使用 helm install 或 helm update 时,会渲染 templates/service.yaml 文件中的 {{ .Values.service.type }} 和 {{ .Values.service.port }} 的值。 使用 Helm Helm 常用命令如下: helm create:在本地创建新的 chart; helm dependency:管理 chart 依赖; helm intall:安装 chart; helm lint:检查 chart 配置是否有误; helm list:列出所有 release; helm package:打包本地 chart; helm repo:列出、增加、更新、删除 chart 仓库; helm rollback:回滚 release 到历史版本; helm pull:拉取远程 chart 到本地; helm search:使用关键词搜索 chart; helm uninstall:卸载 release; helm upgrade:升级 release; 使用 helm -h 可以查看 Helm 命令行使用详情,请参考 Helm 文档。 安装 chart 安装 chart 的命令格式为: helm install [NAME] [CHART] [flags] 示例: # 安装本地 chart helm install -f myvalues.yaml myredis ./redis # 指定变量 helm install --set name=prod myredis ./redis # 指定变量的值为 string 类型 helm install --set-string long_int=1234567890 myredis ./redis # 指定引用的文件地址 helm install --set-file my_script=dothings.sh myredis ./redis # 同时指定多个变量 helm install --set foo=bar --set foo=newbar myredis ./redis 其中: myvalues.yaml:自定义变量配置文件; myredis:release 名称; ./redis:本地的 chart 目录; Helm chart 安装后会转化成 Kubernetes 中的资源对象,生成一个 chart release,可以使用 helm list 命令查看。 关于 helm intsall 详细用法见:https://helm.sh/docs/helm/helm_install/。 升级和回滚 chart 要想升级 chart 可以修改本地的 chart 配置并执行: helm upgrade [RELEASE] [CHART] [flags] 使用 helm ls 的命令查看当前运行的 chart 的 release 版本,并使用下面的命令回滚到历史版本: helm rollback [REVISION] [flags] 卸载 chart 要想卸载 chart 可以使用下面的命令。 helm uninstall RELEASE_NAME [...] [flags] 参考 Go template - golang.org Getting Started - helm.sh Helm 用户指南 - whmzsu.github.io 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/create-private-charts-repo.html":{"url":"practice/create-private-charts-repo.html","title":"构建私有 Chart 仓库","keywords":"","body":"构建私有Chart仓库 使用Chart便于封装和管理kubernetes中的应用,因此当企业内部的应用多了以后,互相依赖、部署环境复杂之后,原先的直接使用yaml文件的管理方式已经不再适应生产的需要,因此我们有必要构建自己的chart仓库。本文中我们将使用 GitHub Pages 来构建我们自己的 chart 仓库。 目的 我们需要构建一个GitHub pages存储所有chart的压缩文件,最好还要有一个前端来展示和搜索chart。 什么是Chart Chart是helm管理的应用的打包格式。它包括如下特征: Chart中包括一系列的yaml格式的描述文件。 一个Chart只用来部署单个的应用的,不应该过于复杂,不应该包含多个依赖,相当于一个微服务。 Chart有特定的目录结构,可以打包起来进行版本控制。 Chart的组成结构 我们以nginx的chart为例,讲解chart的组成结构。 nginx/ Chart.yaml # 必须:一个包含chart的名称、版本和启用条件信息等的YAML文件 LICENSE # 可选: chart的许可证 README.md # 可选: 使用说明 requirements.yaml # 可选: 该chart的依赖配置 values.yaml # 必须:该chart的默认配置值 charts/ # 可选: 包含该chart依赖的chart templates/ # 可选:kubernetes manifest文件模板,用于生成kubernetes yaml文件 templates/NOTES.txt # 可选: 该chart的使用说明和提示信息文本文件,作为helm install后的提示信息 Chart的安装方式 安装chart主要分为安装本地定义的chart和远程chart仓库中的chart两种方式。 安装本地chart 指定本地chart目录:helm install . 指定本地chart压缩包:helm install nginx-1.2.3.tgz 安装chart仓库中的chart 使用默认的远程仓库:helm install stable/nginx 使用指定的仓库:helm install localhost:8879/nginx-1.2.3.tgz 实际上可以将chart打包后作为静态文件托管到web服务器上,例如GitHub pages作为chart仓库也可以。 依赖管理 有两种方式来管理chart的依赖。 直接在本的chart的charts目录下定义 通过在requirements.yaml文件中定义依赖的chart 在每个chart的charts目录下可以定义依赖的子chart。子chart有如下特点: 无法访问父chart中的配置 父chart可以覆盖子chart中的配置 Chart仓库 Chart 仓库(repository)是一个用来托管index.yaml文件和打包好的chart文件的web服务器。当前chart仓库本身没有设置身份和权限验证,查看此链接获取该问题的最新进展。 因为chart仓库只是一个HTTP服务,通过HTTP GET获取YAML文件和chart的压缩包,所以可以将这些文件存储在web服务器中,例如GCS、Amazon S3、GitHub Pages等。 关于chart仓库的更多信息请参考Helm chart文档。 使用GitHub pages托管charts 我们在上文中说到,chart可以使用GitHub pages做存储,接下来我们将会把之前够够构建的chart上传到GitHub pages并在helm中新增一个repo。 构建Monocular UI 克隆项目到本地 git clone https://github.com/kubernetes-helm/monocular.git 依赖环境 Angular 2 angular/cli Typescript Sass Webpack Bootstrap 在monoclar/scr/ui目录下执行以下命令安装依赖: yarn install npm install -g @angular/cli npm install -g typescript npm install -g webpack 运行 使用docker-compose 最简单的运行方式使用docker-compose: docker-comopse up 该命令需要用到如下镜像: bitnami/mongodb:3 bitnami/node:8 quay.io/deis/go-dev:v1.5.0 会有一个很长的build过程,构建失败。 使用helm 首先需要已在本地安装了helm,并在kubernetes集群中安装了tiller,见使用helm管理kubernetes应用。 # 需要安装nginx ingress $ helm install stable/nginx-ingress $ helm repo add monocular https://kubernetes-helm.github.io/monocular $ helm install monocular/monocular 图 6.9.2.1:Helm monocular界面 因为nginx ingress配置问题,官方的chart中api与ui使用的是同样的domain name,我使用的是traefik ingress,api访问不到,所以加载不了chart。 参考 Monocular UI 简化Kubernetes应用部署工具-Helm之应用部署 Speed deployment on Kubernetes with Helm Chart – Quick YAML example from scratch Using a private github repo as helm chart repo (https access) 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/ci-cd.html":{"url":"practice/ci-cd.html","title":"持续集成与发布","keywords":"","body":"持续集成与发布 持续集成与发布,简称CI/CD,是微服务构建的重要环节,也是DevOps中推崇的方法论。如何在kubernetes中使用持续构建与发布工具?可以既可以与企业内部原有的持续构建集成,例如Jenkins,也可以在kubernetes中部署一套新的持续构建与发布工具,例如Drone。 众所周知Kubernetes并不提供代码构建、发布和部署,所有的这些工作都是由CI/CD工作流完成的,最近TheNewStack又出了本小册子(117页)介绍了Kubernetes中CI/CD的现状。下载本书的PDF请访问:https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/ 图 6.10.1:CI/CD with Kubernetes 本书的作者有: Rob Scott:ReactiveOps公司的SRE Janakiram MSV:Janakiram & Associates 的首席分析师 Craig Martin:Kenzan的高级副总裁 Container Solutions 这本小册子里主要主要介绍了以下几点: DevOps模式 云原生应用模式 使用Spinnaker做持续交付 云原生时代的监控 DevOps模式 这一章从一些流行的自动化运维工具讲起,比如Chef、Puppet等,引申出CI/CD流水线,进而引出Docker和DevOps,将容器如何解除开发和运维之间的隔阂,但同时也带来了一些挑战,比如频繁的发布变更如何控制,如何控制容器集群的行为,如何拆分应用到容器之中等。这是一个专门用于容器编排调度的工具呼之欲出,Kubernetes的出现彻底改变了局面,可以说它直接改变了应用的基础架构。 图 6.10.2:Kubernetes改变了应用的基础架构 Kubernetes细化的应用程序的分解粒度,同时将服务发现、配置管理、负载均衡和健康检查等作为基础设施的功能,简化了应用程序的开发。 而Kubernetes这种声明式配置尤其适合CI/CD流程,况且现在还有如Helm、Draft、Spinnaker、Skaffold等开源工具可以帮助我们发布Kuberentes应用。 图 6.10.3:Kubernetes中的CI/CD 有了基于Kubernetes的CI/CD流程后,又诞生了GitOps(https://www.weave.works的博客中有很多相关文章)和SecOps(Security Operation)。 云原生应用模式 云原生是通过构建团队、文化和技术,利用自动化和架构来管理系统的复杂性和解放生产力。——Joe Beda,Heotio CTO,联合创始人 这一章的重点是给出了云原生应用的10条关键属性。 使用轻量级的容器打包 使用最合适的语言和框架开发 以松耦合的微服务方式设计 以API为中心的交互和协作 无状态和有状态服务在架构上界限清晰 不依赖于底层操作系统和服务器 部署在自服务、弹性的云基础设施上 通过敏捷的DevOps流程管理 自动化能力 通过定义和策略驱动的资源分配 作者然后将应用程序架构中的不同组件映射到云原生的工作负载中,如下图所示: 图 6.10.4:云原生工作负载 这也是DevOps需要关注的部分,如何将云原生的组件映射为Kubernetes的原语(即Kubernetes里的各种资源对象和概念组合)呢?如下图所示。 图 6.10.5:云原生工作负载映射到Kuberentes原语 总结概括为以下10条: 不要直接部署裸的Pod。 为工作负载选择合适的Controller。 使用Init容器确保应用程序被正确的初始化。 在应用程序工作负载启动之前先启动service。 使用Deployment history来回滚到历史版本。 使用ConfigMap和Secret来存储配置。 在Pod里增加Readiness和Liveness探针。 给Pod设置CPU和内存资源限额。 定义多个namespace来限制默认service范围的可视性。 配置HPA来动态扩展无状态工作负载。 使用Spinnaker进行持续交付 作者首先讲到了Spinnaker的各种特性,比如面向微服务啦,云原生的交付工具啦,可视化的交付和基础设施啦,支持多个region,支持容器和Kubernetes等等,不一而足,感兴趣大家可以自己看下报告或者登陆Spinnaker官网https://www.spinnaker.io查看。 下图是Spinnaker中的组件和角色的交互关系。 图 6.10.6:spinnaker中的组件及角色交互关系 下图是Spinnaker的几种不同环境的流水线。 图 6.10.7:Spinnaker部署流水线 图 6.10.8:Spinnaker的预发布流水线 图 6.10.9:Spinnaker的生产流水线 总之作者就是想说Spinnaker很好很强大啦,足以满足您对云原生应用CI/CD的需求。 云原生时代的监控 监控是为了实现系统的可观察性,不要以为监控就是简单的出个监控页面,监控其实包括以下部分: 日志收集 监控和指标度量 追踪 告警和可视化 要把其中任何一个方面做好都不容易。 图 6.10.10:可观察性 作者主要讲述的Prometheus和Grafana的开源监控方案。 图 6.10.11:Prometheus生态系统中的组件 这一章我不详述,感兴趣大家可以查看报告原文。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/jenkins-ci-cd.html":{"url":"practice/jenkins-ci-cd.html","title":"使用 Jenkins 进行持续集成与发布","keywords":"","body":"使用Jenkins进行持续集成与发布 我们基于Jenkins的CI/CD流程如下所示。 图 6.10.1.1:基于Jenkins的持续集成与发布 流程说明 应用构建和发布流程说明。 用户向Gitlab提交代码,代码中必须包含Dockerfile 将代码提交到远程仓库 用户在发布应用时需要填写git仓库地址和分支、服务类型、服务名称、资源数量、实例个数,确定后触发Jenkins自动构建 Jenkins的CI流水线自动编译代码并打包成docker镜像推送到Harbor镜像仓库 Jenkins的CI流水线中包括了自定义脚本,根据我们已准备好的kubernetes的YAML模板,将其中的变量替换成用户输入的选项 生成应用的kubernetes YAML配置文件 更新Ingress的配置,根据新部署的应用的名称,在ingress的配置文件中增加一条路由信息 更新PowerDNS,向其中插入一条DNS记录,IP地址是边缘节点的IP地址。关于边缘节点,请查看边缘节点配置 Jenkins调用kubernetes的API,部署应用 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/drone-ci-cd.html":{"url":"practice/drone-ci-cd.html","title":"使用 Drone 进行持续集成与发布","keywords":"","body":"使用Drone进行持续构建与发布 Drone是一个用Go语言开发的基于容器运行的持续集成软件。 配置GitHub 使用Drone对GitHub上的代码进行持续构建与发布,需要首先在GitHub上设置一个OAuth,如下: 1. 在Github上创建一个新的OAtuh应用 访问此頁面,创建新的OAuth应用。 图 6.10.2.1:OAuth注册 填写应用程序的地址,因为是在本地与行,所以我们都填http://localhost。 2. 获取OAtuh Client ID和Client Secret 在注册完成后就可以获得如下图所示的OAuth Client ID和Client Secret,保存下来,我们后面要用到。 图 6.10.2.2:OAuth key 使用docker-compose单机运行 我们在本地环境,使用docker-compose,按照Drone官方安装文档安装配置Drone。 我们将代码托管在GitHub上,需要Drone可以持续集成和发布GitHub的代码,因此需要修改docker-compose.yaml文件中的GitHub配置。 version: '2' services: drone-server: image: drone/drone:0.8 ports: - 80:8000 - 9000 volumes: - /var/lib/drone:/var/lib/drone/ restart: always environment: - DRONE_OPEN=true - DRONE_HOST=${DRONE_HOST} - DRONE_GITHUB=true - DRONE_GITHUB_CLIENT=${DRONE_GITHUB_CLIENT} - DRONE_GITHUB_SECRET=${DRONE_GITHUB_SECRET} - DRONE_SECRET=${DRONE_SECRET} drone-agent: image: drone/agent:0.8 command: agent restart: always depends_on: - drone-server volumes: - /var/run/docker.sock:/var/run/docker.sock environment: - DRONE_SERVER=drone-server:9000 - DRONE_SECRET=${DRONE_SECRET} /var/lib/drone是在本地挂载的目录,请确保该目录已存在,且可以被docker访问到,Mac下可以在docker的共享目录中配置。 DRONE_SECRET可以是一个随机的字符串,要确保drone-server与drone-client的DRONE_SECRET相同。 DRONE_GITHUB_CLIENT和DRONE_GITHUB_SECRET即在前面申请的OAuth的Client ID和Client Secret。 启动Drone 使用下面的命令在本地启动drone: docker-compose up 这样是在前台启动,加上-d参数就可以在后台启动。 访问 http://localhost 可以看到登陆画面。 图 6.10.2.3:Drone登陆界面 授权后可以看到GitHub repo设置。 图 6.10.2.4:Github启用repo设置 图 6.10.2.5:Github单个repo设置 参考 Drone Installation Github - Drone Drone 搭配 Kubernetes 升級應用程式版本 - blog.wu-boy.com 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/update-and-upgrade.html":{"url":"practice/update-and-upgrade.html","title":"更新与升级","keywords":"","body":"更新与升级 Kubernetes到目前为止基本保持三个月发行一个新版本的节奏,更新节奏可以说非常快,这一部分将主要跟踪kubernetes及其相关组件的更新与升级。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/manually-upgrade.html":{"url":"practice/manually-upgrade.html","title":"手动升级 Kubernetes 集群","keywords":"","body":"手动升级kubernetes集群 在我最开始写作本书的时候,kubernetes刚发布1.6.0版本,而kubernetes基本按照每三个月发布一个大版本的速度迭代,为了使用新特性和只支持新版本kubernetes的配套软件,升级kubernetes就迫在眉睫,在此我们使用替换kubernets的旧的二进制文件这种暴力的方式来升级测试集群,若升级生产集群还望三思。 另外,自kubernetes1.6版本之后发布的1.7和1.8版本又增加了一些新特性,参考: Kubernetes1.7更新日志 Kubernetes1.8更新日志 目前kubernetes的官方文档上并没有详细的手动安装的集群如何升级的参考资料,只有两篇关于kubernetes集群升级的文档。 手动升级的还没有详细的方案,大多是基于管理工具部署和升级,比如juju、kubeadm、kops、kubespray等。 manual upgrade/downgrade testing for Kubernetes 1.6 - google group,在这个Google group中讨论了kubernetes手动升级的问题,并给出了参考建议。 升级步骤 注意:该升级步骤是实验性的,建议在测试集群上使用,无法保证线上服务不中断,实际升级完成后无需对线上服务做任何操作。 大体上的升级步骤是,先升级master节点,然后再一次升级每台node节点。 升级建议 下图来自@ahmetb的Twitter,这是他对于0宕机时间的kubernetes集群升级建议。 图 6.11.1.1:Kubernetes零宕机时间升级建议 主要包括以下建议: 应用使用高级对象定义,如支持滚动更新的Deployment对象 应用要部署成多个实例 使用pod的preStop hook,加强pod的生命周期管理 使用就绪和健康检查探针来确保应用存活和及时阻拦应用流量的分发 准备 备份kubernetes原先的二进制文件和配置文件。 下载最新版本的kubernetes二进制包,如1.8.5版本,下载二进制包,我们使用的是kubernetes-server-linux-amd64.tar.gz,分发到集群的每个节点上。 升级master节点 停止master节点的进程 systemctl stop kube-apiserver systemctl stop kube-scheduler systemctl stop kube-controller-manager systemctl stop kube-proxy systemctl stop kubelet 使用新版本的kubernetes二进制文件替换原来老版本的文件,然后启动master节点上的进程: systemctl start kube-apiserver systemctl start kube-scheduler systemctl start kube-controller-manager 因为我们的master节点同时也作为node节点,所有还要执行下面的”升级node节点“中的步骤。 升级node节点 关闭swap # 临时关闭 swapoff -a # 永久关闭,注释掉swap分区即可 vim /etc/fstab #UUID=65c9f92d-4828-4d46-bf19-fb78a38d2fd1 swap swap defaults 0 0 修改kubelet的配置文件 将kubelet的配置文件/etc/kubernetes/kublet配置文件中的KUBELET_API_SERVER=\"--api-servers=http://172.20.0.113:8080\"行注释掉。 注意::kubernetes1.7及以上版本已经没有该配置了,API server的地址写在了kubeconfig文件中。 停止node节点上的kubernetes进程: systemctl stop kubelet systemctl stop kube-proxy 使用新版本的kubernetes二进制文件替换原来老版本的文件,然后启动node节点上的进程: systemctl start kubelet systemctl start kube-proxy 启动新版本的kube-proxy报错找不到conntrack命令,使用yum install -y conntrack-tools命令安装后重启kube-proxy即可。 检查 到此升级完成,在master节点上检查节点状态: NAME STATUS ROLES AGE VERSION 172.20.0.113 Ready 244d v1.8.5 172.20.0.114 Ready 244d v1.8.5 172.20.0.115 Ready 244d v1.8.5 所有节点的状态都正常,再检查下原先的运行在kubernetes之上的服务是否正常,如果服务正常的话说明这次升级无误。 API版本变更适配 对于不同版本的Kubernetes,许多资源对象的API的版本可能会变更,下表列出了kubernetes1.5至1.9的API资源对象的版本演进: 图 6.11.1.2:Kuberentes API对象的版本演进 当我们升级过后,可能出现资源对象的API变更后,原先的YAML文件无法使用的情况,因此需要对新版本的Kubernetes进行适配。对应的API版本转换工具:https://github.com/fleeto/kube-version-converter,可以将Kuberntes API对象转换到指定版本。 参考 Cluster Upgrade #2524 Upgrading self-hosted Kubernetes How to Upgrade a Kubernetes Cluster With No Downtime manual upgrade/downgrade testing for Kubernetes 1.6 - google group Notes/Instructions for Manual Upgrade Testing1.5 -> 1.6 Upgrading Kubernetes in Kubespray 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/dashboard-upgrade.html":{"url":"practice/dashboard-upgrade.html","title":"升级 dashboard","keywords":"","body":"升级Dashboard 我们在kubernetes1.6的时候同时安装了dashboard插件,该插件也是基于kubernetes1.6版本开发的。如今kubernetes1.8版本业已发布,如何升级dashboard以获取新版中功能呢? Dashboard的升级比较简单,因为它仅仅是一个前端应用,用来展现集群信息和与后端API交互,理论上只需要更新原先dashboard的yaml配置文件中的镜像就可以了,但是为了使用dashboard1.7版本中的用户登陆功能,还需要做一些额外的操作。 dashboard的更新日志请见release note,当前的最新版本为v1.7.1,下面将介绍将dashboard从v1.6.3升级到v1.7.1并开启用户登陆认证的详细步骤。 升级步骤 删除原来的版本 首先删除原来的dashboard资源: kubectl delete -f dashboard/ 将dashboard目录下的所有yaml文件中的资源全部删除,包括Deployment、service和角色绑定等。 部署新版本 我们使用官方的配置文件来安装,首先下载官方配置: wget https://raw.githubusercontent.com/kubernetes/dashboard/v1.10.1/src/deploy/recommended/kubernetes-dashboard.yaml 注意:其中两个镜像使用 gcr.io 仓库,若您无法访问该仓库请换用其他仓库。 gcr.io/google_containers/kubernetes-dashboard-init-amd64:v1.0.1 gcr.io/google_containers/kubernetes-dashboard-amd64:v1.7.1 将service type设置为NodePort,修改后的yaml文件见kubernetes-dashboard.yaml,然后就可以部署新版本的dashboard了。 kubectl create -f kubernetes-dashboard.yaml 获取dashboard的外网访问端口: kubectl -n kube-system get svc kubernetes-dashboard NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE kubernetes-dashboard 10.254.177.181 443:32324/TCP 49m 访问集群中的任何一个节点,即可打开dashboard登陆页面,如https://172.20.0.113:32324/(请使用https访问),支持使用kubeconfig和token两种的认证方式: 图 6.11.2.1:登陆界面 选择本地的kubeconfig文件以登陆集群,kubeconfig文件中包括登陆的用户名、证书和token信息。 登陆之后首先看到的界面是这样的: 图 6.11.2.2:Dashboard首页 这是因为该用户没有对default命名空间的访问权限。 修改URL地址中的namespace字段为该用户有权限访问的命名空间如brand:https://172.20.0.113:32324/#!/overview?namespace=brand: 图 6.11.2.3:Dashboard用户空间页面 设置界面的语言 我们看到现在 dashboard 的页面都已经被汉化了,当前支持英文、中文简体、中文繁体、日语,根据浏览器的语言自动切换的。如果想要强制设置 dashboard 中显示的语言,需要在 dahsboard 的 Deployment yaml 配置中增加如下配置: env: - name: ACCEPT_LANGUAGE value: english 更简单的方式是,如果您使用的Chrome浏览器,则在浏览器中的配置中设置语言的顺序后刷新网页,dashboard将以您在Chrome中配置的首选语言显示。 身份认证 登陆 dashboard 的时候支持 kubeconfig 和 token 两种认证方式,kubeconfig 中也依赖 token 字段,所以生成 token 这一步是必不可少的。 下文分两块来讲解两种登陆认证方式: 为 brand 命名空间下的 brand 用户创建 kubeconfig 文件 为集群的管理员(拥有所有命名空间的 amdin 权限)创建 token 使用 kubeconfig 登陆dashboard的时候可以指定kubeconfig文件来认证用户权限,如何生成登陆dashboard时指定的kubeconfig文件请参考创建用户认证授权的kubeconfig文件。 注意我们生成的 kubeconfig 文件中没有 token 字段,需要手动添加该字段。 比如我们为 brand namespace 下的 brand 用户生成了名为 brand.kubeconfig 的 kubeconfig 文件,还要再该文件中追加一行 token 的配置(如何生成 token 将在下文介绍),如下所示: 图 6.11.2.4:kubeconfig文件 这样就可以使用brand.kubeconfig文件来登陆dashboard了,而且只能访问和操作brand命名空间下的对象。 生成集群管理员的token 以下是为集群最高权限的管理员(可以任意操作所有namespace中的所有资源)生成token的步骤详解。 注意:登陆dashboard的时候token值是必须的,而kubeconfig文件是kubectl命令所必须的,kubectl命令使用的kubeconfig文件中可以不包含token信息。 需要创建一个admin用户并授予admin角色绑定,使用下面的yaml文件创建admin用户并赋予他管理员权限,然后可以通过token登陆dashbaord,该文件见admin-role.yaml。这种认证方式本质上是通过 Service Account 的身份认证加上 Bearer token 请求 API server 的方式实现,参考 Kubernetes 中的认证。 kind: ClusterRoleBinding apiVersion: rbac.authorization.k8s.io/v1beta1 metadata: name: admin annotations: rbac.authorization.kubernetes.io/autoupdate: \"true\" roleRef: kind: ClusterRole name: cluster-admin apiGroup: rbac.authorization.k8s.io subjects: - kind: ServiceAccount name: admin namespace: kube-system --- apiVersion: v1 kind: ServiceAccount metadata: name: admin namespace: kube-system labels: kubernetes.io/cluster-service: \"true\" addonmanager.kubernetes.io/mode: Reconcile 然后执行下面的命令创建 serviceaccount 和角色绑定,对于其他命名空间的其他用户只要修改上述 yaml 中的 name 和 namespace 字段即可: kubectl create -f admin-role.yaml 创建完成后获取secret和token的值。 运行下面的命令直接获取admin用户的token: kubectl -n kube-system describe secret `kubectl -n kube-system get secret|grep admin-token|cut -d \" \" -f1`|grep \"token:\"|tr -s \" \"|cut -d \" \" -f2 手动获取 也可以执行下面的步骤来获取token值: # 获取admin-token的secret名字 $ kubectl -n kube-system get secret|grep admin-token admin-token-nwphb kubernetes.io/service-account-token 3 6m # 获取token的值 $ kubectl -n kube-system describe secret admin-token-nwphb Name: admin-token-nwphb Namespace: kube-system Labels: Annotations: kubernetes.io/service-account.name=admin kubernetes.io/service-account.uid=f37bd044-bfb3-11e7-87c0-f4e9d49f8ed0 Type: kubernetes.io/service-account-token Data ==== namespace: 11 bytes token: 非常长的字符串 ca.crt: 1310 bytes 在 dashboard 登录页面上有两种登录方式,kubeconfig 文件和 token (令牌),使用 token 登录可以直接使用上面输出中的那个非常长的字符串作为 token 登录,即可以拥有管理员权限操作整个kubernetes集群中的对象。对于 kubeconfig 文件登录方式,不能直接使用之前给 kubectl 生成的 kubeconfig 文件(~/.kube/config) 需要给它加一个 token 字段,您可以将这串 token 加到 admin 用户的kubeconfig文件中,继续使用kubeconfig登录,具体加的位置可以参考bootstrap-kubeconfig 文件,两种认证方式任您选择。 注意:通过 kubectl get secret xxx 输出中的 token 值需要进行 base64 解码,在线解码工具 base64decode,Linux 和 Mac 有自带的 base64 命令也可以直接使用,输入 base64 是进行编码,Linux 中base64 -d 表示解码,Mac 中使用 base64 -D;通过 kubectl describe secret xxx 输出中的 token 不需要 base64 解码。 也可以使用 jsonpath 的方式直接获取 token 的值,如: kubectl -n kube-system get secret admin-token-nwphb -o jsonpath={.data.token}|base64 -d 注意我们使用了 base64 对其重新解码,因为 secret 都是经过 base64 编码的,如果直接使用 kubectl 中查看到的 token 值会认证失败,详见 secret 配置。关于 JSONPath 的使用请参考 JSONPath 手册。 注意:关于如何给其它namespace的管理员生成token请参考使用kubeconfig或token进行用户身份认证。 参考 Dashboard log in mechanism #2093 Accessing Dashboard 1.7.X and above Kubernetes dashboard UX for Role-Based Access Control How to sign in kubernetes dashboard? - StackOverflow JSONPath 手册 Kubernetes 中的认证 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/controller-extended.html":{"url":"practice/controller-extended.html","title":"扩展控制器","keywords":"","body":"扩展控制器 Kubernetes 原生提供了 Deployment、StatefulSet、DaemonSet、Job、CronJob 等一系列控制器,这些控制器组成了云原生应用的基本原语,但是在 Kubernetes 的实际生产使用过程中,往往很难直接满足要求,因此又诞生了很多第三方的扩展控制器。本节将为大家介绍系列第三方扩展控制器,这些控制器融合了 Kubernetes 生产使用中的最佳实践。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/openkruise.html":{"url":"practice/openkruise.html","title":"OpenKruise","keywords":"","body":"OpenKruise OpenKruise 是阿里云开源的大规模应用自动化管理引擎,在 Kubernetes 原生 Deployment/StatefulSet 等控制器基础上,提供了更多的增强功能如: 优雅原地升级 发布优先级/打散策略 多可用区 workload 抽象管理 统一 sidecar 容器注入管理等 这些控制器可以帮助开发者应对更加多样化的部署环境和需求、为集群维护者和应用开发者带来更加灵活的部署发布组合策略。 扩展控制器 Kruise 是 OpenKruise 中的核心项目之一,它提供一套在 Kubernetes 核心控制器之外的扩展 workload 管理和实现。目前,Kruise 提供了以下 5 个 Kubernetes 扩展控制器: CloneSet: 提供了更加高效、确定可控的应用管理和部署能力,支持优雅原地升级、指定删除、发布顺序可配置、并行/灰度发布等丰富的策略,可以满足更多样化的应用场景。 AdvancedStatefulSet:基于原生 StatefulSet 之上的增强版本,默认行为与原生完全一致,在此之外提供了原地升级、并行发布(最大不可用)、发布暂停等功能。 SidecarSet:对 sidecar 容器做统一管理,在满足 selector 条件的 Pod 中注入指定的 sidecar 容器。 UnitedDeployment: 通过多个 subset workload 将应用部署到多个可用区。 BroadcastJob: 配置一个 job,在集群中所有满足条件的 Node 上都跑一个 Pod 任务。 关于命名规范 Kruise 中的扩展控制器采用与 Kubernetes 社区一致的命名规范: Set 后缀:这类 controller 会直接操作和管理 Pod,比如 CloneSet、ReplicaSet、SidecarSet 等。它们提供了 Pod 维度的多种部署、发布策略。 Deployment 后缀:这类 controller 不会直接地操作 Pod,它们通过操作一个或多个 Set 类型的 workload 来间接管理 Pod,比如 Deployment 管理 ReplicaSet 来提供一些额外的滚动策略,以及 UnitedDeployment 支持管理多个 StatefulSet/AdvancedStatefulSet 来将应用部署到不同的可用区。 Job 后缀:这类 controller 主要管理短期执行的任务,比如 BroadcastJob 支持将任务类型的 Pod 分发到集群中所有 Node 上。 CloneSet CloneSet 是对 Deployment 的增强版,主要用于管理对实例顺序没有要求的无状态应用。 下面是一个 CloneSet 的配置示例。 apiVersion: apps.kruise.io/v1alpha1 kind: CloneSet metadata: labels: app: sample name: sample-data spec: replicas: 3 scaleStrategy: podsToDelete: - sample-9m4hp # 选择性的删除单个 pod updateStrategy: priorityStrategy: # 优先级策略 weightPriority: # - weight: 50 matchSelector: matchLabels: test-key: foo - weight: 30 matchSelector: matchLabels: test-key: bar orderPriority: - orderedKey: some-label-key scatterStrategy: - key: foo value: bar updateStrategy: # 升级策略 type: InPlaceIfPossible # 升级策略里增加了原地升级 maxUnavailable: 2 # 升级时最多有多少个实例不可用 selector: matchLabels: app: sample template: metadata: labels: app: sample spec: containers: - name: nginx image: nginx volumeMounts: - name: data-vol mountPath: /usr/share/nginx/html volumeClaimTemplates: # 为 每个 Pod 设置 PVC - metadata: name: data-vol spec: accessModes: [ \"ReadWriteOnce\" ] resources: requests: storage: 10Gi CloneSet 是对 Deployment 的增强 对于 Kubernetes 原生支持的 Deployment 控制器, CloneSet 在以下方面做出了增强: 支持原地升级(In Place Update),需要在 updateStrategy 中配置,默认的升级策略为 ReCreate; 支持为每个 Pod 设置 PVC; 支持选择性的删除某个 Pod; 更加高级的升级和发布策略; 关于 CloneSet 的详细描述请见 Kruise 仓库。 AdvancedStatefulSet AdvancedStatefulSet 是对 Kubernetes 原生的 StatefulSet 的增强。 下面是一个 AdvancedStatefulSet 的配置示例。 apiVersion: apps.kruise.io/v1alpha1 kind: StatefulSet metadata: name: sample spec: replicas: 3 serviceName: my-service selector: matchLabels: app: sample template: metadata: labels: app: sample spec: readinessGates: # 一个新的条件,确保 pod 在原地更新时保持在 NotReady 状态。 - conditionType: InPlaceUpdateReady containers: - name: nginx image: nginx:alpine podManagementPolicy: Parallel # 允许并行更新,与 maxUnavailable 一起使用。 updateStrategy: type: RollingUpdate rollingUpdate: # 如果可以的话做原地更新,目前原地更新只支持镜像更新。 podUpdatePolicy: InPlaceIfPossible # 允许并行更新,最大不可用实例数等于 2。 maxUnavailable: 2 # 可以按照特定的顺序更新 pod,而不是按照 pod 名称的顺序。 unorderedUpdate: priorityStrategy: weightPriority: - weight: 50 matchSelector: matchLabels: test-key: foo - weight: 30 matchSelector: matchLabels: test-key: bar AdvancedStatefulSet 是对 StatefulSet 的增强 AdvancedStatefulSet 基本保留了 Kubernetes 原生的 StatefulSet 的使用用法。在声明 AdvancedStatefulSet 时保留了 CRD 的名字 StatefulSet,不过将原来的 apiVersion 的值从 apps/v1 修改为了 apps.kruise.io/v1alpha1 ,并做出的如下方面的增强: 支持原地升级,同 CloneSet 一样,需要在 updateStrategy 中配置,默认的升级策略为 ReCreate; 支持更高级的更新策略,例如根据权重按照特定的顺序更新 pod,而不是按照 pod 的名称顺序; 关于 AdvancedStatefulSet 的详细描述请见 Kruise 仓库。 SidecarSet SidecarSet 利用了 Kubernetes 的 mutating webhook 准入控制器,在 pod 创建时向其中自动注入 sidecar 容器,这个与 Istio 的做法一致。 下面是一个 SidecarSet 的配置示例。 apiVersion: apps.kruise.io/v1alpha1 kind: SidecarSet metadata: name: test-sidecarset spec: selector: matchLabels: app: nginx strategy: rollingUpdate: maxUnavailable: 2 containers: - name: sidecar1 image: centos:6.7 command: [\"sleep\", \"999d\"] # do nothing at all volumeMounts: - name: log-volume mountPath: /var/log volumes: # this field will be merged into pod.spec.volumes - name: log-volume emptyDir: {} SidecarSet 的主要功能 Sidecar 容器的生命周期独立于整个 Pod,实现如下功能: SidecarSet 可以向指定的 Pod 中注入 Sidecar 容器; Sidecar 容器可以可原地升级(仅当更新镜像时); 关于 SidecarSet 的详细描述请见 Kruise 仓库。 UnitedDeployment UnitedDeployment 主要用于分组发布,通过定义 subset 将工作负载发布到不同的可用区中。Kubernetes 集群中的不同域由多组由标签识别的节点表示。UnitedDeployment 控制器为每组提供一种类型的工作负载,并提供相应匹配的 NodeSelector,这样各个工作负载创建的 pod 就会被调度到目标域。 UnitedDeployment 管理的每个工作负载称为子集。每个域至少要提供运行 n 个副本数量的 pod 的能力。目前仅支持 StatefulSet 工作负载。下面的示例 YAML 展示了一个 UnitedDeployment,它在三个域中管理三个 StatefulSet 实例。管理的 pod 总数为 6。 apiVersion: apps.kruise.io/v1alpha1 kind: UnitedDeployment metadata: name: sample spec: replicas: 6 revisionHistoryLimit: 10 selector: matchLabels: app: sample template: statefulSetTemplate: metadata: labels: app: sample spec: template: metadata: labels: app: sample spec: containers: - image: nginx:alpine name: nginx topology: subsets: - name: subset-a nodeSelector: nodeSelectorTerms: - matchExpressions: - key: node operator: In values: - zone-a replicas: 1 - name: subset-b nodeSelector: nodeSelectorTerms: - matchExpressions: - key: node operator: In values: - zone-b replicas: 50% - name: subset-c nodeSelector: nodeSelectorTerms: - matchExpressions: - key: node operator: In values: - zone-c updateStrategy: manualUpdate: partitions: subset-a: 0 subset-b: 0 subset-c: 0 type: Manual ... UnitedDeployment 的主要功能 UnitedDeployment 主要功能即分组发布,控制不同可用区中的 StatefulSet 工作负载发布。 关于 UnitedDeployment 的详细描述请见 Kruise 仓库。 BroadcastJob BroadcastJob 控制器在集群中的每个节点上分发一个 Pod。像 DaemonSet 一样,BroadcastJob 确保 Pod 被创建并在集群中的所有选定节点上运行一次。 BroadcastJob 在每个节点上的 Pod 运行完成后不会消耗任何资源。当升级一个软件,例如 Kubelet,或者在每个节点上进行验证检查时,BroadcastJob 特别有用,通常在很长一段时间内只需要一次,或者运行一个临时性的完整集群检查脚本。 BroadcastJob pod 也可以选择在所需节点上运行完成后保持存活,这样在每一个新节点被添加到集群后,就会自动启动一个 Pod。 下面是一个 BroadcastJob 的示例。 apiVersion: apps.kruise.io/v1alpha1 kind: BroadcastJob metadata: name: broadcastjob-ttl spec: template: spec: containers: - name: pi image: perl command: [\"perl\", \"-Mbignum=bpi\", \"-wle\", \"print bpi(2000)\"] restartPolicy: Never completionPolicy: type: Always ttlSecondsAfterFinished: 30 BroadcastJob 的支持多种 CompletionPolicy 和 FailurePolicy 设置,关于 BroadcastJob 的详细描述请见 Kruise 仓库。、 安装 使用 Helm v3 安装,并保证 Kubernetes 版本不低于 1.12。 helm install kruise https://github.com/openkruise/kruise/releases/download/v0.5.0/kruise-chart.tgz 默认启用所有支持的扩展控制器,若您想只启动指定的控制器,可以在执行上面的命令时设置环境变量,例如您想只启用 CloneSet 和 StatefulSet,可以加上这样的: --set manager.custom_resource_enable=\"CloneSet,StatefulSet\" 卸载 要想卸载 Kruise,只需要执行下面的命令: helm delete kruise --namespace default 注意:卸载会导致所有 Kruise 下的资源都被删除,包括 webhook configurations、services、namespace、CRD、CR 实例和所有 Kruise workload 下的 Pod。 请务必谨慎操作! 总结 Kruise 在 Kubernetes 原生控制器基础上进行了扩展,主要增加了原地升级,更灵活的发布策略及多一些特殊场景的适配(如 SidecarSet、UnitedDeployment),CloneSet 可以完全替代 Deployment,AdvancedStatefulSet 可以完全替代 StatefulSet,且使用方式都类似,用户可以无负担的轻松接入。 参考 Kruise 中文文档 - github.com Kruise 控制器分类指引 - openkruise.io 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"practice/in-place-update.html":{"url":"practice/in-place-update.html","title":"原地升级","keywords":"","body":"原地升级 Kruise 对 Kubernetes 扩展的控制器中有一个重要功能就是支持原地升级,本文将为大家介绍什么是原地升级以及如何配置。 什么是原地升级? 原地升级(In-place update)是一种 Kubernetes 中的 Pod 升级方式,这种升级方式可以更新 Pod 中某一个或多个容器的镜像版本,而不影响 Pod 中其余容器的运行,同时保持 Pod 的网络和存储状态不变。 Kubernetes 原生工作负载,不论是 Deployment、StatefulSet 还是 Pod 本身,如果你想升级 Pod 中的镜像,那么 Kubernetes 就会重新销毁该 Pod 并重新调度并创建一个 Pod,对于 StatefulSet 虽然可以保持原有 Pod 的名字,但是实际 UID 及 Pod IP 都将发生改变。如果你还使用了 Istio,那么在更新 Sidecar 容器的时候,所有植入 Sidecar 容器的 Pod 都需要销毁、重新调度和重建,这将带来极大的开销,同时也影响了业务的稳定性。 原地升级的优势 原地升级的模式极大地提升了应用发布的效率, 节省了调度的耗时,Pod 的位置、资源都不发生变化; 节省了分配网络的耗时,Pod 还使用原有的 IP; 节省了分配、挂载远程盘的耗时,Pod 还使用原有的 PV(且都是已经在 Node 上挂载好的); 节省了大部分拉取镜像的耗时,因为 Node 上已经存在了应用的旧镜像,当拉取新版本镜像时只需要下载很少的几层 layer; 而且用户要想在 Kubernetes 中使用原地升级也是极其容易的,只需要安装 OpenKruise,并在使用 Kruise 的 CRD 并在 策略中设置即可。 如何配置原地升级 OpenKruise 对于 Kubernetes 扩展的 AdvancedStatefulSet、CloneSet、SidecarSet 都支持原地升级。 需要将 updateStrategy 的 type 值配置为以下两种类型之一: InPlaceIfPossible:如果可能的话,控制器将尝试就地更新 Pod,而不是重新创建它们。目前,只有spec.template.spec.container[x].image 字段可以原地更新; InPlaceOnly:控制器将原地更新 Pod,而不是重新创建它们。使用 InPlaceOnly 策略,用户不能修改 spec.template 中除 spec.template.spec.containers[x].image 以外的任何字段。 注意:updateStrategy 默认值为 ReCreate ,必须显式的配置为以上两个类型之一才可以开启原地升级。 关于原地升级的技术背景及实现原理请参考揭秘:如何为 Kubernetes 实现原地升级。 参考 揭秘:如何为 Kubernetes 实现原地升级 - developer.aliyun.com Kruise 中文文档 - github.com 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/":{"url":"usecases/","title":"领域应用概览","keywords":"","body":"领域应用 Kubernetes 和云原生应用在各个领域中的实践。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/microservices.html":{"url":"usecases/microservices.html","title":"微服务架构","keywords":"","body":"微服务架构 Kubernetes 设计之初就是按照 Cloud Native 的理念设计的,Cloud Native 中有个重要概念就是微服务的架构设计,当将单体应用拆分微服务后, 随着服务数量的增多,如何微服务进行管理以保证服务的 SLA 呢?为了从架构层面上解决这个问题,解放程序员的创造性,避免繁琐的服务发现、监控、分布式追踪等事务,Service mesh 应运而生。 微服务 下图是Bilgin Ibryam给出的微服务中应该关心的主题,图片来自RedHat Developers。 图 7.2.1:微服务关注的部分 当前最成熟最完整的微服务框架可以说非Spring莫属,而Spring又仅限于Java语言开发,其架构本身又跟Kubernetes存在很多重合的部分,如何探索将Kubernetes作为微服务架构平台就成为一个热点话题。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/service-discovery-in-microservices.html":{"url":"usecases/service-discovery-in-microservices.html","title":"微服务中的服务发现","keywords":"","body":"微服务中的服务发现 在单体架构时,因为服务不会经常和动态迁移,所有服务地址可以直接在配置文件中配置,所以也不会有服务发现的问题。但是对于微服务来说,应用的拆分,服务之间的解耦,和服务动态扩展带来的服务迁移,服务发现就成了微服务中的一个关键问题。 服务发现分为客户端服务发现和服务端服务发现两种,架构如下图所示。 图 7.2.1.1:微服务中的服务发现 这两种架构都各有利弊,我们拿客户端服务发现软件Eureka和服务端服务发现架构Kubernetes/SkyDNS+Ingress LB+Traefik+PowerDNS为例说明。 服务发现方案 Pros Cons Eureka 使用简单,适用于java语言开发的项目,比服务端服务发现少一次网络跳转 对非Java语言的支持不够好,Consumer需要内置特定的服务发现客户端和发现逻辑 Kubernetes Consumer无需关注服务发现具体细节,只需知道服务的DNS域名即可,支持异构语言开发 需要基础设施支撑,多了一次网络跳转,可能有性能损失 Eureka 也不是单独使用的,一般会配合 ribbon 一起使用,ribbon 作为路由和负载均衡。 Ribbon提供一组丰富的功能集: 多种内建的负载均衡规则: Round-robin 轮询负载均衡 平均加权响应时间负载均衡 随机负载均衡 可用性过滤负载均衡(避免跳闸线路和高并发链接数) 自定义负载均衡插件系统 与服务发现解决方案的可拔插集成(包括Eureka) 云原生智能,例如可用区亲和性和不健康区规避 内建的故障恢复能力 参考 谈服务发现的背景、架构以及落地方案 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/microservices-for-java-developers.html":{"url":"usecases/microservices-for-java-developers.html","title":"使用 Java 构建微服务并发布到 Kubernetes 平台","keywords":"","body":"使用Java构建微服务并发布到Kubernetes平台 Java作为多年的编程语言届的No.1(使用人数最多,最流行),使用它来构建微服务的人也不计其数,Java的微服务框架Spring中的Spring Boot和Spring Cloud已成为当前最流行的微服务框架。 下面是Sping技术栈所包含的技术框架图。 图 7.2.2.1:Spring技术栈 当然如果在Kubernetes中运行Java语言构建的微服务应用,我们不会使用上图中所有的技术,本节将主要讲解如何使用Spring Boot构建微服务应用。 下图是Spring Boot的一些知识点。 图 7.2.2.2:Spring Boot的知识点 Spring Boot是Spring框架的一部分,关于Spring的核心技术请参考Spring core technologies - spring.io。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/spring-boot-quick-start-guide.html":{"url":"usecases/spring-boot-quick-start-guide.html","title":"Spring Boot 快速开始指南","keywords":"","body":"Spring Boot快速开始指南 Spring Boot已成为当今最流行的微服务开发框架,本文是如何使用Spring Boot快速开始Web微服务开发的指南,我们将使创建一个可运行的包含内嵌Web容器(默认使用的是Tomcat)的可运行Jar包。 Spring Boot旨在简化创建产品级的Spring应用和服务,简化了配置文件,使用嵌入式web服务器,含有诸多开箱即用微服务功能,可以和spring cloud联合部署。 传统的Spring应用程序需要配置大量的XML文件才能运行,而使用Spring Boot只需极少的配置,就可以快速获得一个正常运行的Spring应用程序,而这些配置使用的都是注解的形式,不需要再配置XML。 与Go语言的应用不同,我们知道所有的Java Web应用都必须放在servlet容器(不是像docker容器的那种容器),如Tomcat、Jetty等。Servlet容器被定位为托管web应用程序的高可用组件。关于Servlet的教程请参考Servlet教程 | runoob.com。 Spring的基本原理 Spring是一套Java开发框架,框架的作用就是为了减少代码的冗余和模块之间的耦合,使代码逻辑更加清晰,主要是用了AOP(Aspect Oriented Programming,面向切面编程)和IoC(Inversion of Control,控制反转)容器的思想,其中AOP是利用了Java的反射机制实现的。为了便于理解AOP可以参考一个简单的Spring的AOP例子。 准备环境 在开始Spring Boot开发之前,需要先确认您的电脑上已经有以下环境: JDK8 Maven3.0+ Intellij IDEA JDK最好使用JDK8版本,Maven和IDEA的安装都十分简单,Maven的仓库配置有必要说一下。 配置Maven 在安装好Maven之后,默认的~/.m2目录下是没有maven仓库配置文件settings.xml的,默认使用的是官方的仓库,访问速度会非常慢,我们需要配置下国内的仓库。 创建~/.m2/settings.xml文件,文件内容如下: alimaven aliyun maven http://maven.aliyun.com/nexus/content/groups/public/ central nexus nexus local private nexus http://maven.oschina.net/content/groups/public/ true false nexus local private nexus http://maven.oschina.net/content/groups/public/ true false 其中使用的是阿里云的mirror,国内的下载速度非常快。 创建第一个Spring Boot应用 我们可以使用以下两种方式创建Spring Boot应用: springboot maven 使用springboot命令创建Spring Boot应用 首先需要安装springboot命令行工具。 brew tap pivotal/tap brew install springboot 使用下面的命令创建应用。 spring init --build maven --groupId com.example --version 0.0.1-SNAPSHOT --java-version 1.8 --dependencies web --name myproject myproject --build使用maven编译或者是gradle --groupId和--version与maven的pom.xml中的设置对应 --dependencies可以指定多个,如web、jpa、security等starter 执行上述命令后,将创建如下的目录结构: . └── myproject ├── mvnw ├── mvnw.cmd ├── pom.xml └── src ├── main │ ├── java │ │ └── com │ │ └── example │ │ └── myproject │ │ └── MyprojectApplication.java │ └── resources │ ├── application.properties │ ├── static │ └── templates └── test └── java └── com └── example └── myproject └── MyprojectApplicationTests.java 15 directories, 6 files 运行默认的示例应用。 mvn spring-boot:run 第一次运行需要下载依赖包所以会比较耗费时间,以后每次编译运行速度就会很快。 在浏览器中访问将看到如下输出: Whitelabel Error Page This application has no explicit mapping for /error, so you are seeing this as a fallback. Mon Mar 12 16:26:42 CST 2018 There was an unexpected error (type=Not Found, status=404). No message available 使用Maven创建Spring Boot应用 使用Maven创建Spring Boot应用需要执行以下步骤: 创建Maven工程所需的pom.xml文件 生成Maven工程 编译打包发布 创建pom.xml 为Maven项目构建创建pom.xml文件,内容如下: 4.0.0 com.example myproject 0.0.1-SNAPSHOT org.springframework.boot spring-boot-starter-parent 1.4.1.BUILD-SNAPSHOT spring-snapshots http://repo.spring.io/snapshot true spring-milestones http://repo.spring.io/milestone spring-snapshots http://repo.spring.io/snapshot spring-milestones http://repo.spring.io/milestone org.springframework.boot spring-boot-starter-web org.springframework.boot spring-boot-devtools true org.springframework.boot spring-boot-maven-plugin 现在执行mvn dependency:tree可以看到项目中的依赖关系。 com.example:myproject:jar:0.0.1-SNAPSHOT \\- org.springframework.boot:spring-boot-starter-web:jar:1.4.1.BUILD-SNAPSHOT:compile +- org.springframework.boot:spring-boot-starter:jar:1.4.1.BUILD-SNAPSHOT:compile | +- org.springframework.boot:spring-boot:jar:1.4.1.BUILD-SNAPSHOT:compile | +- org.springframework.boot:spring-boot-autoconfigure:jar:1.4.1.BUILD-SNAPSHOT:compile | +- org.springframework.boot:spring-boot-starter-logging:jar:1.4.1.BUILD-SNAPSHOT:compile | | +- ch.qos.logback:logback-classic:jar:1.1.7:compile | | | +- ch.qos.logback:logback-core:jar:1.1.7:compile | | | \\- org.slf4j:slf4j-api:jar:1.7.21:compile | | +- org.slf4j:jcl-over-slf4j:jar:1.7.21:compile | | +- org.slf4j:jul-to-slf4j:jar:1.7.21:compile | | \\- org.slf4j:log4j-over-slf4j:jar:1.7.21:compile | +- org.springframework:spring-core:jar:4.3.3.RELEASE:compile | \\- org.yaml:snakeyaml:jar:1.17:runtime +- org.springframework.boot:spring-boot-starter-tomcat:jar:1.4.1.BUILD-SNAPSHOT:compile | +- org.apache.tomcat.embed:tomcat-embed-core:jar:8.5.5:compile | +- org.apache.tomcat.embed:tomcat-embed-el:jar:8.5.5:compile | \\- org.apache.tomcat.embed:tomcat-embed-websocket:jar:8.5.5:compile +- org.hibernate:hibernate-validator:jar:5.2.4.Final:compile | +- javax.validation:validation-api:jar:1.1.0.Final:compile | +- org.jboss.logging:jboss-logging:jar:3.3.0.Final:compile | \\- com.fasterxml:classmate:jar:1.3.1:compile +- com.fasterxml.jackson.core:jackson-databind:jar:2.8.3:compile | +- com.fasterxml.jackson.core:jackson-annotations:jar:2.8.3:compile | \\- com.fasterxml.jackson.core:jackson-core:jar:2.8.3:compile +- org.springframework:spring-web:jar:4.3.3.RELEASE:compile | +- org.springframework:spring-aop:jar:4.3.3.RELEASE:compile | +- org.springframework:spring-beans:jar:4.3.3.RELEASE:compile | \\- org.springframework:spring-context:jar:4.3.3.RELEASE:compile \\- org.springframework:spring-webmvc:jar:4.3.3.RELEASE:compile \\- org.springframework:spring-expression:jar:4.3.3.RELEASE:compile 这其中包括Tomcat web服务器和Spring Boot自身。 Spring Boot 推荐的基础 POM 文件 名称 说明 spring-boot-starter 核心 POM,包含自动配置支持、日志库和对 YAML 配置文件的支持。 spring-boot-starter-amqp 通过 spring-rabbit 支持 AMQP。 spring-boot-starter-aop 包含 spring-aop 和 AspectJ 来支持面向切面编程(AOP)。 spring-boot-starter-batch 支持 Spring Batch,包含 HSQLDB。 spring-boot-starter-data-jpa 包含 spring-data-jpa、spring-orm 和 Hibernate 来支持 JPA。 spring-boot-starter-data-mongodb 包含 spring-data-mongodb 来支持 MongoDB。 spring-boot-starter-data-rest 通过 spring-data-rest-webmvc 支持以 REST 方式暴露 Spring Data 仓库。 spring-boot-starter-jdbc 支持使用 JDBC 访问数据库。 spring-boot-starter-security 包含 spring-security。 spring-boot-starter-test 包含常用的测试所需的依赖,如 JUnit、Hamcrest、Mockito 和 spring-test 等。 spring-boot-starter-velocity 支持使用 Velocity 作为模板引擎。 spring-boot-starter-web 支持 Web 应用开发,包含 Tomcat 和 spring-mvc。 spring-boot-starter-websocket 支持使用 Tomcat 开发 WebSocket 应用。 spring-boot-starter-ws 支持 Spring Web Services。 spring-boot-starter-actuator 添加适用于生产环境的功能,如性能指标和监测等功能。 spring-boot-starter-remote-shell 添加远程 SSH 支持。 spring-boot-starter-jetty 使用 Jetty 而不是默认的 Tomcat 作为应用服务器。 spring-boot-starter-log4j 添加 Log4j 的支持。 spring-boot-starter-logging 使用 Spring Boot 默认的日志框架 Logback。 spring-boot-starter-tomcat 使用 Spring Boot 默认的 Tomcat 作为应用服务器。 所有这些 POM 依赖的好处在于为开发 Spring 应用提供了一个良好的基础。Spring Boot 所选择的第三方库是经过考虑的,是比较适合产品开发的选择。但是 Spring Boot 也提供了不同的选项,比如日志框架可以用 Logback 或 Log4j,应用服务器可以用 Tomcat 或 Jetty。 生成Maven工程 对于普通的Java项目或者Java Web项目可以使用下面的命令创建maven结构: mvn archetype:generate -DgroupId=com.example -DartifactId=myproject -DarchetypeArtifactId=maven-archetype-webapp -DinteractiveMode=false 下表是以上参数的使用说明: 参数 说明 mvn archetype:generate 固定格式 -DgroupId 组织标识(包名) -DartifactId 项目名称 -DarchetypeArtifactId 指定ArchetypeId,maven-archetype-quickstart,创建一个Java Project;maven-archetype-webapp,创建一个Web Project -DinteractiveMode 是否使用交互模式 这将生成以下的目录结构: . └── myproject ├── pom.xml └── src └── main ├── resources └── webapp ├── WEB-INF │ └── web.xml └── index.jsp 6 directories, 3 files 对于Spring Boot项目,无法使用mvn命令直接生成,需要手动创建目录: mkdir -p src/main/java 创建示例代码 创建src/main/java/Example.java文件内容如下: import org.springframework.boot.*; import org.springframework.boot.autoconfigure.*; import org.springframework.stereotype.*; import org.springframework.web.bind.annotation.*; @RestController @EnableAutoConfiguration public class Example { @RequestMapping(\"/\") String home() { return \"Hello World!\"; } public static void main(String[] args) throws Exception { SpringApplication.run(Example.class, args); } } @RestController注解告诉Spring以字符串的形式渲染结果,并直接返回给调用者。 @EnableAutoConfiguration注解告诉Spring Boot根据添加的jar依赖猜测你想如何配置Spring。由于spring-boot-starter-web添加了Tomcat和Spring MVC,所以auto-configuration将假定你正在开发一个web应用,并对Spring进行相应地设置。 @RequestMapping注解提供路由信息,它告诉Spring任何来自\"/\"路径的HTTP请求都应该被映射到home方法。 注:@RestController和@RequestMapping是Spring MVC中的注解(它们不是Spring Boot的特定部分)。 编译和发布 运行该项目有以下两种方式。 方式1:直接mvn命令运行 mvn spring-boot:run 方式2:编译打包成可执行jar包 mvn package java -jar target/myproject-0.0.1-SNAPSHOT.jar 不论使用哪种方式编译,访问可以看到web页面上显示Hello world!。 在target目录下,你应该还能看到一个很小的名为myproject-0.0.1-SNAPSHOT.jar.original的文件,这是在Spring Boot重新打包前,Maven创建的原始jar文件。实际上可运行jar包中包含了这个小的jar包。 参考 Spring官方网站 Spring core technologies - spring.io Spring Boot Reference Guide中文翻译 -《Spring Boot参考指南》 使用 Spring Boot 快速构建 Spring 框架应用 maven3常用命令、java项目搭建、web项目搭建详细图解 Servlet教程 - runoob.com AOP - Aspect Oriented Programming - spring.io 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/service-mesh.html":{"url":"usecases/service-mesh.html","title":"服务网格(Service Mesh)","keywords":"","body":"服务网格(Service Mesh ) 注意:本书中的 Service Mesh 章节已不再维护,请转到 istio-handbook 中浏览。 Service mesh 又译作 ”服务网格“,作为服务间通信的基础设施层。Buoyant 公司的 CEO Willian Morgan 在他的这篇文章 WHAT’S A SERVICE MESH? AND WHY DO I NEED ONE? 中解释了什么是 Service Mesh,为什么云原生应用需要 Service Mesh。 A service mesh is a dedicated infrastructure layer for handling service-to-service communication. It’s responsible for the reliable delivery of requests through the complex topology of services that comprise a modern, cloud native application. In practice, the service mesh is typically implemented as an array of lightweight network proxies that are deployed alongside application code, without the application needing to be aware. 今年来以 Istio 和 Linkderd 为代表的 Service Mesh 蓬勃发展,大有成为下一代语言异构微服务架构的王者之范,今天又碰巧看到了 Red Hat 的 Burr Sutter 提出了8 Steps to Becoming Awesome with Kubernetes,整个PPT一共60多页,很有建设性,点此跳转到我的GitHub上下载,我将其归档到cloud-native-slides-share中了。 图 7.3.1:下一代异构微服务架构 自我6月份初接触Istio依赖就发觉service mesh很好的解决了异构语言中的很多问题,而且是kuberentes service 上层不可或缺的服务间代理。关于istio的更多内容请参考 istio 官方文档。 什么是 service mesh? Service mesh 有如下几个特点: 应用程序间通讯的中间层 轻量级网络代理 应用程序无感知 解耦应用程序的重试/超时、监控、追踪和服务发现 目前两款流行的 service mesh 开源软件 Istio 和 Linkerd 都可以直接在 kubernetes 中集成,其中 Linkerd 已经成为 CNCF 成员。 理解 Service Mesh 如果用一句话来解释什么是 Service Mesh,可以将它比作是应用程序或者说微服务间的 TCP/IP,负责服务之间的网络调用、限流、熔断和监控。对于编写应用程序来说一般无须关心 TCP/IP 这一层(比如通过 HTTP 协议的 RESTful 应用),同样使用 Service Mesh 也就无须关系服务之间的那些原来是通过应用程序或者其他框架实现的事情,比如 Spring Cloud、OSS,现在只要交给 Service Mesh 就可以了。 Phil Calçado 在他的这篇博客 Pattern: Service Mesh 中详细解释了 Service Mesh 的来龙去脉: 从最原始的主机之间直接使用网线相连 网络层的出现 集成到应用程序内部的控制流 分解到应用程序外部的控制流 应用程序的中集成服务发现和断路器 出现了专门用于服务发现和断路器的软件包/库,如 Twitter 的 Finagle 和 Facebook 的 Proxygen,这时候还是集成在应用程序内部 出现了专门用于服务发现和断路器的开源软件,如 Netflix OSS、Airbnb 的 synapse 和 nerve 最后作为微服务的中间层 service mesh 出现 Service mesh 的架构如下图所示: 图 7.3.2:Service Mesh 架构图 图片来自:Pattern: Service Mesh Service mesh 作为 sidecar 运行,对应用程序来说是透明,所有应用程序间的流量都会通过它,所以对应用程序流量的控制都可以在 serivce mesh 中实现。 Service mesh如何工作? 下面以 Linkerd 为例讲解 service mesh 如何工作,Istio 作为 service mesh 的另一种实现原理与 linkerd 基本类似,后续文章将会详解 Istio 和 Linkerd 如何在 kubernetes 中工作。 Linkerd 将服务请求路由到目的地址,根据中的参数判断是到生产环境、测试环境还是 staging 环境中的服务(服务可能同时部署在这三个环境中),是路由到本地环境还是公有云环境?所有的这些路由信息可以动态配置,可以是全局配置也可以为某些服务单独配置。 当 Linkerd 确认了目的地址后,将流量发送到相应服务发现端点,在 kubernetes 中是 service,然后 service 会将服务转发给后端的实例。 Linkerd 根据它观测到最近请求的延迟时间,选择出所有应用程序的实例中响应最快的实例。 Linkerd 将请求发送给该实例,同时记录响应类型和延迟数据。 如果该实例挂了、不响应了或者进程不工作了,Linkerd 将把请求发送到其他实例上重试。 如果该实例持续返回 error,Linkerd 会将该实例从负载均衡池中移除,稍后再周期性得重试。 如果请求的截止时间已过,Linkerd 主动失败该请求,而不是再次尝试添加负载。 Linkerd 以 metric 和分布式追踪的形式捕获上述行为的各个方面,这些追踪信息将发送到集中 metric 系统。 为何使用 service mesh? Service mesh 并没有给我们带来新功能,它是用于解决其他工具已经解决过的问题,只不过这次是在 Cloud Native 的 kubernetes 环境下的实现。 在传统的 MVC 三层 Web 应用程序架构下,服务之间的通讯并不复杂,在应用程序内部自己管理即可,但是在现今的复杂的大型网站情况下,单体应用被分解为众多的微服务,服务之间的依赖和通讯十分复杂,出现了 twitter 开发的 Finagle、Netflix 开发的 Hystrix 和 Google 的 Stubby 这样的 ”胖客户端“ 库,这些就是早期的 service mesh,但是它们都近适用于特定的环境和特定的开发语言,并不能作为平台级的 service mesh 支持。 在 Cloud Native 架构下,容器的使用给予了异构应用程序的更多可行性,kubernetes 增强的应用的横向扩容能力,用户可以快速的编排出复杂环境、复杂依赖关系的应用程序,同时开发者又无须过分关心应用程序的监控、扩展性、服务发现和分布式追踪这些繁琐的事情而专注于程序开发,赋予开发者更多的创造性。 Istio VS Linkerd 当前的Service Mesh实现主要有两大阵营,要给是Linkerd(也是最初提出该概念的),另一个是Istio,当然还有很多其他号称也是Service Mesh,比如Nginx出品的Nginmesh。 Feature Istio Linkerd 部署架构 Envoy/Sidecar DaemonSets 易用性 复杂 简单 支持平台 kuberentes kubernetes/mesos/Istio/local 当前版本 0.3.0 1.3.3 是否已有生产部署 否 是 下图是Istio和Linkerd架构的不同,Istio是使用Sidecar模式,将Envoy植入到Pod中,而Linkerd则是在每台node上都以DaemonSet的方式运行。 图 7.3.3:Istio vs linkerd 关于Istio和Linkerd的详细信息请参考 安装并试用Istio service mesh 与 Linkerd 使用指南。 另外出品Linkerd的公司buoyant又推出了conduit,这是一种更轻量级的Service Mesh。 参考 WHAT’S A SERVICE MESH? AND WHY DO I NEED ONE? So what even is a Service Mesh? Hot take on Istio and Linkerd linkerd: A service mesh for AWS ECS Introducing Istio: A robust service mesh for microservices Application Network Functions With ESBs, API Management, and Now.. Service Mesh? Pattern: Service Mesh Istio官方文档 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/the-enterprise-path-to-service-mesh-architectures.html":{"url":"usecases/the-enterprise-path-to-service-mesh-architectures.html","title":"企业级服务网格架构","keywords":"","body":"企业级服务网格架构之路 本节是根据由Nginx赞助,O’Reilly出版社出品的关于服务网格的书籍总结而来,本书标题是 The Enterprise Path to Service Mesh ,还有个副标题 Decoupling at Layer 5 ,第一版发行于2018年8月8日。这本书一共61页,本文是我对该书的一些解读,读者可以在Nginx的网站上免费下载阅读完整内容。 追本溯源,Service Mesh实际上是一种SDN,等同于OSI模型中的会话层。 每一次技术变革,必然要导致生产力和生产关系的变革,我们看到这种趋势正在加速。本书中给出了企业上Service Mesh的路径,可供广大技术和管理人员参考。 注:若未加声明,本章中所有图片均来自The Enterprise Path to Service Mesh一书。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/service-mesh-fundamental.html":{"url":"usecases/service-mesh-fundamental.html","title":"Service Mesh 基础","keywords":"","body":"Service Mesh基础 本文是对The Enterprise Path to Service Mesh Architecutures一书的解读。 微服务将原先的单体架构中的应用内通信,转变为基于RPC的远程通信,虽然这样提高了研发效率,提高了开发语言选择的多样性,但是随着单体应用的解体,原先的巨石散落为石块变得四处都是,如何管理这些微服务就成了难题。当微服务的个数少的时候还可以通过人工配置的方式去管理,但随着业务规模的增大,微服务的数量也可能呈指数级增长,如何协调管理成百上千的服务,这就需要有一套设计良好的框架。 一直以来都存在一个谬误,那就是在分布式系统中网络是可靠的。实际上网络是不可靠的,而且也是不安全的,如何保证应用调用和事务的安全性与可靠性,保护微服务的一个专门的基础设施层Service Mesh就应运而生。 Service Mesh是建立在物理或者虚拟网络层之上的,基于策略的微服务的流量控制,与一般的网络协议不同的是它有以下几个特点: 开发者驱动 可配置策略 服务优先的网络配置而不是协议 本章主要介绍Service Mesh的定义和组成,为什么要使用Service Mesh,它可以带来哪些好处。 图 7.3.1.1.1:Service Mesh模型对比 Service Mesh与传统网络的区别就是硬件或者虚拟网络与软件定义网络(SDN)的区别,我们从上图中可以看到物理和虚拟网络中比起SDN还多了管理平面。 硬件网络中控制平面与数据平面紧耦合,也就是说是与供应商绑定的,管理平面是独立出来的。而SDN却给了我们很多自由度,可以通过软件的形式自定义网络,例如Kubernetes中的CNI。 物理网络有很多种拓扑类型,如星形拓扑、总线拓扑、环形拓扑、树型拓扑、网状拓扑等,大家可以去搜索拓扑网络。不论是那种拓扑结构,总有一条路径可以从一个节点路由到另一个节点,只是不同的拓扑类型效率不同,管理的复杂度不一样罢了。 下图是网状拓扑,所谓网状拓扑就是每个节点都可以跟所有其他节点直接互联,这样而这也是链接数最多一种拓扑,如果有n个节点的话,链接数就是n(n-1)。 图 7.3.1.1.2:网状网络拓扑 Service Mesh架构 下图是Conduit Service Mesh(现在已合并到Linkerd2中了)的架构图,这是Service Mesh的一种典型的架构。 图 7.3.1.1.3:Service Mesh架构图 Service Mesh中分为控制平面和数据平面,当前流行的两款开源的Service Mesh Istio和Linkerd实际上都是这种构造,只不过Istio的划分更清晰,而且部署更零散,很多组件都被拆分,控制平面中包括Mixer、Pilot、Citadel,数据平面默认是用Envoy;而Linkerd中只分为linkerd做数据平面,namerd作为控制平面。 控制平面 控制平面的特点: 不直接解析数据包 与控制平面中的代理通信,下发策略和配置 负责网络行为的可视化 通常提供API或者命令行工具可用于配置版本化管理,便于持续集成和部署 数据平面 数据平面的特点: 通常是按照无状态目标设计的,但实际上为了提高流量转发性能,需要缓存一些数据,因此无状态也是有争议的 直接处理入站和出站数据包,转发、路由、健康检查、负载均衡、认证、鉴权、产生监控数据等 对应用来说透明,即可以做到无感知部署 Service Mesh的价值所在 Service Mesh中服务是一等公民,它提供L5的网络流量管理,并提供以下功能: 可观察性 还是拿Istio做例子,Mixer通过适配器将应用的遥测数据发送给后端监控、日志、认证和份额管理系统。 图 7.3.1.1.4:Istio Mixer 从上图可以看到Mixer适配器可以对接多种监控和日志后端。 流量控制 文中给出的例子是超时、重试、截止时间和速率限制。 安全性 下图是Istio中安全通信路径的示意图。 图 7.3.1.1.5:Istio架构图 一般的安全性都是通过证书的方式实现的。Sidecar代理负责证书生命周期的管理,包括证书的生成、分发、刷新和注销。从图中还可以看到,在Pod内部sidecar会与应用容器之间建立本地TCP连接,其中使用mTLS(双向传输层加密)。这一点是非常重要的,因为一个节点上甚至一个Pod内都不一定运行一个容器,容器可能会被暴露到外部访问,保证传输层的双向加密,可以保证流量传输的安全。 延迟和故障注入 这个功能对于容灾和故障演练特别有用。通过人为的向系统中注入故障,如HTTP 500错误,通过分析分布式应用的行为,检验系统的健壮性。 在L5解耦 这是本书最有重要的一个观点,重要到要放到副标题,熟悉OSI模型的人都知道L5是什么。 图 7.3.1.1.6:OSI模型 OSI模型(图片来自CSDN) Service Mesh是在开发和运维之间植入的一个基础设施层。它将服务通信的关注点分离出来,在TCP/IP层之上抽象出一层通用功能。Service Mesh的引入直接导致生产关系的改变进而提高生产效率。具体表现在: 运维人员在修改服务重试超时时间之前无需再知会开发人员。 客户成功部门在撤销客户的访问权限前无需再知会运维。 产品Owner可以针对特定服务,根据用户选择的套餐执行配额管理。 开发人员可随时将新版本功能重定向到beta版本,不需要运维人员干涉。 图 7.3.1.1.7:在L5解耦 这种职责的解耦大大加速了软件的迭代速度,总之你可以把Service Mesh作为OSI模型中的会话层。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/comparing-service-mesh-technologies.html":{"url":"usecases/comparing-service-mesh-technologies.html","title":"Service Mesh 技术对比","keywords":"","body":"Service Mesh 技术对比 这一章主要讲解的是 service mesh 与其他技术之间的区别以及为什么有了 Kubernetes 后还需要用 service mesh。 为什么有了如 Kubernetes 这样的容器编排我们还需要 Service Mesh 呢,下表是对容器编排调度器的核心功能和缺少的服务级别能力对比。 核心能力 缺少的服务级别能力 集群管理 熔断 调度 L7 细粒度的流量控制 编排器和主机维护 混沌测试 服务发现 金丝雀部署 网络和负载均衡 超时、重试、 budget 和 deadline 有状态服务 按请求路由 多租户、多 region 策略 简单的应用监控检查和性能监控 传输层安全(加密) 应用部署 身份和访问控制 配置和秘钥管理 配额管理 / 协议转换(REST、gRPC) 以上是容器编排中缺少的服务级别的能力,当然类似 Kubernetes 这样的容器编排系统中也有服务管理的能力,如 Ingress Controller,但是它仅仅负责集群内的服务对外暴露的反向代理,每个 Ingress Controller 的能力受限于 Kubernetes 的编程模型。对服务进行管理还可以通过例如 Kong、基于云的负载均衡器、API Gateway 和 API 管理来实现,在没有 Service Mesh 的时候还需要如 Finagle、Hystrix、Ribbon 客户端库的加持。 下图是一个使用客户端库将应用与服务治理紧耦合的示意图。 图 7.3.1.2.1:客户端库 从图中我们可以看到,应用程序代码与客户端度库紧耦合在一起,不同的服务团队需要一起协调超时和重试机制等。容器编排更适用于分布式应用,API Gateway 通常只需要部署在系统边缘即可,不需要在每个应用中都部署,而 service mesh 却需要在每个服务或者说节点中部署。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/service-mesh-adoption-and-evolution.html":{"url":"usecases/service-mesh-adoption-and-evolution.html","title":"采纳和演进","keywords":"","body":"采纳和演进 没有人会一下子采纳Service Mesh架构的所有组件,或者一次性将所有的应用都改造成Service Mesh的,都是渐渐式采纳,从非核心系统开始改造。采纳Service Mesh就两种路径: 全盘采纳:通常对于新应用来说才会这样做,也叫做Greenfiled项目 渐进式采纳:旧系统改造,也叫做Brownfiled项目 通过价值驱动、开发人员的接受程度、自底向上的选择你最急切需要的功能,可能是可观察性或RPC的负载均衡等等,先采纳部分功能,然后通过渐渐式的方式来演进。 架构演进 我们在前面看到了通过客户端库来治理服务的架构图,那是我们在改造成Service Mesh架构前使用微服务架构通常的形式,下图是使用Service Mesh架构的最终形式。 图 7.3.1.3.1:Service Mesh架构图 当然在达到这一最终形态之前我们需要将架构一步步演进,下面给出的是参考的演进路线。 Ingress或边缘代理 如果你使用的是Kubernetes做容器编排调度,那么在进化到Service Mesh架构之前,通常会使用Ingress Controller,做集群内外流量的反向代理,如使用Traefik或Nginx Ingress Controller。 图 7.3.1.3.2:Ingress或边缘代理架构图 这样只要利用Kubernetes的原有能力,当你的应用微服务化并容器化需要开放外部访问且只需要L7代理的话这种改造十分简单,但问题是无法管理服务间流量。 路由器网格 Ingress或者边缘代理可以处理进出集群的流量,为了应对集群内的服务间流量管理,我们可以在集群内加一个Router层,即路由器层,让集群内所有服务间的流量都通过该路由器。 图 7.3.1.3.3:路由器网格架构图 这个架构无需对原有的单体应用和新的微服务应用做什么改造,可以很轻易的迁移进来,但是当服务多了管理起来就很麻烦。 Proxy per Node 这种架构是在每个节点上都部署一个代理,如果使用Kubernetes来部署的话就是使用DaemonSet对象,Linkerd第一代就是使用这种方式部署的,一代的Linkerd使用Scala开发,基于JVM比较消耗资源,二代的Linkerd使用Go开发。 图 7.3.1.3.4:Proxy per Node架构图 这种架构有个好处是每个节点只需要部署一个代理即可,比起在每个应用中都注入一个sidecar的方式更节省资源,而且更适合基于物理机/虚拟机的大型单体应用,但是也有一些副作用,比如粒度还是不够细,如果一个节点出问题,该节点上的所有服务就都会无法访问,对于服务来说不是完全透明的。 Sidecar代理/Fabric模型 这个一般不会成为典型部署类型,当企业的服务网格架构演进到这一步时通常只会持续很短时间,然后就会增加控制平面。跟前几个阶段最大的不同就是,应用程序和代理被放在了同一个部署单元里,可以对应用程序的流量做更细粒度的控制。 图 7.3.1.3.5:Sidecar代理/Fabric模型架构图 这已经是最接近Service Mesh架构的一种形态了,唯一缺的就是控制平面了。所有的sidecar都支持热加载,配置的变更可以很容易的在流量控制中反应出来,但是如何操作这么多sidecar就需要一个统一的控制平面了。 Sidecar代理/控制平面 下面的示意图是目前大多数Service Mesh的架构图,也可以说是整个Service Mesh架构演进的最终形态。 图 7.3.1.3.6:Sidecar代理/控制平面架构图 这种架构将代理作为整个服务网格中的一部分,使用Kubernetes部署的话,可以通过以sidecar的形式注入,减轻了部署的负担,可以对每个服务的做细粒度权限与流量控制。但有一点不好就是为每个服务都注入一个代理会占用很多资源,因此要想方设法降低每个代理的资源消耗。 多集群部署和扩展 以上都是单个服务网格集群的架构,所有的服务都位于同一个集群中,服务网格管理进出集群和集群内部的流量,当我们需要管理多个集群或者是引入外部的服务时就需要网格扩展和多集群配置。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/service-mesh-customization-and-integration.html":{"url":"usecases/service-mesh-customization-and-integration.html","title":"定制和集成","keywords":"","body":"定制和集成 例如Istio这样的Service Mesh中有很多地方可以给大家定制,例如作为数据平面的sidecar,虽然默认使用的是Envoy,但是你可以开发自己的sidecar代理;还有Mixer中的各种adpater,你也可以开发自己的adapter来扩展遥测和鉴权功能,Consul Connect就是个例子。 当前可选择的开源的代理可以在landscape里找到,例如使用nginMesh替代Envoy作为数据平面。下图是使用nginMesh作为sidecar的架构图。 nginMesh 图 7.3.1.4.1:nginMesh架构图 通过扩展Istio Mixer adapter来对接不同的监控后端。 图 7.3.1.4.2:Mixer adapter MOSN 还有蚂蚁金服开源的Go语言版的数据平面MOSN,这是也兼容Istio的SOFAMesh的一部分,也可以单独作为代理使用,详见:蚂蚁金服开源SOFAMesh。 图 7.3.1.4.3:SOFAMesh MOSN的模块架构图。 图 7.3.1.4.4:SOFAMosn模块架构图 在未来我们会看到更多定制的数据平面和Mixer适配器出现。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/service-mesh-conclusion.html":{"url":"usecases/service-mesh-conclusion.html","title":"总结","keywords":"","body":"总结 最后是对全书的总结,2018年必然是一场服务网格或者说Proxy的战争。 用还是不用 既然Service Mesh这么好,那到底用还是不用,如果用的话应该什么时候用,应该怎么用?这取决于您的公司的云原生技术的成熟度曲线的位置,服务的规模,业务核心和底层基础设施管理是否适应等。 技术总是在不断向前发展,容器出现后,解决的软件环境和分发的问题;但是如何管理分布式的应用呢,又出现了容器编排软件;容器编排软件解决的微服务的部署问题,但是对于微服务的治理的功能太弱,这才出现了Service Mesh,当然Service Mesh也不是万能的,下一步会走向何方呢?会是Serverless吗?我们拭目以待。 Service Mesh还有一些遗留的问题没有解决或者说比较薄弱的功能: 分布式应用的调试,可以参考squash 服务拓扑和状态图,可以参考kiali和vistio 多租户和多集群的支持 白盒监控、支持APM 加强负载测试工具slow_cooker、fortio、lago等 更高级的fallback路径支持 可拔插的证书授权组建,支持外部的CA 下面是采纳Service Mesh之前需要考虑的因素。 因素 可以考虑使用Service Mesh 强烈建议使用Service Mesh 服务通信 基本无需跨服务间的通讯 十分要求服务间通讯 可观察性 只关注边缘的指标即可 内部服务和边缘指标都要考虑以更好的了解服务的行为 客户关注 主要关注外部API的体验,内外用户是隔离的 内部外部用户没有区别体验一致 API的界限 API主要是作为客户端为客户提供,内部的API与外部是分离的 API即产品,API就是你的产品能力 安全模型 通过边缘、防火墙可信内部网络的方式控制安全 所有的服务都需要认证和鉴权、服务间要加密、zero-trust安全观念 在考虑完上述因素后,尽量选择开源的平台和解决方案,还要想好开源软件的边界在哪里,哪些能力将是企业版才会提供的。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/istio.html":{"url":"usecases/istio.html","title":"Istio","keywords":"","body":"Istio简介 Istio 是由 Google、IBM 和 Lyft 开源的微服务管理、保护和监控框架。Istio 为希腊语,意思是”起航“。 关于Istio中的各个组件和一些关键信息请参考下面的mindmap。 图 7.3.2.1:Istio的mindmap Istio 名称的来历 stio(ISS-tee-oh)是由 Tetrate 创始人 Varun Talwar 和谷歌首席工程师 Louis Ryan 在 2017 年命名的,当时他们都在谷歌工作。 Istio 在希腊语中是 “sail” 的意思,它(ιστίο)延用了 Kubernetes(在希腊语中是飞行员或舵手的意思)建立的希腊航海主题。Istio 和它的表亲 Istos(ιστός)(意思是桅杆、网)都来自古希腊词根 Istimi(ἵστημι),意思是 “to make stand”。 “为了取名,我们翻阅了三个小时希腊字典”Varun 说,“最终我们两人想到一起去了。帆船的理念不仅在于谁在控制船,而是没有船你哪儿也去不了。“ Varun 回忆说 10 个候选名称最后被缩减到 3 个,但命名 Istio Github 仓库的实际需求要求他们快速做出最终决定。 Istio 的网址是 istio.io,“io” 的重复是值得商榷。就其本身而言,“io” 有很多含义,包括 ionium(锾元素)的缩写、以古代宙斯的情人命名的木星卫星,以及得名于印度洋的互联网顶级域名。我们也注意到 io 是 Ino(奥德赛中的人名)的另一种拼法,Ino 给了 Odysseus(奥德赛中的人名)一个神奇的面纱,让他在五级海洋风暴中顺利航行。Istio 不正是那件法器吗? 最后说明一下:Istio 并不是首字母缩写,但如果一定要说它代表着什么,也许会是 “I Secure, Then I Observe”(我保护,我观察),或者 \"I’m Sexy To Infrastructure Operators.\"(我对基础设施运营商富有吸引力)。 语言学家 Efthymia Lixourgioti 为 Istio 项目的取名提供了希腊语翻译和词源学的咨询。 简介 Istio 解决了开发人员和运维人员所面临的从单体应用向分布式微服务架构转变的挑战。了解它是如何做到这一点的可以让我们更详细地理解 Istio 的服务网格。 术语服务网格用来描述组成这些应用程序的微服务网络以及它们之间的交互。随着服务网格的规模和复杂性不断的增长,它将会变得越来越难以理解和管理。它的需求包括服务发现、负载均衡、故障恢复、度量和监控等。服务网格通常还有更复杂的运维需求,比如 A/B 测试、金丝雀发布、速率限制、访问控制和端到端认证。 Istio 提供了对整个服务网格的行为洞察和操作控制的能力,以及一个完整的满足微服务应用各种需求的解决方案。 另外,Istio的前身是IBM开源的Amalgam8,追本溯源,我们来看下它的特性。 Amalgam8 Amalgam8的网站上说,它是一个Content-based Routing Fabric for Polyglot Microservices,简单、强大且开源。 Amalgam8是一款基于内容和版本的路由布局,用于集成多语言异构体微服务。 其control plane API可用于动态编程规则,用于在正在运行的应用程序中跨微服务进行路由和操作请求。 以内容/版本感知方式路由请求的能力简化了DevOps任务,如金丝雀和红/黑发布,A/B Test和系统地测试弹性微服务。 可以使用Amalgam8平台与受欢迎的容器运行时(如Docker,Kubernetes,Marathon / Mesos)或其他云计算提供商(如IBM Bluemix,Google Cloud Platform或Amazon AWS)。 特性 使用istio的进行微服务管理有如下特性: 流量管理:控制服务间的流量和API调用流,使调用更可靠,增强不同环境下的网络鲁棒性。 可观测性:了解服务之间的依赖关系和它们之间的性质和流量,提供快速识别定位问题的能力。 策略实施:通过配置mesh而不是以改变代码的方式来控制服务之间的访问策略。 服务识别和安全:提供在mesh里的服务可识别性和安全性保护。 未来将支持多种平台,不论是kubernetes、Mesos、还是云。同时可以集成已有的ACL、日志、监控、配额、审计等。 设计目标 几个关键的设计目标形成了 Istio 的架构。这些目标对于使系统能够大规模和高性能地处理服务是至关重要的。 透明度最大化:为了采用 Istio,运维人员或开发人员需要做尽可能少的工作,才能从系统中获得真正的价值。为此,Istio 可以自动将自己注入到服务之间的所有网络路径中。Istio 使用 sidecar 代理来捕获流量,并在可能的情况下,在不更改已部署的应用程序代码的情况下,自动对网络层进行配置,以实现通过这些代理来路由流量。在 Kubernetes 中,代理被注入到pods中,通过编写‘iptables’规则来捕获流量。一旦 sidecar 代理被注入以及流量路由被编程,Istio 就可以协调所有的流量。这个原则也适用于性能。当将 Istio 应用于部署时,运维人员会看到所提供功能的资源成本增加地最小。组件和 API 的设计必须考虑到性能和可伸缩性。 可扩展性:随着运维人员和开发人员越来越依赖于 Istio 提供的功能,系统必须随着他们的需求而增长。当我们继续添加新特性时,最大的需求是扩展策略系统的能力,与其他策略和控制源的集成,以及将关于网格行为的信号传播到其他系统进行分析的能力。策略运行时支持用于接入其他服务的标准扩展机制。此外,它允许扩展其词汇表,允许根据网格生成的新信号执行策略。 可移植性:使用 Istio 的生态系统在许多方面都有所不同。Istio 必须在任何云环境或本地环境中通过最小的努力就能运行起来。将基于 Istio 的服务移植到新环境的任务必须是容易实现的。使用 Istio,您可以操作部署到多个环境中的单个服务。例如,可以在多个云上部署来实现冗余。 策略一致性:将策略应用于服务之间的 API 调用提供了对网格行为的大量控制。然而,将策略应用在区别于 API 层上的资源也同样重要。例如,在机器学习训练任务消耗的 CPU 数量上应用配额比在发起任务的请求调用上应用配额更有用。为此,Istio 使用自己的 API 将策略系统维护为一个独立的服务,而不是将策略系统集成到 sidecar 代理中,从而允许服务根据需要直接与之集成。 架构 Istio 服务网格从逻辑上分为数据平面和控制平面。 数据平面由一组智能代理(Envoy)组成,被部署为 sidecar。 控制平面管理并配置代理来进行流量路由。 下图展示了组成每个平面的不同组件: 图 7.3.2.2:Istio架构图 Istio 的架构分为控制平面和数据平面。 数据平面:由一组智能代理(Envoy)以 sidecar 模式部署,协调和控制所有服务之间的网络通信。 控制平面:负责管理和配置代理路由流量,以及在运行时执行的政策。 Envoy Istio 使用 Envoy 代理的扩展版本,该代理是以 C++ 开发的高性能代理,用于调解服务网格中所有服务的所有入站和出站流量。 Envoy 代理被部署为服务的 sidecar,在逻辑上为服务增加了 Envoy 的许多内置特性,例如: 动态服务发现 负载均衡 TLS 终端 HTTP/2 与 gRPC 代理 熔断器 健康检查 基于百分比流量分割的分阶段发布 故障注入 丰富的指标 Envoy 在 Pod 中以 sidecar 模式部署。 这允许 Istio 将大量关于流量行为的信号作为属性提取出来,并发送给监控系统以提供有关整个服务网格的行为信息。Sidecar 代理模型还允许你将 Istio 功能添加到现有部署中,无需重新构建或重写代码。 Pilot Pilot 为 Envoy sidecar 提供服务发现、用于智能路由的流量管理功能(例如,A/B 测试、金丝雀发布等)以及弹性功能(超时、重试、熔断器等)。 Pilot 将控制流量行为的高级路由规则转换为特定于环境的配置,并在运行时将它们传 Citadel Citadel 通过内置的身份和证书管理,可以支持强大的服务间以及最终用户的身份验证。您可以使用 Citadel 来升级服务网格中的未加密流量。使用 Citadel,operator 可以执行基于服务身份的策略,而不是相对不稳定的 3 层或 4 层网络标识。从 0.5 版开始,您可以使用 Istio 的授权特性来控制谁可以访问您的服务。 Galley Galley 是 Istio 的配置验证、提取、处理和分发组件。它负责将其余的 Istio 组件与从底层平台(例如 Kubernetes)获取用户配置的细节隔离开来。 参考 Istio:一个用于微服务间通信的服务网格开源项目 Istio 是什么? Istio Handbook —— Istio 服务网格进阶实战 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/istio-installation.html":{"url":"usecases/istio-installation.html","title":"安装并试用 Istio","keywords":"","body":"安装并试用Istio 注意:本文基于 Istio 1.0。 请参考 Istio 官方文档地址 快速开始。 本文根据官网的文档整理而成,步骤包括安装istio 0.5.1并创建一个bookinfo的微服务来测试istio的功能。 文中使用的yaml文件可以在kubernetes-handbook的manifests/istio目录中找到,如果镜像pull失败,请根据官网的镜像自行修改。 安装环境 CentOS 7.4.1708 Docker 17.12.0-ce Kubernetes 1.8.5 部署结构 Istio 的控制平面部署在 Kubernetes 中的部署架构如下图所示。 图 7.3.2.1.1:Istio 在 Kubernetes 中的部署架构图 我们可以清楚的看到 Istio 控制平面的几个组件的部署运行的命令与开发的端口,以及端口与服务之间的映射的关系。 安装 1.下载安装包 下载地址:https://github.com/istio/istio/releases 下载Linux版本的当前最新版安装包 wget https://github.com/istio/istio/releases/download/0.5.1/istio-0.5.1-linux.tar.gz 2.解压 解压后,得到的目录结构如下: ├── bin │ └── istioctl ├── install │ ├── ansible │ ├── consul │ ├── eureka │ ├── gcp │ ├── kubernetes │ ├── README.md │ └── tools ├── istio.VERSION ├── LICENSE ├── README.md ├── samples │ ├── bookinfo │ ├── CONFIG-MIGRATION.md │ ├── helloworld │ ├── httpbin │ ├── kubernetes-blog │ ├── rawvm │ ├── README.md │ └── sleep └── tools ├── cache_buster.yaml ├── deb ├── githubContrib ├── minikube.md ├── perf_istio_rules.yaml ├── perf_k8svcs.yaml ├── README.md ├── rules.yml ├── setup_perf_cluster.sh ├── setup_run ├── update_all └── vagrant 从文件里表中可以看到,安装包中包括了kubernetes的yaml文件,示例应用和安装模板。 3.先决条件 以下说明要求您可以访问启用了RBAC(基于角色的访问控制)的Kubernetes1.7.3或更新的群集。您还需要安装1.7.3或更高版本。如果您希望启用automatic sidecar injection,则需要Kubernetes 1.9或更高版本。kubectl 注意:如果您安装了Istio 0.1.x,请在安装新版本之前彻底卸载它(包括适用于所有启用Istio的应用程序窗口的Istio支架)。 安装或升级Kubernetes CLIkubectl以匹配群集支持的版本(CRD支持版本为1.7或更高版本)。 根据您的Kubernetes提供者: 要在本地安装Istio,请安装最新版本的Minikube(版本0.22.1或更高版本)。 4.安装步骤 从0.2版本开始,Istio安装在它自己的istio-system命名空间中,并且可以管理来自所有其他命名空间的服务。 转至Istio发布页面以下载与您的操作系统相对应的安装文件。如果您使用的是MacOS或Linux系统,以下命令自动下载并提取最新版本: curl -L https://git.io/getLatestIstio | sh - 解压缩安装文件并将目录更改为文件位置。 安装目录包含: Installation .yaml Kubernetes的安装文件 Sample/ 示例应用程序 bin/istioctl 二进制bin/文件 在手动注入Envoy作为附属代理并创建路由规则和策略时使用. istio.VERSION配置文件 例如,如果包是istio-0.5(初步) cd istio-0.5 (preliminary) 将istioctl客户端添加到您的PATH。例如,在MacOS或Linux系统上运行以下命令: export PATH=$PWD/bin:$PATH 安装Istio的核心组件。从下面两个互相排斥的选项中选择一个,或者用Helm Chart交替安装: a)安装Istio而不启用侧车间的相互TLS认证。为具有现有应用程序的群集,使用Istio辅助车的服务需要能够与其他非Istio Kubernetes服务以及使用活动性和准备就绪探测器,无头服务或StatefulSets的应用程序通信的应用程序选择此选项。 kubectl apply -f install/kubernetes/istio.yaml 要么 b)安装Istio并启用侧柜之间的相互TLS认证: kubectl apply -f install/kubernetes/istio-auth.yaml 这两个选项都会创建istio-system命名空间以及所需的RBAC权限,并部署Istio-Pilot,Istio-Mixer,Istio-Ingress和Istio-CA(证书颁发机构)。 可选:如果您的群集的Kubernetes版本是1.9或更高,并且您希望启用自动代理注入,请安装sidecar injector webhook。 验证安装 请确保以下Kubernetes服务部署:istio-pilot,istio-mixer,istio-ingress。 kubectl get svc -n istio-system NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE istio-ingress 10.83.245.171 35.184.245.62 80:32730/TCP,443:30574/TCP 5h istio-pilot 10.83.251.173 8080/TCP,8081/TCP 5h istio-mixer 10.83.244.253 9091/TCP,9094/TCP,42422/TCP 5h 注意:如果您的集群中不支持外部负载平衡(例如,Minikube)的环境中运行,该external-ip的istio-ingress会显示。您必须使用NodePort访问应用程序,或使用端口转发。 修改istio.yaml中的istio-ingress service的type为ClusterIP,并设置nodePort,默认为32000。 确保相应Kubernetes容器都运行起来:istio-pilot-*、istio-mixer-*、istio-ingress-*、istio-ca-*,和可选的istio-sidecar-injector-*。 kubectl get pods -n istio-system istio-ca-3657790228-j21b9 1/1 Running 0 5h istio-ingress-1842462111-j3vcs 1/1 Running 0 5h istio-sidecar-injector-184129454-zdgf5 1/1 Running 0 5h istio-pilot-2275554717-93c43 1/1 Running 0 5h istio-mixer-2104784889-20rm8 2/2 Running 0 5h 部署您的应用程序 您现在可以部署您自己的应用程序或者像Bookinfo一样随安装提供的示例应用程序之一。注意:应用程序必须对所有HTTP通信使用HTTP/1.1或HTTP/2.0协议,因为HTTP/1.0不受支持。 如果您启动了Istio-sidecar-injector,如上所示,您可以直接使用应用程序部署应用程序kubectl create。 Istio Sidecar注入器会自动将Envoy容器注入到您的应用程序窗格中,假设运行在标有名称空间的名称空间中istio-injection=enabled kubectl label namespace istio-injection=enabled kubectl create -n -f .yaml 如果您没有安装Istio-sidecar-injector,则在部署它们之前,必须使用istioctl kube-inject将Envoy容器手动注入应用程序窗格中: kubectl create -f .yaml) 卸载 卸载Istio sidecar进样器: 如果您启用Istio-sidecar-injector,请将其卸载: kubectl delete -f install/kubernetes/istio-sidecar-injector-with-ca-bundle.yaml 卸载Istio核心组件。对于0.6(初始)发行版,卸载将删除RBAC权限,istio-system命名空间和分层下的所有资源。忽略不存在资源的错误是安全的,因为它们可能已被分层删除。 a)如果您在禁用相互TLS身份验证的情况下安装了Istio: kubectl delete -f install/kubernetes/istio.yaml 要么 b)如果您在启用相互TLS身份验证的情况下安装了Istio: kubectl delete -f install/kubernetes/istio-auth.yaml 7.安装监控插件 安装插件 kubectl apply -f install/kubernetes/addons/prometheus.yaml kubectl apply -f install/kubernetes/addons/grafana.yaml kubectl apply -f install/kubernetes/addons/servicegraph.yaml kubectl apply -f install/kubernetes/addons/zipkin.yaml 在traefik ingress中增加增加以上几个服务的配置,同时增加istio-ingress配置。 - host: grafana.istio.io http: paths: - path: / backend: serviceName: grafana servicePort: 3000 - host: servicegraph.istio.io http: paths: - path: / backend: serviceName: servicegraph servicePort: 8088 - host: prometheus.istio.io http: paths: - path: / backend: serviceName: prometheus servicePort: 9090 - host: zipkin.istio.io http: paths: - path: / backend: serviceName: zipkin servicePort: 9411 - host: ingress.istio.io http: paths: - path: / backend: serviceName: istio-ingress servicePort: 80 测试 我们使用Istio提供的测试应用bookinfo微服务来进行测试。 该微服务用到的镜像有: istio/examples-bookinfo-details-v1 istio/examples-bookinfo-ratings-v1 istio/examples-bookinfo-reviews-v1 istio/examples-bookinfo-reviews-v2 istio/examples-bookinfo-reviews-v3 istio/examples-bookinfo-productpage-v1 该应用架构图如下: 图 7.3.2.1.2:BookInfo Sample应用架构图 部署应用 kubectl create -f Istio kube-inject命令会在bookinfo.yaml文件中增加Envoy sidecar信息。参考 https://istio.io/docs/reference/commands/istioctl/#istioctl-kube-inject 在本机的/etc/hosts下增加VIP节点和ingress.istio.io的对应信息,具体步骤参考:边缘节点配置,或者使用gateway ingress来访问服务, 如果将productpage配置在了ingress里了,那么在浏览器中访问http://ingress.istio.io/productpage,如果使用了istio默认的gateway ingress配置的话,ingress service使用nodePort方式暴露的默认使用32000端口,那么可以使用 http://任意节点的IP:32000/productpage 来访问。 图 7.3.2.1.3:BookInfo Sample页面 多次刷新页面,你会发现有的页面上的评论里有星级打分,有的页面就没有,这是因为我们部署了三个版本的应用,有的应用里包含了评分,有的没有。Istio根据默认策略随机将流量分配到三个版本的应用上。 查看部署的bookinfo应用中的productpage-v1 service和deployment,查看productpage-v1的pod的详细json信息可以看到这样的结构: $ kubectl get pod productpage-v1-944450470-bd530 -o json 见productpage-v1-istio.json文件。从详细输出中可以看到这个Pod中实际有两个容器,这里面包括了initContainer,作为istio植入到kubernetes deployment中的sidecar。 \"initContainers\": [ { \"args\": [ \"-p\", \"15001\", \"-u\", \"1337\" ], \"image\": \"docker.io/istio/init:0.1\", \"imagePullPolicy\": \"Always\", \"name\": \"init\", \"resources\": {}, \"securityContext\": { \"capabilities\": { \"add\": [ \"NET_ADMIN\" ] } }, \"terminationMessagePath\": \"/dev/termination-log\", \"terminationMessagePolicy\": \"File\", \"volumeMounts\": [ { \"mountPath\": \"/var/run/secrets/kubernetes.io/serviceaccount\", \"name\": \"default-token-3l9f0\", \"readOnly\": true } ] }, { \"args\": [ \"-c\", \"sysctl -w kernel.core_pattern=/tmp/core.%e.%p.%t \\u0026\\u0026 ulimit -c unlimited\" ], \"command\": [ \"/bin/sh\" ], \"image\": \"alpine\", \"imagePullPolicy\": \"Always\", \"name\": \"enable-core-dump\", \"resources\": {}, \"securityContext\": { \"privileged\": true }, \"terminationMessagePath\": \"/dev/termination-log\", \"terminationMessagePolicy\": \"File\", \"volumeMounts\": [ { \"mountPath\": \"/var/run/secrets/kubernetes.io/serviceaccount\", \"name\": \"default-token-3l9f0\", \"readOnly\": true } ] } ], 监控 不断刷新productpage页面,将可以在以下几个监控中看到如下界面。 Grafana页面 http://grafana.istio.io 图 7.3.2.1.4:Istio Grafana界面 Prometheus页面 http://prometheus.istio.io 图 7.3.2.1.5:Prometheus页面 Zipkin页面 http://zipkin.istio.io 图 7.3.2.1.6:Zipkin页面 ServiceGraph页面 http://servicegraph.istio.io/dotviz 可以用来查看服务间的依赖关系。 访问http://servicegraph.istio.io/graph 可以获得json格式的返回结果。 图 7.3.2.1.7:ServiceGraph页面 更进一步 BookInfo示例中有三个版本的reviews,可以使用istio来配置路由请求,将流量分发到不同版本的应用上。参考Configuring Request Routing。 还有一些更高级的功能,我们后续将进一步探索。 参考 安装 Istio 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/sidecar-spec-in-istio.html":{"url":"usecases/sidecar-spec-in-istio.html","title":"Istio 中 sidecar 的注入规范及示例","keywords":"","body":"Istio 中 sidecar 的注入及示例 注意:本文基于 Istio 1.0。 我们知道 Istio 通过向 Pod 中注入一个 sidecar 容器来将 Pod 纳入到 Istio service mesh 中的,那么这些 sidecar 容器的注入遵循什么样的规范,需要给每个 Pod 增加哪些配置信息才能纳入 Istio service mesh 中呢?这篇文章将给您答案。 Pod Spec 中需满足的条件 为了成为 Service Mesh 中的一部分,kubernetes 集群中的每个 Pod 都必须满足如下条件,这些规范不是由 Istio 自动注入的,而需要 生成 kubernetes 应用部署的 YAML 文件时需要遵守的: Service 关联:每个 pod 都必须只属于某一个 Kubernetes Service (当前不支持一个 pod 同时属于多个 service)。 命名的端口:Service 的端口必须命名。端口的名字必须遵循如下格式 [-],可以是 http、http2、 grpc、 mongo、 或者 redis 作为 ,这样才能使用 Istio 的路由功能。例如 name: http2-foo 和 name: http 都是有效的端口名称,而 name: http2foo 不是。如果端口的名称是不可识别的前缀或者未命名,那么该端口上的流量就会作为普通的 TCP 流量来处理(除非使用 Protocol: UDP 明确声明使用 UDP 端口)。 带有 app label 的 Deployment:我们建议 kubernetes 的Deploymenet 资源的配置文件中为 Pod 明确指定 applabel。每个 Deployment 的配置中都需要有个与其他 Deployment 不同的含有意义的 app label。app label 用于在分布式追踪中添加上下文信息。 Mesh 中的每个 pod 里都有一个 Sidecar:最后,Mesh 中的每个 pod 都必须运行与 Istio 兼容的 sidecar。以下部分介绍了将 sidecar 注入到 pod 中的两种方法:使用istioctl 命令行工具手动注入,或者使用 Istio Initializer 自动注入。注意 sidecar 不涉及到流量,因为它们与容器位于同一个 pod 中。 将普通应用添加到 Istio service mesh 中 Istio官方的示例Bookinfo中并没有讲解如何将服务集成 Istio,只给出了 YAML 配置文件,而其中需要注意哪些地方都没有说明,假如我们自己部署的服务如何使用 Istio 呢?现在我们有如下两个普通应用(代码在 GitHub 上),它们都不具备微服务的高级特性,比如限流和熔断等,通过将它们部署到 kubernetes 并使用 Istio 来管理: k8s-app-monitor-test:用来暴露 json 格式的 metrics k8s-app-monitor-agent:访问上面那个应用暴露的 metrics 并生成监控图 这两个应用的 YAML 配置如下,其中包含了 Istio ingress 配置,并且符合 Istio 对 Pod 的 spec 配置所指定的规范。 k8s-app-monitor-istio-all-in-one.yaml文件 apiVersion: extensions/v1beta1 kind: Deployment metadata: annotations: kompose.cmd: kompose convert -f docker-compose.yaml kompose.version: 1.10.0 () creationTimestamp: null labels: app: k8s-app-monitor-agent name: k8s-app-monitor-agent spec: replicas: 1 template: metadata: creationTimestamp: null labels: app: k8s-app-monitor-agent spec: containers: - env: - name: SERVICE_NAME value: k8s-app-monitor-test image: jimmysong/k8s-app-monitor-agent:749f547 name: monitor-agent ports: - containerPort: 8888 restartPolicy: Always --- apiVersion: v1 kind: Service metadata: annotations: kompose.cmd: kompose convert -f docker-compose.yaml kompose.version: 1.10.0 () creationTimestamp: null labels: app: k8s-app-monitor-agent name: k8s-app-monitor-agent spec: ports: - name: \"http\" port: 8888 targetPort: 8888 selector: app: k8s-app-monitor-agent --- apiVersion: extensions/v1beta1 kind: Deployment metadata: annotations: kompose.cmd: kompose convert -f docker-compose.yaml kompose.version: 1.10.0 () creationTimestamp: null labels: app: k8s-app-monitor-test name: k8s-app-monitor-test spec: replicas: 1 template: metadata: creationTimestamp: null labels: app: k8s-app-monitor-test spec: containers: - image: jimmysong/k8s-app-monitor-test:9c935dd name: monitor-test ports: - containerPort: 3000 restartPolicy: Always --- apiVersion: v1 kind: Service metadata: annotations: kompose.cmd: kompose convert -f docker-compose.yaml kompose.version: 1.10.0 () creationTimestamp: null labels: app: k8s-app-monitor-test name: k8s-app-monitor-test spec: ports: - name: \"http\" port: 3000 targetPort: 3000 selector: app: k8s-app-monitor-test --- ## Istio ingress apiVersion: extensions/v1beta1 kind: Ingress metadata: name: k8s-app-monitor-agent-ingress annotations: kubernetes.io/ingress.class: \"istio\" spec: rules: - http: paths: - path: /k8s-app-monitor-agent backend: serviceName: k8s-app-monitor-agent servicePort: 8888 其中有两点配置需要注意。 Deployment 和 Service 中的 label 名字必须包含 app,zipkin 中的 tracing 需要使用到这个标签才能追踪 Service 中的 ports 配置和必须包含一个名为 http 的 port,这样在 Istio ingress 中才能暴露该服务 注意:该 YAML 文件中 annotations 是因为我们一开始使用 docker-compose 部署在本地开发测试,后来再使用 kompose 将其转换为 kubernetes 可识别的 YAML 文件。 然后执行下面的命令就可以基于以上的 YAML 文件注入 sidecar 配置并部署到 kubernetes 集群中。 kubectl apply -n default -f 如何在本地启动 kubernetes 集群进行测试可以参考 kubernetes-vagrant-centos-cluster 中的说明。 Sidecar 注入说明 手动注入需要修改控制器的配置文件,如 deployment。通过修改 deployment 文件中的 pod 模板规范可实现该deployment 下创建的所有 pod 都注入 sidecar。添加/更新/删除 sidecar 需要修改整个 deployment。 自动注入会在 pod 创建的时候注入 sidecar,无需更改控制器资源。Sidecar 可通过以下方式更新: 选择性地手动删除 pod 系统得进行 deployment 滚动更新 手动或者自动注入都使用同样的模板配置。自动注入会从 istio-system 命名空间下获取 istio-inject 的 ConfigMap。手动注入可以通过本地文件或者 Configmap 。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/istio-community-tips.html":{"url":"usecases/istio-community-tips.html","title":"如何参与 Istio 社区及注意事项","keywords":"","body":"如何参与 Istio 社区及注意事项 注意:本文档已失效,请浏览 Istio 官方文档。本书中的 Service Mesh 章节已不再维护,请转到 istio-handbook 中浏览。 本文讲述了如何参与 Istio 社区和进行 Istio 开发时需要注意的事项。 工作组 绝大多数复杂的开源项目都是以工作组的方式组织的,要想为 Istio 社区做贡献可以加入到以下的工作组(Working Group): API Management Config Environments Networking Performance & Scalability Policies & Telemetry Security Test & Release 代码规范 Istio 的代码规范沿用 CNCF 社区的代码规范。 开发指南 进行 Istio 开发之前需要做下面几件事情: 配置基础环境,如 Kubernetes 配置代码库、下载依赖和测试 配置 CircleCI 集成环境 编写参考文档 Git workflow 配置 详见 Dev Guide wiki。 设计文档 所有的设计文档都保存在 Google Drive 中,其中包括以下资源: Technical Oversight Committee:ToC管理的文档 Misc:一些杂项 Working Groups:最重要的部分,各个工作组相关的设计文档 Presentations:Istio 相关的演讲幻灯片,从这些文稿中可以快速了解 Istio Logo:Istio logo Eng:社区相关的维护文档 社区角色划分 根据对开发者和要求和贡献程度的不同,Istio 社区中包含以下角色: Collaborator:非正式贡献者,偶尔贡献,任何人都可以成为该角色 Member:正式贡献者,经常贡献,必须有2个已有的 member 提名 Approver:老手,可以批准 member 的贡献 Lead:管理功能、项目和提议,必须由 ToC 提名 Administrator:管理员,管理和控制权限,必须由 ToC 提名 Vendor:贡献 Istio 项目的扩展 详见 Istio Community Roles。 各种功能的状态 Istio 中的所有 feature 根据是否生产可用、API兼容性、性能、维护策略分为三种状态: Alpha:仅仅可以作为 demo,无法生产上使用,也没有性能保证,随时都可能不维护 Beta:可以在生产上使用了,也有版本化的 API 但是无法保证性能,保证三个月的维护 Stable:可以上生产而且还能保证性能,API 向后兼容,保证一年的维护 Istio 的 feature 分为四大类: 流量管理:各种协议的支持、路由规则配置、Ingress TLS 等 可观察性:监控、日志、分布式追踪、服务依赖拓扑 安全性:各种 checker 和安全性配置 Core:核心功能 功能划分与各种功能的状态详情请见:https://istio.io/latest/about/feature-stages/ 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/istio-tutorials-collection.html":{"url":"usecases/istio-tutorials-collection.html","title":"Istio 免费学习资源汇总","keywords":"","body":"Istio 免费学习资源汇总 注意:本文档已失效,请浏览 Istio 官方文档。本书中的 Service Mesh 章节已不再维护,请转到 istio-handbook 中浏览。 2018年8月1日0点,Istio 1.0发布,已生产就绪!大家都已经跃跃欲试了,几天前我发布了一键在本地搭建运行Istio 1.0的分布式Kubernetes集群教程,在本地搭建起来还是有些门槛,稍显复杂,现在我推荐几个可以在线上学习的地方。这是目前搜集的比较完整的Isito学习环境和包含代码的示例教程有如下几个: 目前搜集的比较完整的Isito学习环境和包含代码的示例教程有如下几个: Katacoda的学习环境 Istio官方的bookinfo教程 IBM的Istio示例教程 我Fork的RedHat的Demo,Christian Posta在OSCON上的Istio workshop Katacode上的Istio学习环境 推荐指数:⭑⭑⭑⭑⭑ 推荐原因:使用简单,使用官方示例,免费,快速,无需注册,可直接通过互联网访问示例应用页面,支持最新版的Istio。 Katacoda已支持Istio 1.0的学习环境。 地址:https://www.katacoda.com/courses/istio/deploy-istio-on-kubernetes 图 7.3.2.4.1:katacoda 图 7.3.2.4.2:weavescope 只要傻瓜式操作就可以部署一个Istio出来,同时还提供了Weave scope可以对service mesh的中的服务关系做可视化呈现。 图 7.3.2.4.3:weavescope 同时还能提供部分监控功能,比如服务状态,CPU和内存使用情况。 Red Hat提供的Istio教程 推荐指数:⭑⭑⭑⭑ 推荐原因:教程topic划分简洁得当,RedHat大力加持,未来的频繁更新可以预期。 图 7.3.2.4.4:Red Hat 图 7.3.2.4.5:Red Hat developers IBM的Istio示例教程 推荐指数:⭑⭑⭑ 推荐原因:IBM作为Istio项目的联合创始公司,在Istio中也有大量的投入,未来可能会有更多的示例放出。 https://developer.ibm.com/code/patterns/manage-microservices-traffic-using-istio 图 7.3.2.4.6:IBM developerWorks 图 7.3.2.4.7:IBM developers 最后更新于2018年5月10号,是基于Istio 0.8的。 GitHub地址:https://github.com/IBM/microservices-traffic-management-using-istio/ 其他 推荐指数:⭑⭑⭑ 推荐原因:个人演示项目,方便定制和修改代码。 我个人Fork的RedHat的Java微服务中使用Isito的教程的demo(中文),目前基于Istio 0.8,未来将支持1.0:https://github.com/rootsongjc/istio-tutorial Christian Posta在OSCON上的使用的Istio workshop:https://github.com/christian-posta/istio-workshop ServiceMesher社区 网址:https://www.servicemesher.com/ GitHub:https://github.com/servicemesher 微信群:入群请联系我 Twitter: https://twitter.com/servicemesher 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/understand-sidecar-injection-and-traffic-hijack-in-istio-service-mesh.html":{"url":"usecases/understand-sidecar-injection-and-traffic-hijack-in-istio-service-mesh.html","title":"Sidecar 的注入与流量劫持","keywords":"","body":"深入理解Istio Service Mesh中的Envoy Sidecar注入与流量劫持 本文基于 Istio 1.5。 本文基于 Istio 1.5.1 版本,将为大家介绍以下内容: 什么是 sidecar 模式和它的优势在哪里。 Istio 中是如何做 sidecar 注入的? Sidecar proxy 是如何做透明流量劫持的? 流量是如何路由到 upstream 的? 在此之前我曾写过基于 Istio 1.1 版本的理解 Istio Service Mesh 中 Envoy 代理 Sidecar 注入及流量劫持,Istio 1.5 与 Istio 1.1 中的 sidecar 注入和流量劫持环节最大的变化是: iptables 改用命令行工具,不再使用 shell 脚本。 sidecar inbound 和 outbound 分别指定了端口,而之前是使用同一个端口(15001)。 注:本文中部分内容收录于 ServiceMesher 社区出品的 Istio Handbook。 Sidecar 模式 将应用程序的功能划分为单独的进程运行在同一个最小调度单元中(例如 Kubernetes 中的 Pod)可以被视为 sidecar 模式。如下图所示,sidecar 模式允许您在应用程序旁边添加更多功能,而无需额外第三方组件配置或修改应用程序代码。 图 7.3.2.5.1:Sidecar 模式示意图 就像连接了 Sidecar 的三轮摩托车一样,在软件架构中, Sidecar 连接到父应用并且为其添加扩展或者增强功能。Sidecar 应用与主应用程序松散耦合。它可以屏蔽不同编程语言的差异,统一实现微服务的可观察性、监控、日志记录、配置、断路器等功能。 使用 Sidecar 模式的优势 使用 sidecar 模式部署服务网格时,无需在节点上运行代理,但是集群中将运行多个相同的 sidecar 副本。在 sidecar 部署方式中,每个应用的容器旁都会部署一个伴生容器(如 Envoy 或 MOSN),这个容器称之为 sidecar 容器。Sidecar 接管进出应用容器的所有流量。在 Kubernetes 的 Pod 中,在原有的应用容器旁边注入一个 Sidecar 容器,两个容器共享存储、网络等资源,可以广义的将这个包含了 sidecar 容器的 Pod 理解为一台主机,两个容器共享主机资源。 因其独特的部署结构,使得 sidecar 模式具有以下优势: 将与应用业务逻辑无关的功能抽象到共同基础设施,降低了微服务代码的复杂度。 因为不再需要编写相同的第三方组件配置文件和代码,所以能够降低微服务架构中的代码重复度。 Sidecar 可独立升级,降低应用程序代码和底层平台的耦合度。 Istio 中的 sidecar 注入 Istio 中提供了以下两种 sidecar 注入方式: 使用 istioctl 手动注入。 基于 Kubernetes 的 突变 webhook 入驻控制器(mutating webhook addmission controller 的自动 sidecar 注入方式。 不论是手动注入还是自动注入,sidecar 的注入过程都需要遵循如下步骤: Kubernetes 需要了解待注入的 sidecar 所连接的 Istio 集群及其配置; Kubernetes 需要了解待注入的 sidecar 容器本身的配置,如镜像地址、启动参数等; Kubernetes 根据 sidecar 注入模板和以上配置填充 sidecar 的配置参数,将以上配置注入到应用容器的一侧; 使用下面的命令可以手动注入 sidecar。 istioctl kube-inject -f ${YAML_FILE} | kuebectl apply -f - 该命令会使用 Istio 内置的 sidecar 配置来注入,下面使用 Istio详细配置请参考 Istio 官网。 注入完成后您将看到 Istio 为原有 pod template 注入了 initContainer 及 sidecar proxy相关的配置。 Init 容器 Init 容器是一种专用容器,它在应用程序容器启动之前运行,用来包含一些应用镜像中不存在的实用工具或安装脚本。 一个 Pod 中可以指定多个 Init 容器,如果指定了多个,那么 Init 容器将会按顺序依次运行。只有当前面的 Init 容器必须运行成功后,才可以运行下一个 Init 容器。当所有的 Init 容器运行完成后,Kubernetes 才初始化 Pod 和运行应用容器。 Init 容器使用 Linux Namespace,所以相对应用程序容器来说具有不同的文件系统视图。因此,它们能够具有访问 Secret 的权限,而应用程序容器则不能。 在 Pod 启动过程中,Init 容器会按顺序在网络和数据卷初始化之后启动。每个容器必须在下一个容器启动之前成功退出。如果由于运行时或失败退出,将导致容器启动失败,它会根据 Pod 的 restartPolicy 指定的策略进行重试。然而,如果 Pod 的 restartPolicy 设置为 Always,Init 容器失败时会使用 RestartPolicy 策略。 在所有的 Init 容器没有成功之前,Pod 将不会变成 Ready 状态。Init 容器的端口将不会在 Service中进行聚集。 正在初始化中的 Pod 处于 Pending 状态,但应该会将 Initializing 状态设置为 true。Init 容器运行完成以后就会自动终止。 关于 Init 容器的详细信息请参考 Init 容器 - Kubernetes 中文指南/云原生应用架构实践手册。 Sidecar 注入示例分析 以 Istio 官方提供的 bookinfo 中 productpage 的 YAML 为例,关于 bookinfo 应用的详细 YAML 配置请参考 bookinfo.yaml。 下文将从以下几个方面讲解: Sidecar 容器的注入 iptables 规则的创建 路由的详细过程 apiVersion: apps/v1 kind: Deployment metadata: name: productpage-v1 labels: app: productpage version: v1 spec: replicas: 1 selector: matchLabels: app: productpage version: v1 template: metadata: labels: app: productpage version: v1 spec: serviceAccountName: bookinfo-productpage containers: - name: productpage image: docker.io/istio/examples-bookinfo-productpage-v1:1.15.0 imagePullPolicy: IfNotPresent ports: - containerPort: 9080 volumeMounts: - name: tmp mountPath: /tmp volumes: - name: tmp emptyDir: {} 再查看下 productpage 容器的 Dockerfile。 FROM python:3.7.4-slim COPY requirements.txt ./ RUN pip install --no-cache-dir -r requirements.txt COPY test-requirements.txt ./ RUN pip install --no-cache-dir -r test-requirements.txt COPY productpage.py /opt/microservices/ COPY tests/unit/* /opt/microservices/ COPY templates /opt/microservices/templates COPY static /opt/microservices/static COPY requirements.txt /opt/microservices/ ARG flood_factor ENV FLOOD_FACTOR ${flood_factor:-0} EXPOSE 9080 WORKDIR /opt/microservices RUN python -m unittest discover USER 1 CMD [\"python\", \"productpage.py\", \"9080\"] 我们看到 Dockerfile 中没有配置 ENTRYPOINT,所以 CMD 的配置 python productpage.py 9080 将作为默认的 ENTRYPOINT,记住这一点,再看下注入 sidecar 之后的配置。 $ istioctl kube-inject -f samples/bookinfo/platform/kube/bookinfo.yaml 我们只截取其中与 productpage 相关的 Deployment 配置中的部分 YAML 配置。 containers: - image: docker.io/istio/examples-bookinfo-productpage-v1:1.15.0 # 应用镜像 name: productpage ports: - containerPort: 9080 - args: - proxy - sidecar - --domain - $(POD_NAMESPACE).svc.cluster.local - --configPath - /etc/istio/proxy - --binaryPath - /usr/local/bin/envoy - --serviceCluster - productpage.$(POD_NAMESPACE) - --drainDuration - 45s - --parentShutdownDuration - 1m0s - --discoveryAddress - istiod.istio-system.svc:15012 - --zipkinAddress - zipkin.istio-system:9411 - --proxyLogLevel=warning - --proxyComponentLogLevel=misc:error - --connectTimeout - 10s - --proxyAdminPort - \"15000\" - --concurrency - \"2\" - --controlPlaneAuthPolicy - NONE - --dnsRefreshRate - 300s - --statusPort - \"15020\" - --trust-domain=cluster.local - --controlPlaneBootstrap=false image: docker.io/istio/proxyv2:1.5.1 # sidecar proxy name: istio-proxy ports: - containerPort: 15090 name: http-envoy-prom protocol: TCP initContainers: - command: - istio-iptables - -p - \"15001\" - -z - \"15006\" - -u - \"1337\" - -m - REDIRECT - -i - '*' - -x - \"\" - -b - '*' - -d - 15090,15020 image: docker.io/istio/proxyv2:1.5.1 # init 容器 name: istio-init Istio 给应用 Pod 注入的配置主要包括: Init 容器 istio-init:用于 pod 中设置 iptables 端口转发 Sidecar 容器 istio-proxy:运行 sidecar 代理,如 Envoy 或 MOSN 接下来将分别解析下这两个容器。 Init 容器解析 Istio 在 pod 中注入的 Init 容器名为 istio-init,我们在上面 Istio 注入完成后的 YAML 文件中看到了该容器的启动命令是: istio-iptables -p 15001 -z 15006 -u 1337 -m REDIRECT -i '*' -x \"\" -b '*' -d 15090,15020 我们再检查下该容器的 Dockerfile 看看 ENTRYPOINT 是怎么确定启动时执行的命令。 # 前面的内容省略 # The pilot-agent will bootstrap Envoy. ENTRYPOINT [\"/usr/local/bin/pilot-agent\"] 我们看到 istio-init 容器的入口是 /usr/local/bin/istio-iptables 命令行,该命令行工具的代码的位置在 Istio 源码仓库的 tools/istio-iptables 目录。 注意:在 Istio 1.1 版本时还是使用 isito-iptables.sh 命令行来操作 IPtables。 Init 容器启动入口 Init 容器的启动入口是 istio-iptables 命令行,该命令行工具的用法如下: $ istio-iptables [flags] -p: 指定重定向所有 TCP 流量的 sidecar 端口(默认为 $ENVOY_PORT = 15001) -m: 指定入站连接重定向到 sidecar 的模式,“REDIRECT” 或 “TPROXY”(默认为 $ISTIO_INBOUND_INTERCEPTION_MODE) -b: 逗号分隔的入站端口列表,其流量将重定向到 Envoy(可选)。使用通配符 “*” 表示重定向所有端口。为空时表示禁用所有入站重定向(默认为 $ISTIO_INBOUND_PORTS) -d: 指定要从重定向到 sidecar 中排除的入站端口列表(可选),以逗号格式分隔。使用通配符“*” 表示重定向所有入站流量(默认为 $ISTIO_LOCAL_EXCLUDE_PORTS) -o:逗号分隔的出站端口列表,不包括重定向到 Envoy 的端口。 -i: 指定重定向到 sidecar 的 IP 地址范围(可选),以逗号分隔的 CIDR 格式列表。使用通配符 “*” 表示重定向所有出站流量。空列表将禁用所有出站重定向(默认为 $ISTIO_SERVICE_CIDR) -x: 指定将从重定向中排除的 IP 地址范围,以逗号分隔的 CIDR 格式列表。使用通配符 “*” 表示重定向所有出站流量(默认为 $ISTIO_SERVICE_EXCLUDE_CIDR)。 -k:逗号分隔的虚拟接口列表,其入站流量(来自虚拟机的)将被视为出站流量。 -g:指定不应用重定向的用户的 GID。(默认值与 -u param 相同) -u:指定不应用重定向的用户的 UID。通常情况下,这是代理容器的 UID(默认值是 1337,即 istio-proxy 的 UID)。 -z: 所有进入 pod/VM 的 TCP 流量应被重定向到的端口(默认 $INBOUND_CAPTURE_PORT = 15006)。 以上传入的参数都会重新组装成 iptables 规则,关于该命令的详细用法请访问 tools/istio-iptables/pkg/cmd/root.go。 该容器存在的意义就是让 sidecar 代理可以拦截所有的进出 pod 的流量,15090 端口(Mixer 使用)和 15092 端口(Ingress Gateway)除外的所有入站(inbound)流量重定向到 15006 端口(sidecar),再拦截应用容器的出站(outbound)流量经过 sidecar 处理(通过 15001 端口监听)后再出站。关于 Istio 中端口用途请参考 Istio 官方文档。 命令解析 这条启动命令的作用是: 将应用容器的所有流量都转发到 sidecar 的 15006 端口。 使用 istio-proxy 用户身份运行, UID 为 1337,即 sidecar 所处的用户空间,这也是 istio-proxy 容器默认使用的用户,见 YAML 配置中的 runAsUser 字段。 使用默认的 REDIRECT 模式来重定向流量。 将所有出站流量都重定向到 sidecar 代理(通过 15001 端口)。 因为 Init 容器初始化完毕后就会自动终止,因为我们无法登陆到容器中查看 iptables 信息,但是 Init 容器初始化结果会保留到应用容器和 sidecar 容器中。 iptables 注入解析 为了查看 iptables 配置,我们需要登陆到 sidecar 容器中使用 root 用户来查看,因为 kubectl 无法使用特权模式来远程操作 docker 容器,所以我们需要登陆到 productpage pod 所在的主机上使用 docker 命令登陆容器中查看。 如果您使用 minikube 部署的 Kubernetes,可以直接登录到 minikube 的虚拟机中并切换为 root 用户。查看 iptables 配置,列出 NAT(网络地址转换)表的所有规则,因为在 Init 容器启动的时候选择给 istio-iptables 传递的参数中指定将入站流量重定向到 sidecar 的模式为 REDIRECT,因此在 iptables 中将只有 NAT 表的规格配置,如果选择 TPROXY 还会有 mangle 表配置。iptables 命令的详细用法请参考 iptables 命令。 我们仅查看与 productpage 有关的 iptables 规则如下。 # 进入 minikube 并切换为 root 用户,minikube 默认用户为 docker $ minikube ssh $ sudo -i # 查看 productpage pod 的 istio-proxy 容器中的进程 $ docker top `docker ps|grep \"istio-proxy_productpage\"|cut -d \" \" -f1` UID PID PPID C STIME TTY TIME CMD 1337 10576 10517 0 08:09 ? 00:00:07 /usr/local/bin/pilot-agent proxy sidecar --domain default.svc.cluster.local --configPath /etc/istio/proxy --binaryPath /usr/local/bin/envoy --serviceCluster productpage.default --drainDuration 45s --parentShutdownDuration 1m0s --discoveryAddress istiod.istio-system.svc:15012 --zipkinAddress zipkin.istio-system:9411 --proxyLogLevel=warning --proxyComponentLogLevel=misc:error --connectTimeout 10s --proxyAdminPort 15000 --concurrency 2 --controlPlaneAuthPolicy NONE --dnsRefreshRate 300s --statusPort 15020 --trust-domain=cluster.local --controlPlaneBootstrap=false 1337 10660 10576 0 08:09 ? 00:00:33 /usr/local/bin/envoy -c /etc/istio/proxy/envoy-rev0.json --restart-epoch 0 --drain-time-s 45 --parent-shutdown-time-s 60 --service-cluster productpage.default --service-node sidecar~172.17.0.16~productpage-v1-7f44c4d57c-ksf9b.default~default.svc.cluster.local --max-obj-name-len 189 --local-address-ip-version v4 --log-format [Envoy (Epoch 0)] [%Y-%m-%d %T.%e][%t][%l][%n] %v -l warning --component-log-level misc:error --concurrency 2 # 进入 nsenter 进入 sidecar 容器的命名空间(以上任何一个都可以) $ nsenter -n --target 10660 在该进程的命名空间下查看其 iptables 规则链。 # 查看 NAT 表中规则配置的详细信息。 $ iptables -t nat -L -v # PREROUTING 链:用于目标地址转换(DNAT),将所有入站 TCP 流量跳转到 ISTIO_INBOUND 链上。 Chain PREROUTING (policy ACCEPT 2701 packets, 162K bytes) pkts bytes target prot opt in out source destination 2701 162K ISTIO_INBOUND tcp -- any any anywhere anywhere # INPUT 链:处理输入数据包,非 TCP 流量将继续 OUTPUT 链。 Chain INPUT (policy ACCEPT 2701 packets, 162K bytes) pkts bytes target prot opt in out source destination # OUTPUT 链:将所有出站数据包跳转到 ISTIO_OUTPUT 链上。 Chain OUTPUT (policy ACCEPT 79 packets, 6761 bytes) pkts bytes target prot opt in out source destination 15 900 ISTIO_OUTPUT tcp -- any any anywhere anywhere # POSTROUTING 链:所有数据包流出网卡时都要先进入POSTROUTING 链,内核根据数据包目的地判断是否需要转发出去,我们看到此处未做任何处理。 Chain POSTROUTING (policy ACCEPT 79 packets, 6761 bytes) pkts bytes target prot opt in out source destination # ISTIO_INBOUND 链:将所有入站流量重定向到 ISTIO_IN_REDIRECT 链上,目的地为 15090(mixer 使用)和 15020(Ingress gateway 使用,用于 Pilot 健康检查)端口的流量除外,发送到以上两个端口的流量将返回 iptables 规则链的调用点,即 PREROUTING 链的后继 POSTROUTING。 Chain ISTIO_INBOUND (1 references) pkts bytes target prot opt in out source destination 0 0 RETURN tcp -- any any anywhere anywhere tcp dpt:ssh 2 120 RETURN tcp -- any any anywhere anywhere tcp dpt:15090 2699 162K RETURN tcp -- any any anywhere anywhere tcp dpt:15020 0 0 ISTIO_IN_REDIRECT tcp -- any any anywhere anywhere # ISTIO_IN_REDIRECT 链:将所有的入站流量跳转到本地的 15006 端口,至此成功的拦截了流量到 sidecar 中。 Chain ISTIO_IN_REDIRECT (3 references) pkts bytes target prot opt in out source destination 0 0 REDIRECT tcp -- any any anywhere anywhere redir ports 15006 # ISTIO_OUTPUT 链:选择需要重定向到 Envoy(即本地) 的出站流量,所有非 localhost 的流量全部转发到 ISTIO_REDIRECT。为了避免流量在该 Pod 中无限循环,所有到 istio-proxy 用户空间的流量都返回到它的调用点中的下一条规则,本例中即 OUTPUT 链,因为跳出 ISTIO_OUTPUT 规则之后就进入下一条链 POSTROUTING。如果目的地非 localhost 就跳转到 ISTIO_REDIRECT;如果流量是来自 istio-proxy 用户空间的,那么就跳出该链,返回它的调用链继续执行下一条规则(OUTPUT 的下一条规则,无需对流量进行处理);所有的非 istio-proxy 用户空间的目的地是 localhost 的流量就跳转到 ISTIO_REDIRECT。 Chain ISTIO_OUTPUT (1 references) pkts bytes target prot opt in out source destination 0 0 RETURN all -- any lo 127.0.0.6 anywhere 0 0 ISTIO_IN_REDIRECT all -- any lo anywhere !localhost owner UID match 1337 0 0 RETURN all -- any lo anywhere anywhere ! owner UID match 1337 15 900 RETURN all -- any any anywhere anywhere owner UID match 1337 0 0 ISTIO_IN_REDIRECT all -- any lo anywhere !localhost owner GID match 1337 0 0 RETURN all -- any lo anywhere anywhere ! owner GID match 1337 0 0 RETURN all -- any any anywhere anywhere owner GID match 1337 0 0 RETURN all -- any any anywhere localhost 0 0 ISTIO_REDIRECT all -- any any anywhere anywhere # ISTIO_REDIRECT 链:将所有流量重定向到 Sidecar(即本地) 的 15001 端口。 Chain ISTIO_REDIRECT (1 references) pkts bytes target prot opt in out source destination 0 0 REDIRECT tcp -- any any anywhere anywhere redir ports 15001 下图展示的是 productpage 服务请求访问 http://reviews.default.svc.cluster.local:9080/,当流量进入 reviews 服务内部时,reviews 服务内部的 sidecar proxy 是如何做流量拦截和路由转发的。 图 7.3.2.5.2:Sidecar 流量劫持示意图 第一步开始时,productpage Pod 中的 sidecar 已经通过 EDS 选择出了要请求的 reviews 服务的一个 Pod,知晓了其 IP 地址,发送 TCP 连接请求。 reviews 服务有三个版本,每个版本有一个实例,三个版本中的 sidecar 工作步骤类似,下文只以其中一个 Pod 中的 sidecar 流量转发步骤来说明。 理解 iptables iptables 是 Linux 内核中的防火墙软件 netfilter 的管理工具,位于用户空间,同时也是 netfilter 的一部分。Netfilter 位于内核空间,不仅有网络地址转换的功能,也具备数据包内容修改、以及数据包过滤等防火墙功能。 在了解 Init 容器初始化的 iptables 之前,我们先来了解下 iptables 和规则配置。 下图展示了 iptables 调用链。 图 7.3.2.5.3:iptables 调用链 iptables 中的表 Init 容器中使用的的 iptables 版本是 v1.6.0,共包含 5 张表: raw 用于配置数据包,raw 中的数据包不会被系统跟踪。 filter 是用于存放所有与防火墙相关操作的默认表。 nat 用于 网络地址转换(例如:端口转发)。 mangle 用于对特定数据包的修改(参考损坏数据包)。 security 用于强制访问控制 网络规则。 注:在本示例中只用到了 nat 表。 不同的表中的具有的链类型如下表所示: 规则名称 raw filter nat mangle security PREROUTING ✓ ✓ ✓ INPUT ✓ ✓ ✓ ✓ OUTPUT ✓ ✓ ✓ ✓ POSTROUTING ✓ ✓ FORWARD ✓ ✓ ✓ ✓ 关于 iptables 的详细介绍请参考常见 iptables 使用规则场景整理。 理解 iptables 规则 查看 istio-proxy 容器中的默认的 iptables 规则,默认查看的是 filter 表中的规则。 $ iptables -L -v Chain INPUT (policy ACCEPT 350K packets, 63M bytes) pkts bytes target prot opt in out source destination Chain FORWARD (policy ACCEPT 0 packets, 0 bytes) pkts bytes target prot opt in out source destination Chain OUTPUT (policy ACCEPT 18M packets, 1916M bytes) pkts bytes target prot opt in out source destination 我们看到三个默认的链,分别是 INPUT、FORWARD 和 OUTPUT,每个链中的第一行输出表示链名称(在本例中为INPUT/FORWARD/OUTPUT),后跟默认策略(ACCEPT)。 下图是 iptables 的建议结构图,流量在经过 INPUT 链之后就进入了上层协议栈,比如 每条链中都可以添加多条规则,规则是按照顺序从前到后执行的。我们来看下规则的表头定义。 pkts:处理过的匹配的报文数量 bytes:累计处理的报文大小(字节数) target:如果报文与规则匹配,指定目标就会被执行。 prot:协议,例如 tdp、udp、icmp 和 all。 opt:很少使用,这一列用于显示 IP 选项。 in:入站网卡。 out:出站网卡。 source:流量的源 IP 地址或子网,后者是 anywhere。 destination:流量的目的地 IP 地址或子网,或者是 anywhere。 还有一列没有表头,显示在最后,表示规则的选项,作为规则的扩展匹配条件,用来补充前面的几列中的配置。prot、opt、in、out、source 和 destination 和显示在 destination 后面的没有表头的一列扩展条件共同组成匹配规则。当流量匹配这些规则后就会执行 target。 关于 iptables 规则请参考常见 iptables 使用规则场景整理。 target 支持的类型 target 类型包括 ACCEPT、REJECT、DROP、LOG 、SNAT、MASQUERADE、DNAT、REDIRECT、RETURN 或者跳转到其他规则等。只要执行到某一条链中只有按照顺序有一条规则匹配后就可以确定报文的去向了,除了 RETURN 类型,类似编程语言中的 return 语句,返回到它的调用点,继续执行下一条规则。target 支持的配置详解请参考 iptables 详解(1):iptables 概念。 从输出结果中可以看到 Init 容器没有在 iptables 的默认链路中创建任何规则,而是创建了新的链路。 流量路由过程详解 流量路由分为 Inbound 和 Outbound 两个过程,下面将根据上文中的示例及 sidecar 的配置为读者详细分析此过程。 理解 Inbound Handler Inbound handler 的作用是将 iptables 拦截到的 downstream 的流量转交给 localhost,与 Pod 内的应用程序容器建立连接。假设其中一个 Pod 的名字是 reviews-v1-54b8794ddf-jxksn,运行 istioctl proxy-config listener reviews-v1-54b8794ddf-jxksn 查看该 Pod 中的具有哪些 Listener。 ADDRESS PORT TYPE 172.17.0.15 9080 HTTP 当来自 productpage 的流量抵达 reviews Pod 的时候,downstream 已经明确知道 Pod 的 IP 地址为 172.17.0.16 所以才会访问该 Pod,所以该请求是 172.17.0.15:9080。 virtualInbound Listener 从该 Pod 的 Listener 列表中可以看到,0.0.0.0:15006/TCP 的 Listener(其实际名字是 virtualInbound)监听所有的 Inbound 流量,下面是该 Listener 的详细配置。 { \"name\": \"virtualInbound\", \"address\": { \"socketAddress\": { \"address\": \"0.0.0.0\", \"portValue\": 15006 } }, \"filterChains\": [ { \"filters\": [ /*省略部分内容*/ { \"filterChainMatch\": { \"destinationPort\": 9080, \"prefixRanges\": [ { \"addressPrefix\": \"172.17.0.15\", \"prefixLen\": 32 } ], \"applicationProtocols\": [ \"istio-peer-exchange\", \"istio\", \"istio-http/1.0\", \"istio-http/1.1\", \"istio-h2\" ] }, \"filters\": [ { \"name\": \"envoy.filters.network.metadata_exchange\", \"config\": { \"protocol\": \"istio-peer-exchange\" } }, { \"name\": \"envoy.http_connection_manager\", \"typedConfig\": { \"@type\": \"type.googleapis.com/envoy.config.filter.network.http_connection_manager.v2.HttpConnectionManager\", \"statPrefix\": \"inbound_172.17.0.15_9080\", \"routeConfig\": { \"name\": \"inbound|9080|http|reviews.default.svc.cluster.local\", \"virtualHosts\": [ { \"name\": \"inbound|http|9080\", \"domains\": [ \"*\" ], \"routes\": [ { \"name\": \"default\", \"match\": { \"prefix\": \"/\" }, \"route\": { \"cluster\": \"inbound|9080|http|reviews.default.svc.cluster.local\", \"timeout\": \"0s\", \"maxGrpcTimeout\": \"0s\" }, \"decorator\": { \"operation\": \"reviews.default.svc.cluster.local:9080/*\" } } ] } ], \"validateClusters\": false } /*省略部分内容*/ } Inbound handler 的流量被 virtualInbound Listener 转移到 172.17.0.15_9080 Listener,我们在查看下该 Listener 配置。 运行 istioctl pc listener reviews-v1-54b8794ddf-jxksn --address 172.17.0.15 --port 9080 -o json 查看。 [ { \"name\": \"172.17.0.15_9080\", \"address\": { \"socketAddress\": { \"address\": \"172.17.0.15\", \"portValue\": 9080 } }, \"filterChains\": [ { \"filterChainMatch\": { \"applicationProtocols\": [ \"istio-peer-exchange\", \"istio\", \"istio-http/1.0\", \"istio-http/1.1\", \"istio-h2\" ] }, \"filters\": [ { \"name\": \"envoy.http_connection_manager\", \"config\": { ... \"routeConfig\": { \"name\": \"inbound|9080|http|reviews.default.svc.cluster.local\", \"virtualHosts\": [ { \"name\": \"inbound|http|9080\", \"domains\": [ \"*\" ], \"routes\": [ { \"name\": \"default\", \"match\": { \"prefix\": \"/\" }, \"route\": { \"cluster\": \"inbound|9080|http|reviews.default.svc.cluster.local\", \"timeout\": \"0s\", \"maxGrpcTimeout\": \"0s\" }, \"decorator\": { \"operation\": \"reviews.default.svc.cluster.local:9080/*\" } } ] } ], } ... }, { \"filterChainMatch\": { \"transportProtocol\": \"tls\" }, \"tlsContext\": {... }, \"filters\": [... ] } ], ... }] 我们看其中的 filterChains.filters 中的 envoy.http_connection_manager 配置部分,该配置表示流量将转交给Clusterinbound|9080|http|reviews.default.svc.cluster.local 处理。 Cluster inbound|9080|http|reviews.default.svc.cluster.local 运行 istioctl proxy-config cluster reviews-v1-54b8794ddf-jxksn --fqdn reviews.default.svc.cluster.local --direction inbound -o json 查看该Cluster的配置如下。 [ { \"name\": \"inbound|9080|http|reviews.default.svc.cluster.local\", \"type\": \"STATIC\", \"connectTimeout\": \"1s\", \"loadAssignment\": { \"clusterName\": \"inbound|9080|http|reviews.default.svc.cluster.local\", \"endpoints\": [ { \"lbEndpoints\": [ { \"endpoint\": { \"address\": { \"socketAddress\": { \"address\": \"127.0.0.1\", \"portValue\": 9080 } } } } ] } ] }, \"circuitBreakers\": { \"thresholds\": [ { \"maxConnections\": 4294967295, \"maxPendingRequests\": 4294967295, \"maxRequests\": 4294967295, \"maxRetries\": 4294967295 } ] } } ] 可以看到该Cluster的 Endpoint 直接对应的就是 localhost,再经过 iptables 转发流量就被应用程序容器消费了。 理解 Outbound Handler 因为 reviews 会向 ratings 服务发送 HTTP 请求,请求的地址是:http://ratings.default.svc.cluster.local:9080/,Outbound handler 的作用是将 iptables 拦截到的本地应用程序发出的流量,经由 sidecar 判断如何路由到 upstream。 应用程序容器发出的请求为 Outbound 流量,被 iptables 劫持后转移给 Outbound handler 处理,然后经过 virtualOutbound Listener、0.0.0.0_9080 Listener,然后通过 Route 9080 找到 upstream 的 cluster,进而通过 EDS 找到 Endpoint 执行路由动作。 Route ratings.default.svc.cluster.local:9080 reviews 会请求 ratings 服务,运行 istioctl proxy-config routes reviews-v1-54b8794ddf-jxksn --name 9080 -o json 查看 route 配置,因为 sidecar 会根据 HTTP header 中的 domains 来匹配 VirtualHost,所以下面只列举了 ratings.default.svc.cluster.local:9080 这一个 VirtualHost。 [{ { \"name\": \"ratings.default.svc.cluster.local:9080\", \"domains\": [ \"ratings.default.svc.cluster.local\", \"ratings.default.svc.cluster.local:9080\", \"ratings\", \"ratings:9080\", \"ratings.default.svc.cluster\", \"ratings.default.svc.cluster:9080\", \"ratings.default.svc\", \"ratings.default.svc:9080\", \"ratings.default\", \"ratings.default:9080\", \"10.98.49.62\", \"10.98.49.62:9080\" ], \"routes\": [ { \"name\": \"default\", \"match\": { \"prefix\": \"/\" }, \"route\": { \"cluster\": \"outbound|9080||ratings.default.svc.cluster.local\", \"timeout\": \"0s\", \"retryPolicy\": { \"retryOn\": \"connect-failure,refused-stream,unavailable,cancelled,resource-exhausted,retriable-status-codes\", \"numRetries\": 2, \"retryHostPredicate\": [ { \"name\": \"envoy.retry_host_predicates.previous_hosts\" } ], \"hostSelectionRetryMaxAttempts\": \"5\", \"retriableStatusCodes\": [ 503 ] }, \"maxGrpcTimeout\": \"0s\" }, \"decorator\": { \"operation\": \"ratings.default.svc.cluster.local:9080/*\" } } ] }, ..] 从该 Virtual Host 配置中可以看到将流量路由到Clusteroutbound|9080||ratings.default.svc.cluster.local。 Endpoint outbound|9080||ratings.default.svc.cluster.local 运行 istioctl proxy-config endpoint reviews-v1-54b8794ddf-jxksn --port 9080 -o json 查看 Endpoint 配置,我们只选取其中的 outbound|9080||ratings.default.svc.cluster.localCluster的结果如下。 { \"clusterName\": \"outbound|9080||ratings.default.svc.cluster.local\", \"endpoints\": [ { \"locality\": { }, \"lbEndpoints\": [ { \"endpoint\": { \"address\": { \"socketAddress\": { \"address\": \"172.33.100.2\", \"portValue\": 9080 } } }, \"metadata\": { \"filterMetadata\": { \"istio\": { \"uid\": \"kubernetes://ratings-v1-8558d4458d-ns6lk.default\" } } } } ] } ] } Endpoint 可以是一个或多个,sidecar 将根据一定规则选择适当的 Endpoint 来路由。至此 Review 服务找到了它 upstream 服务 Rating 的 Endpoint。 小结 本文使用了 Istio 官方提供的 bookinfo 示例,按图索骥得带领读者了解了 sidecar 注入、iptables 透明流量劫持及 sidecar 中流量路由背后的实现细节。Sidecar 模式和流量透明劫持是 Istio 服务网格的特色和基础功能,理解该功能的背后过程及实现细节,将有助于大家理解 Service Mesh 的原理和 Istio Handbook 后面章节中的内容,因此希望读者可以在自己的环境中从头来试验一遍以加深理解。 使用 iptables 做流量劫持只是 service mesh 的数据平面中做流量劫持的方式之一,还有更多的流量劫持方案,下面引用自 云原生网络代理 MOSN 官网中给出的流量劫持部分的描述。 使用 iptables 做流量劫持时存在的问题 目前 Istio 使用 iptables 实现透明劫持,主要存在以下三个问题: 需要借助于 conntrack 模块实现连接跟踪,在连接数较多的情况下,会造成较大的消耗,同时可能会造成 track 表满的情况,为了避免这个问题,业内有关闭 conntrack 的做法。 iptables 属于常用模块,全局生效,不能显式的禁止相关联的修改,可管控性比较差。 iptables 重定向流量本质上是通过 loopback 交换数据,outbond 流量将两次穿越协议栈,在大并发场景下会损失转发性能。 上述几个问题并非在所有场景中都存在,比方说某些场景下,连接数并不多,且 NAT 表未被使用到的情况下,iptables 是一个满足要求的简单方案。为了适配更加广泛的场景,透明劫持需要解决上述三个问题。 透明劫持方案优化 使用 tproxy 处理 inbound 流量 tproxy 可以用于 inbound 流量的重定向,且无需改变报文中的目的 IP/端口,不需要执行连接跟踪,不会出现 conntrack 模块创建大量连接的问题。受限于内核版本,tproxy 应用于 outbound 存在一定缺陷。目前 Istio 支持通过 tproxy 处理 inbound 流量。 使用 hook connect 处理 outbound 流量 为了适配更多应用场景,outbound 方向通过 hook connect 来实现,实现原理如下: 图 7.3.2.5.4:hook-connect 原理示意图 无论采用哪种透明劫持方案,均需要解决获取真实目的 IP/端口的问题,使用 iptables 方案通过 getsockopt 方式获取,tproxy 可以直接读取目的地址,通过修改调用接口,hook connect 方案读取方式类似于tproxy。 实现透明劫持后,在内核版本满足要求(4.16以上)的前提下,通过 sockmap 可以缩短报文穿越路径,进而改善 outbound 方向的转发性能。 参考 Debugging Envoy and Istiod - istio.io 揭开 Istio Sidecar 注入模型的神秘面纱 - istio.io MOSN 作为 Sidecar 使用时的流量劫持方案 - mosn.io 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/envoy-sidecar-routing-of-istio-service-mesh-deep-dive.html":{"url":"usecases/envoy-sidecar-routing-of-istio-service-mesh-deep-dive.html","title":"Envoy Sidecar 代理的路由转发","keywords":"","body":"深入理解Istio Service Mesh中的Envoy Sidecar代理的路由转发 注意:本文基于 Istio 1.5。 本文以 Istio 官方的 bookinfo 示例来讲解在进入 Pod 的流量被 iptables 转交给 Envoy sidecar 后,Envoy 是如何做路由转发的,详述了 Inbound 和 Outbound 处理过程。关于流量拦截的详细分析请参考理解 Istio Service Mesh 中 Envoy 代理 Sidecar 注入及流量劫持。 下面是 Istio 官方提供的 bookinfo 的请求流程图,假设 bookinfo 应用的所有服务中没有配置 DestinationRule。 图 7.3.2.6.1:Bookinfo 示例 请读者参考 ServiceMesher 社区出品的 Istio Handbook 中的 Sidecar 流量路由机制分析一节。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/how-to-integrate-istio-with-vm.html":{"url":"usecases/how-to-integrate-istio-with-vm.html","title":"Istio 如何支持虚拟机","keywords":"","body":"Istio 如何支持虚拟机 本文基于 Istio 1.7 版本撰写。 Istio 是目前最流行的服务网格,用于连接、保护、控制和观察服务。当其 2017 年开源时,Kubernetes 已赢得容器编排之战,Istio 为了满足组织转向微服务的需求。虽然 Istio 声称支持异构环境,如 Nomad、Consul、Eureka、Cloud Foundry、Mesos 等,但实际上,它一直与 Kubernetes 合作得最好——它的服务发现就是基于 Kubernetes。 Istio 在发展初期就因为一些问题而饱受诟病,比如组件数量多、安装和维护复杂、调试困难、由于引入了太多的新概念和对象(多达 50 个 CRD)而导致学习曲线陡峭,以及 Mixer 组件对性能的影响。但这些问题正在被 Istio 团队逐渐克服。从 2020 年初发布的路线图中可以看出,Istio 已经取得了长足的进步。 将基于虚拟机的工作负载更好地集成到服务网格中,是 Istio 团队今年的一大重点。Tetrate 还通过其产品 Tetrate Service Bridge 提供了无缝的多云连接、安全性和可观察性,包括针对虚拟机的。本文将带您了解为什么 Istio 需要与虚拟机整合,以及如何整合。 Istio 为什么要支持虚拟机? 虽然现在容器和 Kubernetes 已经被广泛使用,但仍然有很多部署在虚拟机上的服务和 Kubernetes 集群之外的 API 需要由 Istio mesh 来管理。如何将棕地环境与绿地环境统一管理,这是一个巨大的挑战。 将虚拟机引入到网格中需要具备什么条件? 在介绍如何集成虚拟机之前,我先介绍一下将虚拟机添加到 Mesh 中需要什么条件。在支持虚拟机流量时,Istio 必须知道几件事:哪些虚拟机的服务要添加到 Mesh 中,以及如何访问虚拟机。每个虚拟机还需要一个身份,以便与服务网格的其他部分安全地通信。这些需求可以和 Kubernetes CRD 一起工作,也可以和 Consul 这样的完整的服务注册表一起工作。而基于服务账户的身份引导机制,为没有平台身份的虚拟机分配工作负载身份。对于有平台身份的虚拟机(如 EC2、GCP、Azure 等),Istio 正在进行这方面的工作,将平台身份与 Kubernetes 身份进行交换,方便设置 mTLS 通信。 Istio 如何支持虚拟机? Istio 对虚拟机的支持始于其服务注册表机制。Istio mesh 中的服务和实例信息来自 Istio 的服务注册表,到目前为止,Istio 的服务注册表只关注或跟踪 pod。在新的版本中,Istio 现在有资源类型来跟踪和观察虚拟机。网格内的 sidecar 无法观察和控制网格外服务的流量,因为它们没有任何信息。 Istio 社区和 Tetrate 在 Istio 对虚拟机的支持上做了很多工作。1.6 版本中增加了 WorkloadEntry,它允许你像描述 Kubernetes 中运行的主机一样描述虚拟机。在 1.7 版本中,该版本开始增加了通过令牌将虚拟机自动引导到 service mesh 中的基础,Istio 做了大量的工作。Istio 1.8 首次推出另一个名为 WorkloadGroup 的抽象,它类似于 Kubernetes Deployment 对象 —— 但适用于虚拟机。 下图显示了 Istio 如何在网格中对服务进行建模。最主要的信息来源来自于 Kubernetes 这样的平台服务注册表,或者 Consul 这样的系统。此外,ServiceEntry 作为用户定义的服务注册表,对虚拟机上的服务或组织外部的服务进行建模。 图 7.3.2.7.1:Istio 中的服务注册发现模型 为什么不直接使用 ServiceEntry 引入虚拟机中的服务,却还要大费周折在虚拟机中安装 Istio? 使用 ServiceEntry,你可以让网格内部的服务发现和访问外部服务;此外,还可以管理这些外部服务的流量。结合 VirtualService,你还可以为相应的外部服务配置访问规则,比如请求超时、故障注入等,从而实现对指定外部服务的控制访问。 即便如此,它也只能控制客户端的流量,而不能控制引入的外部服务对其他服务的访问。也就是说,它不能控制作为调用发起者的服务的行为。在虚拟机中部署 sidecar,通过工作负载选择器引入虚拟机工作负载,可以像 Kubernetes 中的 pod 一样,对虚拟机进行无差别管理。 Demo 在下面这个 demo 中我们将使在 GKE 中部署 Istio 并运行 bookinfo 示例,其中 ratings 服务的后端使用的是部署在虚拟机上的 MySQL,该示例可以在 Istio 官方文档中找到,我作出了部分改动,最终的流量路由如下图所示。 图 7.3.2.7.2:Bookinfo 示例中的流量示意图 安装流程 下面是示例的安装步骤: 在 Google Cloud 中部署 Kubernetes 集群,Kubernetes 版本是 1.16.13; 在 GKE 中安装 Istio 1.7.1; 在 Google Cloud 中启动一台虚拟机并配置 Istio,将其加入到 Istio Mesh 中,这一步需要很多手动操作,生成证书、创建 token、配置 hosts 等; 在 Istio Mesh 中部署 bookinfo 示例; 在虚拟机中安装 MySQL; 为虚拟机设置 VPC 防火箱规则; 将虚拟机中的 MySQL 服务作为 ServiceEntry 引入到 Mesh 中并作为 rating 服务的后端; 修改 MySQL 表中的数据,验证 bookinfo 中的 rating 相应的行为符合预期; 点击下图查看 Demo 视频。 图 7.3.2.7.3:Istio 支持虚拟机 Demo 视频 未来方向 从 bookinfo 的演示中可以看出,在这个过程中涉及到的人工工作太多,很容易出错。在未来,Istio 会改进虚拟机测试的可操作性,根据平台身份自动引导,改进 DNS 支持和 istioctl 调试等。大家可以关注 Istio 环境工作组,了解更多关于虚拟机支持的细节。 参考阅读 Virtual Machine Installation Virtual Machines in Single-Network Meshes Istio: Bringing VMs into the Mesh (with Cynthia Coan) Bridging Traditional and Modern Workloads 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/istio-vm-support.html":{"url":"usecases/istio-vm-support.html","title":"Istio 支持虚拟机的历史","keywords":"","body":"Istio 支持虚拟机的历史 Istio 1.8 新增了 WorkloadGroup 及智能 DNS 代理,这使得如虚拟机这样的非 Kubernetes 工作负载可以在 Istio 中成为像 Pod 一样的一等公民。 不论有没有为虚拟机安装 sidecar,虚拟机通常情况下无法直接访问 Kubernetes 集群中的 DNS 服务器以解析 Kubernetes 服务的 Cluster IP 的(虽然你也许可以通过一些黑客的手段做到),这是在 Istio 中集成虚拟的最后一块短板,终于在 Istio 1.8 中完成了突破。 为什么要支持虚拟机? 在我们将应用在迁移到云原生架构,不断容器化的过程中,将经历三个阶段,如下图所示。 图 7.3.2.8.1:云原生应用的三个阶段 阶段一:应用全部部署在虚拟机上 阶段二:应用既部署在虚拟机上也部署在容器里,正在从虚拟机向容器中迁移,并使用 Kubernetes 管理容器 阶段三:所有的应用优先部署在容器里,使用 Kubernetes 管理容器,使用 Istio 管理应用间的通信 上图仅是对以上三个阶段的最简化描述,实际上还会有多混合云、多机房、多集群等情况,且阶段三只是个理想化的阶段,容器和虚拟机将是长期共存的,但是容器化趋势不变。 在阶段二中,人们通常会将新业务和少量应用率先实现容器化,并部署到 Kubernetes 中,在应用尚未完全实现容器化的时候,处于过度状态时会遇到很多问题,如何让应用与部署在虚拟机中的服务交互?虚拟机如何访问容器中的服务?在服务迁移的过程中如何保证稳定无缝?是否可以将容器和虚拟机纳入一个统一的控制平面来管理?Istio 从开源初期就考虑并着手解决这一问题。 Istio 支持虚拟机的历史 Istio 对于虚拟机的支持是个漫长的过程,堪称是一部奥德赛。 Istio mesh 扩张 Istio 从 0.2 版本开始通过 Istio Mesh Expansion 将虚拟机加入的 Mesh 中,但是需要满足以下前提条件: 虚拟机必须可以通过 IP 地址直接访问到应用的 Pod,这就要求容器与 VM 之间通过 VPC 或者 VPN 建立扁平网络,虚拟机不需要访问 Cluster IP,直接对服务的 Endpoint 端点访问即可。 虚拟机必须可以访问到 Istio 的控制平面服务(Pilot、Mixer、CA,现在已正整合为 Istiod),可以通过在 Istio Mesh 中部署负载均衡器将控制平面端点暴露给虚拟机。 (可选)虚拟机可以访问到 Mesh 内部的(部署在 Kubernetes 中)的 DNS server。 集成虚拟机的步骤如下: 为 Istio 控制平面服务及 Kubernetes 集群的 DNS 服务创建 Internal 负载均衡器; 生成 Istio Service CIDR、Service Account token、安全证书、Istio 控制平面服务的 IP(通过 Internal 负载均衡器暴露出来的 IP)的配置文件并发送给虚拟机; (可选)在虚拟机中安装、配置并启动 Istio 的组件、dnsmaq(用于DNS 发现),此时虚拟机可以使用 FQDN 访问 mesh 中的服务了,这一步是为了保证虚拟机可以正确解析出 mesh 中服务的 Cluster IP; 若要在虚拟机中运行服务,需要配置 sidecar,新增需要拦截的 inbound 端口,然后重启 istio,还需要运行 istioctl 为服务注册 下图展示的从集成虚拟机到在 mesh 中访问虚拟机中服务的详细流程。 图 7.3.2.8.2:图一:从集成虚拟机到在 mesh 中访问虚拟机中服务的详细流程 DNS 被虚拟机中部署的 dnsmasq 劫持,这使得它可以正确的获取 Istio 服务、Kubernetes 内置 DNS 的端点 IP; 访问 Kubernetes 的内置 DNS 服务(该服务已通过 Internal 负载均衡器暴露到集群外,可以直接访问); 返回 productpage.bookinfo.svc.cluster.local 被解析出来的 Cluster IP,注意该 IP 地址无法直接访问,但是如果无法被 DNS 解析的话将导致 VM 对该服务的请求失败; 虚拟机对 mesh 中服务的访问被 sidecar proxy 劫持; 因为 proxy 已连接 Istio 控制平面,可通过 xDS 查询到该服务的端点,因此流量将被转发到其中的一个端点。关于这一步的详细过程请参考 Istio Handbook 中的 sidecar 流量路由机制分析 一节; 要想在 mesh 中访问 VM 中的服务,需要使用 istioctl register 命令手动将 VM 中的服务添加到 mesh 中,这本质上是将 VM 中的服务,注册到 Kubernetes 中的 service 和 endpoint; mesh 中的服务可以使用 VM 注册的服务名称(FQDN,例如 mysql.vm.svc.cluster.local)来访问; 以上 Istio 对虚拟机支持的方式一直延续到 Istio 1.0,在 Istio 1.1 的时候引入了新的 API ServiceEntry,使用它可以在 Istio 的内部服务注册表中添加额外的条目,这样 mesh 中的服务就可以访问/路由到这些手动指定的服务了,不再需要运行 istioctl register 命令,而且该命令在 Istio 1.9 中将被废弃。 Istio 1.5 中增加了 istioctl experimental add-to-mesh 命令,可以将虚拟机中的服务添加到 mesh 中,其功能与 istioctl register 一样。 新增资源抽象 Istio 从 1.6 版本开始在流量管理中引入了新的资源类型 WorkloadEntry,用以将虚拟机进行抽象,使得虚拟机在加入 mesh 后可以作为与 Kubernetes 中的 Pod 等同的负载,具备流量管理、安全管理、可视化等能力。通过 WorkloadEntry 可以简化虚拟机的网格化配置过程。WorkloadEntry 对象可以根据服务条目中指定的标签选择器选择多个工作负载条目和 Kubernetes pod。 Istio 1.8 中增加了 WorkloadGroup 的资源对象,它提供了一个规范,可以同时包括虚拟机和 Kubernetes 工作负载,旨在模仿现有的用于 Kubernetes 工作负载的 sidecar 注入和部署规范模型来引导 Istio 代理。 下面是虚拟机与 Kubernetes 中负载的资源抽象层级对比。 对比项 Kubernetes 虚拟机 基础调度单位 Pod WorkloadEntry 编排组合 Deployment WorkloadGroup 服务注册与发现 Service ServiceEntry 从上面的图表中我们可以看到,对于虚拟机工作负载是可以与 Kubernetes 中的负载一一对对应的。 此时看似一切都比较完美了,但是直接将 Kubernetes 集群中的 DNS server 暴露出来会带来很大的安全风险,因此我们一般手动将虚拟机需要访问的服务的域名和 Cluster IP 对写到本机的 /etc/hosts 中,但是对于一个节点数量庞大的分布式集群来说,这种做法又有些不现实。 通过配置虚拟机本地 /etc/hosts 访问 mesh 内服务的流程,如下图所示。 图 7.3.2.8.3:图二:通过配置虚拟机本地 /etc/hosts 访问 mesh 内服务的流程 将虚拟机中的服务注册到 mesh 中; 将要访问的服务的域名、Cluster IP 对手动写入虚拟机本地的 /etc/hosts 文件中; 虚拟机获得访问服务的 Cluster IP; 流量被 sidecar proxy 拦截并解析出要访问的服务的端点地址; 访问服务的指定端点; 在 Kubernetes 中我们一般使用 Service 对象来实现服务的注册和发现,每个服务都有一个独立的 DNS 名称,应用程序可以使用服务名称来互相调用。我们可以使用 ServiceEntry 将虚拟机中的服务注册到 Istio 的服务注册表中,但是在 Kubernetes 集群中的 DNS server 无法对 mesh 外部暴露的情况下,虚拟机无法访问 Kubernetes 集群中的 DNS 服务以获取服务的 Cluster IP,从而导致虚拟机访问 mesh 中的服务失败。如果能在虚拟机中增加一个 sidecar 可以透明地拦截 DNS 请求,可获取 mesh 内所有服务的 ClusterIP,类似于图一中的 dnsmasq 的角色,这样不就可以解决问题了吗? 智能 DNS 代理 Istio 1.8 中引入了智能 DNS 代理,虚拟机访问 mesh 内服务无需再配置 /ect/hosts,如下图所示。 图 7.3.2.8.4:图三:引入了智能 DNS 代理后虚拟机访问 mesh 内服务的流程 DNS proxy 是用 Go 编写的 Istio sidecar 代理。Sidecar 上的 Istio agent 将附带一个由 Istiod 动态编程的缓存 DNS 代理。来自应用程序的 DNS 查询会被 pod 或 VM 中的 Istio 代理透明地拦截和服务,该代理会智能地响应 DNS 查询请求,可以实现虚拟机到服务网格的无缝多集群访问。 至此,Istio 1.8 中引入的 WordloadGroup 及智能 DNS 代理,补足了 Istio 对虚拟机支持的最后一块短板,使得部署在虚拟机中的遗留应用可以跟 Kubernetes 中的 Pod 一样完全等同看待。 总结 在这部 Istio 支持虚拟机的奥德赛中,我们可以看到:从最初的将 mesh 中的 DNS server 暴露给外部,在虚拟机中安装配置 dnsmasq,到最后的使用智能 DNS 代理,并使用 WorkloadEntry、WorkloadGroup 和 ServiceEntry 等资源抽象,逐步实现了虚拟机和 pod 的统一管理。本文仅仅是针对单集群的情况,在实际的生产中使用还远远不够,我们还需要处理安全、多集群、多租户等诸多问题,欢迎关注 Tetrate 的旗舰产品 Tetrate Service Bridge 了解更多关于 Istio 应用在生产上的最佳实践。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/envoy.html":{"url":"usecases/envoy.html","title":"Envoy","keywords":"","body":"Envoy Envoy 是一款由 Lyft 开源的,使用 C++ 编写的 L7 代理和通信总线,目前是 CNCF 旗下的开源项目且已经毕业,代码托管在 GitHub 上,它也是 Istio service mesh 中默认的 data plane。 ServiceMesher 共同联合翻译了 Envoy 最新版本的官方文档,翻译的代码托管在 https://github.com/servicemesher/envoy,Envoy 官方文档中文版地址:https://www.servicemesher.com/envoy/。 特性 Envoy 包括如下特性: 进程外架构,不侵入应用进程 使用现代版 C++11 代码 L3/L4 filter 架构 HTTP L7 filter 架构 支持 HTTP/2 HTTP L7 routing 支持 gRPC 支持 MongoDB L7 动态配置 最佳可观测性 支持 front/edge proxy 高级负载均衡 健康检查 服务发现 支持 DynamoDB L7 Envoy 本身无法构成一个完整的 Service Mesh,但是它可以作为 service mesh 中的应用间流量的代理,负责 service mesh 中的数据层。 负载均衡与代理 在 Matt Klein(Envoy 的作者) 的 Introduction to modern network load balancing and proxying 文章详细描述了现代的网络负载均衡与代理的特性与模式,L4 与 L7 负载均衡的区别以及 L7 负载均衡的现状,总结如下图。 图 7.3.3.1:负载均衡器的特性以及拓扑类型 Matt Klein 是在他的文章中指出 sidecar 模式的 proxy 将取代另外三种模式而成为服务间通信的负载均衡器。 参考 Introduction to modern network load balancing and proxying 更多信息请参考 Envoy 官网 Envoy官方文档中文版 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/envoy-terminology.html":{"url":"usecases/envoy-terminology.html","title":"Envoy 的架构与基本术语","keywords":"","body":"Envoy 的架构与基本术语 在了解一门技术之前一开始就要了解其中的基本概念和术语,只有融入了该语境才能理解这门技术。本文将为大家介绍 Envoy 中的基本术语和重点概念。 架构 下图是 Envoy proxy 的架构图,显示了 host A 经过 Envoy 访问 host B 的过程。每个 host 上都可能运行多个 service,Envoy 中也可能有多个 Listener,每个 Listener 中可能会有多个 filter 组成了 chain。 图 7.3.3.1.1:Envoy proxy 架构图 其中的基本术语将在下面解释。 基本术语 Host:能够进行网络通信的实体(在手机或服务器等上的应用程序)。在 Envoy 中主机是指逻辑网络应用程序。只要每台主机都可以独立寻址,一块物理硬件上就运行多个主机。 Downstream:下游(downstream)主机连接到 Envoy,发送请求并或获得响应。 Upstream:上游(upstream)主机获取来自 Envoy 的链接请求和响应。 Cluster: 集群(cluster)是 Envoy 连接到的一组逻辑上相似的上游主机。Envoy 通过服务发现发现集群中的成员。Envoy 可以通过主动运行状况检查来确定集群成员的健康状况。Envoy 如何将请求路由到集群成员由负载均衡策略确定。 Mesh:一组互相协调以提供一致网络拓扑的主机。Envoy mesh 是指一组 Envoy 代理,它们构成了由多种不同服务和应用程序平台组成的分布式系统的消息传递基础。 运行时配置:与 Envoy 一起部署的带外实时配置系统。可以在无需重启 Envoy 或 更改 Envoy 主配置的情况下,通过更改设置来影响操作。 Listener: 侦听器(listener)是可以由下游客户端连接的命名网络位置(例如,端口、unix域套接字等)。Envoy 公开一个或多个下游主机连接的侦听器。一般是每台主机运行一个 Envoy,使用单进程运行,但是每个进程中可以启动任意数量的 Listener(监听器),目前只监听 TCP,每个监听器都独立配置一定数量的(L3/L4)网络过滤器。Listenter 也可以通过 Listener Discovery Service(LDS)动态获取。 Listener filter:Listener 使用 listener filter(监听器过滤器)来操作链接的元数据。它的作用是在不更改 Envoy 的核心功能的情况下添加更多的集成功能。Listener filter 的 API 相对简单,因为这些过滤器最终是在新接受的套接字上运行。在链中可以互相衔接以支持更复杂的场景,例如调用速率限制。Envoy 已经包含了多个监听器过滤器。 Http Route Table:HTTP 的路由规则,例如请求的域名,Path 符合什么规则,转发给哪个 Cluster。 Health checking:健康检查会与SDS服务发现配合使用。但是,即使使用其他服务发现方式,也有相应需要进行主动健康检查的情况。 xDS xDS 是一个关键概念,它是一类发现服务的统称,其包括如下几类: CDS:Cluster Discovery Service EDS:Endpoint Discovery Service SDS:Service Discovery Service RDS:Route Discovery Service LDS:Listener Discovery Service 正是通过对 xDS 的请求来动态更新 Envoy 配置。 Envoy Mesh Envoy Mesh 指的是由 envoy 做负载均衡和代理的 mesh。该 Mesh 中会包含两类 envoy: Edge envoy:即流量进出 mesh 时候的 envoy,相当于 kubernetes 中的 ingress。 Service envoy:服务 envoy 是跟每个 serivce 实例一起运行的,应用程序无感知的进程外工具,在 kubernetes 中会与应用容器以 sidecar 形式运行在同一个 pod 中。 Envoy 即可以单独作为 edge envoy,也可以仅做 service envoy 使用,也可以两者同时使用。Mesh 中的所有 envoy 会共享路由信息。 Envoy 配置 Envoy 中的配置包括两大类:listenner 配置和 cluster 配置。 Listener 配置 我们知道 Envoy 中可以配置一组 listener 以实现复杂的处理逻辑。Listener 中设置监听的 TCP 端口,还有一组 filter 对这些端口上的数据流进行处理。如下所示,该示例来自使用Envoy 作为前端代理。 listeners: - address: socket_address: address: 0.0.0.0 port_value: 80 filter_chains: - filters: - name: envoy.http_connection_manager config: codec_type: auto stat_prefix: ingress_http route_config: name: local_route virtual_hosts: - name: backend domains: - \"*\" routes: - match: prefix: \"/service/1\" route: cluster: service1 - match: prefix: \"/service/2\" route: cluster: service2 这是一个 http_connection_manager 例子,其中必须包含 virtual_hosts 配置,而 virtual_hosts 配置中必须包含以下几项配置: name:服务名称 domains:DNS 域名,必须能跟 virtual_host 的 URL 匹配 routes:路由列表 每个路由中还可以包含以下配置: prefix:URL 路径前缀 cluster:处理该请求的 envoy cluster timeout_ms:当出错时的超时时间 如上面的例子中,我们还需要定义 service1 cluster 和 service2 cluster。 Cluster 配置 Cluster 是一组逻辑相似的主机配置,定义哪些主机属于一个服务,cluster 的配置中包含了服务发现和负载均衡方式配置。依然是参考使用Envoy 作为前端代理中的配置: clusters: - name: service1 connect_timeout: 0.25s type: strict_dns lb_policy: round_robin http2_protocol_options: {} hosts: - socket_address: address: service1 port_value: 80 - name: service2 connect_timeout: 0.25s type: strict_dns lb_policy: round_robin http2_protocol_options: {} hosts: - socket_address: address: service2 port_value: 80 Cluster 的配置中至少包含以下信息: name:cluster 名称,就是服务名称 type:该 cluster 怎么知道主机是否启动?即服务发现类型,有以下方式: static:监听 cluster 中的所有主机 strict_dns:envoy 会监听 DNS,每个匹配的 A 记录都会认定为有效 logical_dns:envoy 将使用 DNS 来增加主机,如果 DNS 不再返回该主机也不会删除这些主机信息 sds:即 Serivce Discovery Serivce,envoy 访问外部的 REST 获取 cluster 成员信息 lb_type:cluster 的负载均衡类型,有以下方式: round_robin:轮询主机 weighted_least_request:最近获得最少请求的主机 random:随机 hosts:能够定义 cluster 中主机的 URL 地址,通常是tcp:// URL 参考 Part 1: Getting started with Envoy Proxy for microservices resilience Envoy作为前端代理 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/envoy-front-proxy.html":{"url":"usecases/envoy-front-proxy.html","title":"Envoy 作为前端代理","keywords":"","body":"Envoy 作为前端代理 本文是使用 Envoy 作为前端代理的介绍,仅使用 docker 容器和 docker-compose 做编排在单机中运行,帮助我们从更底层了解 Envoy,当我们将 Envoy 作为 Istio Service Mesh 的 data panel 的时候将更加游刃有余。 快速开始 Envoy 中的所有规则配置跟 Kubernetes 一样都是通过 YAML 文件来完成的。在继续下面的步骤之前,首先克隆 Envoy 的 GitHub repo。 git clone https://github.com/envoyproxy/envoy.git 运行 sandbox 测试 Envoy 官方提供了以下打包用例: Front Proxy Zipkin Tracing Jaeger Tracing gRPC Bridge 全部可以使用 docker-compose 运行,代码可以在 https://github.com/envoyproxy/envoy/tree/master/examples 找到。 Front proxy Envoy 在 envoymesh 的边缘做反向代理,详细使用方式见 https://www.envoyproxy.io/docs/envoy/latest/start/sandboxes/front_proxy,在此我将解说下以下问题: Envoy 是如何作为进程外架构运行的? 为何说 Envoy 是无侵入式架构? Envoy 作为边缘反向代理能做什么? 本示例的架构图如下所示,此时 Envoy 将作为一个反向代理,类似于 Nginx,但与 Nginx 不同的是它还会作为一个进程,伴随每个服务一起运行在同一个容器中(在 Kubernetes 中可以作为 Sidecar 与应用容器一起运行在同一个 Pod 中)。 图 7.3.3.2.1:Front proxy 部署结构图(转自https://www.envoyproxy.io/docs/envoy/latest/start/sandboxes/front_proxy) 在此示例中一共有 3 个服务,我们需要为其创建容器编排的 docker-compose.yml 文件。 version: '2' services: front-envoy: build: context: . dockerfile: Dockerfile-frontenvoy volumes: - ./front-envoy.yaml:/etc/front-envoy.yaml networks: - envoymesh expose: - \"80\" - \"8001\" ports: - \"8000:80\" - \"8001:8001\" service1: build: context: . dockerfile: Dockerfile-service volumes: - ./service-envoy.yaml:/etc/service-envoy.yaml networks: envoymesh: aliases: - service1 environment: - SERVICE_NAME=1 expose: - \"80\" service2: build: context: . dockerfile: Dockerfile-service volumes: - ./service-envoy.yaml:/etc/service-envoy.yaml networks: envoymesh: aliases: - service2 environment: - SERVICE_NAME=2 expose: - \"80\" networks: envoymesh: {} 使用 docker-compose 启动可以保证三个服务都在同一个网络内,即 frontproxy_envoymesh 网络中。 其中 front-envoy 是前端(边缘)Envoy 服务,用来做反向代理,它使用的是 Dockerfile-frontenvoy 文件来构建镜像的,我们来看下该 Dockerfile 的内容。 FROM envoyproxy/envoy:latest RUN apt-get update && apt-get -q install -y \\ curl CMD /usr/local/bin/envoy -c /etc/front-envoy.yaml --service-cluster front-proxy 其中 /etc/front-envoy.yaml 是本地的 front-envoy.yaml 挂载进去的。我们看下该文件的内容。 static_resources: listeners: - address: socket_address: address: 0.0.0.0 port_value: 80 filter_chains: - filters: - name: envoy.http_connection_manager config: codec_type: auto stat_prefix: ingress_http route_config: name: local_route virtual_hosts: - name: backend domains: - \"*\" routes: - match: prefix: \"/service/1\" route: cluster: service1 - match: prefix: \"/service/2\" route: cluster: service2 http_filters: - name: envoy.router config: {} clusters: - name: service1 connect_timeout: 0.25s type: strict_dns lb_policy: round_robin http2_protocol_options: {} hosts: - socket_address: address: service1 port_value: 80 - name: service2 connect_timeout: 0.25s type: strict_dns lb_policy: round_robin http2_protocol_options: {} hosts: - socket_address: address: service2 port_value: 80 admin: access_log_path: \"/dev/null\" address: socket_address: address: 0.0.0.0 port_value: 8001 我们看到其中包括了三大配置项: static_resources:路由配置信息 cluster:envoymesh 的服务注册信息 admin:管理接口,可以通过访问 8001 端口的,访问 /stats 获取当前 envoymesh 的一些统计信息,访问 /server_info 获取 Envoy 的版本信息 使用 docker-compose 启动三个容器。 $ pwd envoy/examples/front-proxy $ docker-compose up --build -d $ docker-compose ps Name Command State Ports ------------------------------------------------------------------------------------------------------------- example_service1_1 /bin/sh -c /usr/local/bin/ ... Up 80/tcp example_service2_1 /bin/sh -c /usr/local/bin/ ... Up 80/tcp example_front-envoy_1 /bin/sh -c /usr/local/bin/ ... Up 0.0.0.0:8000->80/tcp, 0.0.0.0:8001->8001/tcp 我们下面将过一遍 Envoy 作为前端代理的所有功能,这些功能是通用功能。 路由 访问 service1 http://localhost:8000/service/1 将看到如下输出。 $ curl -v localhost:8000/service/1 * Trying ::1... * TCP_NODELAY set * Connected to localhost (::1) port 8000 (#0) > GET /service/1 HTTP/1.1 > Host: localhost:8000 > User-Agent: curl/7.54.0 > Accept: */* > 访问 service2 http://localhost:8000/service/2 将看到如下输出。 * Trying ::1... * TCP_NODELAY set * Connected to localhost (::1) port 8000 (#0) > GET /service/2 HTTP/1.1 > Host: localhost:8000 > User-Agent: curl/7.54.0 > Accept: */* > 我们看到访问请求被路由到了正确的服务后端。 负载均衡 增加 service1 的示例数。 $ docker-compose scale service1=3 WARNING: The scale command is deprecated. Use the up command with the --scale flag instead. Starting frontproxy_service1_1 ... done Creating frontproxy_service1_2 ... done Creating frontproxy_service1_3 ... done $ docker-compose ps Name Command State Ports --------------------------------------------------------------------------------------------------------------------------- frontproxy_front-envoy_1 /usr/bin/dumb-init -- /bin ... Up 10000/tcp, 0.0.0.0:8000->80/tcp, 0.0.0.0:8001->8001/tcp frontproxy_service1_1 /bin/sh -c /usr/local/bin/ ... Up 10000/tcp, 80/tcp frontproxy_service1_2 /bin/sh -c /usr/local/bin/ ... Up 10000/tcp, 80/tcp frontproxy_service1_3 /bin/sh -c /usr/local/bin/ ... Up 10000/tcp, 80/tcp frontproxy_service2_1 /bin/sh -c /usr/local/bin/ ... Up 10000/tcp, 80/tcp 我们看到现在 service1 已经有了 3 个实例,现在再访问 service1 http://localhost:8000/service/1。 $ while true;do curl localhost:8000/service/1;sleep 1;done Hello from behind Envoy (service 1)! hostname: a3e4185a9a49 resolvedhostname: 172.18.0.4 Hello from behind Envoy (service 1)! hostname: fe44dba64122 resolvedhostname: 172.18.0.5 Hello from behind Envoy (service 1)! hostname: c5b9f1289e0f resolvedhostname: 172.18.0.6 Hello from behind Envoy (service 1)! hostname: a3e4185a9a49 resolvedhostname: 172.18.0.4 Hello from behind Envoy (service 1)! hostname: fe44dba64122 resolvedhostname: 172.18.0.5 Hello from behind Envoy (service 1)! hostname: c5b9f1289e0f resolvedhostname: 172.18.0.6 我们看到对 service1 的已经有负载均衡了,使用的策略是 round_robin,这些都是在 front-envoy.yaml 文件中的 cluster 项下配置的。 admin 端点 访问 http://localhost:8001 可以看到 Envoy admin 提供以下管理 API 端点。 命令 描述 / Admin 主页 /certs 打印机器上的 certs /clusters upstream cluster 状态 /config_dump 输出当前的 Envoy 配置 /cpuprofiler 开启/关闭 CPU profiler /healthcheck/fail 导致服务失败健康检查 /healthcheck/ok 导致服务通过健康检查 /help 打印管理命令的帮助信息 /hot_restart_version 打印热重启兼容版本 /listeners 打印 listener 地址 /logging 查询/更改日志级别 /quitquitquit 退出服务 /reset_counters 将计数器重置为 1 /runtime 打印运行时值 /runtime_modify 修改运行时值 /server_info 打印服务器版本/状态信息 /stats 打印服务器状态统计信息 /stats/prometheus 打印 prometheus 格式的服务器状态统计信息 Envoy 提供了 API 管理端点,可以对 Envoy 进行动态配置,参考 v2 API reference。 参考 Front proxy 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/envoy-mesh-in-kubernetes-tutorial.html":{"url":"usecases/envoy-mesh-in-kubernetes-tutorial.html","title":"Envoy mesh 教程","keywords":"","body":"Envoy mesh 教程 本文是在 Kubernetes 集群中,使用 Envoy 来做 mesh,来为一个简单的使用 Python 编写的 Flask 应用程序做反向代理和负载均衡。 注:本教程中的示例来自 envoy-steps,本文中使用的所有的代码和 YAML 配置见 envoy-tutorial。 图 7.3.3.3.1:Envoy Mesh架构图 前提条件 使用 kubernetes-vagrant-centos-cluster 部署 kubernetes 集群,只要启动集群并安装了 CoreDNS 即可,无须安装其他插件。 部署应用 我们首先将应用部署到 Kubernetes 中。 部署 postgres 数据库。 kubectl apply -f postgres 创建 usersvc 镜像。 docker build -t jimmysong/usersvc:step1 . 部署 usersvc。 kubectl apply -f usersvc 查看 uservc 的 ClusterIP 地址。 $ kubectl get svc usersvc kubectl get svc usersvc NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE usersvc ClusterIP 10.254.176.248 5000/TCP 11m 进到 node1 中访问该服务,因为我们要访问的是 ClusterIP,在我们自己的电脑上是无法直接访问的,所以进到虚拟机中操作。 $ vagrant ssh node1 $ curl 10.254.176.248:5000 { \"hostname\": \"usersvc-7cf5bb9d85-9gx7w\", \"msg\": \"user health check OK\", \"ok\": true, \"resolvedname\": \"172.33.10.7\" } 尝试添加一个名为 Alice 的用户。 $ curl -X PUT -H \"Content-Type: application/json\" \\ -d '{ \"fullname\": \"Alice\", \"password\": \"alicerules\" }' \\ 10.254.176.248/user/alice 将会看到类似如下的输出。 { \"fullname\": \"Alice\", \"hostname\": \"usersvc-7cf5bb9d85-9gx7w\", \"ok\": true, \"resolvedname\": \"172.33.10.7\", \"uuid\": \"EF43B475F65848C6BE708F436305864B\" } 尝试再添加一个名为 Bob 的用户。 $ curl -X PUT -H \"Content-Type: application/json\" \\ -d '{ \"fullname\": \"Bob\", \"password\": \"bobrules\" }' \\ 10.254.176.248/user/bob 将会看到类似如下的输出。 { \"fullname\": \"Bob\", \"hostname\": \"usersvc-7cf5bb9d85-9gx7w\", \"ok\": true, \"resolvedname\": \"172.33.10.7\", \"uuid\": \"6AC944E7D4254D9A811A82C0FDAC3046\" } 当应用部署完毕后,我们该部署 edge envoy 了。 部署 edge envoy 部署 edge envoy 的方式很简单,执行下面的命令。 kubectl apply -f edge-envoy 现在访问 edge envoy 是就可以路由到 usersvc 上的,当然直接访问 usersvc 也是可以的。 我们看下 edge-envoy 的 envoy 配置文件定义。 { \"listeners\": [ { \"address\": \"tcp://0.0.0.0:80\", \"filters\": [ { \"type\": \"read\", \"name\": \"http_connection_manager\", \"config\": { \"codec_type\": \"auto\", \"stat_prefix\": \"ingress_http\", \"route_config\": { \"virtual_hosts\": [ { \"name\": \"backend\", \"domains\": [\"*\"], \"routes\": [ { \"timeout_ms\": 0, \"prefix\": \"/user\", \"cluster\": \"usersvc\" } ] } ] }, \"filters\": [ { \"type\": \"decoder\", \"name\": \"router\", \"config\": {} } ] } } ] } ], \"admin\": { \"access_log_path\": \"/dev/null\", \"address\": \"tcp://127.0.0.1:8001\" }, \"cluster_manager\": { \"clusters\": [ { \"name\": \"usersvc\", \"connect_timeout_ms\": 250, \"type\": \"strict_dns\", \"service_name\": \"usersvc\", \"lb_type\": \"round_robin\", \"features\": \"http2\", \"hosts\": [ { \"url\": \"tcp://usersvc:80\" } ] } ] } } 客户端访问 edge-envoy 的 ClusterIP:8000/user/health 就可以检查节点的健康状况。 部署 usersvc2 删除原来的 usersvc,部署第二版 usersvc2,它与原来的 usersvc 唯一不同的地方是在 entrypoint 中集成了 envoy,查看 Dockerfile 中指定的 entrypoint.sh 的内容便可知。 #!/bin/sh python /application/service.py & /usr/local/bin/envoy -c /application/envoy.json 首先删除老的 usersvc。 kubectl delete -f usersvc 使用下面的命令部署 usersvc2,它仍然使用 usersvc 这个 service 名称。 kubectl apply -f usersvc2 Envoy 以 out-of-process 的方式运行,对应用进程没有侵入性,也可以使用 sidecar 的方式运行,让 envoy 与 应用容器运行在同一个 pod 中。 增加 usersvc2 的实例个数。 kubectl scale --replicas=3 deployment/usersvc 此时我们有 3 个 usersvc 实例,现在通过 edge-envoy 的 ClusterIP:8000/user/health 检查节点的健康状况时,是不是会轮询的访问到后端的的 usersvc2 的实例呢? 我们当初在 edge-node 的 envoy.json 中配置过 cluster 的,其中指定了 lb_type 为 round_robin 。 \"cluster_manager\": { \"clusters\": [ { \"name\": \"usersvc\", \"connect_timeout_ms\": 250, \"type\": \"strict_dns\", \"service_name\": \"usersvc\", \"lb_type\": \"round_robin\", \"features\": \"http2\", \"hosts\": [ { \"url\": \"tcp://usersvc:80\" } ] } ] } 而且该 serivce_name 也可以被 DNS 正确解析。 root@usersvc-55b6857d44-gcg5c:/application# nslookup usersvc Server: 10.254.0.2 Address: 10.254.0.2#53 Name: usersvc.envoy-tutorial.svc.cluster.local Address: 10.254.123.166 答案是否定的。 虽然通过 DNS 可以正确的解析出 serivce 的 ClusterIP,但是负载均衡不再通过 kube-proxy 实现,所以不论我们访问多少次 edge-envoy 永远只能访问到一个固定的后端 usersvc。 服务发现服务 - SDS Kubernetes 中的 DNS 可以发现所有 serivce 的 ClusterIP,但是 DNS 中不包括所有 endpoint 地址,我们需要一个 SDS(服务发现服务)来发现服务的所有的 endpoint,我们将修改 lb_type,使用 sds 替代 strict_dns。 执行下面的命令部署 SDS。 kubectl apply -f usersvc-sds 因为在添加了 SDS 之后需要修改 edge-envoy 中的 envoy.josn 配置,在 clusters 字段中增加 sds 信息,我们将所有的配置都写好了,重新打包成了镜像,我们需要先删除之前部署的 edge-envoy。 kubectl delete -f edge-envoy 部署新的 edge-envoy2。 kubectl apply -f edge-envoy2 连续访问 usersvc 12 次看看输出结果如何。 URL=http://172.17.8.101:30800/user/alice for i in `seq 1 12`;do curl -s $URL|grep \"resolvedname\"|tr -d \" \"|tr -d \",\"|tr -d '\"';done 我们可以看到类似如下的输出: resolvedname:172.33.71.2 resolvedname:172.33.88.2 resolvedname:172.33.10.2 resolvedname:172.33.71.2 resolvedname:172.33.88.2 resolvedname:172.33.10.2 resolvedname:172.33.71.2 resolvedname:172.33.88.2 resolvedname:172.33.10.2 resolvedname:172.33.71.2 resolvedname:172.33.88.2 resolvedname:172.33.10.2 再查看下 usersvc 服务的所有 pod 的 IP 地址。 $ kubectl get pod -l service=usersvc -o wide NAME READY STATUS RESTARTS AGE IP NODE usersvc-55b6857d44-mkfpv 1/1 Running 0 9m 172.33.88.2 node1 usersvc-55b6857d44-q98jg 1/1 Running 0 9m 172.33.71.2 node2 usersvc-55b6857d44-s2znk 1/1 Running 0 9m 172.33.10.2 node3 我们看到 round-robin 负载均衡生效了。 参考 Part 2: Deploying Envoy with a Python Flask webapp and Kubernetes envoy-steps kubernetes-vagrant-centos-cluster envoy-tutorial 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/big-data.html":{"url":"usecases/big-data.html","title":"大数据","keywords":"","body":"大数据 Kubernetes community中已经有了一个Big data SIG,大家可以通过这个SIG了解kubernetes结合大数据的应用。 在Swarm、Mesos、kubernetes这三种流行的容器编排调度架构中,Mesos对于大数据应用支持是最好的,spark原生就是运行在mesos上的,当然也可以容器化运行在kubernetes上。当前在kubernetes上运行大数据应用主要是spark应用。 Spark on Kubernetes Spark原生支持standalone、mesos和YARN的调度方式,当前kubernetes社区正在支持kubernetes的原生调度来运行spark - 。 当然您也可以在kubernetes直接部署spark on yarn或者spark standalone模式,仍然沿用已有的 Spark Standalone 使用spark standalone模式在kubernetes上运行,kubernetes不负责spark任务的调度。参考:Spark standalone on Kubernetes 这种模式中使用的spark本身负责任务调度,kubernetes只是作为一个spark的部署平台。 Spark on Yarn 使用StatefulSet和Headless serverless来实现。 这种模式中kubernetes依然不负责spark应用的调度,而只是将Yarn换了一个部署环境而已。 下面是架构图: 图 7.4.1:Spark on yarn with kubernetes Spark on Kubernetes Spark on kubernetes,使用kubernetes作为调度引擎,spark的任务直接调度到node节点上。参考:运行支持kubernetes原生调度的Spark程序。 调度方式总结 下图显示的是三种调度方式中单个kubernetes node节点上运行的spark相关容器的调度情况。 图 7.4.2:在kubernetes上使用多种调度方式 毫无疑问,使用kubernetes原生调度的spark任务才是最节省资源的。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/spark-standalone-on-kubernetes.html":{"url":"usecases/spark-standalone-on-kubernetes.html","title":"Spark standalone on Kubernetes","keywords":"","body":"Spark standalone on Kubernetes 该项目是基于 Spark standalone 模式,对资源的分配调度还有作业状态查询的功能实在有限,对于让 spark 使用真正原生的 kubernetes 资源调度推荐大家尝试 https://github.com/apache-spark-on-k8s/。 代码和使用文档见Github地址:https://github.com/rootsongjc/spark-on-kubernetes 本文中用到的 yaml 文件可以在 manifests/spark-standalone 目录下找到,也可以在上面的 https://github.com/rootsongjc/spark-on-kubernetes/ 项目的 manifests 目录下找到。 在Kubernetes上启动spark 创建名为spark-cluster的namespace,所有操作都在该namespace中进行。 所有yaml文件都在manifests目录下。 $ kubectl create -f manifests/ 将会启动一个拥有三个worker的spark集群和zeppelin。 同时在该namespace中增加ingress配置,将spark的UI和zeppelin页面都暴露出来,可以在集群外部访问。 该ingress后端使用traefik。 访问spark 通过上面对ingress的配置暴露服务,需要修改本机的/etc/hosts文件,增加以下配置,使其能够解析到上述service。 172.20.0.119 zeppelin.traefik.io 172.20.0.119 spark.traefik.io 172.20.0.119是我设置的VIP地址,VIP的设置和traefik的配置请查看kubernetes-handbook。 spark ui 访问 http://spark.traefik.io 图 7.4.1.1:spark master ui zeppelin ui 访问 http://zepellin.treafik.io 图 7.4.1.2:zeppelin ui 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/running-spark-with-kubernetes-native-scheduler.html":{"url":"usecases/running-spark-with-kubernetes-native-scheduler.html","title":"运行支持 Kubernetes 原生调度的 Spark 程序","keywords":"","body":"运行支持kubernetes原生调度的Spark程序 TL;DR 这个主题比较大,该开源项目也还在不断进行中,我单独做了一个 web 用来记录 spark on kubernetes 的研究和最新进展见: https://jimmysong.io/spark-on-k8s 注意:本文中的镜像仓库地址 harbor-001.jimmysong.io 为的镜像仓库地址为伪装地址,非本文中真正使用的镜像仓库,且该地址也不存在,请替换为您自己的镜像仓库。 我们之前就在 kubernetes 中运行过 standalone 方式的 spark 集群,见 Spark standalone on kubernetes。 目前运行支持 kubernetes 原生调度的 spark 程序由 Google 主导,fork 自 spark 的官方代码库,见https://github.com/apache-spark-on-k8s/spark/ ,属于Big Data SIG。 参与到该项目的公司有: Bloomberg Google Haiwen Hyperpilot Intel Palantir Pepperdata Red Hat 为何使用 spark on kubernetes 使用kubernetes原生调度的spark on kubernetes是对现有的spark on yarn/mesos的资源使用方式的革命性的改进,主要表现在以下几点: Kubernetes原生调度:不再需要二层调度,直接使用kubernetes的资源调度功能,跟其他应用共用整个kubernetes管理的资源池; 资源隔离,粒度更细:原先yarn中的queue在spark on kubernetes中已不存在,取而代之的是kubernetes中原生的namespace,可以为每个用户分别指定一个namespace,限制用户的资源quota; 细粒度的资源分配:可以给每个spark任务指定资源限制,实际指定多少资源就使用多少资源,因为没有了像yarn那样的二层调度(圈地式的),所以可以更高效和细粒度的使用资源; 监控的变革:因为做到了细粒度的资源分配,所以可以对用户提交的每一个任务做到资源使用的监控,从而判断用户的资源使用情况,所有的metric都记录在数据库中,甚至可以为每个用户的每次任务提交计量; 日志的变革:用户不再通过yarn的web页面来查看任务状态,而是通过pod的log来查看,可将所有的kuberentes中的应用的日志等同看待收集起来,然后可以根据标签查看对应应用的日志; 所有这些变革都可以让我们更高效的获取资源、更有效率的获取资源! Spark 概念说明 Apache Spark 是一个围绕速度、易用性和复杂分析构建的大数据处理框架。最初在2009年由加州大学伯克利分校的AMPLab开发,并于2010年成为Apache的开源项目之一。 在 Spark 中包括如下组件或概念: Application:Spark Application 的概念和 Hadoop 中的 MapReduce 类似,指的是用户编写的 Spark 应用程序,包含了一个 Driver 功能的代码和分布在集群中多个节点上运行的 Executor 代码; Driver:Spark 中的 Driver 即运行上述 Application 的 main() 函数并且创建 SparkContext,其中创建 SparkContext 的目的是为了准备Spark应用程序的运行环境。在 Spark 中由 SparkContext 负责和 ClusterManager 通信,进行资源的申请、任务的分配和监控等;当 Executor 部分运行完毕后,Driver负责将SparkContext 关闭。通常用 SparkContext 代表 Driver; Executor:Application运行在Worker 节点上的一个进程,该进程负责运行Task,并且负责将数据存在内存或者磁盘上,每个Application都有各自独立的一批Executor。在Spark on Yarn模式下,其进程名称为CoarseGrainedExecutorBackend,类似于 Hadoop MapReduce 中的 YarnChild。一个 CoarseGrainedExecutorBackend 进程有且仅有一个 executor 对象,它负责将 Task 包装成 taskRunner,并从线程池中抽取出一个空闲线程运行 Task。每个 CoarseGrainedExecutorBackend 能并行运行 Task 的数量就取决于分配给它的 CPU 的个数了; Cluster Manager:指的是在集群上获取资源的外部服务,目前有: Standalone:Spark原生的资源管理,由Master负责资源的分配; Hadoop Yarn:由YARN中的ResourceManager负责资源的分配; Worker:集群中任何可以运行Application代码的节点,类似于YARN中的NodeManager节点。在Standalone模式中指的就是通过Slave文件配置的Worker节点,在Spark on Yarn模式中指的就是NodeManager节点; 作业(Job):包含多个Task组成的并行计算,往往由Spark Action催生,一个JOB包含多个RDD及作用于相应RDD上的各种Operation; 阶段(Stage):每个Job会被拆分很多组 Task,每组任务被称为Stage,也可称TaskSet,一个作业分为多个阶段,每一个stage的分割点是action。比如一个job是:(transformation1 -> transformation1 -> action1 -> transformation3 -> action2),这个job就会被分为两个stage,分割点是action1和action2。 任务(Task): 被送到某个Executor上的工作任务; Context:启动spark application的时候创建,作为Spark 运行时环境。 Dynamic Allocation(动态资源分配):一个配置选项,可以将其打开。从Spark1.2之后,对于On Yarn模式,已经支持动态资源分配(Dynamic Resource Allocation),这样,就可以根据Application的负载(Task情况),动态的增加和减少executors,这种策略非常适合在YARN上使用spark-sql做数据开发和分析,以及将spark-sql作为长服务来使用的场景。Executor 的动态分配需要在 cluster mode 下启用 \"external shuffle service\"。 动态资源分配策略:开启动态分配策略后,application会在task因没有足够资源被挂起的时候去动态申请资源,这意味着该application现有的executor无法满足所有task并行运行。spark一轮一轮的申请资源,当有task挂起或等待 spark.dynamicAllocation.schedulerBacklogTimeout (默认1s)时间的时候,会开始动态资源分配;之后会每隔 spark.dynamicAllocation.sustainedSchedulerBacklogTimeout (默认1s)时间申请一次,直到申请到足够的资源。每次申请的资源量是指数增长的,即1,2,4,8等。之所以采用指数增长,出于两方面考虑:其一,开始申请的少是考虑到可能application会马上得到满足;其次要成倍增加,是为了防止application需要很多资源,而该方式可以在很少次数的申请之后得到满足。 架构设计 关于 spark standalone 的局限性与 kubernetes native spark 架构之间的区别请参考 Anirudh Ramanathan 在 2016年10月8日提交的 issue Support Spark natively in Kubernetes #34377。 简而言之,spark standalone on kubernetes 有如下几个缺点: 无法对于多租户做隔离,每个用户都想给 pod 申请 node 节点可用的最大的资源。 Spark 的 master/worker 本来不是设计成使用 kubernetes 的资源调度,这样会存在两层的资源调度问题,不利于与 kuberentes 集成。 而 kubernetes native spark 集群中,spark 可以调用 kubernetes API 获取集群资源和调度。要实现 kubernetes native spark 需要为 spark 提供一个集群外部的 manager 可以用来跟 kubernetes API 交互。 调度器后台 使用 kubernetes 原生调度的 spark 的基本设计思路是将 spark 的 driver 和 executor 都放在 kubernetes 的 pod 中运行,另外还有两个附加的组件:ResourceStagingServer 和 KubernetesExternalShuffleService。 Spark driver 其实可以运行在 kubernetes 集群内部(cluster mode)可以运行在外部(client mode),executor 只能运行在集群内部,当有 spark 作业提交到 kubernetes 集群上时,调度器后台将会为 executor pod 设置如下属性: 使用我们预先编译好的包含 kubernetes 支持的 spark 镜像,然后调用 CoarseGrainedExecutorBackend main class 启动 JVM。 调度器后台为 executor pod 的运行时注入环境变量,例如各种 JVM 参数,包括用户在 spark-submit 时指定的那些参数。 Executor 的 CPU、内存限制根据这些注入的环境变量保存到应用程序的 SparkConf 中。 可以在配置中指定 spark 运行在指定的 namespace 中。 参考:Scheduler backend 文档 安装指南 我们可以直接使用官方已编译好的 docker 镜像来部署,下面是官方发布的镜像: 组件 镜像 Spark Driver Image kubespark/spark-driver:v2.1.0-kubernetes-0.3.1 Spark Executor Image kubespark/spark-executor:v2.1.0-kubernetes-0.3.1 Spark Initialization Image kubespark/spark-init:v2.1.0-kubernetes-0.3.1 Spark Staging Server Image kubespark/spark-resource-staging-server:v2.1.0-kubernetes-0.3.1 PySpark Driver Image kubespark/driver-py:v2.1.0-kubernetes-0.3.1 PySpark Executor Image kubespark/executor-py:v2.1.0-kubernetes-0.3.1 我将这些镜像放到了我的私有镜像仓库中了。 还需要安装支持 kubernetes 的 spark 客户端,在这里下载:https://github.com/apache-spark-on-k8s/spark/releases 根据使用的镜像版本,我下载的是 v2.1.0-kubernetes-0.3.1 运行 SparkPi 测试 我们将任务运行在 spark-cluster 的 namespace 中,启动 5 个 executor 实例。 ./bin/spark-submit \\ --deploy-mode cluster \\ --class org.apache.spark.examples.SparkPi \\ --master k8s://https://172.20.0.113:6443 \\ --kubernetes-namespace spark-cluster \\ --conf spark.executor.instances=5 \\ --conf spark.app.name=spark-pi \\ --conf spark.kubernetes.driver.docker.image=harbor-001.jimmysong.io/library/kubespark-spark-driver:v2.1.0-kubernetes-0.3.1 \\ --conf spark.kubernetes.executor.docker.image=harbor-001.jimmysong.io/library/kubespark-spark-executor:v2.1.0-kubernetes-0.3.1 \\ --conf spark.kubernetes.initcontainer.docker.image=harbor-001.jimmysong.io/library/kubespark-spark-init:v2.1.0-kubernetes-0.3.1 \\ local:///opt/spark/examples/jars/spark-examples_2.11-2.1.0-k8s-0.3.1-SNAPSHOT.jar 关于该命令参数的介绍请参考:https://apache-spark-on-k8s.github.io/userdocs/running-on-kubernetes.html 注意: 该 jar 包实际上是 spark.kubernetes.executor.docker.image 镜像中的。 这时候提交任务运行还是失败,报错信息中可以看到两个问题: Executor 无法找到 driver pod 用户 system:serviceaccount:spark-cluster:defaul 没有权限获取 spark-cluster 中的 pod 信息。 提了个 issue Failed to run the sample spark-pi test using spark-submit on the doc #478 需要为 spark 集群创建一个 serviceaccount 和 clusterrolebinding: kubectl create serviceaccount spark --namespace spark-cluster kubectl create rolebinding spark-edit --clusterrole=edit --serviceaccount=spark-cluster:spark --namespace=spark-cluster 该 Bug 将在新版本中修复。 用户指南 编译 Fork 并克隆项目到本地: git clone https://github.com/rootsongjc/spark.git 编译前请确保你的环境中已经安装 Java8 和 Maven3。 ## 第一次编译前需要安装依赖 build/mvn install -Pkubernetes -pl resource-managers/kubernetes/core -am -DskipTests ## 编译 spark on kubernetes build/mvn compile -Pkubernetes -pl resource-managers/kubernetes/core -am -DskipTests ## 发布 dev/make-distribution.sh --tgz -Phadoop-2.7 -Pkubernetes 第一次编译和发布的过程耗时可能会比较长,请耐心等待,如果有依赖下载不下来,请自备梯子。 详细的开发指南请见:https://github.com/apache-spark-on-k8s/spark/blob/branch-2.2-kubernetes/resource-managers/kubernetes/README.md 构建镜像 使用该脚本来自动构建容器镜像:https://github.com/apache-spark-on-k8s/spark/pull/488 将该脚本放在 dist 目录下,执行: ./build-push-docker-images.sh -r harbor-001.jimmysong.io/library -t v2.1.0-kubernetes-0.3.1-1 build ./build-push-docker-images.sh -r harbor-001.jimmysong.io/library -t v2.1.0-kubernetes-0.3.1-1 push 注意:如果你使用的 MacOS,bash 的版本可能太低,执行改脚本将出错,请检查你的 bash 版本: bash --version GNU bash, version 3.2.57(1)-release (x86_64-apple-darwin16) Copyright (C) 2007 Free Software Foundation, Inc. 上面我在升级 bash 之前获取的版本信息,使用下面的命令升级 bash: brew install bash 升级后的 bash 版本为 4.4.12(1)-release (x86_64-apple-darwin16.3.0)。 编译并上传镜像到我的私有镜像仓库,将会构建出如下几个镜像: harbor-001.jimmysong.io/library/spark-driver:v2.1.0-kubernetes-0.3.1-1 harbor-001.jimmysong.io/library/spark-resource-staging-server:v2.1.0-kubernetes-0.3.1-1 harbor-001.jimmysong.io/library/spark-init:v2.1.0-kubernetes-0.3.1-1 harbor-001.jimmysong.io/library/spark-shuffle:v2.1.0-kubernetes-0.3.1-1 harbor-001.jimmysong.io/library/spark-executor:v2.1.0-kubernetes-0.3.1-1 harbor-001.jimmysong.io/library/spark-executor-py:v2.1.0-kubernetes-0.3.1-1 harbor-001.jimmysong.io/library/spark-driver-py:v2.1.0-kubernetes-0.3.1-1 运行测试 在 dist/bin 目录下执行 spark-pi 测试: ./spark-submit \\ --deploy-mode cluster \\ --class org.apache.spark.examples.SparkPi \\ --master k8s://https://172.20.0.113:6443 \\ --kubernetes-namespace spark-cluster \\ --conf spark.kubernetes.authenticate.driver.serviceAccountName=spark \\ --conf spark.executor.instances=5 \\ --conf spark.app.name=spark-pi \\ --conf spark.kubernetes.driver.docker.image=harbor-001.jimmysong.io/library/spark-driver:v2.1.0-kubernetes-0.3.1-1 \\ --conf spark.kubernetes.executor.docker.image=harbor-001.jimmysong.io/library/spark-executor:v2.1.0-kubernetes-0.3.1-1 \\ --conf spark.kubernetes.initcontainer.docker.image=harbor-001.jimmysong.io/library/spark-init:v2.1.0-kubernetes-0.3.1-1 \\ local:///opt/spark/examples/jars/spark-examples_2.11-2.2.0-k8s-0.4.0-SNAPSHOT.jar 详细的参数说明见:https://apache-spark-on-k8s.github.io/userdocs/running-on-kubernetes.html 注意:local:///opt/spark/examples/jars/spark-examples_2.11-2.2.0-k8s-0.4.0-SNAPSHOT.jar 文件是在 spark-driver 和 spark-executor 镜像里的,在上一步构建镜像时已经构建并上传到了镜像仓库中。 执行日志显示: 2017-09-14 14:59:01 INFO Client:54 - Waiting for application spark-pi to finish... 2017-09-14 14:59:01 INFO LoggingPodStatusWatcherImpl:54 - State changed, new state: pod name: spark-pi-1505372339796-driver namespace: spark-cluster labels: spark-app-selector -> spark-f4d3a5d3ad964a05a51feb6191d50357, spark-role -> driver pod uid: 304cf440-991a-11e7-970c-f4e9d49f8ed0 creation time: 2017-09-14T06:59:01Z service account name: spark volumes: spark-token-zr8wv node name: N/A start time: N/A container images: N/A phase: Pending status: [] 2017-09-14 14:59:01 INFO LoggingPodStatusWatcherImpl:54 - State changed, new state: pod name: spark-pi-1505372339796-driver namespace: spark-cluster labels: spark-app-selector -> spark-f4d3a5d3ad964a05a51feb6191d50357, spark-role -> driver pod uid: 304cf440-991a-11e7-970c-f4e9d49f8ed0 creation time: 2017-09-14T06:59:01Z service account name: spark volumes: spark-token-zr8wv node name: 172.20.0.114 start time: N/A container images: N/A phase: Pending status: [] 2017-09-14 14:59:01 INFO LoggingPodStatusWatcherImpl:54 - State changed, new state: pod name: spark-pi-1505372339796-driver namespace: spark-cluster labels: spark-app-selector -> spark-f4d3a5d3ad964a05a51feb6191d50357, spark-role -> driver pod uid: 304cf440-991a-11e7-970c-f4e9d49f8ed0 creation time: 2017-09-14T06:59:01Z service account name: spark volumes: spark-token-zr8wv node name: 172.20.0.114 start time: 2017-09-14T06:59:01Z container images: harbor-001.jimmysong.io/library/spark-driver:v2.1.0-kubernetes-0.3.1-1 phase: Pending status: [ContainerStatus(containerID=null, image=harbor-001.jimmysong.io/library/spark-driver:v2.1.0-kubernetes-0.3.1-1, imageID=, lastState=ContainerState(running=null, terminated=null, waiting=null, additionalProperties={}), name=spark-kubernetes-driver, ready=false, restartCount=0, state=ContainerState(running=null, terminated=null, waiting=ContainerStateWaiting(message=null, reason=ContainerCreating, additionalProperties={}), additionalProperties={}), additionalProperties={})] 2017-09-14 14:59:03 INFO LoggingPodStatusWatcherImpl:54 - State changed, new state: pod name: spark-pi-1505372339796-driver namespace: spark-cluster labels: spark-app-selector -> spark-f4d3a5d3ad964a05a51feb6191d50357, spark-role -> driver pod uid: 304cf440-991a-11e7-970c-f4e9d49f8ed0 creation time: 2017-09-14T06:59:01Z service account name: spark volumes: spark-token-zr8wv node name: 172.20.0.114 start time: 2017-09-14T06:59:01Z container images: harbor-001.jimmysong.io/library/spark-driver:v2.1.0-kubernetes-0.3.1-1 phase: Running status: [ContainerStatus(containerID=docker://5c5c821c482a1e35552adccb567020532b79244392374f25754f0050e6cd4c62, image=harbor-001.jimmysong.io/library/spark-driver:v2.1.0-kubernetes-0.3.1-1, imageID=docker-pullable://harbor-001.jimmysong.io/library/spark-driver@sha256:beb92a3e3f178e286d9e5baebdead88b5ba76d651f347ad2864bb6f8eda26f94, lastState=ContainerState(running=null, terminated=null, waiting=null, additionalProperties={}), name=spark-kubernetes-driver, ready=true, restartCount=0, state=ContainerState(running=ContainerStateRunning(startedAt=2017-09-14T06:59:02Z, additionalProperties={}), terminated=null, waiting=null, additionalProperties={}), additionalProperties={})] 2017-09-14 14:59:12 INFO LoggingPodStatusWatcherImpl:54 - State changed, new state: pod name: spark-pi-1505372339796-driver namespace: spark-cluster labels: spark-app-selector -> spark-f4d3a5d3ad964a05a51feb6191d50357, spark-role -> driver pod uid: 304cf440-991a-11e7-970c-f4e9d49f8ed0 creation time: 2017-09-14T06:59:01Z service account name: spark volumes: spark-token-zr8wv node name: 172.20.0.114 start time: 2017-09-14T06:59:01Z container images: harbor-001.jimmysong.io/library/spark-driver:v2.1.0-kubernetes-0.3.1-1 phase: Succeeded status: [ContainerStatus(containerID=docker://5c5c821c482a1e35552adccb567020532b79244392374f25754f0050e6cd4c62, image=harbor-001.jimmysong.io/library/spark-driver:v2.1.0-kubernetes-0.3.1-1, imageID=docker-pullable://harbor-001.jimmysong.io/library/spark-driver@sha256:beb92a3e3f178e286d9e5baebdead88b5ba76d651f347ad2864bb6f8eda26f94, lastState=ContainerState(running=null, terminated=null, waiting=null, additionalProperties={}), name=spark-kubernetes-driver, ready=false, restartCount=0, state=ContainerState(running=null, terminated=ContainerStateTerminated(containerID=docker://5c5c821c482a1e35552adccb567020532b79244392374f25754f0050e6cd4c62, exitCode=0, finishedAt=2017-09-14T06:59:11Z, message=null, reason=Completed, signal=null, startedAt=null, additionalProperties={}), waiting=null, additionalProperties={}), additionalProperties={})] 2017-09-14 14:59:12 INFO LoggingPodStatusWatcherImpl:54 - Container final statuses: Container name: spark-kubernetes-driver Container image: harbor-001.jimmysong.io/library/spark-driver:v2.1.0-kubernetes-0.3.1-1 Container state: Terminated Exit code: 0 2017-09-14 14:59:12 INFO Client:54 - Application spark-pi finished. 从日志中可以看到任务运行的状态信息。 使用下面的命令可以看到 kubernetes 启动的 Pod 信息: kubectl --namespace spark-cluster get pods -w 将会看到 spark-driver 和 spark-exec 的 Pod 信息。 依赖管理 上文中我们在运行测试程序时,命令行中指定的 jar 文件已包含在 docker 镜像中,是不是说我们每次提交任务都需要重新创建一个镜像呢?非也!如果真是这样也太麻烦了。 创建 resource staging server 为了方便用户提交任务,不需要每次提交任务的时候都创建一个镜像,我们使用了 resource staging server 。 kubectl create -f conf/kubernetes-resource-staging-server.yaml 我们同样将其部署在 spark-cluster namespace 下,该 yaml 文件见 kubernetes-handbook 的 manifests/spark-with-kubernetes-native-scheduler 目录。 优化 其中有一点需要优化,在使用下面的命令提交任务时,使用 --conf spark.kubernetes.resourceStagingServer.uri 参数指定 resource staging server 地址,用户不应该关注 resource staging server 究竟运行在哪台宿主机上,可以使用下面两种方式实现: 使用 nodeSelector 将 resource staging server 固定调度到某一台机器上,该地址依然使用宿主机的 IP 地址 改变 spark-resource-staging-service service 的 type 为 ClusterIP, 然后使用 Ingress 将其暴露到集群外部,然后加入的内网 DNS 里,用户使用 DNS 名称指定 resource staging server 的地址。 然后可以执行下面的命令来提交本地的 jar 到 kubernetes 上运行。 ./spark-submit \\ --deploy-mode cluster \\ --class org.apache.spark.examples.SparkPi \\ --master k8s://https://172.20.0.113:6443 \\ --kubernetes-namespace spark-cluster \\ --conf spark.kubernetes.authenticate.driver.serviceAccountName=spark \\ --conf spark.executor.instances=5 \\ --conf spark.app.name=spark-pi \\ --conf spark.kubernetes.driver.docker.image=harbor-001.jimmysong.io/library/spark-driver:v2.1.0-kubernetes-0.3.1-1 \\ --conf spark.kubernetes.executor.docker.image=harbor-001.jimmysong.io/library/spark-executor:v2.1.0-kubernetes-0.3.1-1 \\ --conf spark.kubernetes.initcontainer.docker.image=harbor-001.jimmysong.io/library/spark-init:v2.1.0-kubernetes-0.3.1-1 \\ --conf spark.kubernetes.resourceStagingServer.uri=http://172.20.0.114:31000 \\ ../examples/jars/spark-examples_2.11-2.2.0-k8s-0.4.0-SNAPSHOT.jar 该命令将提交本地的 ../examples/jars/spark-examples_2.11-2.2.0-k8s-0.4.0-SNAPSHOT.jar 文件到 resource staging server,executor 将从该 server 上获取 jar 包并运行,这样用户就不需要每次提交任务都编译一个镜像了。 详见:https://apache-spark-on-k8s.github.io/userdocs/running-on-kubernetes.html#dependency-management 设置 HDFS 用户 如果 Hadoop 集群没有设置 kerbros 安全认证的话,在指定 spark-submit 的时候可以通过指定如下四个环境变量, 设置 Spark 与 HDFS 通信使用的用户: --conf spark.kubernetes.driverEnv.SPARK_USER=hadoop --conf spark.kubernetes.driverEnv.HADOOP_USER_NAME=hadoop --conf spark.executorEnv.HADOOP_USER_NAME=hadoop --conf spark.executorEnv.SPARK_USER=hadoop 使用 hadoop 用户提交本地 jar 包的命令示例: ./spark-submit \\ --deploy-mode cluster \\ --class com.talkingdata.alluxio.hadooptest \\ --master k8s://https://172.20.0.113:6443 \\ --kubernetes-namespace spark-cluster \\ --conf spark.kubernetes.driverEnv.SPARK_USER=hadoop \\ --conf spark.kubernetes.driverEnv.HADOOP_USER_NAME=hadoop \\ --conf spark.executorEnv.HADOOP_USER_NAME=hadoop \\ --conf spark.executorEnv.SPARK_USER=hadoop \\ --conf spark.kubernetes.authenticate.driver.serviceAccountName=spark \\ --conf spark.executor.instances=5 \\ --conf spark.app.name=spark-pi \\ --conf spark.kubernetes.driver.docker.image=harbor-001.jimmysong.io/library/spark-driver:v2.1.0-kubernetes-0.3.1-1 \\ --conf spark.kubernetes.executor.docker.image=harbor-001.jimmysong.io/library/spark-executor:v2.1.0-kubernetes-0.3.1-1 \\ --conf spark.kubernetes.initcontainer.docker.image=harbor-001.jimmysong.io/library/spark-init:v2.1.0-kubernetes-0.3.1-1 \\ --conf spark.kubernetes.resourceStagingServer.uri=http://172.20.0.114:31000 \\ ~/Downloads/tendcloud_2.10-1.0.jar 详见:https://github.com/apache-spark-on-k8s/spark/issues/408 限制 Driver 和 Executor 的资源使用 在执行 spark-submit 时使用如下参数设置内存和 CPU 资源限制: --conf spark.driver.memory=3G --conf spark.executor.memory=3G --conf spark.driver.cores=2 --conf spark.executor.cores=10 这几个参数中值如何传递到 Pod 的资源设置中的呢? 比如我们设置在执行 spark-submit 的时候传递了这样的两个参数:--conf spark.driver.cores=2 和 --conf spark.driver.memory=100G 那么查看 driver pod 的 yaml 输出结果将会看到这样的资源设置: resources: limits: memory: 110Gi requests: cpu: \"2\" memory: 100Gi 以上参数是对 request 值的设置,那么 limit 的资源设置的值又是从何而来? 可以使用 spark.kubernetes.driver.limit.cores 和 spark.kubernetes.executor.limit.cores 来设置 CPU的 hard limit。 memory limit 的值是根据 memory request 的值加上 spark.kubernetes.executor.memoryOverhead 的值计算而来的,该配置项用于设置分配给每个 executor 的超过 heap 内存的值(可以使用k、m、g单位)。该值用于虚拟机的开销、其他本地服务开销。根据 executor 的大小设置(通常是 6%到10%)。 我们可以这样来提交一个任务,同时设置 driver 和 executor 的 CPU、内存的资源 request 和 limit 值(driver 的内存 limit 值为 request 值的 110%)。 ./spark-submit \\ --deploy-mode cluster \\ --class org.apache.spark.examples.SparkPi \\ --master k8s://https://172.20.0.113:6443 \\ --kubernetes-namespace spark-cluster \\ --conf spark.kubernetes.authenticate.driver.serviceAccountName=spark \\ --conf spark.driver.memory=100G \\ --conf spark.executor.memory=10G \\ --conf spark.driver.cores=30 \\ --conf spark.executor.cores=2 \\ --conf spark.driver.maxResultSize=10240m \\ --conf spark.kubernetes.driver.limit.cores=32 \\ --conf spark.kubernetes.executor.limit.cores=3 \\ --conf spark.kubernetes.executor.memoryOverhead=2g \\ --conf spark.executor.instances=5 \\ --conf spark.app.name=spark-pi \\ --conf spark.kubernetes.driver.docker.image=harbor-001.jimmysong.io/library/spark-driver:v2.1.0-kubernetes-0.3.1-1 \\ --conf spark.kubernetes.executor.docker.image=harbor-001.jimmysong.io/library/spark-executor:v2.1.0-kubernetes-0.3.1-1 \\ --conf spark.kubernetes.initcontainer.docker.image=harbor-001.jimmysong.io/library/spark-init:v2.1.0-kubernetes-0.3.1-1 \\ local:///opt/spark/examples/jars/spark-examples_2.11-2.2.0-k8s-0.4.0-SNAPSHOT.jar 10000000 这将启动一个包含一千万个 task 的计算 pi 的 spark 任务,任务运行过程中,drvier 的 CPU 实际消耗大约为 3 核,内存 40G,每个 executor 的 CPU 实际消耗大约不到 1 核,内存不到 4G,我们可以根据实际资源消耗不断优化资源的 request 值。 SPARK_DRIVER_MEMORY 和 SPARK_EXECUTOR_MEMORY 和分别作为 Driver 容器和 Executor 容器启动的环境变量,比如下面这个 Driver 启动的 CMD 中: CMD SPARK_CLASSPATH=\"${SPARK_HOME}/jars/*\" && \\ env | grep SPARK_JAVA_OPT_ | sed 's/[^=]*=\\(.*\\)/\\1/g' > /tmp/java_opts.txt && \\ readarray -t SPARK_DRIVER_JAVA_OPTS 我们可以看到对 SPARK_DRIVER_MEMORY 环境变量的引用。Executor 的设置与 driver 类似。 而我们可以使用这样的参数来传递环境变量的值 spark.executorEnv.[EnvironmentVariableName],只要将 EnvironmentVariableName 替换为环境变量名称即可。 参考 Spark动态资源分配-Dynamic Resource Allocation Running Spark on Kubernetes Apache Spark Jira Issue - 18278 - SPIP: Support native submission of spark jobs to a kubernetes cluster Kubernetes Github Issue - 34377 Support Spark natively in Kubernetes https://github.com/rootsongjc/spark-on-kubernetes Scheduler backend Introduction to Spark on Kubernetes - banzaicloud.com Scaling Spark made simple on Kubernetes - banzaicloud.com The anatomy of Spark applications on Kubernetes - banzaicloud.com Monitoring Apache Spark with Prometheus - banzaicloud.com Running Zeppelin Spark notebooks on Kubernetes - banzaicloud.com Apache Spark CI/CD workflow howto - banzaicloud.com 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/serverless.html":{"url":"usecases/serverless.html","title":"Serverless 架构","keywords":"","body":"Serverless架构 就像无线互联网实际有的地方也需要用到有线连接一样,无服务器架构仍然在某处有服务器。Serverless(无服务器架构)指的是由开发者实现的服务端逻辑运行在无状态的计算容器中,它由事件触发, 完全被第三方管理,其业务层面的状态则被开发者使用的数据库和存储资源所记录。 CNCF 的云原生 landscape 中就包括 Serverless 附图,这也是云原生发展到更高阶段的面向特定应用场景的简易抽象。 图 7.5.1:Serverless Landscape 下图来自谷歌云平台官网,是对云计算的一个很好的分层概括,其中 serverless 就是构建在虚拟机和容器之上的一层,与应用本身的关系更加密切。 图 7.5.2:从物理机到函数计算 Serverless架构的优点 今天大多数公司在开发应用程序并将其部署在服务器上的时候,无论是选择公有云还是私有的数据中心,都需要提前了解究竟需要多少台服务器、多大容量的存储和数据库的功能等。并需要部署运行应用程序和依赖的软件到基础设施之上。假设我们不想在这些细节上花费精力,是否有一种简单的架构模型能够满足我们这种想法?这个答案已经存在,这就是今天软件架构世界中新鲜但是很热门的一个话题——Serverless(无服务器)架构。 ——AWS 费良宏 降低运营成本: Serverless是非常简单的外包解决方案。它可以让您委托服务提供商管理服务器、数据库和应用程序甚至逻辑,否则您就不得不自己来维护。由于这个服务使用者的数量会非常庞大,于是就会产生规模经济效应。在降低成本上包含了两个方面,即基础设施的成本和人员(运营/开发)的成本。 降低开发成本: IaaS和PaaS存在的前提是,服务器和操作系统管理可以商品化。Serverless作为另一种服务的结果是整个应用程序组件被商品化。 扩展能力: Serverless架构一个显而易见的优点即“横向扩展是完全自动的、有弹性的、且由服务提供者所管理”。从基本的基础设施方面受益最大的好处是,您只需支付您所需要的计算能力。 更简单的管理: Serverless架构明显比其他架构更简单。更少的组件,就意味着您的管理开销会更少。 “绿色”的计算: 按照《福布斯》杂志的统计,在商业和企业数据中心的典型服务器仅提供5%~15%的平均最大处理能力的输出。这无疑是一种资源的巨大浪费。随着Serverless架构的出现,让服务提供商提供我们的计算能力最大限度满足实时需求。这将使我们更有效地利用计算资源。 Kubernetes上的serverless 架构 目前已经有一批优秀的基于 kubernetes 的 serverless 架构(FaaS)开源项目如下: faas - 🐳 Functions as a Service - a serverless framework for Docker & Kubernetes https://blog.alexellis.io/introducing… faas-netes - Enable Kubernetes as a backend for Functions as a Service (OpenFaaS) https://github.com/alexellis/faas fn - The container native, cloud agnostic serverless platform. http://fnproject.io funktion - a CLI tool for working with funktion https://funktion.fabric8.io/ fx - Poor man's serverless framework based on Docker, Function as a Service with painless. IronFunctions - IronFunctions - the serverless microservices platform. http://iron.io knative - Kubernetes-based platform to build, deploy, and manage modern serverless workloads kubeless - Kubernetes Native Serverless Framework http://kubeless.io OpenWhisk - Apache OpenWhisk (Incubating) is a serverless, open source cloud platform that executes functions in response to events at any scale. 以上项目收录于 awsome-cloud-native。 FaaS Function-as-a-Service景观图(图片来自https://github.com/amyers1793/FunctionasaServiceLandscape) 图 7.5.3:FaaS Landscape 参考 Why Serverless? - serverless.com Serverless Architectures - Martin Fowler Serverless架构综述 2017年会是Serverless爆发之年吗? 从IaaS到FaaS—— Serverless架构的前世今生 Introducing Redpoint's FaaS Landscape 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/understanding-serverless.html":{"url":"usecases/understanding-serverless.html","title":"理解 Serverless","keywords":"","body":"理解Serverless No silver bullet. - The Mythical Man-Month 许多年前,我们开发的软件还是C/S(客户端/服务器)和MVC(模型-试图-控制器)的形式,再后来有了SOA,最近几年又出现了微服务架构,更新一点的有Cloud Native(云原生)应用,企业应用从单体架构,到服务化,再到更细粒度的微服务化,应用开发之初就是为了应对互联网的特有的高并发、不间断的特性,需要很高的性能和可扩展性,人们对软件开发的追求孜孜不倦,希望力求在软件开发的复杂度和效率之间达到一个平衡。但可惜的是,NO SILVER BULLET!几十年前(1975年)Fred Brooks就在The Mythical Man-Month中就写到了这句话。那么Serverlss会是那颗银弹吗? 云改变了我们对操作系统的认知,原来一个系统的计算资源、存储和网络是可以分离配置的,而且还可以弹性扩展,但是长久以来,我们在开发应用时始终没有摆脱的服务器的束缚(或者说认知),应用必须运行在不论是实体还是虚拟的服务器上,必须经过部署、配置、初始化才可以运行,还需要对服务器和应用进行监控和管理,还需要保证数据的安全性,这些云能够帮我们简化吗?让我们只要关注自己代码的逻辑就好了,其它的东西让云帮我实现就好了。 Serverless介绍 Serverless(无服务器架构)指的是由开发者实现的服务端逻辑运行在无状态的计算容器中,它由事件触发, 完全被第三方管理,其业务层面的状态则被开发者使用的数据库和存储资源所记录。 Serverless 是云原生技术发展的高级阶段,使开发者更聚焦在业务逻辑,而减少对基础架构的关注。 图 7.5.1.1:Serverless 在云原生技术中的地位 下图来自谷歌云平台官网,是对云计算的一个很好的分层概括,其中 serverless 就是构建在虚拟机和容器之上的一层,与应用本身的关系更加密切。 Serverless架构是云的自然延伸,为了理解serverless,我们有必要回顾一下云计算的发展。 IaaS 2006年AWS推出EC2(Elastic Compute Cloud),作为第一代IaaS(Infrastructure as a Service),用户可以通过AWS快速的申请到计算资源,并在上面部署自己的互联网服务。IaaS从本质上讲是服务器租赁并提供基础设施外包服务。就比如我们用的水和电一样,我们不会自己去引入自来水和发电,而是直接从自来水公司和电网公司购入,并根据实际使用付费。 EC2真正对IT的改变是硬件的虚拟化(更细粒度的虚拟化),而EC2给用户带来了以下五个好处: 降低劳动力成本:减少了企业本身雇佣IT人员的成本 降低风险:不用再像自己运维物理机那样,担心各种意外风险,EC2有主机损坏,再申请一个就好了。 降低基础设施成本:可以按小时、周、月或者年为周期租用EC2。 扩展性:不必过早的预期基础设施采购,因为通过云厂商可以很快的获取。 节约时间成本:快速的获取资源开展业务实验。 以上说了是IaaS或者说基础设施外包的好处,当然其中也有弊端,我们将在后面讨论。 以上是AWS为代表的公有云IaaS,还有使用OpenStack构建的私有云也能够提供IaaS能力。 PaaS PaaS(Platform as a Service)是构建在IaaS之上的一种平台服务,提供操作系统安装、监控和服务发现等功能,用户只需要部署自己的应用即可,最早的一代是Heroku。Heroko是商业的PaaS,还有一个开源的PaaS——Cloud Foundry,用户可以基于它来构建私有PaaS,如果同时使用公有云和私有云,如果能在两者之间构建一个统一的PaaS,那就是“混合云”了。 在PaaS上最广泛使用的技术就要数docker了,因为使用容器可以很清晰的描述应用程序,并保证环境一致性。管理云上的容器,可以称为是CaaS(Container as a Service),如GCE(Google Container Engine)。也可以基于Kubernetes、Mesos这类开源软件构件自己的CaaS,不论是直接在IaaS构建还是基于PaaS。 PaaS是对软件的一个更高的抽象层次,已经接触到应用程序的运行环境本身,可以由开发者自定义,而不必接触更底层的操作系统。 什么是 Serverless 下面将分别从简洁版和进阶版向您展示什么是 Serverless。 简洁版 就像无线互联网实际有的地方也需要用到有线连接一样,无服务器架构仍然在某处有服务器。开发者无需关注服务器,只需关注代码即可。 Serverless(无服务器架构)指的是服务端逻辑由开发者实现,运行在无状态的计算容器中,由事件触发, 完全被第三方管理,而业务层面的状态则记录在数据库或存储资源中。 进阶版 Serverless是由事件(event)驱动(e.g. http,pub/sub)的全托管计算服务。用户无需管理服务器等基础设施,只需编写代码和选择触发器(trigger),(比如rpc请求,定时器等)并上传。其余的工作(实例选择、 扩缩容、部署、容灾、监控、日志、安全补丁等)全部由serverless系统托管。用户只需要为代码实际运行消耗的资源付费——代码未运行则不产生费用。 Serverless相对于serverful,对业务用户强调noserver(serverless并不是说没有服务器,只是业务人员无需关注服务器了,代码仍然是运行在真实存在的服务器上)的运维理念,业务人员只需要聚焦业务逻辑代码。 Serverless相比serverful,有以下3个改变(from Berkeley的总结): 弱化了存储和计算之间的联系。服务的储存和计算被分开部署和收费,存储不再是服务本身的一部分,而是演变成了独立的云服务,这使得计算变得无状态化,更容易调度和扩缩容,同时也降低了数据丢失的风险。 代码的执行不再需要手动分配资源。不需要为服务的运行指定需要的资源(比如使用几台机器、多大的带宽、多大的磁盘等),只需要提供一份代码,剩下的交由serverless平台去处理就行了。当前阶段的实现平台分配资源时还需要用户方提供一些策略,例如单个实例的规格和最大并发数,单实例的最大cpu使用率。理想的情况是通过某些学习算法来进行完全自动的自适应分配。 按使用量计费。Serverless按照服务的使用量(调用次数、时长等)计费,而不是像传统的serverful服务那样,按照使用的资源(ECS实例、VM的规格等)计费。 Serverless的定义 Serverless不如IaaS和PaaS那么好理解,因为它通常包含了两个领域BaaS(Backend as a Service)和FaaS(Function as a Service)。 BaaS BaaS(Backend as a Service)后端即服务,一般是一个个的API调用后端或别人已经实现好的程序逻辑,比如身份验证服务Auth0,这些BaaS通常会用来管理数据,还有很多公有云上提供的我们常用的开源软件的商用服务,比如亚马逊的RDS可以替代我们自己部署的MySQL,还有各种其它数据库和存储服务。 FaaS FaaS(Functions as a Service)函数即服务,FaaS是无服务器计算的一种形式,当前使用最广泛的是AWS的Lambada。 现在当大家讨论Serverless的时候首先想到的就是FaaS,有点甚嚣尘上了。FaaS本质上是一种事件驱动的由消息触发的服务,FaaS供应商一般会集成各种同步和异步的事件源,通过订阅这些事件源,可以突发或者定期的触发函数运行。 图 7.5.1.2:服务端软件的运行环境 传统的服务器端软件不同是经应用程序部署到拥有操作系统的虚拟机或者容器中,一般需要长时间驻留在操作系统中运行,而FaaS是直接将程序部署上到平台上即可,当有事件到来时触发执行,执行完了就可以卸载掉。 图 7.5.1.3:FaaS应用架构 Serverless 中的函数 下图是 Serverless 中的(FaaS)函数定义,从图中可以看出与容器、12 要素及 Kubernetes 的运行时设计十分契合。 图 7.5.1.4:Serverless 中的函数定义 下图 FaaS 中函数输入、context 及输出。 图 7.5.1.5:FaaS 中的函数 以上两张图片根据 CNCF Serverless Whitepaper v1.0 绘制。 总结 两者都为我们的计算资源提供了弹性的保障,BaaS其实依然是服务外包,而FaaS使我们更加关注应用程序的逻辑,两者使我们不需要关注应用程序所在的服务器,但实际上服务器依然是客观存在的。 当我们将应用程序迁移到容器和虚拟机中时,其实对于应用程序本身的体系结构并没有多少改变,只不过有些流程和规定需要遵守,比如12因素应用守则,但是serverlss对应用程序的体系结构来说就是一次颠覆了,通常我们需要考虑事件驱动模型,更加细化的不熟形式,以及在FaaS组件之外保持状态的需求。 Serverless 的使用场景 虽然 Serverless 的应用很广泛,但是其也有局限性,Serverless 比较适合以下场景: 异步的并发,组件可独立部署和扩展 应对突发或服务使用量不可预测(主要是为了节约成本,因为 Serverless 应用在不运行时不收费) 短暂、无状态的应用,对冷启动时间不敏感 需要快速开发迭代的业务(因为无需提前申请资源,因此可以加快业务上线速度) Serverless 的使用场景示例如: ETL 机器学习及 AI 模型处理 图片处理 IoT 传感器数据分析 流处理 聊天机器人 CNCF Serverless whitepaper 中给出了诸多 Serverless 使用场景的详细描述。 我们以一个游戏应用为例,来说明什么是serverless应用。 一款移动端游戏至少包含如下几个特性: 移动端友好的用户体验 用户管理和权限认证 关卡、升级等游戏逻辑,游戏排行,玩家的等级、任务等信息 传统的应用程序架构可能是这样的: 图 7.5.1.6:传统应用程序架构 一个app前端,iOS后者安卓 用Java写的后端,使用JBoss或者Tomcat做server运行 使用关系型数据库存储用户数据,如MySQL 这样的架构可以让前端十分轻便,不需要做什么应用逻辑,只是负责渲染用户界面,将请求通过HTTP发送给后端,而所有的数据操作都是有由后端的Java程序来完成的。 这样的架构开发起来比较容易,但是维护起来确十分复杂,前端开发、后端的开发都需要十分专业的人员、环境的配置,还要有人专门维护数据库、应用的更新和升级。 图 7.5.1.7:Serverless架构 而在serverless架构中,我们不再需要在服务器端代码中存储任何会话状态,而是直接将它们存储在NoSQL中,这样将使应用程序无状态,有助于弹性扩展。前端可以直接利用BaaS而减少后端的编码需求,这样架构的本质上是减少了应用程序开发的人力成本,降低了自己维护基础设施的风险,而且利用云的能力更便于扩展和快速迭代。 Serverless架构的优点 今天大多数公司在开发应用程序并将其部署在服务器上的时候,无论是选择公有云还是私有的数据中心,都需要提前了解究竟需要多少台服务器、多大容量的存储和数据库的功能等。并需要部署运行应用程序和依赖的软件到基础设施之上。假设我们不想在这些细节上花费精力,是否有一种简单的架构模型能够满足我们这种想法?这个答案已经存在,这就是今天软件架构世界中新鲜但是很热门的一个话题——Serverless(无服务器)架构。 ——AWS 费良宏 降低运营成本: Serverless是非常简单的外包解决方案。它可以让您委托服务提供商管理服务器、数据库和应用程序甚至逻辑,否则您就不得不自己来维护。由于这个服务使用者的数量会非常庞大,于是就会产生规模经济效应。在降低成本上包含了两个方面,即基础设施的成本和人员(运营/开发)的成本。 降低开发成本: IaaS和PaaS存在的前提是,服务器和操作系统管理可以商品化。Serverless作为另一种服务的结果是整个应用程序组件被商品化。 扩展能力: Serverless架构一个显而易见的优点即“横向扩展是完全自动的、有弹性的、且由服务提供者所管理”。从基本的基础设施方面受益最大的好处是,您只需支付您所需要的计算能力。 更简单的管理: Serverless架构明显比其他架构更简单。更少的组件,就意味着您的管理开销会更少。 “绿色”的计算: 按照《福布斯》杂志的统计,在商业和企业数据中心的典型服务器仅提供5%~15%的平均最大处理能力的输出。这无疑是一种资源的巨大浪费。随着Serverless架构的出现,让服务提供商提供我们的计算能力最大限度满足实时需求。这将使我们更有效地利用计算资源。 在上面我们提到了使用IaaS给我们带来了五点好处,FaaS当然也包括了这些好处,但是它给我们带来的最大的好处就是多快好省。减少从概念原型到实施的等待时间,比自己维护服务更省钱。 降低人力成本 不需要再自己维护服务器,操心服务器的各种性能指标和资源利用率,而是关心应用程序本身的状态和逻辑。而且serverless应用本身的部署也十分容易,我们只要上传基本的代码但愿,例如Javascript或Python的源代码的zip文件,以及基于JVM的语言的纯JAR文件。不需使用Puppet、Chef、Ansible或Docker来进行配置管理,降低了运维成本。同时,对于运维来说,也不再需要监控那些更底层的如磁盘使用量、CPU使用率等底层和长期的指标信息,而是监控应用程序本身的度量,这将更加直观和有效。 在此看来有人可能会提出“NoOps”的说法,其实这是不存在的,只要有应用存在的一天就会有Ops,只是人员的角色会有所转变,部署将变得更加自动化,监控将更加面向应用程序本身,更底层的运维依然需要专业的人员去做。 降低风险 对于组件越多越复杂的系统,出故障的风险就越大。我们使用BaaS或FaaS将它们外包出去,让专业人员来处理这些故障,有时候比我们自己来修复更可靠,利用专业人员的知识来降低停机的风险,缩短故障修复的时间,让我们的系统稳定性更高。 减少资源开销 我们在申请主机资源一般会评估一个峰值最大开销来申请资源,往往导致过度的配置,这意味着即使在主机闲置的状态下也要始终支付峰值容量的开销。对于某些应用来说这是不得已的做法,比如数据库这种很难扩展的应用,而对于普通应用这就显得不太合理了,虽然我们都觉得即使浪费了资源也比当峰值到来时应用程序因为资源不足而挂掉好。 解决这个问题最好的办法就是,不计划到底需要使用多少资源,而是根据实际需要来请求资源,当然前提必须是整个资源池是充足的(公有云显然更适合)。根据使用时间来付费,根据每次申请的计算资源来付费,让计费的粒度更小,将更有利于降低资源的开销。这是对应用程序本身的优化,例如让每次请求耗时更短,让每次消耗的资源更少将能够显著节省成本。 增加缩放的灵活性 以AWS Lamba为例,当平台接收到第一个触发函数的事件时,它将启动一个容器来运行你的代码。如果此时收到了新的事件,而第一个容器仍在处理上一个事件,平台将启动第二个代码实例来处理第二个事件。AWS lambad的这种自动的零管理水平缩放,将持续到有足够的代码实例来处理所有的工作负载。 但是,AWS仍然只会向您收取代码的执行时间,无论它需要启动多少个容器实例要满足你的负载请求。例如,假设所有事件的总执行时间是相同的,在一个容器中按顺序调用Lambda 100次与在100个不同容器中同时调用100次Lambda的成本是 一样的。当然AWS Lambada也不会无限制的扩展实例个数,如果有人对你发起了DDos攻击怎么办,那么不就会产生高昂的成本吗?AWS是有默认限制的,默认执行Lambada函数最大并发数是1000。 缩短创新周期 小团队的开发人员正可以在几天之内从头开始开发应用程序并部署到生产。使用短而简单的函数和事件来粘合强大的驱动数据存储和服务的API。完成的应用程序具有高度可用性和可扩展性,利用率高,成本低,部署速度快。 以docker为代表的容器技术仅仅是缩短了应用程序的迭代周期,而serverless技术是直接缩短了创新周期,从概念到最小可行性部署的时间,让初级开发人员也能在很短的时间内完成以前通常要经验丰富的工程师才能完成的项目。 Serverless架构的缺点 我们知道没有十全十美的技术,在说了serverless的那么多优势之后,我们再来探讨以下serverless的劣势,或者说局限性和适用场景。 状态管理 要想实现自由的缩放,无状态是必须的,而对于有状态的服务,使用serverless这就丧失了灵活性,有状态服务需要与存储交互就不可避免的增加了延迟和复杂性。 延迟 应用程序中不同组件的访问延迟是一个大问题,我们可以通过使用专有的网络协议、RPC调用、数据格式来优化,或者是将实例放在同一个机架内或同一个主机实例上来优化以减少延迟。 而serverless应用程序是高度分布式、低耦合的,这就意味着延迟将始终是一个问题,单纯使用serverless的应用程序是不太现实的。 本地测试 Serverless应用的本地测试困难是一个很棘手的问题。虽然可以在测试环境下使用各种数据库和消息队列来模拟生产环境,但是对于无服务应用的集成或者端到端测试尤其困难,很难在本地模拟应用程序的各种连接,并与性能和缩放的特性结合起来测试,并且serverless应用本身也是分布式的,简单的将无数的FaaS和BaaS组件粘合起来也是有挑战性的。 Kubernetes上的Serverless 架构 Kubernetes 的蓬勃发展由催生了一系列以它为基础的 Serverless 应用,这是我整理的与 Serverless 相关的开源项目: dispatch - Dispatch is a framework for deploying and managing serverless style applications. eventing - Open source specification and implementation of Knative event binding and delivery. faas-netes - Enable Kubernetes as a backend for Functions as a Service (OpenFaaS) https://github.com/alexellis/faas firecamp - Serverless Platform for the stateful services https://www.cloudstax.io fission - Fast Serverless Functions for Kubernetes http://fission.io fn - The container native, cloud agnostic serverless platform. http://fnproject.io funktion - a CLI tool for working with funktion https://funktion.fabric8.io/ fx - Poor man's serverless framework based on Docker, Function as a Service with painless. gloo - The Function Gateway built on top of Envoy. ironfunctions - IronFunctions - the serverless microservices platform. http://iron.io knative-lambda-runtime - Running AWS Lambda Functions on Knative/Kubernetes Clusters https://triggermesh.com kubeless - Kubernetes Native Serverless Framework http://kubeless.io nuclio - High-Performance Serverless event and data processing platform. openfaas - OpenFaaS - Serverless Functions Made Simple for Docker & Kubernetes https://blog.alexellis.io/introducing-functions-as-a-service/ openwhisk - Apache OpenWhisk (Incubating) is a serverless, open source cloud platform that executes functions in response to events at any scale. riff - riff is for functions https://projectriff.io serverless - Serverless Framework – Build web, mobile and IoT applications with serverless architectures using AWS Lambda, Azure Functions, Google CloudFunctions & more! – https://serverless.com spec - CloudEvents Specification https://cloudevents.io thanos - Highly available Prometheus setup with long term storage capabilities. 以上列表来自 https://jimmysong.io/awesome-cloud-native/#serverless。 总结 Karl Marx说的好,生产力决定生产关系,云计算的概念层出不穷,其本质上还是对生产关系和生产力的配置与优化,生产者抛开场景意味追求高大上的技术将譬如“大炮打蚊子”,小题大做,鼓励大家为了满足大家的好奇心进行折腾,毕竟那么多科学发现和重大发明都是因为折腾出来的,不想要一匹跑的更快的马,而是发明汽车的福特,捣鼓炸药的诺贝尔,种豌豆的孟德尔……同时还是要考虑将技术产业化(或许能改变生产关系),提高生产力。 参考 CNCF Serverless Whitepaper v1.0 Serverless Architectures - Martin Fowler Serverless架构综述 2017年会是Serverless爆发之年吗? 从IaaS到FaaS—— Serverless架构的前世今生 Introducing Redpoint's FaaS Landscape Serverless Architectures - martinfowler.com 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/faas.html":{"url":"usecases/faas.html","title":"FaaS(函数即服务)","keywords":"","body":"FaaS(函数即服务) FaaS(Functions as a Service)函数即服务,FaaS是无服务器计算的一种形式,当前使用最广泛的是AWS的Lambada。 现在当大家讨论Serverless的时候首先想到的就是FaaS,有点甚嚣尘上了。FaaS本质上是一种事件驱动的由消息触发的服务,FaaS供应商一般会集成各种同步和异步的事件源,通过订阅这些事件源,可以突发或者定期的触发函数运行。 当前开源的FaaS框架大部分都是基于Kuberentes来实现的,例如: faas-netes - Enable Kubernetes as a backend for Functions as a Service (OpenFaaS) https://github.com/alexellis/faas fn - The container native, cloud agnostic serverless platform. http://fnproject.io funktion - a CLI tool for working with funktion https://funktion.fabric8.io/ fx - Poor man's serverless framework based on Docker, Function as a Service with painless. IronFunctions - IronFunctions - the serverless microservices platform. http://iron.io kubeless - Kubernetes Native Serverless Framework http://kubeless.io nuclio - High-Performance Serverless event and data processing platform OpenFaaS - OpenFaaS - Serverless Functions Made Simple for Docker & Kubernetes https://blog.alexellis.io/introducing-functions-as-a-service/ OpenWhisk - Apache OpenWhisk (Incubating) is a serverless, open source cloud platform that executes functions in response to events at any scale. Knative - Kubernetes-based platform to deploy and manage modern serverless workloads. 关于整个Cloud Native开源生态,请参考awesome-cloud-native。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/openfaas-quick-start.html":{"url":"usecases/openfaas-quick-start.html","title":"OpenFaaS 快速入门指南","keywords":"","body":"OpenFaaS快速入门指南 OpenFaaS一款高人气的开源的faas框架,可以直接在Kubernetes上运行,也可以基于Swarm或容器运行。 在Kubernetes上部署OpenFaaS十分简单,用到的镜像如下: functions/faas-netesd:0.3.4 functions/gateway:0.6.14 functions/prometheus:latest-k8s functions/alertmanager:latest-k8s 这些镜像都存储在DockerHub上。 OpenFaaS的架构如下图: 图 7.5.2.1.1:OpenFaaS架构 部署 如果您的Kuberentes集群可以访问DockerHub那么直接使用官方提供的YAML文件即可。 YAML文件见官方仓库:https://github.com/openfaas/faas-netes 部署同步请求 一共用到了三个YAML文件: faas.yml monitoring.yml rbac.yml 访问端口 服务 TCP端口 API Gateway/UI 31112 Prometheus 31119 OpenFaaS安装好后会启动一个Prometheus,使用31119端口,通过任意一个node可以访问UI:http://172.20.0.113:31119 图 7.5.2.1.2:OpenFaaS Prometheus 在这里可以看到函数的运行情况。 同时OpenFaaS还提供了Dashboard,需要我们自己向Grafana中配置Prometheus数据源后导入,JSON配置见:https://grafana.com/dashboards/3526,可以下载后直接导入到Grafana中。 图 7.5.2.1.3:OpenFaas Grafana监控 OpenFaaS的使用 OpenFaaS提供了便捷的UI,在部署完成后就可以通过NodePort方式访问。 使用API Gateway的端口,通过任意一个node可以访问UI:http://172.20.0.113:31112 图 7.5.2.1.4:OpenFaas Dashboard 其中已经内置了一些函数应用可供我们试用,还可以创建自己的函数。 比如内置的NodeInfo应用,可以获取该应用所部署到的主机的信息,如下图: 图 7.5.2.1.5:NodeInfo执行结果 注意:有一些js和css文件需要翻墙才能访问,否则页面将出现格式错误。 命令行工具 OpenFaaS提供了命令行工具faas-cli,使用该工具可以管理OpenFaaS中的函数。 可以到openfaas GitHub release下载对应操作系统的命令行工具。或者使用下面的命令安装最新faas-cli: curl -sL cli.openfaas.com | sudo sh faas-cli命令说明 下面是faas-cli命令的几个使用案例。 获取当前部署的函数状态: faas-cli list --gateway http://172.20.0.113:31112 Function Invocations Replicas hubstats 0 1 nodeinfo 0 1 调用函数nodeinfo: echo \"\"|faas-cli invoke nodeinfo --gateway http://172.20.0.113:31112 Hostname: nodeinfo-699d4bdcbc-s2jfz Platform: linux Arch: x64 CPU count: 40 Uptime: 1728200 OpenFaaS的命令行工具faas-cli的详细使用说明见:https://github.com/openfaas/faas-cli 参考 Deployment guide for Kubernetes - GitHub openfaas/faas 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/knative.html":{"url":"usecases/knative.html","title":"Knative","keywords":"","body":"Knative 图 7.5.3.1:Knative logo Knative 开源于 2018 年 7 月 24 日,由 Pivotal、Google、IBM 等公司共同发起,从以 K 打头的名字上就可以看出来 Knative 是用以扩展 Kubernetes 的。 组件 Knative 最初包含以下 3 个组件: Build*:提供了一种从源代码构建容器的可插拔模型。它以 Google 的容器构建服务为基础。 Eventing:提供用来使用和生成符合 CloudEvents 规范的事件的构建块。它包括对来自事件源的信息流的抽象,以及通过由可插拔发布/订阅代理服务提供支持的消息传递通道实现交付解耦。 Serving:可缩放至零、请求驱动的计算运行环境,利用 Istio 在各版本之间路由流量。Serving 的目标是为 Kubernetes 提供扩展功能,用于部署和运行 Serverless 工作负载。 [warning] 注意 Knative 自 0.8 版本起去掉了 Build 组件,转而使用 tekoncd/pipeline 取代,只保留了 Eventing 和 Serving 组件。 受众 不同受众参与和使用 Knative 的方式不同,如下图所示。 图 7.5.3.2:Knative 受众(图片来自 knative.dev) Knative 特性 对于常用应用用例的更高级别抽象 安全、无状态、可扩展应用的秒级启动 功能松耦合,可任意组装 组件可拔插,你可以使用自己的日志、监控、网络和服务网格 可移植:在任意 Kubernetes 集群上运行,无需担心供应商锁定 顺应开发者习惯,支持如 GitOps、DockerOps、ManualOps 等通用模式 可以与通用工具及框架一起使用,如 Django、Ruby on Rails、Spring 等 参考 https://pivotal.io/cn/knative https://github.com/knative 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/edge-computing.html":{"url":"usecases/edge-computing.html","title":"边缘计算","keywords":"","body":"边缘计算 以 Kubernetes 为基础的开源项目:KubeEdge。 Github:https://github.com/kubeedge/kubeedge 官方网站:https://kubeedge.io 另外还有很多其他边缘计算相关的 Kubernetes 生态开源项目请见 Awesome Cloud Native。 KubeEdge 图 7.6.1:KubeEdge logo Kubeedge项目致力于打造一个基于kubernetes的开放平台,并为网络应用提供基础架构支持。云和边缘之间的部署和元数据同步。 KubeEdge是一个开源系统,用于将容器化应用程序编排功能扩展到Edge的主机。它基于kubernetes构建,并为网络应用程序提供基础架构支持。云和边缘之间的部署和元数据同步。 KubeEdge使用Apache 2.0许可。并且绝对可以免费用于个人或商业用途。 参考 The Birth of an Edge Orchestrator – Cloudify Meets Edge Computing 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/ai.html":{"url":"usecases/ai.html","title":"人工智能","keywords":"","body":"人工智能 Kubernetes 在人工智能领域的应用。 KubeFlow Kubeflow项目致力于使机器学习(ML)工作流在Kubernetes上的部署简单,可移植且可扩展。KubeFlow的目标不是重新创建其他服务,而是提供一种直接的方式来将ML的同类最佳的开源系统部署到各种基础结构中。在运行Kubernetes的任何地方都应该能够运行Kubeflow。官网:https://kubeflow.org/。 ElasticDL ElasticDL 是一个基于 TensorFlow2.0 的 Kubenretes 原生深度学习框架,官网:https://elasticdl.org。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"usecases/observability.html":{"url":"usecases/observability.html","title":"可观察性","keywords":"","body":"可观察性 可观察性使用指标、日志和追踪这些外部输出来理解系统的能力。这些指标、日志和追踪是基于系统内部的事件产生的。 指标(Metrics) 指标是数据的总体汇总,它能让你了解正在发生的事情和需要深入挖掘的地方。服务不断产生消费指标,这些指标是服务健康状况的持续衡量标准。 指标包括两种类型:应用/业务指标和运维指标。 应用指标 应用性能指标(Application Performance Metrics,简称 APM)数据与应用性能有关,如加载时间和响应时间,确保应用向客户提供预期性能。像 Apache Skywalking 这样的开源技术可以集成到 Istio 服务网格中,既可以作为 APM,也可以作为额外的服务性能管理(Service Performance Management,简称 SPM)系统——一举两得。 运维指标 运维指标关注的是服务的运行情况。你的环境表现如何,通常被描述为 \"RED \"指标——衡量请求(Request)率 、错误(Error)率和持续(Duration)时间。 服务网格(比如Istio)唯一关心的就是收集这些运维指标,帮助你确定服务表现如何,并对服务健康状况有一个大致的了解。 日志(Logs) 日志是冗长的。包含一个 \"事件 \"从头到尾的信息。一则日志可以收集(匿名)用户数据。例如,哪个用户发出了请求,这条请求从哪里开始,到达哪些服务等等。 追踪(Tracing) 追踪让你能够看到一个请求从开始到结束的过程。它是对事件行为的实时捕捉。它可以帮助确定故障发生的位置,或确定引起当前示例性能问题的原因。 在基于微服务的环境中会产生大量的事件。事件被定义为从请求到达网络外围的那一刻起发生的一切,即产生可观察数据的动作。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:05 "},"develop/":{"url":"develop/","title":"开发指南概览","keywords":"","body":"开发指南说明 讲解如何在原生 Kubernetes 的基础上做定制开发。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"develop/sigs-and-working-group.html":{"url":"develop/sigs-and-working-group.html","title":"SIG 和工作组","keywords":"","body":"SIG和工作组 Kubernetes的社区是以SIG(Special Interest Group特别兴趣小组)和工作组的形式组织起来的,每个工作组都会定期召开视频会议。 所有的SIG和工作组都使用slack和邮件列表沟通。 图 8.2.1:Kubernetes SIG 主要SIG列表 api-machinery:所有API级别的功能,包括了API server、API注册和发现、通用的API CRUD语义,准入控制,编码/解码,转换,默认值,持久化层(etcd),OpenAPI,第三方资源,垃圾手机和客户端库的方方面面。 aws:如何在AWS上支持和使用kubernetes。 apps:在kubernetes上部署和运维应用程序。关注开发者和DevOps在kubernetes上运行应用程序的体验。 architecture:维持kubernetes在架构设计上的一致性和原则。 auth:kubernetes的认证授权、权限管理和安全性策略。 autoscaling:集群的自动缩放,pod的水平和垂直自动缩放,pod的资源初始化,pod监控和指标收集等主题。 azure:如何在Azure上支持和使用kubernetes。 big-data:在kubernetes上部署和运行大数据应用,如Spark、Kafka、Hadoop、Flink、Storm等。 CLI:kubectl和相关工具。 cluster-lifecycle:部署和升级kubernetes集群。 cluster-ops:促进kubernetes集群本身的可操作性和集群间的互操作性,使不同的运营商之间协调一致。 contributor-experience:维持良好的开发者社区。 docs:文档,流程和出版物。 GCP:在Google Cloud Platform上使用kubernetes。 instrumentation:集群可观测性的最佳实践,包括指标设置、日志收集、事件等。 multicluster:多kubernetes集群的用例和工具。 network:kubernetes集群的网络。 node:node节点、kubelet。 onprem:在非云供应商的环境下运行kubernetes,例如on premise、裸机等环境。 openstack:协调跨OpenStack和Kubernetes社区的努力。 product-management:侧重于产品管理方面。 release:发布、PR和bug提交等。 scalability:负责回答可伸缩性相关的问题。 scheduling:资源调度。 service-catalog:为CNCF service broker和Kubernetes broker实现开发API。 storage:存储和volume插件。 testing:测试。 ui:与UI相关的话题。 windows:在kubernets上运行Windows Server Container。 工作组列表 App Def:改进API中的声明性原语、客户端库、工具的用户体验。 Cloud Provider:云供应商工作组。 Cluster API:定义一个代表Kubernetes集群的可移植API。 API将包含控制平面及其配置和底层基础设施(节点,节点池等)。 Container Identity:确保容器能够获得安全的身份认证并与外部连通的解决方案。 Kubeadm Adoption:提高kubeadm工具的采用率。 Resource ManagementJ:资源隔离和提高资源利用率。 详细信息请参考 https://github.com/kubernetes/community/blob/master/sig-list.md 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"develop/developing-environment.html":{"url":"develop/developing-environment.html","title":"开发环境搭建","keywords":"","body":"配置Kubernetes开发环境 我们将在Mac上使用docker环境编译kuberentes。 安装依赖 brew install gnu-tar Docker环境,至少需要给容器分配4G内存,在低于3G内存的时候可能会编译失败。 执行编译 切换目录到kuberentes源码的根目录下执行: ./build/run.sh make可以在docker中执行跨平台编译出二进制文件。 需要用的的docker镜像: gcr.io/google_containers/kube-cross:v1.7.5-2 该镜像基于Ubuntu构建,大小2.15G,编译环境中包含以下软件: Go1.7.5 etcd protobuf g++ 其他golang依赖包 在我自己的电脑上的整个编译过程大概要半个小时。 编译完成的二进制文件在/_output/local/go/bin/目录下。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"develop/using-vagrant-and-virtualbox-for-development.html":{"url":"develop/using-vagrant-and-virtualbox-for-development.html","title":"本地分布式开发环境搭建(使用 Vagrant 和 Virtualbox)","keywords":"","body":"本地分布式开发环境搭建(使用Vagrant和Virtualbox) 注意:本文停止更新,请直接转到kubernetes-vagrant-centos-cluster仓库浏览最新版本。 当我们需要在本地开发时,更希望能够有一个开箱即用又可以方便定制的分布式开发环境,这样才能对Kubernetes本身和应用进行更好的测试。现在我们使用Vagrant和VirtualBox来创建一个这样的环境。 部署时需要使用的配置文件和vagrantfile请见:https://github.com/rootsongjc/kubernetes-vagrant-centos-cluster 注意:kube-proxy使用ipvs模式。 准备环境 需要准备以下软件和环境: 8G以上内存 Vagrant 2.0+ Virtualbox 5.0 + 提前下载kubernetes1.9.1以上版本的release压缩包 Mac/Linux,不支持Windows 集群 我们使用Vagrant和Virtualbox安装包含3个节点的kubernetes集群,其中master节点同时作为node节点。 IP 主机名 组件 172.17.8.101 node1 kube-apiserver、kube-controller-manager、kube-scheduler、etcd、kubelet、docker、flannel、dashboard 172.17.8.102 node2 kubelet、docker、flannel、traefik 172.17.8.103 node3 kubelet、docker、flannel 注意:以上的IP、主机名和组件都是固定在这些节点的,即使销毁后下次使用vagrant重建依然保持不变。 容器IP范围:172.33.0.0/30 Kubernetes service IP范围:10.254.0.0/16 安装的组件 安装完成后的集群包含以下组件: flannel(host-gw模式) kubernetes dashboard 1.8.2 etcd(单节点) kubectl CoreDNS kubernetes(版本根据下载的kubernetes安装包而定) 可选插件 Heapster + InfluxDB + Grafana ElasticSearch + Fluentd + Kibana Istio service mesh 使用说明 确保安装好以上的准备环境后,执行下列命令启动kubernetes集群: git clone https://github.com/rootsongjc/kubernetes-vagrant-centos-cluster.git cd kubernetes-vagrant-centos-cluster vagrant up 注意:克隆完Git仓库后,需要提前下载kubernetes的压缩包到kubenetes-vagrant-centos-cluster目录下,包括如下两个文件: kubernetes-client-linux-amd64.tar.gz kubernetes-server-linux-amd64.tar.gz 如果是首次部署,会自动下载centos/7的box,这需要花费一些时间,另外每个节点还需要下载安装一系列软件包,整个过程大概需要10几分钟。 如果您在运行vagrant up的过程中发现无法下载centos/7的box,可以手动下载后将其添加到vagrant中。 手动添加centos/7 box wget -c http://cloud.centos.org/centos/7/vagrant/x86_64/images/CentOS-7-x86_64-Vagrant-1801_02.VirtualBox.box vagrant box add CentOS-7-x86_64-Vagrant-1801_02.VirtualBox.box --name centos/7 这样下次运行vagrant up的时候就会自动读取本地的centos/7 box而不会再到网上下载。 访问kubernetes集群 访问Kubernetes集群的方式有三种: 本地访问 在VM内部访问 kubernetes dashboard 通过本地访问 可以直接在你自己的本地环境中操作该kubernetes集群,而无需登录到虚拟机中,执行以下步骤: 将conf/admin.kubeconfig文件放到~/.kube/config目录下即可在本地使用kubectl命令操作集群。 mkdir -p ~/.kube cp conf/admin.kubeconfig ~/.kube/config 我们推荐您使用这种方式。 在虚拟机内部访问 如果有任何问题可以登录到虚拟机内部调试: vagrant ssh node1 sudo -i kubectl get nodes Kubernetes dashboard 还可以直接通过dashboard UI来访问:https://172.17.8.101:8443 可以在本地执行以下命令获取token的值(需要提前安装kubectl): kubectl -n kube-system describe secret `kubectl -n kube-system get secret|grep admin-token|cut -d \" \" -f1`|grep \"token:\"|tr -s \" \"|cut -d \" \" -f2 注意:token的值也可以在vagrant up的日志的最后看到。 Heapster监控 创建Heapster监控: kubectl apply -f addon/heapster/ 访问Grafana 使用Ingress方式暴露的服务,在本地/etc/hosts中增加一条配置: 172.17.8.102 grafana.jimmysong.io 访问Grafana:http://grafana.jimmysong.io Traefik 部署Traefik ingress controller和增加ingress配置: kubectl apply -f addon/traefik-ingress 在本地/etc/hosts中增加一条配置: 172.17.8.102 traefik.jimmysong.io 访问Traefik UI:http://traefik.jimmysong.io EFK 使用EFK做日志收集。 kubectl apply -f addon/efk/ 注意:运行EFK的每个节点需要消耗很大的CPU和内存,请保证每台虚拟机至少分配了4G内存。 Helm 用来部署helm。 hack/deploy-helm.sh Service Mesh 我们使用 istio 作为 service mesh。 安装 kubectl apply -f addon/istio/ 运行示例 kubectl apply -n default -f 在您自己的本地主机的/etc/hosts文件中增加如下配置项。 172.17.8.102 grafana.istio.jimmysong.io 172.17.8.102 servicegraph.istio.jimmysong.io 我们可以通过下面的URL地址访问以上的服务。 Service URL grafana http://grafana.istio.jimmysong.io servicegraph \">http://servicegraph.istio.jimmysong.io/dotviz>, http://servicegraph.istio.jimmysong.io/graph,http://servicegraph.istio.jimmysong.io/force/forcegraph.html tracing http://172.17.8.101:$JAEGER_PORT productpage http://172.17.8.101:$GATEWAY_PORT/productpage 注意:JAEGER_PORT可以通过kubectl -n istio-system get svc tracing -o jsonpath='{.spec.ports[0].nodePort}'获取,GATEWAY_PORT可以通过kubectl -n istio-system get svc istio-ingressgateway -o jsonpath='{.spec.ports[0].nodePort}'获取。 详细信息请参阅 https://istio.io/docs/guides/bookinfo.html 管理 除了特别说明,以下命令都在当前的repo目录下操作。 挂起 将当前的虚拟机挂起,以便下次恢复。 vagrant suspend 恢复 恢复虚拟机的上次状态。 vagrant resume 注意:我们每次挂起虚拟机后再重新启动它们的时候,看到的虚拟机中的时间依然是挂载时候的时间,这样将导致监控查看起来比较麻烦。因此请考虑先停机再重新启动虚拟机。 重启 停机后重启启动。 vagrant halt vagrant up # login to node1 vagrant ssh node1 # run the prosivision scripts /vagrant/hack/k8s-init.sh exit # login to node2 vagrant ssh node2 # run the prosivision scripts /vagrant/hack/k8s-init.sh exit # login to node3 vagrant ssh node3 # run the prosivision scripts /vagrant/hack/k8s-init.sh sudo -i cd /vagrant/hack ./deploy-base-services.sh exit 现在你已经拥有一个完整的基础的kubernetes运行环境,在该repo的根目录下执行下面的命令可以获取kubernetes dahsboard的admin用户的token。 hack/get-dashboard-token.sh 根据提示登录即可。 清理 清理虚拟机。 vagrant destroy rm -rf .vagrant 注意 仅做开发测试使用,不要在生产环境使用该项目。 参考 Kubernetes handbook - jimmysong.io duffqiu/centos-vagrant kubernetes-vagrant-centos-cluster Kubernetes 1.8 kube-proxy 开启 ipvs 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"develop/testing.html":{"url":"develop/testing.html","title":"单元测试和集成测试","keywords":"","body":"Kubernetes测试 单元测试 单元测试仅依赖于源代码,是测试代码逻辑是否符合预期的最简单方法。 运行所有的单元测试 make test 仅测试指定的package # 单个package make test WHAT=./pkg/api # 多个packages make test WHAT=./pkg/{api,kubelet} 或者,也可以直接用go test go test -v k8s.io/kubernetes/pkg/kubelet 仅测试指定package的某个测试case # Runs TestValidatePod in pkg/api/validation with the verbose flag set make test WHAT=./pkg/api/validation KUBE_GOFLAGS=\"-v\" KUBE_TEST_ARGS='-run ^TestValidatePod$' # Runs tests that match the regex ValidatePod|ValidateConfigMap in pkg/api/validation make test WHAT=./pkg/api/validation KUBE_GOFLAGS=\"-v\" KUBE_TEST_ARGS=\"-run ValidatePod\\|ValidateConfigMap$\" 或者直接用go test go test -v k8s.io/kubernetes/pkg/api/validation -run ^TestValidatePod$ 并行测试 并行测试是root out flakes的一种有效方法: # Have 2 workers run all tests 5 times each (10 total iterations). make test PARALLEL=2 ITERATION=5 生成测试报告 make test KUBE_COVER=y Benchmark测试 go test ./pkg/apiserver -benchmem -run=XXX -bench=BenchmarkWatch 集成测试 Kubernetes集成测试需要安装etcd(只要按照即可,不需要启动),比如 hack/install-etcd.sh # Installs in ./third_party/etcd echo export PATH=\"\\$PATH:$(pwd)/third_party/etcd\" >> ~/.profile # Add to PATH 集成测试会在需要的时候自动启动etcd和kubernetes服务,并运行test/integration里面的测试。 运行所有集成测试 make test-integration # Run all integration tests. 指定集成测试用例 # Run integration test TestPodUpdateActiveDeadlineSeconds with the verbose flag set. make test-integration KUBE_GOFLAGS=\"-v\" KUBE_TEST_ARGS=\"-run ^TestPodUpdateActiveDeadlineSeconds$\" End to end (e2e)测试 End to end (e2e) 测试模拟用户行为操作Kubernetes,用来保证Kubernetes服务或集群的行为完全符合设计预期。 在开启e2e测试之前,需要先编译测试文件,并设置KUBERNETES_PROVIDER(默认为gce): make WHAT='test/e2e/e2e.test' make ginkgo export KUBERNETES_PROVIDER=local 启动cluster,测试,最后停止cluster # build Kubernetes, up a cluster, run tests, and tear everything down go run hack/e2e.go -- -v --build --up --test --down 仅测试指定的用例 go run hack/e2e.go -v -test --test_args='--ginkgo.focus=Kubectl\\sclient\\s\\[k8s\\.io\\]\\sKubectl\\srolling\\-update\\sshould\\ssupport\\srolling\\-update\\sto\\ssame\\simage\\s\\[Conformance\\]$' 略过测试用例 go run hack/e2e.go -- -v --test --test_args=\"--ginkgo.skip=Pods.*env 并行测试 # Run tests in parallel, skip any that must be run serially GINKGO_PARALLEL=y go run hack/e2e.go --v --test --test_args=\"--ginkgo.skip=\\[Serial\\]\" # Run tests in parallel, skip any that must be run serially and keep the test namespace if test failed GINKGO_PARALLEL=y go run hack/e2e.go --v --test --test_args=\"--ginkgo.skip=\\[Serial\\] --delete-namespace-on-failure=false\" 清理测试 go run hack/e2e.go -- -v --down 有用的-ctl # -ctl can be used to quickly call kubectl against your e2e cluster. Useful for # cleaning up after a failed test or viewing logs. Use -v to avoid suppressing # kubectl output. go run hack/e2e.go -- -v -ctl='get events' go run hack/e2e.go -- -v -ctl='delete pod foobar' Fedaration e2e测试 export FEDERATION=true export E2E_ZONES=\"us-central1-a us-central1-b us-central1-f\" # or export FEDERATION_PUSH_REPO_BASE=\"quay.io/colin_hom\" export FEDERATION_PUSH_REPO_BASE=\"gcr.io/${GCE_PROJECT_NAME}\" # build container images KUBE_RELEASE_RUN_TESTS=n KUBE_FASTBUILD=true go run hack/e2e.go -- -v -build # push the federation container images build/push-federation-images.sh # Deploy federation control plane go run hack/e2e.go -- -v --up # Finally, run the tests go run hack/e2e.go -- -v --test --test_args=\"--ginkgo.focus=\\[Feature:Federation\\]\" # Don't forget to teardown everything down go run hack/e2e.go -- -v --down 可以用cluster/log-dump.sh 方便的下载相关日志,帮助排查测试中碰到的问题。 Node e2e测试 Node e2e仅测试Kubelet的相关功能,可以在本地或者集群中测试 export KUBERNETES_PROVIDER=local make test-e2e-node FOCUS=\"InitContainer\" make test_e2e_node TEST_ARGS=\"--experimental-cgroups-per-qos=true\" 补充说明 借助kubectl的模版可以方便获取想要的数据,比如查询某个container的镜像的方法为 kubectl get pods nginx-4263166205-ggst4 -o template '--template={{if (exists . \"status\" \"containerStatuses\")}}{{range .status.containerStatuses}}{{if eq .name \"nginx\"}}{{.image}}{{end}}{{end}}{{end}}' kubernetes测试工具集test-infra test-infra是由kubernetes官方开源的测试框架,其中包括了Kubernetes测试工具集和测试结果展示。下图展示了test-infra的架构: 图 8.4.1:test-infra架构图(图片来自官方GitHub) 该测试框架主要是真多Google公有云做的,支持kubernetes1.6以上版本的测试。详见https://github.com/kubernetes/test-infra。 参考文档 https://github.com/kubernetes/test-infra 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"develop/client-go-sample.html":{"url":"develop/client-go-sample.html","title":"client-go 示例","keywords":"","body":"client-go示例 访问kubernetes集群有以下几种方式: 方式 特点 支持者 Kubernetes dashboard 直接通过Web UI进行操作,简单直接,可定制化程度低 官方支持 kubectl 命令行操作,功能最全,但是比较复杂,适合对其进行进一步的分装,定制功能,版本适配最好 官方支持 client-go 从kubernetes的代码中抽离出来的客户端包,简单易用,但需要小心区分kubernetes的API版本 官方支持 client-python python客户端,kubernetes-incubator 官方支持 Java client fabric8中的一部分,kubernetes的java客户端 Red Hat 下面,我们基于client-go,对Deployment升级镜像的步骤进行了定制,通过命令行传递一个Deployment的名字、应用容器名和新image名字的方式来升级。 kubernetes-client-go-sample 项目的 main.go 代码如下: package main import ( \"flag\" \"fmt\" \"os\" \"path/filepath\" \"k8s.io/apimachinery/pkg/api/errors\" metav1 \"k8s.io/apimachinery/pkg/apis/meta/v1\" \"k8s.io/client-go/kubernetes\" \"k8s.io/client-go/tools/clientcmd\" ) func main() { var kubeconfig *string if home := homeDir(); home != \"\" { kubeconfig = flag.String(\"kubeconfig\", filepath.Join(home, \".kube\", \"config\"), \"(optional) absolute path to the kubeconfig file\") } else { kubeconfig = flag.String(\"kubeconfig\", \"\", \"absolute path to the kubeconfig file\") } deploymentName := flag.String(\"deployment\", \"\", \"deployment name\") imageName := flag.String(\"image\", \"\", \"new image name\") appName := flag.String(\"app\", \"app\", \"application name\") flag.Parse() if *deploymentName == \"\" { fmt.Println(\"You must specify the deployment name.\") os.Exit(0) } if *imageName == \"\" { fmt.Println(\"You must specify the new image name.\") os.Exit(0) } // use the current context in kubeconfig config, err := clientcmd.BuildConfigFromFlags(\"\", *kubeconfig) if err != nil { panic(err.Error()) } // create the clientset clientset, err := kubernetes.NewForConfig(config) if err != nil { panic(err.Error()) } deployment, err := clientset.AppsV1beta1().Deployments(\"default\").Get(*deploymentName, metav1.GetOptions{}) if err != nil { panic(err.Error()) } if errors.IsNotFound(err) { fmt.Printf(\"Deployment not found\\n\") } else if statusError, isStatus := err.(*errors.StatusError); isStatus { fmt.Printf(\"Error getting deployment%v\\n\", statusError.ErrStatus.Message) } else if err != nil { panic(err.Error()) } else { fmt.Printf(\"Found deployment\\n\") name := deployment.GetName() fmt.Println(\"name ->\", name) containers := &deployment.Spec.Template.Spec.Containers found := false for i := range *containers { c := *containers if c[i].Name == *appName { found = true fmt.Println(\"Old image ->\", c[i].Image) fmt.Println(\"New image ->\", *imageName) c[i].Image = *imageName } } if found == false { fmt.Println(\"The application container not exist in the deployment pods.\") os.Exit(0) } _, err := clientset.AppsV1beta1().Deployments(\"default\").Update(deployment) if err != nil { panic(err.Error()) } } } func homeDir() string { if h := os.Getenv(\"HOME\"); h != \"\" { return h } return os.Getenv(\"USERPROFILE\") // windows } 我们使用kubeconfig文件认证连接Kubernetes集群,该文件默认的位置是$HOME/.kube/config。 该代码编译后可以直接在Kubernetes集群之外,任何一个可以连接到API server的机器上运行。 编译运行 $ go get github.com/rootsongjc/kubernetes-client-go-sample $ cd $GOPATH/src/github.com/rootsongjc/kubernetes-client-go-sample $ go build main.go 该命令的用法如下。 $ ./main -app string application name (default \"app\") -deployment string deployment name -image string new image name -kubeconfig string (optional) absolute path to the kubeconfig file (default \"/Users/jimmy/.kube/config\") 使用不存在的image更新 $ ./main -deployment filebeat-test -image harbor-001.jimmysong.io/library/analytics-docker-test:Build_9 Found deployment name -> filebeat-test Old image -> harbor-001.jimmysong.io/library/analytics-docker-test:Build_8 New image -> harbor-001.jimmysong.io/library/analytics-docker-test:Build_9 查看Deployment的event。 $ kubectl describe deployment filebeat-test Name: filebeat-test Namespace: default CreationTimestamp: Fri, 19 May 2017 15:12:28 +0800 Labels: k8s-app=filebeat-test Selector: k8s-app=filebeat-test Replicas: 2 updated | 3 total | 2 available | 2 unavailable StrategyType: RollingUpdate MinReadySeconds: 0 RollingUpdateStrategy: 1 max unavailable, 1 max surge Conditions: Type Status Reason ---- ------ ------ Available True MinimumReplicasAvailable Progressing True ReplicaSetUpdated OldReplicaSets: filebeat-test-2365467882 (2/2 replicas created) NewReplicaSet: filebeat-test-2470325483 (2/2 replicas created) Events: FirstSeen LastSeen Count From SubObjectPath Type ReasoMessage --------- -------- ----- ---- ------------- -------- ------------ 2h 1m 3 {deployment-controller } Normal ScalingReplicaSet Scaled down replica set filebeat-test-2365467882 to 2 1m 1m 1 {deployment-controller } Normal ScalingReplicaSet Scaled up replica set filebeat-test-2470325483 to 1 1m 1m 1 {deployment-controller } Normal ScalingReplicaSet Scaled up replica set filebeat-test-2470325483 to 2 可以看到老的ReplicaSet从3个replica减少到了2个,有2个使用新配置的replica不可用,目前可用的replica是2个。 这是因为我们指定的镜像不存在,查看Deployment的pod的状态。 $ kubectl get pods -l k8s-app=filebeat-test NAME READY STATUS RESTARTS AGE filebeat-test-2365467882-4zwx8 2/2 Running 0 33d filebeat-test-2365467882-rqskl 2/2 Running 0 33d filebeat-test-2470325483-6vjbw 1/2 ImagePullBackOff 0 4m filebeat-test-2470325483-gc14k 1/2 ImagePullBackOff 0 4m 我们可以看到有两个pod正在拉取image。 还原为原先的镜像 将image设置为原来的镜像。 $ ./main -deployment filebeat-test -image harbor-001.jimmysong.io/library/analytics-docker-test:Build_8 Found deployment name -> filebeat-test Old image -> harbor-001.jimmysong.io/library/analytics-docker-test:Build_9 New image -> harbor-001.jimmysong.io/library/analytics-docker-test:Build_8 现在再查看Deployment的状态。 $ kubectl describe deployment filebeat-test Name: filebeat-test Namespace: default CreationTimestamp: Fri, 19 May 2017 15:12:28 +0800 Labels: k8s-app=filebeat-test Selector: k8s-app=filebeat-test Replicas: 3 updated | 3 total | 3 available | 0 unavailable StrategyType: RollingUpdate MinReadySeconds: 0 RollingUpdateStrategy: 1 max unavailable, 1 max surge Conditions: Type Status Reason ---- ------ ------ Available True MinimumReplicasAvailable Progressing True NewReplicaSetAvailable OldReplicaSets: NewReplicaSet: filebeat-test-2365467882 (3/3 replicas created) Events: FirstSeen LastSeen Count From SubObjectPath Type ReasoMessage --------- -------- ----- ---- ------------- -------- ------------ 2h 8m 3 {deployment-controller } Normal ScalingReplicaSet Scaled down replica set filebeat-test-2365467882 to 2 8m 8m 1 {deployment-controller } Normal ScalingReplicaSet Scaled up replica set filebeat-test-2470325483 to 1 8m 8m 1 {deployment-controller } Normal ScalingReplicaSet Scaled up replica set filebeat-test-2470325483 to 2 2h 1m 3 {deployment-controller } Normal ScalingReplicaSet Scaled up replica set filebeat-test-2365467882 to 3 1m 1m 1 {deployment-controller } Normal ScalingReplicaSet Scaled down replica set filebeat-test-2470325483 to 0 可以看到available的replica个数恢复成3了。 其实在使用该命令的过程中,通过kubernetes dashboard的页面上查看Deployment的状态更直观,更加方便故障排查。 图 8.5.1:使用kubernetes dashboard进行故障排查 这也是dashboard最大的优势,简单、直接、高效。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"develop/operator.html":{"url":"develop/operator.html","title":"Operator","keywords":"","body":"Operator Operator是由CoreOS开发的,用来扩展Kubernetes API,特定的应用程序控制器,它用来创建、配置和管理复杂的有状态应用,如数据库、缓存和监控系统。Operator基于Kubernetes的资源和控制器概念之上构建,但同时又包含了应用程序特定的领域知识。创建Operator的关键是CRD(自定义资源)的设计。 工作原理 Operator是将运维人员对软件操作的知识给代码化,同时利用Kubernetes强大的抽象来管理大规模的软件应用。 Operator使用了Kubernetes的自定义资源扩展API机制,如使用CRD(CustomResourceDefinition)来创建。Operator通过这种机制来创建、配置和管理应用程序。 当前CoreOS依靠社区力量创建了众多的 Operator,见:https://operatorhub.io/。 Operator基于Kubernetes的以下两个概念构建: 资源:对象的状态定义 控制器:观测、分析和行动,以调节资源的分布 Operator 用途 若您有以下需求,可能会需要用到 Operator: 按需部署一个应用程序 需要备份和恢复应用程序的状态(如数据库) 处理应用程序代码的升级以及相关更改,例如数据库架构或额外的配置设置 发布一个服务,要让不支持Kubernetes API的应用程序能够发现 模拟整个或部分集群中的故障以测试其弹性 在没有内部成员选举程序的情况下为分布式应用程序选择领导者 一个Operator用途的详细示例 下面是一个使用 Operator 的详细示例。 一个名为SampleDB的自定义资源,您可以将其配置到集群中。 确保正在运行的Deployment的Pod中包含Operator的控制器部分。 Operator代码的容器镜像。 查询控制平面以找出配置了哪些SampleDB资源的控制器代码。 Operator的核心是告诉API Server如何使现实与代码里已配置的资源匹配。 如果添加新的SampleDB,Operator将设置PersistentVolumeClaims以提供持久的数据库存储,设置StatefulSet以运行SampleDB,并设置Job来处理初始配置。 如果删除它,Operator将建立快照,然后确保删除了StatefulSet和卷。 Operator还管理常规数据库备份。对于每个SampleDB资源,Operator确定何时创建可以连接到数据库并进行备份的Pod。这些Pod将依赖于ConfigMap和/或具有数据库连接详细信息和凭据的Secret。 由于Operator旨在为其管理的资源提供强大的自动化功能,因此会有其他支持代码。对于此示例,代码将检查数据库是否正在运行旧版本,如果是,则创建Job对象为您升级数据库。 创建Operator Operator本质上是与应用息息相关的,因为这是特定领域的知识的编码结果,这其中包括了资源配置的控制逻辑。下面是创建Operator的基本步骤: 在单个Deployment中定义Operator,如:https://coreos.com/operators/etcd/latest/deployment.yaml 需要为Operator创建一个新的自定义类型CRD,这样用户就可以使用该对象来创建实例 Operator应该利用Kubernetes中内建的原语,如Deployment、Service这些经过充分测试的对象,这样也便于理解 Operator应该向后兼容,始终了解用户在之前版本中创建的资源 当Operator被停止或删除时,Operator创建的应用实例应该不受影响 Operator应该让用户能够根据版本声明来选择所需版本和编排应用程序升级。不升级软件是操作错误和安全问题的常见来源,Operator可以帮助用户更加自信地解决这一问题。 Operator应该进行“Chaos Monkey”测试,以模拟Pod、配置和网络故障的情况下的行为。 OperatorHub 我们都知道在 Kubernetes 上安装应用可以使用 Helm 直接安装各种打包成 Chart 形式的 Kubernetes 应用,但随着 Kubernetes Operator 的流行,Kubernetes 社区又推出了 OperatorHub,你可以在这里分享或安装 Operator:https://www.operatorhub.io。 另外,awesome-operators 中罗列了目前已知的 Operator。 参考 Operators - coreos.com awesome-operators - github.com OperatorHub - operatorhub.io Writing a Kubernetes Operator in Golang Introducing Operators: Putting Operational Knowledge into Software - coreos.com Automating Kubernetes Cluster Operations with Operators - thenewstack.io Operator pattern - kubernetes.io 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"develop/operator-sdk.html":{"url":"develop/operator-sdk.html","title":"operator-sdk","keywords":"","body":"Operator SDK Operator SDK 由 CoreOS 开源,它是用于构建 Kubernetes 原生应用的 SDK,它提供更高级别的 API、抽象和项目脚手架。在阅读本文前请先确认您已经了解 Operator是什么。 使用 Kubernetes 中原生的对象来部署和管理复杂的应用程序不是那么容易,尤其是要管理整个应用的生命周期、组件的扩缩容,我们之前通常是编写各种脚本,通过调用 Kubernetes 的命令行工具来管理 Kubernetes 上的应用。现在可以通过 CRD(CustomResourceDefinition)来自定义这些复杂操作,通过将运维的知识封装在自定义 API 里来减轻运维人员的负担。同时我们还可以像操作 Kubernetes 的原生资源对象一样,使用 kubectl 来操作 CRD。 下面我们将安装和试用一下 Operator SDK。 安装 Operator SDK $ mkdir -p $GOPATH/src/github.com/operator-framework $ cd $GOPATH/src/github.com/operator-framework/operator-sdk $ dep ensure Create kubernetes-operator-sdk-tutorial/cmd/kubernetes-operator-sdk-tutorial/main.go Create kubernetes-operator-sdk-tutorial/config/config.yaml Create kubernetes-operator-sdk-tutorial/deploy/rbac.yaml Create kubernetes-operator-sdk-tutorial/deploy/cr.yaml Create kubernetes-operator-sdk-tutorial/pkg/apis/jimmysong/v1alpha1/doc.go Create kubernetes-operator-sdk-tutorial/pkg/apis/jimmysong/v1alpha1/register.go Create kubernetes-operator-sdk-tutorial/pkg/apis/jimmysong/v1alpha1/types.go Create kubernetes-operator-sdk-tutorial/pkg/stub/handler.go Create kubernetes-operator-sdk-tutorial/tmp/build/build.sh Create kubernetes-operator-sdk-tutorial/tmp/build/docker_build.sh Create kubernetes-operator-sdk-tutorial/tmp/build/Dockerfile Create kubernetes-operator-sdk-tutorial/tmp/codegen/boilerplate.go.txt Create kubernetes-operator-sdk-tutorial/tmp/codegen/update-generated.sh Create kubernetes-operator-sdk-tutorial/Gopkg.toml Create kubernetes-operator-sdk-tutorial/Gopkg.lock Run dep ensure ... Root project is \"github.com/rootsongjc/kubernetes-operator-sdk-tutorial\" 3 transitively valid internal packages 12 external packages imported from 4 projects (0) ✓ select (root) (1) ? attempt k8s.io/api with 1 pkgs; at least 1 versions to try (1) try k8s.io/api@kubernetes-1.9.3 (1) ✓ select k8s.io/api@kubernetes-1.9.3 w/1 pkgs (2) ? attempt k8s.io/apimachinery with 4 pkgs; at least 1 versions to try (2) try k8s.io/apimachinery@kubernetes-1.9.3 (2) ✓ select k8s.io/apimachinery@kubernetes-1.9.3 w/22 pkgs ... $ go install github.com/operator-framework/operator-sdk/commands/operator-sdk 该过程需要几分钟,请耐心等待。确认 $GOPATH/bin/operator-sdk 文件位于您的 $PATH 目录下。 创建项目 $ cd $GOPATH/src/github.com// $ operator-sdk new --api-version=/ --kind= $ cd operator-project-name:创建的项目的名称 your-api-group:Kubernetes 自定义 API 的组名,一般用域名如 jimmysong.io version:Kubernetes 自定义资源的 API 版本 custom-resource-kind:CRD 的名称 operator-sdk new kubernetes-operator-sdk-tutorial --api-version=jimmysong.io/v1alpha1 --kind=operator-sdk 参考 A complete guide to Kubernetes Operator SDK 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"develop/kubebuilder.html":{"url":"develop/kubebuilder.html","title":"kubebuilder","keywords":"","body":"Kubebuilder Kubebuilder 是一个基于 CRD 来构建 Kubernetes API 的框架,可以使用 CRD 来构建 API、Controller 和 Admission Webhook。 动机 目前扩展 Kubernetes 的 API 的方式有创建 CRD、使用 Operator SDK 等方式,都需要写很多的样本文件(boilerplate),使用起来十分麻烦。为了能够更方便构建 Kubernetes API 和工具,就需要一款能够事半功倍的工具,与其他 Kubernetes API 扩展方案相比,kubebuilder 更加简单易用,并获得了社区的广泛支持。 工作流程 Kubebuilder 的工作流程如下: 创建一个新的工程目录 创建一个或多个资源 API CRD 然后将字段添加到资源 在控制器中实现协调循环(reconcile loop),watch 额外的资源 在集群中运行测试(自动安装 CRD 并自动启动控制器) 更新引导集成测试测试新字段和业务逻辑 使用用户提供的 Dockerfile 构建和发布容器 设计哲学 Kubebuilder 提供基于简洁的精心设计的示例 godoc 来提供整洁的库抽象。 能使用 go 接口和库,就不使用代码生成 能使用代码生成,就不用使用多于一次的存根初始化 能使用一次存根,就不 fork 和修改 boilerplate 绝不 fork 和修改 boilerplate 参考 kubebuilder - github.com kubebuilder book - book.kubebuilder.io Kubebuilder 中文文档 - cloudnative.to 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"develop/kubebuilder-example.html":{"url":"develop/kubebuilder-example.html","title":"使用 kubebuilder 创建 operator 示例","keywords":"","body":"使用 kubebuilder 创建 operator 示例 本文作为 Kubebuilder 教程,将指导您如何使用 kubebuilder 创建一个 Kubernetes Operator。 准备 本文中的示例运行环境及相关软件版本如下: Kubernetes MiniKube v1.9.2 Kubernetes v1.18.0 Go 1.14 Kubebuilder 2.3.1 kustomize 3.6.1 Docker 19.03.8 使用 Minikube 安装 Kubernetes 集群,Kubernetes 安装好后,检查集群是否可用。 Minikube 的 DNS 解析问题 如果遇到 Kubernetes 集群无法拉取镜像,DNS 解析出现问题,解决方式见 DNS lookup not working when starting minikube with --dns-domain #1674。 使用 minikube ssh 进入 minikube 主机,修改 /etc/systemd/resolved.conf 文件,将其中的 DNS 配置字段修改为 DNS=8.8.8.8,然后执行 sudo systemctl restart systemd-resolved 即可更改 DNS,切勿直接修改 /etc/resolv.conf 文件。 修正 Minikube 的 DNS 配置,请执行下面的命令。 minikube ssh sudo sed -i 's/#DNS=/DNS=8.8.8.8/g' /etc/systemd/resolved.conf sudo systemctl restart systemd-resolved 名词解释 在阅读下面的文章前,需要先明确以下两个名词的含义。 CRD:自定义资源定义,Kubernetes 中的资源类型。 CR:Custom Resource,对使用 CRD 创建出来的自定义资源的统称。 安装 kubebuilder 到 kubebuilder 的 GitHub release 页面上下载与您操作系统对应的 kubebuilder 安装包。 MacOS 对于 Mac 系统,将下载好的安装包解压后将其移动到 /usr/local/kubebuilder 目录下,并将 /usr/local/kubebuilder/bin 添加到您的 $PATH 路径下。 创建项目 我们首先将使用自动配置创建一个项目,该项目在创建 CR 时不会触发任何资源生成。 初始化和创建 API 创建的项目路径位于 $GOPATH/jimmysong.io/kubebuilder-example。下文中的操作没有明确说明的话都是在该项目路径下运行。 在项目路径下使用下面的命令初始化项目。 $ kubebuilder init --domain jimmysong.io 在项目根目录下执行下面的命令创建 API。 $ kubebuilder create api --group webapp --version v1 --kind Guestbook Create Resource under pkg/apis [y/n]? y Create Controller under pkg/controller [y/n]? y Writing scaffold for you to edit... api/v1/guestbook_types.go controllers/guestbook_controller.go Running make: $ make /Users/jimmysong/Workspace/go/bin/controller-gen object:headerFile=\"hack/boilerplate.go.txt\" paths=\"./...\" go fmt ./... go vet ./... go: finding github.com/onsi/ginkgo v1.11.0 go: finding github.com/onsi/gomega v1.8.1 go: finding github.com/hpcloud/tail v1.0.0 go: finding gopkg.in/tomb.v1 v1.0.0-20141024135613-dd632973f1e7 go build -o bin/manager main.go API 创建完成后,在项目根目录下查看目录结构。 . ├── Dockerfile # 用于构建 Operator 镜像 ├── Makefile # 构建时使用 ├── PROJECT # 项目配置 ├── api │ └── v1 │ ├── groupversion_info.go │ ├── guestbook_types.go │ └── zz_generated.deepcopy.go ├── bin │ └── manager ├── config │ ├── certmanager │ │ ├── certificate.yaml │ │ ├── kustomization.yaml │ │ └── kustomizeconfig.yaml │ ├── crd # 新增 CRD 定义 │ │ ├── kustomization.yaml │ │ ├── kustomizeconfig.yaml │ │ └── patches │ ├── default │ │ ├── kustomization.yaml │ │ ├── manager_auth_proxy_patch.yaml │ │ ├── manager_webhook_patch.yaml │ │ └── webhookcainjection_patch.yaml │ ├── manager │ │ ├── kustomization.yaml │ │ └── manager.yaml │ ├── prometheus │ │ ├── kustomization.yaml │ │ └── monitor.yaml │ ├── rbac │ │ ├── auth_proxy_client_clusterrole.yaml │ │ ├── auth_proxy_role.yaml │ │ ├── auth_proxy_role_binding.yaml │ │ ├── auth_proxy_service.yaml │ │ ├── guestbook_editor_role.yaml │ │ ├── guestbook_viewer_role.yaml │ │ ├── kustomization.yaml │ │ ├── leader_election_role.yaml │ │ ├── leader_election_role_binding.yaml │ │ └── role_binding.yaml │ ├── samples │ │ └── webapp_v1_guestbook.yaml # CRD 示例 │ └── webhook │ ├── kustomization.yaml │ ├── kustomizeconfig.yaml │ └── service.yaml ├── controllers # 新增 controller │ ├── guestbook_controller.go │ └── suite_test.go ├── go.mod ├── go.sum ├── hack │ └── boilerplate.go.txt └── main.go # 新增处理逻辑 15 directories, 40 files 以上就是自动初始化出来的文件。 安装 CRD 执行下面的命令安装 CRD。 $ make install /Users/jimmysong/Workspace/go/bin/controller-gen \"crd:trivialVersions=true\" rbac:roleName=manager-role webhook paths=\"./...\" output:crd:artifacts:config=config/crd/bases kustomize build config/crd | kubectl apply -f - customresourcedefinition.apiextensions.k8s.io/guestbooks.webapp.jimmysong.io created $ kubectl get crd |grep jimmysong.io guestbooks.webapp.jimmysong.io 2020-06-06T21:58:17Z 部署 controller 在开始部署 controller 之前,我们需要先检查 kubebuilder 自动生成的 YAML 文件。 修改使用 gcr.io 镜像仓库的镜像地址 对于中国大陆用户,可能无法访问 Google 镜像仓库 gcr.io,因此需要修改 config/default/manager_auth_proxy_patch.yaml 文件中的镜像地址,将其中 gcr.io/kube-rbac-proxy:v0.5.0 修改为 jimmysong/kubebuilder-kube-rbac-proxy:v0.5.0。 有两种方式运行 controller: 本地运行,用于调试 部署到 Kubernetes 上运行,作为生产使用 本地运行 controller 要想在本地运行 controller,只需要执行下面的命令。 make run 你将看到 controller 启动和运行时输出。 将 controller 部署到 Kubernetes 执行下面的命令部署 controller 到 Kubernetes 上,这一步将会在本地构建 controller 的镜像,并推送到 DockerHub 上,然后在 Kubernetes 上部署 Deployment 资源。 make docker-build docker-push IMG=jimmysong/kubebuilder-example:latest make deploy IMG=jimmysong/kubebuilder-example:latest 在初始化项目时,kubebuilder 会自动根据项目名称创建一个 Namespace,如本文中的 kubebuilder-example-system,查看 Deployment 对象和 Pod 资源。 $ kubectl get deployment -n kubebuilder-example-system NAME READY UP-TO-DATE AVAILABLE AGE kubebuilder-example-controller-manager 1/1 1 1 3h26m $ kubectl get pod -n kubebuilder-example-system NAME READY STATUS RESTARTS AGE kubebuilder-example-controller-manager-77b4c685f9-2npz8 2/2 Running 0 3h16m 创建 CR Kubebuilder 在初始化项目的时候已生成了示例 CR,执行下面的命令部署 CR。 kubectl apply -f config/samples/webapp_v1_guestbook.yaml 执行下面的命令查看新创建的 CR。 $ kubectl get guestbooks.webapp.jimmysong.io guestbook-sample -o yaml 你将看到类似如下的输出。 apiVersion: webapp.jimmysong.io/v1 kind: Guestbook metadata: annotations: kubectl.kubernetes.io/last-applied-configuration: | {\"apiVersion\":\"webapp.jimmysong.io/v1\",\"kind\":\"Guestbook\",\"metadata\":{\"annotations\":{},\"name\":\"guestbook-sample\",\"namespace\":\"kubebuilder-example-system\"},\"spec\":{\"foo\":\"bar\"}} creationTimestamp: \"2020-06-07T01:04:48Z\" generation: 1 managedFields: - apiVersion: webapp.jimmysong.io/v1 fieldsType: FieldsV1 fieldsV1: f:metadata: f:annotations: .: {} f:kubectl.kubernetes.io/last-applied-configuration: {} f:spec: .: {} f:foo: {} manager: kubectl operation: Update time: \"2020-06-07T01:04:48Z\" name: guestbook-sample namespace: kubebuilder-example-system resourceVersion: \"1795834\" selfLink: /apis/webapp.jimmysong.io/v1/namespaces/kubebuilder-example-system/guestbooks/guestbook-sample uid: 051a4266-7f5a-4c57-8180-64222d462bba spec: foo: bar 至此一个基本的 Operator 框架已经创建完成,但这个 Operator 只是修改了 etcd 中的数据而已,实际上什么事情也没做,因为我们没有在 Operator 中的增加业务逻辑。 增加业务逻辑 下面我们将修改 CRD 的数据结构并在 controller 中增加一些日志输出。 修改 CRD 我们将修改上文中使用 kubebuilder 命令生成的默认 CRD 配置,在 CRD 中增加 FirstName、LastName 和 Status 字段。 下面是修改后的 api/v1/guestbook_types.go 文件的内容,对应修改的地方已在代码中注释说明。 /* Licensed under the Apache License, Version 2.0 (the \"License\"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an \"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package v1 import ( metav1 \"k8s.io/apimachinery/pkg/apis/meta/v1\" ) // EDIT THIS FILE! THIS IS SCAFFOLDING FOR YOU TO OWN! // NOTE: json tags are required. Any new fields you add must have json tags for the fields to be serialized. // GuestbookSpec defines the desired state of Guestbook type GuestbookSpec struct { // INSERT ADDITIONAL SPEC FIELDS - desired state of cluster // Important: Run \"make\" to regenerate code after modifying this file // Foo is an example field of Guestbook. Edit Guestbook_types.go to remove/update // 添加两个新的字段 FirstName string `json:\"firstname\"` LastName string `json:\"lastname\"` } // GuestbookStatus defines the observed state of Guestbook type GuestbookStatus struct { // INSERT ADDITIONAL STATUS FIELD - define observed state of cluster // Important: Run \"make\" to regenerate code after modifying this file Status string `json:\"Status\"` } // +kubebuilder:object:root=true // 在这里增加 status 的说明 // +kubebuilder:subresource:status // Guestbook is the Schema for the guestbooks API type Guestbook struct { metav1.TypeMeta `json:\",inline\"` metav1.ObjectMeta `json:\"metadata,omitempty\"` Spec GuestbookSpec `json:\"spec,omitempty\"` Status GuestbookStatus `json:\"status,omitempty\"` } // +kubebuilder:object:root=true // GuestbookList contains a list of Guestbook type GuestbookList struct { metav1.TypeMeta `json:\",inline\"` metav1.ListMeta `json:\"metadata,omitempty\"` Items []Guestbook `json:\"items\"` } func init() { SchemeBuilder.Register(&Guestbook{}, &GuestbookList{}) } 上面的代码比原先使用 kubebuilder 生成的默认代码增加了以下内容: FirstName string `json:\"firstname\"` LastName string `json:\"lastname\"` Status string `json:\"Status\"` // +kubebuilder:subresource:status 修改 Reconcile 函数 Reconcile 函数是 Operator 的核心逻辑,Operator 的业务逻辑都位于 controllers/guestbook_controller.go 文件的 func (r *GuestbookReconciler) Reconcile(req ctrl.Request) (ctrl.Result, error) 函数中。 // +kubebuilder:rbac:groups=webapp.jimmysong.io,resources=guestbooks,verbs=get;list;watch;create;update;patch;delete // +kubebuilder:rbac:groups=webapp.jimmysong.io,resources=guestbooks/status,verbs=get;update;patch func (r *GuestbookReconciler) Reconcile(req ctrl.Request) (ctrl.Result, error) { _ = context.Background() _ = r.Log.WithValues(\"guestbook\", req.NamespacedName) // your logic here ctx := context.Background() _ = r.Log.WithValues(\"apiexamplea\", req.NamespacedName) // 获取当前的 CR,并打印 obj := &webappv1.Guestbook{} if err := r.Get(ctx, req.NamespacedName, obj); err != nil { log.Println(err, \"Unable to fetch object\") } else { log.Println(\"Geeting from Kubebuilder to\", obj.Spec.FirstName, obj.Spec.LastName) } // 初始化 CR 的 Status 为 Running obj.Status.Status = \"Running\" if err := r.Status().Update(ctx, obj); err != nil { log.Println(err, \"unable to update status\") } return ctrl.Result{}, nil } 这段代码的业务逻辑是当发现有 guestbooks.webapp.jimmysong.io 的 CR 变更时,在控制台中输出日志。 运行测试 修改好 Operator 的业务逻辑后,再测试一下新的逻辑是否可以正常运行。 部署 CRD 跟上文的做法一样,执行下面的命令部署 CRD。 make install 运行 controller 跟上文的做法一样,执行下面的命令运行 controller。为了方便起见,我们将在本地运行 controller,当然您也可以将其部署到 Kubernetes 上运行。 make run 保持该窗口在前台运行。 部署 CR 修改 config/samples/webapp_v1_guestbook.yaml 文件中的配置。 apiVersion: webapp.jimmysong.io/v1 kind: Guestbook metadata: name: guestbook-sample spec: # Add fields here firstname: Jimmy lastname: Song 将其应用到 Kubernetes。 kubectl apply -f config/samples/webapp_v1_guestbook.yaml 此时转到上文中运行 controller 的窗口,将在命令行前台中看到如下输出。 go fmt ./... go vet ./... /Users/jimmysong/Workspace/go/bin/controller-gen \"crd:trivialVersions=true\" rbac:roleName=manager-role webhook paths=\"./...\" output:crd:artifacts:config=config/crd/bases go run ./main.go 2020-06-07T16:48:29.966+0800 INFO controller-runtime.metrics metrics server is starting to listen {\"addr\": \":8080\"} 2020-06-07T16:48:29.967+0800 INFO setup starting manager 2020-06-07T16:48:29.967+0800 INFO controller-runtime.manager starting metrics server {\"path\": \"/metrics\"} 2020-06-07T16:48:29.967+0800 INFO controller-runtime.controller Starting EventSource {\"controller\": \"guestbook\", \"source\": \"kind source: /, Kind=\"} 2020-06-07T16:48:30.068+0800 INFO controller-runtime.controller Starting Controller {\"controller\": \"guestbook\"} 2020-06-07T16:48:30.068+0800 INFO controller-runtime.controller Starting workers {\"controller\": \"guestbook\", \"worker count\": 1} 2020/06/07 16:48:30 Geeting from Kubebuilder to Jimmy Song 2020-06-07T16:48:30.080+0800 DEBUG controller-runtime.controller Successfully Reconciled {\"controller\": \"guestbook\", \"request\": \"kubebuilder-example-system/guestbook-sample\"} 从上面的日志中,可以看到这条输出。 2020/06/07 16:48:30 Geeting from Kubebuilder to Jimmy Song 这正是在 Reconcile 函数中的输出。 获取当前的 CR 使用下面的命令获取当前的 CR。 # kubectl get guestbooks.webapp.jimmysong.io guestbook-sample -o yaml 将看到如下输出。 apiVersion: webapp.jimmysong.io/v1 kind: Guestbook metadata: annotations: kubectl.kubernetes.io/last-applied-configuration: | {\"apiVersion\":\"webapp.jimmysong.io/v1\",\"kind\":\"Guestbook\",\"metadata\":{\"annotations\":{},\"name\":\"guestbook-sample\",\"namespace\":\"kubebuilder-example-system\"},\"spec\":{\"firstname\":\"Jimmy\",\"lastname\":\"Song\"}} creationTimestamp: \"2020-06-07T02:54:46Z\" generation: 1 managedFields: - apiVersion: webapp.jimmysong.io/v1 fieldsType: FieldsV1 fieldsV1: f:metadata: f:annotations: .: {} f:kubectl.kubernetes.io/last-applied-configuration: {} f:spec: .: {} f:firstname: {} f:lastname: {} manager: kubectl operation: Update time: \"2020-06-07T02:54:46Z\" - apiVersion: webapp.jimmysong.io/v1 fieldsType: FieldsV1 fieldsV1: f:status: .: {} f:Status: {} manager: main operation: Update time: \"2020-06-07T02:56:38Z\" name: guestbook-sample namespace: kubebuilder-example-system resourceVersion: \"1813769\" selfLink: /apis/webapp.jimmysong.io/v1/namespaces/kubebuilder-example-system/guestbooks/guestbook-sample uid: 17da5eae-1020-40d2-821a-9a1f990dd767 spec: firstname: Jimmy lastname: Song status: Status: Running 我们输出的最后部分: spec: firstname: Jimmy lastname: Song status: Status: Running 这正是我们在 CRD 里定义的字段。 删除 CR 使用下面的命令删除 CR。 kubectl delete guestbooks.webapp.jimmysong.io guestbook-sample 此时在 controller 的前台输出中可以看到以下内容。 2020/06/07 20:09:50 Guestbook.webapp.jimmysong.io \"guestbook-sample\" not found Unable to fetch object 2020/06/07 20:09:50 resource name may not be empty unable to update status 2020-06-07T20:09:50.380+0800 DEBUG controller-runtime.controller Successfully Reconciled {\"controller\": \"guestbook\", \"request\": \"kubebuilder-example-system/guestbook-sample\"} 因为该 CR 被删除,因此日志中会提示资源找不到。 更多 本示例仅展示了使用 kubebuilder 创建 Operator 的基本逻辑,步骤为: 初始化项目和 API 安装 CRD 部署 Controller 创建 CR Operator 的核心逻辑都在 controller 的 Reconcile 函数中,请参考 Awesome Cloud Native 中的 Operator 实现,本书后续将会讨论。 参考 如何使用 KubeBuilder 开发一个 Operator - chenshaowen.com Kubernetes CRD 如何简单 - sealyun.com Kubebuilder book - kubebuilder.io 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"develop/advance-developer.html":{"url":"develop/advance-developer.html","title":"高级开发指南","keywords":"","body":"高级开发指南 本页假定您已经熟悉 Kubernetes 的核心概念并可以轻松的部署自己的应用程序。在浏览了本页面及其链接的内容后,您将会更好的理解如下部分: 可以在应用程序中使用的高级功能 扩展 Kubernetes API 的各种方法 使用高级功能部署应用 现在您知道了 Kubernetes 中提供的一组 API 对象。理解了 daemonset 和 deployment 之间的区别对于应用程序部署通常是足够的。也就是说,熟悉 Kubernetes 中其它的鲜为人知的功能也是值得的。因为这些功能有时候对于特别的用例是非常强大的。 容器级功能 如您所知,将整个应用程序(例如容器化的 Rails 应用程序,MySQL 数据库以及所有应用程序)迁移到单个 Pod 中是一种反模式。这就是说,有一些非常有用的模式超出了容器和 Pod 之间的 1:1 的对应关系: Sidecar 容器:虽然 Pod 中依然需要有一个主容器,你还可以添加一个副容器作为辅助(见 日志示例)。单个 Pod 中的两个容器可以通过共享卷进行通信。 Init 容器:Init 容器在 Pod 的应用容器(如主容器和 sidecar 容器)之前运行。阅读更多,查看 nginx 服务器示例,并学习如何调试这些容器。 Pod 配置 通常,您可以使用 label 和 annotation 将元数据附加到资源上。将数据注入到资源,您可以会创建 ConfigMap(用于非机密数据)或 Secret(用于机密数据)。 下面是一些其他不太为人所知的配置资源 Pod 的方法: Taint(污点)和 Toleration(容忍):这些为节点“吸引”或“排斥” Pod 提供了一种方法。当需要将应用程序部署到特定硬件(例如用于科学计算的 GPU)时,经常使用它们。阅读更多。 向下 API:这允许您的容器使用有关自己或集群的信息,而不会过度耦合到 Kubernetes API server。这可以通过环境变量 或者 DownwardAPIVolumeFiles。 Pod 预设:通常,要将运行时需求(例如环境变量、ConfigMap 和 Secret)安装到资源中,可以在资源的配置文件中指定它们。PodPresets 允许您在创建资源时动态注入这些需求。例如,这允许团队 A 将任意数量的新Secret 安装到团队 B 和 C 创建的资源中,而不需要 B 和 C 的操作。请参阅示例。 其他 API 对象 在设置以下资源之前,请检查这是否属于您组织的集群管理员的责任。 Horizontal Pod Autoscaler (HPA) :这些资源是在CPU使用率或其他自定义度量标准“秒杀”时自动化扩展应用程序的好方法。查看示例以了解如何设置HPA。 联合集群对象:如果使用 federation 在多个 Kubernetes 集群上运行应用程序,则需要部署标准 Kubernetes API 对象的联合版本。 扩展 Kubernetes API Kubernetes 在设计之初就考虑到了可扩展性。如果上面提到的 API 资源和功能不足以满足您的需求,则可以自定义其行为,而无需修改核心 Kubernetes 代码。 理解 Kubernetes 的默认行为 在进行任何自定义之前,了解 Kubernetes API 对象背后的一般抽象很重要。虽然 Deployment 和 Secret 看起来可能完全不同,但对于任何对象来说,以下概念都是正确的: Kubernetes对象是存储有关您的集群的结构化数据的一种方式。 在 Deployment 的情况下,该数据代表期望的状态(例如“应该运行多少副本?”),但也可以是通用的元数据(例如数据库凭证)。 Kubernetes 对象通过 Kubernetes API 修改。 换句话说,您可以对特定的资源路径(例如 /api/v1/namespaces/default/deployments )执行 GET 和 POST 请求来读取或修改对应的对象类型。 利用 Controller 模式,Kubernetes 对象可被确保达到期望的状态。为了简单起见,您可以将 Controller 模式看作以下连续循环: 检查当前状态(副本数、容器镜像等) 对比当前状态和期望状态 如果不匹配则更新当前状态 这些状态是通过 Kubernetes API 来获取的。 并非所有的 Kubernetes 对象都需要一个 Controller。尽管 Deployment 触发群集进行状态更改,但 ConfigMaps 纯粹作为存储。 创建自定义资源 基于上述想法,您可以定义与 Deployment 一样合法的自定义资源。例如,如果 CronJobs 不能提供所有您需要的功能,您可能需要定义 Backup 对象以进行定期备份。 创建自定义资源有以下两种方式: 自定义资源定义(CRD):这种实现方式的工作量最小。参考示例。 API 聚合:在实际设置单独的扩展 API server 之前,此方法需要一些预配置 请注意,与依赖内置的 kube-controller-manager 不同,您需要编写并运行自定义控制器。 下面是一些有用的链接: 如何才知道自定义资源是否符合您的使用场景 CRD 还是 API 聚合,如何选择? Service Catalog 如果您想要使用或提供完整的服务(而不是单个资源),Service Catalog 为此提供了一个规范。这些服务使用 Service Broker注册(请参阅 示例)。 如果您没有集群管理员来管理 Service Catalog 的安装,您可以使用 Helm 或 二进制安装器。 探索其他资源 参考 以下主题对构建更复杂的应用程序也很有用: Kubernetes 中的其他扩展点 - 在哪里可以挂勾到 Kubernetes 架构的概念性的概述 Kubernetes 客户端库 - 用于构建需要与 Kubernetes API 大量交互的应用程序。 下一步 恭喜您完成了应用开发者之旅!您已经了解了 Kubernetes 提供的大部分功能。现在怎么办? 如果您想推荐新功能或跟上Kubernetes应用开发的最新进展,请考虑加入 SIG,如 SIG Apps。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"develop/contribute.html":{"url":"develop/contribute.html","title":"社区贡献","keywords":"","body":"Kubernetes社区贡献 如果您想参与 Kubernetes 社区,请先阅读下Kubernetes Community这个 GitHub Repo中的文档,该文档中包括社区的治理形式、社区成员资格申请、提交 Issue、查找问题和提交 PR 的指导等。 参考 Kubernetes Community Kubernetes Developer Guide Enhencement Tracking and Backlog Kubernetes 官方网站项目 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"develop/minikube.html":{"url":"develop/minikube.html","title":"Minikube","keywords":"","body":"Minikube Minikube 用于在本地运行 kubernetes 环境,用来开发和测试。 安装 Minikube 到 https://github.com/kubernetes/minikube/releases 下载 minikube,我安装的是 minikube v1.11.0。 下载完成后修改文件名为 minikube,然后 chmod +x minikube,移动到 $PATH 目录下: sudo mv ~/Download/minikube-darwin-adm64 /usr/loal/bin/ sudo chmod +x /usr/local/bin/minikube 安装 kubectl 方式一 参考 Install and Set Up kubectl,直接使用二进制文件安装即可。 curl -LO https://storage.googleapis.com/kubernetes-release/release/`curl -s https://storage.googleapis.com/kubernetes-release/release/stable.txt`/bin/darwin/amd64/kubectl 方式二 先访问 https://storage.googleapis.com/kubernetes-release/release/stable.txt 得到返回值,假设为 v1.18.4,然后拼接网址,直接在浏览器访问: https://storage.googleapis.com/kubernetes-release/release/v1.18.4/bin/darwin/amd64/kubectl 直接下载 kubectl 文件。 若第一种方式访问多次超时,可以使用上述的第二种方式访问。 启动 Minikube 对于 macOS,执行 minikube start --vm-driver=hyperkit (使用 hyperkit 作为虚拟机,不需要安装 docker)即可自动下载依赖文件,开始安装和启动 minikube。该过程中将自动执行以下步骤: 下载 docker-machine-driver-hyperkit(10.9 M) 下载虚拟机镜像(近 200M) 下载 Kubernetes 安装包(500 多 M) 安装完成后将生成默认的 ~/.kube/config 文件,自动指向 minikube 集群。 注意:在安装过程中建议配置代理,否则将会有的镜像无法下载。 常用命令 下面是 minkube 的常用命令。 # 进入集群节点 minikube ssh # 查看节点 IP minikube ip # 停止集群 minikube stop # 删除集群 minikube delete 参考 Install minikube - kubernetes.io 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"cloud-native/cncf.html":{"url":"cloud-native/cncf.html","title":"云原生计算基金会(CNCF)","keywords":"","body":"云原生计算基金会(CNCF) CNCF,全称Cloud Native Computing Foundation(云原生计算基金会),成立于 2015 年7月21日(于美国波特兰OSCON 2015上宣布),其最初的口号是坚持和整合开源技术来让编排容器作为微服务架构的一部分,其作为致力于云原生应用推广和普及的一支重要力量,不论您是云原生应用的开发者、管理者还是研究人员都有必要了解。 CNCF作为一个厂商中立的基金会,致力于Github上的快速成长的开源技术的推广,如Kubernetes、Prometheus、Envoy等,帮助开发人员更快更好的构建出色的产品。 下图是CNCF的全景图。 图 9.1.1:CNCF landscape 该全景图不断更新中,原图请见:https://github.com/cncf/landscape 其中包含了CNCF中托管的项目,还有很多是非CNCF项目。 关于CNCF的使命与组织方式请参考CNCF章程,概括的讲CNCF的使命包括以下三点: 容器化包装。 通过中心编排系统的动态资源管理。 面向微服务。 CNCF这个角色的作用是推广技术,形成社区,开源项目管理与推进生态系统健康发展。 另外CNCF组织由以下部分组成: 会员:白金、金牌、银牌、最终用户、学术和非赢利成员,不同级别的会员在治理委员会中的投票权不同。 理事会:负责事务管理 TOC(技术监督委员会):技术管理 最终用户社区:推动CNCF技术的采纳并选举最终用户技术咨询委员会 最终用户技术咨询委员会:为最终用户会议或向理事会提供咨询 营销委员会:市场推广 CNCF项目成熟度分级与毕业条件 每个CNCF项目都需要有个成熟度等级,申请成为CNCF项目的时候需要确定项目的成熟度级别。 成熟度级别(Maturity Level)包括以下三种: sandbox(初级) incubating(孵化中) graduated(毕业) 是否可以成为CNCF项目需要通过Technical Oversight Committee (技术监督委员会)简称TOC,投票采取fallback策略,即回退策略,先从最高级别(graduated)开始,如果2/3多数投票通过的话则确认为该级别,如果没通过的话,则进行下一低级别的投票,如果一直到inception级别都没得到2/3多数投票通过的话,则拒绝其进入CNCF项目。 当前所有的CNCF项目可以访问https://www.cncf.io/projects/ 。 项目所达到相应成熟度需要满足的条件和投票机制见下图: 图 9.1.2:CNCF项目成熟度级别 TOC(技术监督委员会) TOC(Technical Oversight Committee)作为CNCF中的一个重要组织,它的作用是: 定义和维护技术视野 审批新项目加入组织,为项目设定概念架构 接受最终用户的反馈并映射到项目中 调整组件间的访问接口,协调组件之间兼容性 TOC成员通过选举产生,见选举时间表。 参考CNCF TOC:https://github.com/cncf/toc 参考 https://www.cncf.io https://www.cncf.io/about/charter/ https://github.com/cncf/landscape https://github.com/cncf/toc AT&T, Box, Cisco, Cloud Foundry Foundation, CoreOS, Cycle Computing, Docker, eBay, Goldman Sachs, Google, Huawei, IBM, Intel, Joyent, Kismatic, Mesosphere, Red Hat, Switch SUPERNAP, Twitter, Univa, VMware and Weaveworks join new effort to build and maintain cloud native distributed systems - cncf.io 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"cloud-native/cncf-charter.html":{"url":"cloud-native/cncf-charter.html","title":"CNCF 章程","keywords":"","body":"CNCF 章程 CNCF(云原生计算基金会)是 Linux 基金会旗下的一个基金会,加入 CNCF 等于同时加入 Linux 基金会(也意味着你还要交 Linux 基金会的份子钱),对于想加入 CNCF 基金会的企业或者组织首先要做的事情就是要了解 CNCF 的章程(charter),就像是作为一个国家的公民,必须遵守该国家的宪法一样。CNCF 之所以能在短短三年的时间内发展壮大到如此规模,很大程度上是与它出色的社区治理和运作模式有关。了解该章程可以帮助我们理解 CNCF 是如何运作的,当我们自己进行开源项目治理时也可以派上用场。 该章程最后更新于 2018 年 5 月 15 日,详见 https://www.cncf.io/about/charter/。下文中关于 CNCF 章程的介绍部分引用自 CNCF 是如何工作的,有改动。 下图是我根据 CNCF 章程绘制的组织架构图。 图 9.1.1.1:CNCF 组织架构图 1. CNCF 的使命 CNCF 没有偏离自己的主题,核心是解决技术问题:基金会的使命是创建并推动采用新的计算模式,该模式针对现代分布式系统环境进行了优化,能够扩展至数万个自愈式多租户节点。 所谓的云原生系统须具备下面这些属性: 应用容器化:将软件容器中的应用程序和进程作为独立的应用程序部署单元运行,并作为实现高级别资源隔离的机制。从总体上改进开发者的体验、促进代码和组件重用,而且要为云原生应用简化运维工作。 动态管理:由中心化的编排来进行活跃的调度和频繁的管理,从根本上提高机器效率和资源利用率,同时降低与运维相关的成本。 面向微服务:与显式描述的依赖性松散耦合(例如通过服务端点),可以提高应用程序的整体敏捷性和可维护性。CNCF 将塑造技术的发展,推动应用管理的先进技术发展,并通过可靠的接口使技术无处不在,并且易于使用。 2. CNCF 扮演的角色 CNCF 其实是在开源社区的基础上发挥着作用,应负责: a) 项目管理 确保技术可用于社区并且没有杂七杂八的影响 确保技术的品牌(商标和标识)得到社区成员的关注和使用,特别强调统一的用户体验和高水平的应用程序兼容性 b) 促进生态系统的发展和演进 评估哪些技术可以纳入云原生计算应用的愿景,鼓励社区交付这样的技术,以及集成它们,且要积极的推进总结进度。 提供一种方法来培养各个部分的通用技术标准 c) 推广底层技术和应用定义和管理方法,途径包括:活动和会议、营销(SEM、直接营销)、培训课程和开发人员认证。 d) 通过使技术可访问和可靠来为社区服务 旨在通过对参考架构进行明确定义的节奏,为每个组成部分提供完全集成和合格的构建。 3. CNCF 的价值观 CNCF 会极力遵循以下一些原则: 快速胜过磨叽:基金会的初衷之一就是让项目快速的发展,从而支持用户能够积极的使用。 开放!:CNCF 是以开放和高度透明为最高准则的,而且是独立于任何的其它团体进行运作的。CNCF 根据贡献的内容和优点接受所有的贡献者,且遵循开源的价值观,CNCF 输出的技术是可以让所有人使用和受益的,技术社区及其决策应保持高度透明。 公平:CNCF 会极力避免那些不好的影响、不良行为、以及 “按需付费” 的决策。 强大的技术身份:CNCF 会实现并保持高度的自身技术认同,并将之同步到所有的共享项目中。 清晰的边界:CNCF 制定明确的目标,并在某些情况下,要确定什么不是基金会的目标,并会帮助整个生态系统的运转,让人们理解新创新的重点所在。 可扩展:能够支持从小型开发人员中心环境到企业和服务提供商规模的所有部署规模。这意味着在某些部署中可能不会部署某些可选组件,但总体设计和体系结构仍应适用。 平台中立:CNCF 所开发的项目并不针对某个特定平台,而是旨在支持各种体系结构和操作系统。 4. 会员制 CNCF 中的会员包括白金、金牌、银牌、最终用户、学术和非赢利成员等级别,不同级别的会员在理事会中的投票权不同。 a) 白金会员:在 CNCF 理事会中任命 1 名代表,在理事会的每个次级委员会和活动中任命 1 名有投票权的代表,在网站可以突出显示;如果也是终端用户成员将继承终端用户成员的所有权利。 b) 金牌会员:基金会中每有 5 个金牌会员,该级别的会员就可以任命 1 名代表,最多任命 3 个;如果也是终端用户成员将继承终端用户成员的所有权利。 c) 银牌会员:基金会中每有 10 个银牌会员,该级别的会员就可以任命 1 名代表,最多任命 3 个;如果也是终端用户成员将继承终端用户成员的所有权利。 d) 终端用户:参加终端用户咨询社区;向终端用户技术咨询委员会中提名 1 名代表。 e) 学术和非赢利会员:学术和非营利会员分别限于学术和非营利机构,需要理事会批准。学术成员和非营利成员有权将其组织认定为支持 CNCF 使命的成员以及理事会确定的任何其他权利或利益。 5. 理事会 a) CNCF 理事会负责市场营销、业务监督和预算审批,不负责技术方面,除了与 TOC 配合确定 CNCF 工作范围、完成时间表 a)、更新 CNCF 网站 b) 负责日常事务 与 TOC 协商 CNCF 的整体范围 商标和版权保护 市场营销、布道和生态系统建设 创建和执行品牌承诺项目,如果需要的话 监督运营,业务发展 募资和财务管理 c) 理事会投票成员由会员代表和社区代表组成: 成员代表包括: 每名白金会员任命 1 名代表; 黄金和银牌成员当选代表。 技术社区代表包括: 技术监督委员会主席; 根据当时在任的理事会批准的程序从 CNCF 项目中选出两名提交者。 理事会可能会以白金会员比例的价格扩展白金会员资格,对年收入低于 5000 万美元的创业公司进行长达 5 年的逐年审计,这些公司被视为理事会的战略技术贡献者。 只有来自一组关联公司的人员可以担任会员代表。只有来自一组关联公司的人员可以担任技术社区代表。 d) 职责 批准预算,指导将所有收入来源筹集的资金用于技术、市场或社区投资,以推动 CNCF 基金的使命; 选举理事会主席主持会议,批准预算批准的支出并管理日常运作; 对理事会的决定或事项进行投票; 界定和执行基金会的知识产权(版权,专利或商标)政策; 通过活动、新闻和分析师宣传、网络、社交媒体以及其他营销活动进行直接营销和布道; 监督运营,业务发展; 建立并监督为推动 CNCF 的使命而创建的任何委员会; 根据 CNCF 要求(可能包括认证测试)建立并执行品牌合规计划(如有),以使用 TOC 建立的品牌标志; 采用商标使用准则或政策; 提供整体财务管理。 e) 基金会的收入用途 市场营销,用户扩展 CNCF 中的项目的采用 关键设施建设、运行和管理项目的基础设施 促进基于容器的计算使用 CNCF 中的项目实现 6. 技术监督委员会(TOC) a) 要求 CNCF 技术监督委员会,为了保持中立,达成了以下共识: 定义和维护 CNCF 的技术愿景。 批准由理事会制定的 CNCF 范围内的新项目,并为项目创建一个概念架构。 纠正项目的发展方向,决策删除或存档项目。 接受最终用户委员会的反馈并反映在项目中。 在科学管理的情况下调整组件的接口(在代码标准化之前实现参考)。 定义在 CNCF 项目中实施的常用做法(如果有的话)。 b) 技术监督委员会的构成 TOC 最多由 11 名成员组成。 选出的 TOC 成员将涵盖关键的技术领域:容器技术、操作系统、技术运维、分布式系统、用户级应用程序设计等。 理事会将选举 6 名 TOC 成员,最终用户 TAB 将选出 2 名 TOC 成员,非 Sandbox 项目的 Maitainer 选出 1 名 TOC 成员,TOC 成员再选出另外 2 名 TOC 成员。每个组都被定义为一个甄选小组(Selecting Group)。 如果超过 2 名 TOC 成员来自同一组关联公司,无论是在选举时还是来自后来的工作变更,他们将共同决定谁应该下台,或如果没有协商的依据,则应抽签决定。 c) 运营模式 TOC 会选举出 TOC 的主席来,此角色主要负责 TOC 的议程和召集会议。 TOC 期望定期的面对面讨论重要的热点问题。 TOC 可能会根据需要召开会议以讨论新出现的问题。可能会通过以下方式提出要进行 TOC 审查的问题: 任何的 TOC 成员 任何的理事会成员 CNCF 项目的维护者或顶级项目负责人 CNCF 执行董事 最终用户 TAB 获得多数票 保持透明:TOC 应举办定期的开放会议,所有项目相关的决定应该在会议、公共邮件列表、公共议题中做出。 简单的 TOC 问题可以通过简短的讨论和简单的多数表决来解决。TOC 讨论可通过电子邮件或 TOC 会议进行。 在对意见和可选虚拟讨论 / 辩论选项进行审查后,寻求共识并在必要时进行投票。 目的是让 TOC 在 TOC 和社区内寻找达成共识的途径。满足法定人数要求的会议的 TOC 决定应以超过 TOC 成员出席率的 50%的方式通过。 TOC 会议需要 TOC 总人数的三分之二法定人数进行表决或作出任何决定。如果 TOC 会议未能达到法定人数要求,可以进行讨论,但不应有任何投票或决定。 TOC 决定可以在没有会议的情况下以电子方式提出,但要通过表决则需要多少票数才能达到会议法定人数。在电子投票中,如果任何两名 TOC 成员要求召开会议讨论决定,则电子投票结束时无效,并且在会议结束后可以启动新的投票,以讨论决定已经完成。 d) 提名标准 获得 TOC 提名应该具备下面条件: 承诺有足够的可用时间参与 CNCF TOC 的活动。 在 CNCF 范围内展示了高水准的专业经验。 证明其有资格能够获得额外的工作人员或社区成员协助其在 TOC 的工作。 在讨论中保持中立,并提出 CNCF 的目标和成功与公司目标或 CNCF 中的任何特定项目保持平衡。 e) TOC 成员提名和选举程序 提名:甄选小组中的每个人最多可以提名两(2)人,其中最多一(1)个人来自同一组关联公司。每个被提名人必须同意参与才能被添加到提名列表中。 a) 提名需要最多一(1)页的提名议案,其中应包括被提名人的姓名,联系信息和证明被提名人在 CNCF 领域的经验的支持声明。 b) 理事会应确定 TOC 成员的提名,资格和选举的过程和时间表。 c) 在评估期内,至少应保留 14 个日历日,以便理事会和 TOC 成员可以与 TOC 提名人联系。 资格:在评估期之后,理事会和 TOC 成员应分别对每位被提名人进行投票,以验证被提名人是否符合资格标准。有效的投票至少需要 50%的参与。合格率超过 50%的被提名人为合格被提名人。 选举:如果合格提名人的数量等于或小于可供选择的 TOC 席位的数量,则在提名期结束后应批准合格提名人。如果合格的被提名人数量超过可以选举的 TOC 席位,则甄选小组应通过 Condorcet 投票选出 TOC 成员。Condorcet 投票应通过康奈尔在线服务(http://civs.cs.cornell.edu/)使用 Condorcet-IRV 方法运行。 TOC 选定的席位:TOC 选定的 TOC 成员可以提名并有资格,但在其席位需要选举时不能投票。 重试。如果合格候选人的数量少于选择小组可以选择的开放式 TOC 席位,则该小组应发起另一轮提名。 f) 约束条件 TOC 的成员任期为两年,交错式任期。 TOC 成员可能会被其他 TOC 成员的三分之二投票撤除,受影响的个人不能参加投票。 任何 TOC 成员连续 3 次缺席会议都将被自动暂停投票资格,直至连续参加两次会议。为避免疑义,暂停的 TOC 成员有资格在连续第二次会议中投票。 TOC 议程将由 TOC 制定。但是,预计最初的 TOC 讨论和决定将包括: 评估包含在 CNCF 中的技术 确定新技术纳入 CNCF 的接受标准 定义批准作为标准 API 的贡献技术的流程 找出需要进一步调查的直接差距 7. 最终用户社区 a) CNCF 的最终用户成员有权协调和推动 CNCF 用户作为 CNCF 设计的消费者的重要活动。任何作为最终用户的成员或非成员,每个 “最终用户参与者” 均可被邀请参加。最终用户参与者将帮助向技术咨询委员会和 CNCF 社区就与用户有关的主题提供意见。 b) 最终用户技术咨询委员会是由最终用户社区成员选举所产生。 c) 最终用户社区成员将获得 CNCF 执行董事的批准,或者 CNCF 执行董事缺席的话,则由 Linux 基金会执行董事来批准。 8. 最终用户技术咨询委员会(“最终用户 TAB”) a) 构成:最终用户 TAB 应由来自最终用户参与者的 7 名代表加上 TOC 的 1 名成员组成,以便于从最终用户 TAB 到 TOC 的晋级。 b) 选举:为了鼓励最终用户参与 CNCF,前 7 名最终用户会员可以委任 1 名代表参加初始最终用户 TAB,并将 CNCF 董事分配给任何最终用户参与者的任何剩余席位。在第一年之后,所有最终用户参与者可以提名 1 名代表并且最终用户社区应该投票选择使用当前最终用户 TAB 批准流程的最终用户 TAB 成员。 c) 经过三分之二投票通过后最终用户 TAB 可以更改最终用户社区的大小,前提是至少有 7 名可能的代表。 d) 最终用户代表应当基于业务和技术敏锐度提名。候选人应该具备建设和运营体现 CNCF 原则的基础设施和应用方面的重要实践经验。 e) 最终用户 TAB 将讨论和推进主题,重点是找出 TOC 和 CNCF 开发者社区的差距并提出优先事项。 f) 也会侧重于主动推进最终用户关心的话题,促进 CNCF 的市场采用,为最终用户举办会议或向理事会提供咨询。 g) 如果最终用户 TAB 有意愿的话,它可以批准小组委员会特别兴趣小组 (“SIG”)来解决行业或专业话题。 h) 最终用户 TAB 是技术监督委员会的主要输入方,应与技术监督委员会的其他输入方和反馈一起作出决策和计划。这些建议只是建议性的,在任何时候,最终用户 TAB 的建议都不能用于命令或指导任何 TOC 或项目参与者采取任何行动或结果。 9. CNCF 项目 通常情况下,是由 CNCF 的成员公司、开源社区的成员将项目先是带到 CNCF 的技术监督委员会来进行讨论,然后决定是否被 CNCF 接纳。要贡献给 CNCF 的项目必须是经过技术监督委员会制定的标准的,之后当然还要经过理事会的批准。CNCF 的目标是希望捐赠给 CNCF 的项目和 CNCF 已有的项目在一定程度上是有关联的,而且是可集成的。 和 CNCF 关联起来有以下三种方法: 已经在 CNCF 的纳管之下,毕竟 CNCF 是中立的,致力于成为大家的协作的归属地。 a) 项目的方方面面都交由 CNCF 来打理 b) 项目是由 CNCF 来进行市场推广的 c) 项目是解决云原生计算问题的核心组件,如 Kubernetes、Mesos、etcd 等等 通过 API 或规范与 CNCF 相关联 XM a) 包括 CNCF 可能提供或启用多个选项的组件 b) 该项目被称为 CNCF 集成的一个组成部分,而不是由 CNCF 主办的项目 c) 集成和合规性由 API 或规范定义 d) 项目或组件的开发是由上游社区所开发,而且保持一定的活跃度 CNCF 使用到的 a) 项目或组件完全根据 OSI 批准的开源许可证进行授权,并且管理良好,并在 CNCF 中被用作组件。 b) 项目并没有由 CNCF 来进行市场推广 c) 项目或组件的开发是由上游社区所开发,而且保持一定的活跃度 现有的开源项目应该继续保持其现有的技术治理结构,以保持凝聚力和速度。但是由技术监督委员会批准之后,则会适当的进行一些适应。 应根据个人的水平和贡献期限在项目间建立一个达到提交者地位的标准协议。因为提交者是维护者的选拔人才池,有了一定程度的贡献,且经过同行们的认可,提交者就可晋升为维护者。 CNCF 启动的新开源项目应完成 TOC 采纳的项目建议模板,并由 TOC 批准纳入 CNCF。TOC 成员应有充足的时间讨论和审查新的项目建议书。新的项目建议书应包括项目中的角色细节,为项目提出的治理,并确定与 CNCF 的角色和价值观保持一致。 10. 市场委员会 a) 构成,市场委员会将向所有成员开放参与,应选举市场委员会主席制定会议议程,进行一般的讨论,并帮助委员会实现其目标。市场委员会应尽可能寻求共识。在市场委员会中无法达成共识的任何问题应提交给理事会。 b) 职责,市场委员会代表理事会负责设计,开发和执行相关的市场工作。 c) 如果市场委员会变得太大而无法有效运作,市场委员会可以选择选举市场董事,并将决策权委托给市场董事。 11. 知识产权政策 a) 任何加入到 CNCF 的项目都必须将其拥有的商标和徽标资产的所有权转让给 Linux 基金会。 b) 每个项目应确定是否需要使用经批准的 CNCF CLA。对于选择使用 CLA 的项目,所有代码贡献者将承担 Apache 贡献者许可协议中规定的义务,只有在必要时才作出修改,以确定 CNCF 是捐赠的接受者,并且应由理事会批准。请参阅 https://github.com/cncf/cla 上提供的 CNCF 参与者许可协议。 c) 所有向 CNCF 提交的新入站代码应当(i)附有开发者原始证书签名(http://developercertificate.org 和(ii)根据 Apache 许可证 2.0 版(可从 http://developercertificate.org 和 http://www.apache.org/licenses/LICENSE-2.0 获得)该许可证除了并且不得取代根据上文(b)规定的供款许可协议所承担的义务。 d) 所有出站代码将在 Apache 许可证 2.0 版下提供。 e) 所有评估纳入 CNCF 的项目都必须获得 OSI 批准的开源许可证的完全许可,如果 CNCF 中包含的项目的许可证不是 Apache 许可证 2.0 版,则需要获得理事会的批准。 f) 所有文档将由 CNCF 根据知识共享署名 4.0 国际许可证来提供。 g) 如果需要替代入站或出站许可证以符合杠杆式开放源代码项目的许可证或为实现 CNCF 的使命而需要其他许可证,理事会可以批准使用替代许可证对于例外情况下的接受或提供的项目捐赠。 12. 反托拉斯指南 a) 所有成员均应遵守 http://www.linuxfoundation.org/antitrust-policy 上提供的 Linux 基金会反托拉斯政策中规定的 Linux 基金会的要求。 b) 所有成员都应鼓励任何能够满足成员要求的组织的公开参与,而不论其竞争利益如何。换言之,理事会不应根据除用于所有成员的标准,要求或原因之外的任何标准,要求或理由寻求排除成员。 13. 行为准则 所有参与者都须同意遵守 Linux 基金会行为准则。 TSC 可以投票通过自己的 CNCF 行为准则。 14. 关联公司 a) 定义: “子公司” 是指会员直接或间接拥有所涉实体超过百分之五十有投票权的证券或会员权益的任何实体; “关联公司” 是指任何控制或由成员控制的实体,或者与成员一起受第三方共同控制的实体,在所有情况下,直接或间接拥有多于所有权的控制权; “关联公司” 是指各成员的关联公司。 b) 只有执行了参与协议的法人实体及其子公司才有权享有该会员的权利和特权;但条件是该成员及其子公司应作为单一成员共同对待。 c) 只有一名属于一组关联公司的成员有权一次性任命或提名理事会代表参加类别选举。 d) 如果会员本身是会员或赞助商的基金会,联盟,开源项目,会员组织,用户组或其他实体,那么授予该成员的权利和特权只能扩展到该成员的员工代表,而不能扩展到其成员或发起人,除非理事会不时在特定情况下另行批准。 e) 会员资格不得转让,不可转让、也不能转让,除非现有会员将其现有的会员利益和义务转让给其大部分业务和 / 或资产的继任者,无论是通过合并,出售还是其他方式;只要受让人同意遵守 CNCF 的章程以及 Linux Foundation 成员所需的章程和政策。 15. 预算 a) 理事会应批准年度预算,绝不会承诺超出筹集的资金。预算应与 Linux 基金会的非营利性使命相一致。 b) Linux 基金会应定期报告预算支出。 16. 常规和管理费用 a) Linux 基金会应保管任何费用,资金和其他现金收据。 b) 一般和行政(G&A)费用将用于筹集资金以支付财务、会计和运营费用。 G&A 费用应等于 CNCF 首期总收入 1,000,000 美元的 9%以及 CNCF 总收入超过 1,000,000 美元的 6%。 17. 一般规则和操作 参与 CNCF 应做到: a) 展示与开源项目开发人员社区进行协调的计划和方法,包括关于代表社区的品牌、徽标和其它标志性的主题; b) 以专业的方式体现维持社区的凝聚力为目标,同时还要保持 Linux 基金会在开放源代码软件社区的善意和尊重; c) 尊重所有商标所有人的权利,包括任何品牌和使用准则; d) 参与 Linux 基金会的所有新闻和分析师关系活动; e) 根据要求,向 Linux 基金会提供关于项目参与的信息,包括参加项目赞助活动的信息; f) 直接参与到基金会旗下的任何站点; g) 根据理事会批准的规则和程序进行运营,前提是这些规则和程序不得与 Linux 基金会的宗旨和政策不一致,并且不得损害 Linux 基金会。 18. 修正案 本章程可以通过所有理事会成员的三分之二票数(不包括弃权)进行修改,前提是任何此类修改不得与 Linux 基金会的目的或政策不一致,并且不得对 Linux 基金会产生不利影响。 时间表 A:提出 CNCF 范围愿景 CNCF 背后的首要目标是支持和加速 “云原生计算” 的采用。以下内容是初步范围,旨在阐明 CNCF 将努力实施的 “云原生计算” 的核心概念。该初始范围应成为发布在 CNCF 网站上的文档。 CNCF 社区坚信云原生计算包含三个核心属性: 容器化包装和分发 动态调度 面向微服务 注:关于云原生的定义正在重新设定中,已经与上述不同了。 云原生计算系统支持基于这些核心属性的计算,并包含以下理想: 开放性和可扩展性 在标准化子系统的边界处定义良好的 API 应用程序生命周期管理的最小障碍 图 9.1.1.2:云原生的理想分层架构 因为上述时间表已经有些过时了,CNCF 成立已经有三年时间了,正在规划新的方案。 参考 https://www.cncf.io/about/charter/ 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"cloud-native/cncf-sig.html":{"url":"cloud-native/cncf-sig.html","title":"CNCF 特别兴趣小组(SIG)说明","keywords":"","body":"CNCF特别兴趣小组(SIG)说明 本文译自 CNCF Special Interest Groups(SIGs)最终草案v1.0。 本提案创作于2018年11月至2019年1月期间,由CNCF TOC和”Contributors Primary Author“ Alexis Richardson,Quinton Hoole共同起草。 总体目的 为了我们的使命,在扩展CNCF技术版图、增加用户社区贡献的同时保持其完整性和提高贡献质量。 具体目标 加强项目生态系统建设以满足最终用户和项目贡献者的需求。 识别CNCF项目组合中的鸿沟(gap),寻找并吸引项目填补这些鸿沟。 教育和指导用户,为用户提供无偏见、有效且实用的信息。 将注意力和资源集中在促进CNCF项目的成熟度上。 明确项目、CNCF项目人员和社区志愿者之间的关系。 吸引更多社区参与,创建有效的TOC贡献和认可的入口。 在减少TOC在某些项目上工作量的同时保留选举机构的执行控制和音调完整性。 避免在供应商之间建立政治平台。 介绍 CNCF SIG将监督和协调与最终用户和(或)项目需求的逻辑领域相关的利益。这些领域如安全性、测试、可观察性、存储、网络等。通常由一组CNCF项目来满足SIG监督的领域,也可能是多个项目共享的跨领域特征组(如安全性和可观察性)。 SIG是: 是一个长期存在的群体,向技术监督委员会报告 主要由相关领域的公认专家领导,并得到其他贡献者的支持 CNCF SIG以Kubernetes SIG为模型,旨在最小化差异以避免混淆——此处描述了两者之间不可避免的差异。 SIG的职责与权利 CNCF SIG在TOC的指导下,提供高质量的专业技术知识、无偏见的信息及其领域内的领导力。TOC作为知情方和高效的执行委员会,利用这一输入来选择和推广适当的CNCF项目与实践,并向最终用户和云原生社区传播高质量的信息。可以很明确的说,SIG对CNCF项目没有直接的权力。特别是,CNCF SIG的创建并没有改变现有已成功实施的章程目标,即“项目......轻松地受技术监督委员会管辖”。 SIG应努力向TOC提供易于理解和可投票的“提议(proposition)”,提议需要有明确的书面证据支持。这些提议可以是:“基于此书面尽职调查“或”根据明确的目标和证据来批准这个landscape文件“。SIG提供给TOC的信息和建议必须高度准确和公正,这一点至关重要,这也是受整体上改进CNCF的目标所驱动,而不是使一个项目或公司受益于其他项目或公司。我们相信涨潮会抬升所有船只,这是我们的目标。 之所以这样设计是考虑到: TOC是仲裁者和撰写者,可能总是会干预和驳回提议。 SIG是受人尊敬的人才。 SIG可以选择组建有时间限制的集中式工作组来实现某些职责(例如,制作特定的教育白皮书或组合空白分析报告)。工作组应有明确记录的章程、时间表(通常最多几个季度)和一套可交付的成果。一旦时间表过去或成果交付,工作组就会解散重组。 特定SIG责任 项目处理: 了解并记录该领域内项目的宏观(high-level)路线图,包括CNCF和非CNCF项目。确定项目前景中的差距。 对于CNCF的项目,执行健康检查(health check)。 发掘和展出对候选项目。 帮助候选项目准备向TOC提交。 每个CNCF项目将由TOC分配给一个合适的SIG。 最终用户教育(输出) 提供最新、高质量、无偏见且易于使用的材料,帮助最终用户理解并有效采用SIG领域内的云原生技术和实践,例如: 白皮书、演示文稿、视频或其他形式的培训、阐明术语、比较不同的方法,可用的项目或产品、常见或推荐的做法、趋势、说明性的成功和失败等。 信息应尽可能基于研究和事实收集,而不是纯粹的营销或推测。 最终用户输入收集(输入) 收集有用的最终用户输入和有关期望、痛点、主要用例等的反馈。 将其编译成易于使用的报告和(或)演示文稿,以帮助项目进行功能设计、优先级排序、UX等。 社区支持 SIG是开放式组织,提供会议、会议议程和笔记,邮件列表以及其他公开通信。 SIG的邮件列表、SIG会议日历和其他通信文件将公开发布和维护。 作为TOC的值得信赖的专家顾问 对新项目和毕业项目进行技术尽职调查,并就调查结果向TOC提出建议。 参与或定期检查其所在领域的项目,并根据需要或应要求向TOC提供有关健康、状态和措施(如果有)的建议。 SIG章程: 每年正式审核,并由TOC批准。章程必须明确表达: 哪些属于SIG的范围,哪些不属于; 与其他CNCF SIG或其他相关团体交流,明确是否有重叠; 如何运作和管理,具体是否以及如何偏离TOC提供的标准SIG操作指南。不鼓励偏离这些指导原则,除非有TOC批准的对这种分歧的良好且记录良好的原因。 请参阅CNCF SIG的责任示例。 运营模式 重要提示:每个SIG都由CNCF执行人员的指定成员提供支持,该成员负责与CNCF执行董事(Executive Director)的联络、SIG的沟通和绩效,并向理事会(Governing Board)和TOC提交季度和年度报告。 作为起点,我们受到CNCF OSS项目和K8S SIG的启发。这意味着最小的可行治理和基于社区的组织。 SIG组建、领导和成员构成 SIG由TOC组建。初始SIG列在下面,并将根据需要随时间进行调整。如果社区成员认为需要增加额外的SIG,应该向TOC提出,并给出明确的理由,最好是由志愿者领导SIG。TOC希望拥有最小的可行SIG数量,并且所有SIG都是高效的(与具有大量相对无效的SIG的“SIG蔓延(SIG sprawl)”相反)。 SIG有三名联席主席,他们是TOC贡献者,该领域的公认专家,并且有能力共同领导SIG以产生无偏见信息。 SIG有一名TOC联络员,作为TOC的投票成员,在TOC或SIG主席认为有必要提交TOC时,作为额外的非执行主席。 SIG拥有多名技术领导者,他们被公认为(1)SIG领域的专家,(2)SIG领域的项目负责人(3)展示了提供产生SIG所需的无偏见信息所需的平衡技术领导能力。采取独立主席和技术主管角色的原因主要是想将行政职能的责任与深层技术职能和相关的时间承诺和技能组合分开。在适当的情况下,个人可以同时担任两种角色(见下文)。 强烈鼓励SIG内部的思想和兴趣多样性。为此,TOC将主动阻止绝大多数技术主管来自单一公司、市场细分等的绝大多数(⅔或更多)主席。 SIG成员是自己任命的,因此一些SIG工作由TOC贡献者和社区的志愿者完成。为了识别随着时间的推移对SIG做出持续和有价值贡献的成员,可以创建SIG定义和分配的角色(例如,抄写员、培训或文档协调员等)。 SIG应该记录这些角色和职责是什么,执行者是谁,并让SIG领导批准。 SIG成员角色 主席 每周/两周/每月轮转的三个活动席位。 主要执行管理功能,包括收集和编制每周(双周)议程的主题、主持会议、确保发布高质量的会议记录,以及跟踪和解决后续行动。 如果有人有时间和能力同时担任这两个角色,只要TOC和SIG成员满意,则可以由技术主管兼任。 技术主管 领导SIG领域的项目。 是否有时间和能力对项目进行深度技术探索。项目可能包括正式的CNCF项目或SIG所涵盖领域的其他项目。 其他命名角色 由SIG命名和定义(例如抄写员、公关主管、文档/培训负责人等) 由绝大多数主席批准。 其他成员 自我任命 可能没有明确的角色或职责,也没有正式分配的角色(见上文)。 除了指定的角色外,不得为公众造成他们在SIG中拥有任何权限或正式职责的印象。 选举 TOC提名主席 在TOC的2/3多数票后,分配了主席 任期2年但交错排列,使至少有一个席位能够保持连续性 TOC和主席提名技术主管 技术主管需要获得TOC的2/3多数票和SIG主席的2/3多数票 在获得TOC的2/3多数票通过后,SIG主席和技术主管可以被随时取消任命 治理 所有SIG都继承并遵循CNCF TOC操作原则。 SIG必须有一个记录在案的治理流程,鼓励社区参与和明确的指导方针,以避免有偏见的决策。 注意:这里的目标是与CNCF项目的“最小可行”模型保持一致,并且只需要这样的治理,而不是任何过于繁琐的事情 如果符合CNCF运营原则,他们可能会像OSS项目一样,随着时间的推移逐步实施一系列实践。 与CNCF项目一样,所有例外和争议均由TOC和CNCF员工帮助处理 预算和资源 此时没有正式的系统预算,除了CNCF执行人员承诺提供指定人员作为联络点。 正如CNCF项目可能需要通过CNCF提供的“帮助”,SIG可以通过ServiceDesk求人办事。 退休 在SIG无法建立履行职责和(或)定期向TOC报告的情况下,TOC将: 考虑在3个月后解散(retire)SIG 必须在6个月后解散SIG TOC可以通过2/3多数票通过对SIG的“不信任(no confidence)”。 在这种情况下,TOC可以投票解散或重组SIG。 初始SIG 为了开始该过程,TOC提出以下SIG和分配给每个SIG的项目。显然,所有这些SIG都不会在一夜之间完全形成或立即开始运作,因此TOC本身将履行尚未形成的SIG的职责,直到SIG形成为止。 然而,我们可以立即指定TOC的一个投票成员作为每个SIG的联络员,并优先考虑SIG的组建顺序,立即从最紧迫的SIG开始。 命名(待定) 领域 当前的CNCF项目 Traffic networking, service discovery, load balancing, service mesh, RPC, pubsub, etc. Envoy, Linkerd, NATS, gRPC, CoreDNS, CNI Observability monitoring, logging, tracing, profiling, etc. Prometheus, OpenTracing, Fluentd, Jaeger, Cortex, OpenMetrics, Governance security, authentication, authorization, auditing, policy enforcement, compliance, GDPR, cost management, etc SPIFFE, SPIRE, Open Policy Agent, Notary, TUF, Falco, App Dev, Ops & Testing PaaS, Serverless, Operators,... CI/CD, Conformance, Chaos Eng, Scalability and Reliability measurement etc. Helm, CloudEvents, Telepresence, Buildpacks Core and Applied Architectures orchestration, scheduling, container runtimes, sandboxing technologies, packaging and distribution, specialized architectures thereof (e.g. Edge, IoT, Big Data, AI/ML, etc). Kubernetes, containerd, rkt, Harbor, Dragonfly, Virtual Kubelet Storage Block, File and Object Stores, Databases, Key-Value stores etc. TiKV, etcd, Vitess, Rook TOC和CNCF工作人员将一起起草一套上述初步章程,并征集/选举合适的席位。 附录A:工作示例 - CNCF治理SIG 请参阅单独文档。 参考 CNCF Special Interest Groups(SIGs) 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"cloud-native/cncf-sandbox-criteria.html":{"url":"cloud-native/cncf-sandbox-criteria.html","title":"开源项目加入 CNCF Sandbox 的要求","keywords":"","body":"开源项目加入CNCF Sandbox的要求 CNCF Project Proposal Process 中指出开源项目要想加入 CNCF 必须满足以下条件: 项目名称必须在 CNCF 中唯一 项目描述(用途、价值、起源、历史) 与 CNCF 章程一致的声明 来自 TOC 的 sponsor(项目辅导) 成熟度模型评估(参考 CNCF Graduation Criteria) license(默认为 Apache 2) 源码控制(Github) 外部依赖(包括 license) 创始 committer(贡献项目的时长) 基础设施需求(CI/CNCF集群) 沟通渠道(slack、irc、邮件列表) issue 追踪(GitHub) 网站 发布方法和机制 社交媒体账号 社区规模和已有的赞助商 用户、使用规模、是否用在生产环境,要有证据说明 svg 格式的项目 logo 项目接纳过程 整个流程比较复杂,持续时间也不比较久,如 CNCF 提供的这张图所示。 图 9.1.3.1:sandbox 流程 大体流程如下: 通过 GitHub Issue 提交 proposal TOC 确认项目分类,归类到一个 CNCF SIG 中(两周) SIG 评估(1到 2 个月) TOC review TOC 拉票,至少 3 票(2 个月) 治理和法律问题(CNCF 来处理) 参考 CNCF Project Proposal Process - github.com 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"cloud-native/cncf-project-governing.html":{"url":"cloud-native/cncf-project-governing.html","title":"CNCF 中的项目治理","keywords":"","body":"CNCF中的项目治理 CNCF 根据“鸿沟理论”将其托管的项目分成三个成熟阶段,并设置了项目晋级到更高阶段的标准。 “鸿沟理论”是由Geoffrey A. Moore提出的高科技产品的市场营销理论。新技术要想跨越鸿沟,必须能够实现一些跨越式的发展,拥有某一些以前不可能实现的功能,具有某种内在价值并能够赢得非技术人员的青睐。 图 9.1.4.1:CNCF 项目的成熟度分类 目前处于沙箱、孵化中、已毕业项目的数量比例为5:16:13,详见 https://cncf.io/projects。其中沙箱(sandbox)项目因为其处于早期阶段并没有直接在上面的链接页面中列出,而是一个单独的 Sandbox 页面,因为 CNCF 为 sandbox 阶段的项目会谨慎背书。 纳入CNCF开源版图的项目需要符合其对云原生的定义 CNCF 中托管的开源项目要符合云原生定义: 云原生技术有利于各组织在公有云、私有云和混合云等新型动态环境中,构建和运行可弹性扩展的应用。云原生的代表技术包括容器、服务网格、微服务、不可变基础设施和声明式API。 这些技术能够构建容错性好、易于管理和便于观察的松耦合系统。结合可靠的自动化手段,云原生技术使工程师能够轻松地对系统作出频繁和可预测的重大变更。 云原生计算基金会(CNCF)致力于培育和维护一个厂商中立的开源生态系统,来推广云原生技术。我们通过将最前沿的模式民主化,让这些创新为大众所用。 项目运作流程 下图演示了开源项目加入 CNCF 后的整个运作流程。 图 9.1.4.2:CNCF中的项目运作 开源项目如何加入 CNCF 开源项目所支持的公司成为 CNCF 会员 开源项目满足 CNCF 的要求(见后文) 在 GitHub 上提交proposal(GitHub Issue)列举项目介绍、现状、目标、license、用户与社区等 由 Chris Aniszczyk 安排该项目在某个TOC双月会议上介绍给 TOC 成员 1.TOC 会将开源项目指定到某个 SIG 中 项目获得两个TOC成员的赞成可进入sandbox(也可以直接获得2/3多数TOC 投票进入Incubating状态) 知识产权转移给 CNCF CNCF 安排博客撰写、PR等 每年一次评审,晋升到 incubating需要2/3的 TOC 成员投票赞成;至少3家用户成功在生产上使用;通过TOC的尽职调查;贡献者数量健康稳定 Sandbox 中的项目没有时效性质,可能永远都无法进入incubating 状态,被CNCF谨慎宣传 CNCF 开源项目成熟度演进 CNCF 的开源项目遵循如下图所示的成熟度演进。 图 9.1.4.3:CNCF项目成熟度级别 加入Sandbox只需要2个TOC成员赞成 成熟一点的项目可以直接进入incubating阶段,但是 CNCF 会控制不同阶段的项目比例 晋级到Incubating或Graduated 需要至少2/3的 TOC成员(6名或以上)投票赞成 每年将评审一次 开源项目加入 CNCF 的最低要求(Sandbox) 一个开源项目要想加入 CNCF 必须满足以下要求: 项目名称必须在 CNCF 中唯一 项目描述(用途、价值、起源、历史) 与 CNCF 章程一致的声明 来自 TOC 的 sponsor(项目辅导) license(默认为 Apache 2) 源码控制(Github) 网站(英文) 外部依赖(包括 license) 成熟度模型评估(参考 开源项目加入CNCF Sandbox的要求) 创始 committer(贡献项目的时长) 基础设施需求(CI/CNCF集群) 沟通渠道(slack、irc、邮件列表) issue 追踪(GitHub) 发布方法和机制 社交媒体账号 社区规模和已有的赞助商 svg 格式的项目 logo 由 Sandbox 升级到 Incubating 的要求 通过 TOC 的尽职调查 至少有 3 个独立的终端用户在在生产上使用该项目:一般在项目的官网列举实际用户 足够健康数量的贡献者:项目的 GitHub 上有明确的 committer 权限划分、职责说明及成员列表,TOC 将根据项目大小来确认多少committer才算健康 展示项目在持续进行、良好的发布节奏、贡献频率十分重要 由Incubating升级到Graduated的要求 满足 Sandbox 和 Incubating 的所有要求 至少有来自两个组织的贡献者 明确定义的项目治理及 committer 身份、权限管理 接受 CNCF 的行为准则,参考Prometheus 获得CII 最佳实践徽章 在项目主库或项目官网有公开的采用者的 logo 参考归档的 Review:https://github.com/cncf/toc/tree/master/reviews 参考 鸿沟理论 - jianshu.com CNCF Graduation Criteria v1.2 - github.com 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"cloud-native/cncf-ambassador.html":{"url":"cloud-native/cncf-ambassador.html","title":"CNCF Ambassador","keywords":"","body":"CNCF Ambassador CNCF Ambassador(CNCF 大使),人员名单详见 https://www.cncf.io/people/ambassadors/,笔者很荣幸作为第二位成为 CNCF Ambassador 的中国人。 如何成为 CNCF Ambassador 可以通过以下方式成为 CNCF Ambassador: 成为 CNCF 会员或对成为某个 CNCF 的项目的贡献者 以 contributor、blogger、演讲者等身份参与 CNCF 社区项目 在社区中演讲或撰写博客 主持云原生社区 meetup 捷径 只要通过组织和举办推广 CNCF 推广的技术相关的活动即可,具体步骤如下: 在 meetup.com 上创建一个 group(费用大概半年$42) 以策展人名义组织与 CNCF 提倡的云原生主题相关的 meetup 将活动加入到 CNCF group(https://www.meetup.com/pro/cncf)和为活动申请使用 CNCF logo(https://github.com/cncf/meetups#how-to-apply) 申请成为 CNCF Ambassador:https://github.com/cncf/ambassadors 附上自己最近三个月内举办的 meetup 链接(CNCF 只认 meetup.com 里的活动) 关于 CNCF meetup 的更多信息请访问:https://github.com/cncf/meetups/ 成为 CNCF 大使有什么好处? 这是一个被经常问到的问题,毕竟全球各地的 CNCF 大使推广云原生技术,总得给他们一些甜头。以下是成为 CNCF 大使的好处: 组织社区聚会可以报销 $150/月 可按年度申请 CNCF 项目的贴纸 CNCF 会议折扣 免费参加 CNCF CKA/CKAD 考试 一次在 CNCF Store 免费购买纪念品的权利 支持与当地发现演讲者的聚会和活动 在云原生行业活动中演讲(差旅费用报销,需申请) 发布博客的机会(CNCF 博客、Kubernetes 博客及其他业界知名平台) 社交媒体推广支持 参考: https://github.com/cncf/ambassadors https://www.cncf.io/people/ambassadors/ 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"cloud-native/cnc.html":{"url":"cloud-native/cnc.html","title":"云原生社区","keywords":"","body":"云原生社区 云原生社区正式成立于 2020 年 5 月 12 日,由 Jimmy Song 和他的伙伴们一起发起成立。这是一个有技术、有温度、有情怀的开源社区。由一群开源的狂热爱好者自发成立,秉持 “共识、共治、共建、共享” 的原则。社区的宗旨是:连接、中立、开源。立足中国,面向世界,企业中立,关注开源,回馈开源。了解更多请访问云原生社区官网:https://cloudnative.to。 成立背景 Software is eating the world. —— Marc Andreessen “软件正在吞噬这个世界” 已被大家多次引用,随着云原生(Cloud Native)的崛起,我们想说的是 “Cloud Native is eating the software”。随着越来越多的企业将服务迁移上云,企业原有的开发模式以及技术架构已无法适应云的应用场景,其正在被重塑,向着云原生的方向演进。 那么什么是云原生?云原生是一系列架构、研发流程、团队文化的最佳实践组合,以此支撑更快的创新速度、极致的用户体验、稳定可靠的用户服务、高效的研发效率。开源社区与云原生的关系密不可分,正是开源社区尤其是终端用户社区的存在,极大地促进了以容器、服务网格、微服务等为代表的云原生技术的持续演进! 随着云计算的不断发展,云原生技术在全球范围内变得越来越受关注,同时国内社区同学也展现了对云原生技术热爱。近些年中国已经孕育众多的云原生技术爱好者,也有自发组织的一些相关技术交流和 meetup,同时在云原生领域也涌现了众多优秀的开源项目,在这样的背景下,一个有理想,有组织,有温度的云原生社区应运而生。 加入社区 加入云原生社区,你将获得: 更接近源头的知识资讯 更富有价值的人际网络 更专业个性的咨询解答 更亲近意见领袖的机会 更快速高效的个人成长 更多知识分享曝光机会 更多行业人才挖掘发现 关注云原生社区微信公众号,进入公众号后台,点击 “加入我们”。 图 9.2.1:云原生社区公众号二维码 参考 云原生社区成立 - cloudnative.to 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"cloud-native/certification.html":{"url":"cloud-native/certification.html","title":"认证及培训","keywords":"","body":"认证及培训 随着云原生生态的不断发展壮大,业界缺乏相应的人才储备及知识积累,各种认证及培训则如雨后春笋般出现。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"appendix/about-kcsp.html":{"url":"appendix/about-kcsp.html","title":"认证 Kubernetes 服务提供商(KCSP)说明","keywords":"","body":"认证Kubernetes服务提供商(KCSP)说明 云原生计算基金会(CNCF)负责维护并整合Kubernetes和Prometheus之类的开源技术,今天它在开源峰会上宣布了22多家Kubernetes认证服务提供商(KCSP)的创始成员名单。KCSP是通过初审的企业组织,它们在帮助企业成功地采用Kubernetes方面有着丰富经验。此外,专业人员个人现在可以注册报名新的认证Kubernetes管理员(CKA)计划和考试。 KCSP的创始成员包括CNCF和Linux基金会的下列成员: 埃森哲 博思艾伦 Bitnami Canonical Container Solutions CoreOS Ghostcloud Giant Swarm Heptio 华为 IBM inwinSTACK Inc. LiveWyer Mirantis RX- M LLC 三星SDS Stackpointcloud Supergiant Treasure Data KCSP计划的适用对象是通过初审的服务提供商,它们为踏上Kubernetes之旅的公司企业提供Kubernetes支持、咨询、专业服务和培训。KCSP计划确保企业得到它们在寻求的支持,从而比以前更迅速、更高效地部署新的应用程序,同时确保有一家值得信赖、经过审查的合作伙伴可以支持其生产和运营方面的要求。 想成为KCSP,需要至少三名工程师通过认证Kubernetes管理员 CKA 考试,能够证明在Kubernetes社区从事活动(包括积极贡献代码),以及支持企业最终用户的商业模式,包括将工程师派驻客户现场。 参考 CNCF 宣布首批 Kubernetes 认证服务提供商 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"appendix/about-cka-candidate.html":{"url":"appendix/about-cka-candidate.html","title":"认证 Kubernetes 管理员(CKA)说明","keywords":"","body":"认证 Kubernetes 管理员(CKA) 这是 CNCF 的官方认证,详情请看官方介绍。 认证详情 在3~4小时内用命令行进行排障, 解决问题, 相关知识点和权重 Installation, Configuration & Validation 安装,配置和验证12% 设计一个k8s 集群 安装k8s master 和 nodes 配置安全的集群通信 配置高可用的k8s集群 知道如何获取k8s的发行的二进制文件 提供底层的基础措施来部署一个集群 选择一个网络方案 选择你的基础设施配置 在你的集群上配置端对端的测试 分析端对端测试结果 运行节点的端对端测试 Core Concepts 核心概念 19% 理解k8s api原语 理解k8s 架构 理解services和其它网络相关原语 Application Lifecycle Management 应用生命周期管理 8% 理解Deployment, 并知道如何进行rolling update 和 rollback 知道各种配置应用的方式 知道如何为应用扩容 理解基本的应用自愈相关的内容 Networking 网络 11% 理解在集群节点上配置网络 理解pod的网络概念 理解service networking 部署和配置网络负载均衡器 知道如何使用ingress 规则 知道如何使用和配置cluster dns 理解CNI Storage 存储 7% 理解持久化卷(pv),并知道如何创建它们 理解卷(volumes)的access mode 理解持久化卷声明(pvc)的原语 理解k8s的存储对象(kubernetes storage objects) 知道如何为应用配置持久化存储 Scheduling 调度 5% 使用label选择器来调度pods 理解Daemonset的角色 理解resource limit 会如何影响pod 调度 理解如何运行多个调度器, 以及如何配置pod使用它们 不使用调度器, 手动调度一个pod 查看和显示调度事件events 知道如何配置kubernetes scheduler Security 安全 12% 知道如何配置认证和授权 理解k8s安全相关原语 理解如何配置网络策略(network policies) 配合使用镜像的安全性 定义安全上下文 安全的持久化保存键值 Cluster Maintenance 集群维护 11% 理解k8s的集群升级过程 促进操作系统的升级 补充备份和还原的方法论 Logging / Monitoring 日志/监控 5% 理解如何监控所有的集群组件 理解如何监控应用 管理集群组件日志 管理应用日志 Troubleshooting 问题排查 10% 排查应用失败故障 排查控制层(control panel)故障 排查工作节点(work node)故障 排查网络故障 考试说明和checklist 注册考试 检查系统要求 选择考试日期 获取考生手册 验证姓名 阅读重要提示 参加考试 考试期间, 除了考试系统界面上的内容和按钮能操作外, 其它的最好不要动。所有考试无关的内容和资料不允许出现, 包括手机, 参考书等等。 考试的时候会提供一个Linux Server Terminal , 是基于Gateone 的web终端,一些快捷键可能跟一般的linux 终端软件不一样, 请提前了解和体验 考试由31个问题组成, 需要你用命令来解决这些问题 有8套环境, 31个问题在这8套环境里进行操作。 平均每套环境有3~5个问题。 图 9.3.2.1:cka-question 通过kubectl config use−context 来切换不同的环境 (集群使用的的k8s 1.6.2版本) 获取集群信息,要指定对应的context,如 kubectl get no −l name=hk8s−node−1 −−context=hk8s 参考 官方考试手册 FAQ 考试费用? 300美元, 可以重考一次 考试时间长度? 最长4个小时,依赖考生的熟练程度 如何监考? 屏幕共享软件可以让监考官看到考生的屏幕, 所有的音频, 视频和屏幕共享流会被保留一段时间, 用于审查 系统要求? chrome浏览器, 网络连接, 网络摄像头和麦克风 这个连接可以帮忙检查系统要求 , 注意Select “Linux Foundation” as the Exam Sponsor and “CKA” as the Exam. 考试期间, 我可以利用什么资源么? 只能打开考试页面以及Kubernetes官网 考试期间是否可以做笔记? 可以做笔记, 但是仅限于在考试控制页面上的工具上 需要什么证件? 包含考生照片的官方认证证件, 比如护照, 身份证, 驾驶证等(注意,需要证件上要有你的英文名称的全名, 对中国居民来讲, 可以使用护照) 需要注册一个Linux Foundation的账号, 到这里注册 考试如何打分? 24小时内会自动打分, 72~75小时内会邮件发送认证结果 认证的有效期? 有效期2年, 在过期之前需要重新考试 取消和重订 在预定考试日期前24小时外,取消或重订, 可以获得完整退费 复习资料 Kubernetes-Learning-Resources Kubernetes-Certified-Administrator 培训课程导图 新手训练营 Linux Foundation 提供的免费入门课程 有个CNCF网站提供了免费的分级课程 和 课程文档 除了认证大纲内容外, 还可以看看 feisky的kubernetes指南 里面包含了上述认证的大部分内容。 该课程的课程大纲: Welcome & Introduction Container Orchestration Kubernetes Kubernetes Architecture - Overview Installing Kubernetes Setting Up a Single Node Kubernetes Cluster Using Minikube Accessing Minikube Kubernetes Building Blocks Services Deploying a Stand-Alone Application Kubernetes Volume Management Deploying a Multi-Tier Application ConfigMaps and Secrets Ingress Advanced Topics - Overview Kubernetes Community Final Exam ps: 个人觉得这个课程可以不用学, 直接看文档就行了 。 还有一个收费的课程 ($299)。 该课程的课程大纲: Kubernetes Fundamentals Chapter 1. Course Introduction Chapter 2. Basics of Kubernetes Chapter 3. Kubernetes Architecture Chapter 4. Kubernetes Installation and Configuration Chapter 5. Accessing a k8s Cluster and Using the API Chapter 6. Replication Controllers and Deployments Chapter 7. Volumes and Application Data Chapter 8. Services Chapter 9. Ingress Chapter 10. Additional API Objects Chapter 11. Scheduling Chapter 12. Logging, Monitoring, and Troubleshooting Chapter 13. Third-Party Resources Chapter 14. Kubernetes Federation Chapter 15. Helm Chapter 16. Security ps: 个人觉得这个课程太贵了,为了省点钱 , 仔细研究下文档就行了 。 培训体系如下图所示。 图 9.3.2.2:CKA mindmap 参考 Kubernetes认证服务提供商(KCSP) - github.com Certified Kubernetes Administrator (CKA) - cncf.io 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"appendix/":{"url":"appendix/","title":"附录说明","keywords":"","body":"附录说明 参考文档以及一些实用的资源链接。 Kubernetes documentation Awesome Kubernetes Kubernetes the hard way Kubernetes Bootcamp Design patterns for container-based distributed systems Awesome Cloud Native 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"appendix/debug-kubernetes-services.html":{"url":"appendix/debug-kubernetes-services.html","title":"Kubernetes 中的应用故障排查","keywords":"","body":"Kubernetes service中的故障排查 查看某个资源的定义和用法 kubectl explain 查看Pod的状态 kubectl get pods kubectl describe pods my-pod 监控Pod状态的变化 kubectl get pod -w 可以看到一个 namespace 中所有的 pod 的 phase 变化,请参考 Pod 的生命周期。 查看 Pod 的日志 kubectl logs my-pod kubectl logs my-pod -c my-container kubectl logs -f my-pod kubectl logs -f my-pod -c my-container -f 参数可以 follow 日志输出。 交互式 debug kubectl exec my-pod -it /bin/bash kubectl top pod POD_NAME --containers 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"appendix/material-share.html":{"url":"appendix/material-share.html","title":"Kubernetes 相关资讯和情报链接","keywords":"","body":"Kubernetes相关资讯和情报链接 授人以鱼,不如授人以渔。下面的资料将有助于大家了解kubernetes生态圈当前发展状况和发展趋势,我特此整理相关资料如下。 社区资源 Kubernetes 社区的贡献、交流和治理方式相关的内容都保存在 https://github.com/kubernetes/community 这个 repo 中,建议参与 Kubernetes 社区前先阅读该 repo 中的资料。 在这里你可以找到: Kubernetes 的各个 SIG 联系方式、会议记录等 社区贡献指南 社区成员的角色分类与职责 社区贡献的 Kubernetes 资源图标 图 10.3.1:Kubernetes 资源图标示例 生态环境 包括kubernetes和cloud native相关的开源软件、工具和全景图。 awesome-kubernetes - A curated list for awesome kubernetes sources 🚢🎉 https://ramitsurana.github.io/awesome-kubernetes awesome-cloud-native - A curated list for awesome cloud native architectures https://jimmysong.io/awesome-cloud-native/ cloud native landscape - Cloud Native Landscape https://landscape.cncf.io 开源书籍和教程 arun-gupta/kubernetes-aws-workshop arun-gupta/kubernetes-java-sample feiskyer/kubernetes-handbook kelseyhightower/kubernetes-the-hard-way ks - A series of Kubernetes walk-throughs opsnull/follow-me-install-kubernetes-cluster rootsongjc/kubernetes-handbook 幻灯片、图书和情报资料分享 cloud-native-slides-share - Cloud Native 相关meetup、会议PPT、图书资料分享 博客与网站 Kubernetes和Cloud Native相关网站、专栏、博客等。 网站与专栏 thenewstack.io giantswarm blog k8smeetup.com dockone.io Cloud Native知乎专栏 kubernetes.org.cn servicemesher.com 博客 aporeto applatix apprenda bitnami buoyant cisco cncf codeship containership coreos coscale fabric8 grafana gravitational heptio istio jimmysong kubernetes moby openshift pivotal platform9 prometheus rancher sysdig spinnaker twistlock vamp weave wercker 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"appendix/docker-best-practice.html":{"url":"appendix/docker-best-practice.html","title":"Docker 最佳实践","keywords":"","body":"Docker最佳实践 本文档旨在实验Docker1.13新特性和帮助大家了解docker集群的管理和使用。 环境配置 Docker1.13环境配置 docker源码编译 网络管理 网络配置和管理是容器使用中的的一个重点和难点,对比我们之前使用的docker版本是1.11.1,docker1.13中网络模式跟之前的变动比较大,我们会花大力气讲解。 如何创建docker network Rancher网络探讨和扁平网络实现 swarm mode的路由网络 存储管理 Docker存储插件 infinit 被docker公司收购的法国团队开发 convoy rancher开发的docker volume plugin torus 已废弃 flocker ClusterHQ开发 日志管理 Docker提供了一系列log drivers,如fluentd、journald、syslog等。 需要配置docker engine的启动参数。 创建应用 官方文档:Docker swarm sample app overview 基于docker1.13手把手教你创建swarm app swarm集群应用管理 使用docker-compose创建应用 集群管理 我们使用docker内置的swarm来管理docker集群。 swarm mode介绍 我们推荐使用开源的docker集群管理配置方案: Crane:由数人云开源的基于swarmkit的容器管理软件,可以作为docker和go语言开发的一个不错入门项目 Rancher:Rancher是一个企业级的容器管理平台,可以使用Kubernetes、swarm和rancher自研的cattle来管理集群。 Crane的部署和使用 Rancher的部署和使用 资源限制 内存资源限制 CPU资源限制 IO资源限制 服务发现 下面罗列一些列常见的服务发现工具。 Etcd:服务发现/全局分布式键值对存储。这是CoreOS的创建者提供的工具,面向容器和宿主机提供服务发现和全局配置存储功能。它在每个宿主机有基于http协议的API和命令行的客户端。https://github.com/docker/etcd Cousul:服务发现/全局分布式键值对存储。这个服务发现平台有很多高级的特性,使得它能够脱颖而出,例如:配置健康检查、ACL功能、HAProxy配置等等。 Zookeeper:诞生于Hadoop生态系统里的组件,Apache的开源项目。服务发现/全局分布式键值对存储。这个工具较上面两个都比较老,提供一个更加成熟的平台和一些新特性。 Crypt:加密etcd条目的项目。Crypt允许组建通过采用公钥加密的方式来保护它们的信息。需要读取数据的组件或被分配密钥,而其他组件则不能读取数据。 Confd:观测键值对存储变更和新值的触发器重新配置服务。Confd项目旨在基于服务发现的变化,而动态重新配置任意应用程序。该系统包含了一个工具来检测节点中的变化、一个模版系统能够重新加载受影响的应用。 Vulcand:vulcand在组件中作为负载均衡使用。它使用etcd作为后端,并基于检测变更来调整它的配置。 Marathon:虽然marathon主要是调度器,它也实现了一个基本的重新加载HAProxy的功能,当发现变更时,它来协调可用的服务。 Frontrunner:这个项目嵌入在marathon中对HAproxy的更新提供一个稳定的解决方案。 Synapse:由Airbnb出品的,Ruby语言开发,这个项目引入嵌入式的HAProxy组件,它能够发送流量给各个组件。http://bruth.github.io/synapse/docs/ Nerve:它被用来与synapse结合在一起来为各个组件提供健康检查,如果组件不可用,nerve将更新synapse并将该组件移除出去。 插件开发 插件开发示例-sshfs 我的docker插件开发文章 Docker17.03-CE插件开发举例 网络插件 Contiv 思科出的Docker网络插件,趟坑全记录,目前还无法上生产,1.0正式版还没出,密切关注中。 Calico 产品化做的不错,已经有人用在生产上了。 存储插件 业界使用案例 京东从OpenStack切换到Kubernetes的经验之谈 美团点评容器平台介绍 阿里超大规模docker化之路 TalkingData-容器技术在大数据场景下的应用Yarn on Docker 乐视云基于Kubernetes的PaaS平台建设 资源编排 建议使用kuberentes,虽然比较复杂,但是专业的工具做专业的事情,将编排这么重要的生产特性绑定到docker上的风险还是很大的,我已经转投到kubernetes怀抱了,那么你呢? 我的kubernetes探险之旅 相关资源 容器技术工具与资源 容器技术2016年总结 关于 Author:Jimmy Song Email:rootsongjc@gmail.com 更多关于Docker、MicroServices、Big Data、DevOps、Deep Learning的内容请关注Jimmy Song's Blog,将不定期更新。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"appendix/tricks.html":{"url":"appendix/tricks.html","title":"使用技巧","keywords":"","body":"1. 在容器中获取 Pod 的IP 通过环境变量来实现,该环境变量直接引用 resource 的状态字段,示例如下: apiVersion: v1 kind: ReplicationController metadata: name: world-v2 spec: replicas: 3 selector: app: world-v2 template: metadata: labels: app: world-v2 spec: containers: - name: service image: test env: - name: POD_IP valueFrom: fieldRef: fieldPath: status.podIP ports: - name: service containerPort: 777 容器中可以直接使用 POD_IP 环境变量获取容器的 IP。 2. 指定容器的启动参数 我们可以在 Pod 中为容器使用 command 为容器指定启动参数: command: [\"/bin/bash\",\"-c\",\"bootstrap.sh\"] 看似很简单,使用数组的方式定义,所有命令使用跟 Dockerfile 中的 CMD 配置是一样的,但是有一点不同的是,bootsttap.sh 必须具有可执行权限,否则容器启动时会出错。 3. 让Pod调用宿主机的docker能力 我们可以想象一下这样的场景,让 Pod 来调用宿主机的 docker 能力,只需要将宿主机的 docker 命令和 docker.sock 文件挂载到 Pod 里面即可,如下: apiVersion: v1 kind: Pod metadata: name: busybox-cloudbomb spec: containers: - image: busybox command: - /bin/sh - \"-c\" - \"while true; \\ do \\ docker run -d --name BOOM_$(cat /dev/urandom | tr -cd 'a-f0-9' | head -c 6) nginx ; \\ done\" name: cloudbomb volumeMounts: - mountPath: /var/run/docker.sock name: docker-socket - mountPath: /bin/docker name: docker-binary volumes: - name: docker-socket hostPath: path: /var/run/docker.sock - name: docker-binary hostPath: path: /bin/docker 参考:Architecture Patterns for Microservices in Kubernetes 4. 使用Init container初始化应用配置 Init container可以在应用程序的容器启动前先按顺序执行一批初始化容器,只有所有Init容器都启动成功后,Pod才算启动成功。看下下面这个例子(来源:kubernetes: mounting volume from within init container - Stack Overflow): apiVersion: v1 kind: Pod metadata: name: init labels: app: init annotations: pod.beta.kubernetes.io/init-containers: '[ { \"name\": \"download\", \"image\": \"axeclbr/git\", \"command\": [ \"git\", \"clone\", \"https://github.com/mdn/beginner-html-site-scripted\", \"/var/lib/data\" ], \"volumeMounts\": [ { \"mountPath\": \"/var/lib/data\", \"name\": \"git\" } ] } ]' spec: containers: - name: run image: docker.io/centos/httpd ports: - containerPort: 80 volumeMounts: - mountPath: /var/www/html name: git volumes: - emptyDir: {} name: git 这个例子就是用来再应用程序启动前首先从GitHub中拉取代码并存储到共享目录下。 关于Init容器的更详细说明请参考 init容器。 5. 使容器内时间与宿主机同步 我们下载的很多容器内的时区都是格林尼治时间,与北京时间差8小时,这将导致容器内的日志和文件创建时间与实际时区不符,有两种方式解决这个问题: 修改镜像中的时区配置文件 将宿主机的时区配置文件/etc/localtime使用volume方式挂载到容器中 第二种方式比较简单,不需要重做镜像,只要在应用的yaml文件中增加如下配置: volumeMounts: - name: host-time mountPath: /etc/localtime readOnly: true volumes: - name: host-time hostPath: path: /etc/localtime 6. 在Pod中获取宿主机的主机名、namespace等 这条技巧补充了第一条获取 podIP 的内容,方法都是一样的,只不过列出了更多的引用字段。 参考下面的 pod 定义,每个 pod 里都有一个 {.spec.nodeName} 字段,通过 fieldRef 和环境变量,就可以在Pod中获取宿主机的主机名(访问环境变量MY_NODE_NAME)。 apiVersion: v1 kind: Pod metadata: name: dapi-test-pod spec: containers: - name: test-container image: busybox command: [ \"/bin/sh\", \"-c\", \"env\" ] env: - name: MY_NODE_NAME valueFrom: fieldRef: fieldPath: spec.nodeName - name: MY_POD_NAME valueFrom: fieldRef: fieldPath: metadata.name - name: MY_POD_NAMESPACE valueFrom: fieldRef: fieldPath: metadata.namespace - name: MY_POD_IP valueFrom: fieldRef: fieldPath: status.podIP - name: HOST_IP valueFrom: fieldRef: fieldPath: status.hostIP - name: MY_POD_SERVICE_ACCOUNT valueFrom: fieldRef: fieldPath: spec.serviceAccountName restartPolicy: Never 7. 配置Pod使用外部DNS 修改kube-dns的使用的ConfigMap。 apiVersion: v1 kind: ConfigMap metadata: name: kube-dns namespace: kube-system data: stubDomains: | {\"k8s.com\": [\"192.168.10.10\"]} upstreamNameservers: | [\"8.8.8.8\", \"8.8.4.4\"] upstreamNameservers 即使用的外部DNS。 8. 创建一个CentOS测试容器 有时我们可能需要在Kubernetes集群中创建一个容器来测试集群的状态或对其它容器进行操作,这时候我们需要一个操作节点,可以使用一个普通的CentOS容器来实现。yaml文件见manifests/test/centos.yaml。 apiVersion: extensions/v1beta1 kind: Deployment metadata: name: test labels: app: test spec: replicas: 1 template: metadata: labels: app: test spec: containers: - image: harbor-001.jimmysong.io/library/centos:7.2.1511 name: test command: [\"/bin/bash\",\"-c\",\"while true; do sleep 1000; done\"] imagePullPolicy: IfNotPresent 即使用一个while循环保证容器启动时拥有一个前台进程。 也可以直接使用kubectl run的方式来创建: kubectl run --image=harbor-001.jimmysong.io/library/centos:7.2.1511 --command '/bin/bash -c \"while true;do sleep 1000;done\"' centos-test 9. 强制删除一直处于Terminating状态的Pod 有时候当我们直接删除Deployment/DaemonSets/StatefulSet等最高级别的Kubernetes资源对象时,会发现有些改对象管理的Pod一直处于Terminating而没有被删除的情况,这时候我们可以使用如下方式来强制删除它: 一、使用kubectl中的强制删除命令 kubectl delete pod $POD_ID --force --grace-period=0 如果这种方式有效,那么恭喜你!如果仍然无效的话,请尝试下面第二种方法。 二、直接删除etcd中的数据 这是一种最暴力的方式,我们不建议直接操作etcd中的数据,在操作前请确认知道你是在做什么。 假如要删除default namespace下的pod名为pod-to-be-deleted-0,在etcd所在的节点上执行下面的命令,删除etcd中保存的该pod的元数据: ETCDCTL_API=3 etcdctl del /registry/pods/default/pod-to-be-deleted-0 这时API server就不会再看到该pod的信息。 如何使用etcdctl查看etcd中包括的kubernetes元数据,请参考:使用etcdctl访问kubernetes数据 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"appendix/issues.html":{"url":"appendix/issues.html","title":"问题记录","keywords":"","body":"问题记录 安装、使用kubernetes的过程中遇到的所有问题的记录。 推荐直接在Kubernetes的GitHub上提issue,在此记录所提交的issue。 1.Failed to start ContainerManager failed to initialise top level QOS containers #43856 重启kubelet时报错,目前的解决方法是: 1.在docker.service配置中增加的--exec-opt native.cgroupdriver=systemd配置。 2.手动删除slice(貌似不管用) 3.重启主机,这招最管用😄 for i in $(systemctl list-unit-files —no-legend —no-pager -l | grep —color=never -o .*.slice | grep kubepod);do systemctl stop $i;done 上面的几种方法在该bug修复前只有重启主机管用,该bug已于2017年4月27日修复,merge到了master分支,见https://github.com/kubernetes/kubernetes/pull/44940 2.High Availability of Kube-apiserver #19816 API server的HA如何实现?或者说这个master节点上的服务api-server、scheduler、controller 如何实现HA?目前的解决方案是什么? 目前的解决方案是api-server是无状态的可以启动多个,然后在前端再加一个nginx或者ha-proxy。而scheduler和controller都是直接用容器的方式启动的。 3.Kubelet启动时Failed to start ContainerManager systemd version does not support ability to start a slice as transient unit CentOS系统版本7.2.1511 kubelet启动时报错systemd版本不支持start a slice as transient unit。 尝试升级CentOS版本到7.3,看看是否可以修复该问题。 与kubeadm init waiting for the control plane to become ready on CentOS 7.2 with kubeadm 1.6.1 #228类似。 4.kube-proxy报错kube-proxy[2241]: E0502 15:55:13.889842 2241 conntrack.go:42] conntrack returned error: error looking for path of conntrack: exec: \"conntrack\": executable file not found in $PATH 导致的现象 kubedns启动成功,运行正常,但是service之间无法解析,kubernetes中的DNS解析异常 解决方法 CentOS中安装conntrack-tools包后重启kubernetes集群即可。 5. Pod stucks in terminating if it has a privileged container but has been scheduled to a node which doesn't allow privilege issue#42568 当pod被调度到无法权限不足的node上时,pod一直处于pending状态,且无法删除pod,删除时一直处于terminating状态。 kubelet中的报错信息 Error validating pod kube-keepalived-vip-1p62d_default(5d79ccc0-3173-11e7-bfbd-8af1e3a7c5bd) from api, ignoring: spec.containers[0].securityContext.privileged: Forbidden: disallowed by cluster policy 6.PVC中对Storage的容量设置不生效 使用glusterfs做持久化存储文档中我们构建了PV和PVC,当时给glusterfs-nginx的PVC设置了8G的存储限额,nginx-dm这个Deployment使用了该PVC,进入该Deployment中的Pod执行测试: dd if=/dev/zero of=test bs=1G count=10 图 10.6.1:pvc-storage-limit 从截图中可以看到创建了9个size为1G的block后无法继续创建了,已经超出了8G的限额。 7. 使用 Headless service 的时候 kubedns 解析不生效 kubelet 的配置文件 /etc/kubernetes/kubelet 中的配置中将集群 DNS 的 domain name 配置成了 ––cluster-domain=cluster.local. ,虽然对于 service 的名字能够正常的完成 DNS 解析,但是对于 headless service 中的 pod 名字解析不了,查看 pod 的 /etc/resolv.conf 文件可以看到以下内容: nameserver 10.0.254.2 search default.svc.cluster.local. svc.cluster.local. cluster.local. jimmysong.io options ndots:5 修改 /etc/kubernetes/kubelet 文件中的 ––cluster-domain=cluster.local. 将 local 后面的点去掉后重启所有的 kubelet,这样新创建的 pod 中的 /etc/resolv.conf文件的 DNS 配置和解析就正常了。 8. kubernetes 集成 ceph 存储 rbd 命令组装问题 kubernetes 使用 ceph 创建 PVC 的时候会有如下报错信息: Events: FirstSeen LastSeen Count From SubObjectPath Type Reason Message --------- -------- ----- ---- ------------- -------- ------ ------- 1h 12s 441 {persistentvolume-controller } Warning ProvisioningFailed Failed to provision volume with StorageClass \"ceph-web\": failed to create rbd image: executable file not found in $PATH, command output: 检查 kube-controller-manager 的日志将看到如下错误信息: Sep 4 15:25:36 bj-xg-oam-kubernetes-001 kube-controller-manager: W0904 15:25:36.032128 13211 rbd_util.go:364] failed to create rbd image, output Sep 4 15:25:36 bj-xg-oam-kubernetes-001 kube-controller-manager: W0904 15:25:36.032201 13211 rbd_util.go:364] failed to create rbd image, output Sep 4 15:25:36 bj-xg-oam-kubernetes-001 kube-controller-manager: W0904 15:25:36.032252 13211 rbd_util.go:364] failed to create rbd image, output Sep 4 15:25:36 bj-xg-oam-kubernetes-001 kube-controller-manager: E0904 15:25:36.032276 13211 rbd.go:317] rbd: create volume failed, err: failed to create rbd image: fork/exec /usr/bin/rbd: invalid argument, command output: 该问题尚未解决,参考 Error creating rbd image: executable file not found in $PATH#38923 9. Helm: Error: no available release name found 在开启了RBAC的kubernetes集群中,当使用helm部署应用,执行helm install的时候,会报着个错误: Error: no available release name found Error: the server does not allow access to the requested resource (get configmaps) 这是因为我们使用的2.3.1版本的helm init的时候没有为tiller创建serviceaccount和clusterrolebiding的缘故导致的。 kubectl create serviceaccount --namespace kube-system tiller kubectl create clusterrolebinding tiller-cluster-rule --clusterrole=cluster-admin --serviceaccount=kube-system:tiller # helm init -i harbor-001.jimmysong.io/library/kubernetes-helm-tiller:v2.3.1 kubectl patch deploy --namespace kube-system tiller-deploy -p '{\"spec\":{\"template\":{\"spec\":{\"serviceAccount\":\"tiller\"}}}}' 参考 Helm: Error: no available release name found - StackOverflow Helm 2.2.3 not working properly with kubeadm 1.6.1 default RBAC rules #2224 参考 Persistent Volume 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"appendix/kubernetes-changelog.html":{"url":"appendix/kubernetes-changelog.html","title":"Kubernetes 版本更新日志","keywords":"","body":"Kubernetes版本更新日志 刚开始写作本书时 Kubernetes1.6 刚刚发布,随后 Kubernetes 基本以每三个月发布一个版本的速度不断迭代,为了追踪不同版本的新特性,我们有必要在此记录一下。 每个 Kubernetes 版本的详细更新日志请参考:https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG.md 发布记录 2017 年 6 月 29 日,Kubernetes 1.7 发布 2017 年 9 月 28 日,Kubernetes 1.8 发布 2017 年 12 月 15 日,Kubernetes 1.9 发布 2018 年 3 月 26 日,Kubernetes 1.10 发布 2018 年 6 月 27 日,Kubernetes 1.11 发布 2018 年 9 月 27 日,Kubernetes 1.12 发布 2018 年 12 月 3 日,Kubernetes 1.13 发布 2019 年 3 月 26 日,Kubernetes 1.14 发布 2019 年 6 月 20 日,Kubernetes 1.15 发布 2019 年 9 月 19 日,Kubernetes 1.16 发布 2019 年 12 月 10 日,Kubernetes 1.17 发布 2020 年 3 月 25 日,Kubernetes 1.18 发布 2020 年 8 月 26 日,Kubernetes 1.19 发布 注:以上时间皆为北京时间。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"appendix/summary-and-outlook.html":{"url":"appendix/summary-and-outlook.html","title":"Kubernetes 及云原生年度总结及展望","keywords":"","body":"Kubernetes及云原生年度总结及展望 本节将聚焦Kubernetes及云原生技术的年度总结并展望下一年的发展。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"appendix/kubernetes-and-cloud-native-summary-in-2017-and-outlook-for-2018.html":{"url":"appendix/kubernetes-and-cloud-native-summary-in-2017-and-outlook-for-2018.html","title":"Kubernetes 与云原生 2017 年年终总结及 2018 年展望","keywords":"","body":"Kubernetes与云原生2017年年终总结及2018年展望 本文主要关于Kubernetes及云原生生态圈在2017年取得的进展,及对2018年的展望。 云计算技术发展至今已经10多个年头了,从最开始的硬件虚拟化、IaaS、OpenStack、PaaS、容器设置到Serverless发展至今,已经越来约接近应用逻辑,容器实现了应用的分装,方便了应用在不同环境间的迁移,轻量级的特性又使它能够消耗更少的资源而带来更多的便利,但是独木难支,容器如果在单节点上运行并不能发挥它的最大效益,容器编排领域在2016年就成为了兵家必争之地。在新的一年即将到来时,本文将带您一起梳理2017年Kubernetes及云原生的发展,并对其在2018年的趋势作出预测。 Kubernetes 谈到Kuberentes就不得不谈到容器,容器从几年前的大热到现在的归于平淡,之前大家说容器通常是指Docker容器,甚至很多人就将容器等同于Docker,还有很多人像操作虚拟机一样得使用容器。 Kubernetes是谷歌根据其内部使用的Borg改造成一个通用的容器编排调度器,于2014年将其发布到开源社区,并于2015年将其捐赠给Linux基金会的下属的云原生计算基金会(CNCF),也是GIFEE(Google Infrastructure For Everyone Else)中的一员,其他还包括HDFS、Hbase、Zookeeper等,见https://github.com/GIFEE/GIFEE,下面就让我们来回顾一下Kubernetes的技术发展史。 Kubernetes发展历史 相信凡是关注容器生态圈的人都不会否认,Kubernetes已经成为容器编排调度的实际标准,不论Docker官方还是Mesos都已经支持Kubernetes,Docker公司在今年10月16日至19日举办的DockerCon EU 2017大会上宣布支持Kubernetes调度,就在这不久前Mesos的商业化公司Mesosphere的CTO Tobi Knaup也在官方博客中宣布Kubernetes on DC/OS。而回想下2016年时,我们还在为Swarm、Mesos、Kubernetes谁能够在容器编排调度大战中胜出而猜测时,而经过不到一年的发展,Kubernetes就以超过70%的市场占有率(据TheNewStack的调研报告)将另外两者遥遥的甩在了身后,其已经在大量的企业中落地,还有一些重量级的客户也宣布将服务迁移到Kubernetes上,比如GitHub(见Kubernetes at GitHub),还有eBay、彭博社等。 Kubernetes自2014年由Google开源以来,至今已经发展到了1.9版本,下面是Kubernetes的版本发布路线图: 2014年10月由Google正式开源。 2015年7月22日发布1.0版本,在OSCON(开源大会)上发布了1.0版本。 2015年11月16日发布1.1版本,性能提升,改进了工具并创建了日益强大的社区。 2016年4月16日发布1.2版本,更多的性能升级加上简化应用程序部署和管理。 2016年7月22日发布1.3版本,对接了云原生和企业级工作负载。 2016年9月26日发布1.4版本,该版本起Kubernetes开始支持不同的运行环境,并使部署变得更容易。 2016年12月13日发布1.5版本,该版本开始支持生产级别工作负载。 2017年3月28日发布1.6版本,该版本支持多租户和在集群中自动化部署不同的负载。 2017年6月29日发布1.7版本,该版本的kubernetes在安全性、存储和可扩展性方面有了很大的提升。 2017年9月28日发布1.8版本,该版本中包括了一些功能改进和增强,并增加了项目的成熟度,将强了kubernetes的治理模式,这些都将有利于kubernetes项目的持续发展。 2017年12月15日发布1.9版本,该版本最大的改进是Apps Workloads API成为稳定版本,这消除了很多潜在用户对于该功能稳定性的担忧。还有一个重大更新,就是测试支持了Windows了,这打开了在kubernetes中运行Windows工作负载的大门。 从上面的时间线中我们可以看到,Kubernetes的产品迭代周期越来越快,从2014年开源,2015年发布了两个版本,2016年发布了三个版本,而今年一年内就发布了4个大版本,Kubernetes已经变了的越来越稳定,越来越易用。 Kubernetes的架构做的足够开放,通过系列的接口,如CRI(Container Runtime Interface)作为Kubelet与容器之间的通信接口、CNI(Container Networking Interface)来管理网络、而持久化存储通过各种Volume Plugin来实现,同时Kubernetes的API本身也可以通过CRD(Custom Resource Define)来扩展,还可以自己编写Operator和Service Catalog来基于Kubernetes实现更高级和复杂的功能。 Cloud Native 在Kubernetes出现之前,就已经有人提出了云原生的概念,如2010年Paul Fremantle就在他的博客中提出了云原生的核心理念,但是还没有切实的技术解决方案。而那时候PaaS才刚刚出现,PaaS平台提供商Heroku提出了12因素应用的理念,为构建SaaS应用提供了方法论,该理念在云原生时代依然适用。 现如今云已经可以为我们提供稳定的可以唾手可得的基础设施,但是业务上云成了一个难题,Kubernetes的出现与其说是从最初的容器编排解决方案,倒不如说是为了解决应用上云(即云原生应用)这个难题。CNCF中的托管的一系列项目即致力于云原生应用整个生命周期的管理,从部署平台、日志收集、Service Mesh(服务网格)、服务发现、分布式追踪、监控以及安全等各个领域通过开源的软件为我们提供一揽子解决方案。 国外已经有众多的Kubernetes和Cloud Native meetup定期举办,在中国今年可以说是小荷才露尖尖角。 2017年6月19日-20日,北京,L3大会(LinuxCon+ContainerCon+CloudOpen China)。CNCF(Cloud Native Computing Foundation)作为云原生应用的联合推广团体,也是由Google一手培植起来的强大“市场媒体”(Kubernetes是第一个入选该基金会的项目),第一次进入中国,华为、Google、Rancher、红帽等公司分别做了关于Kubernetes及Cloud Native的演讲。 2017年7月25日,北京、上海,k8smeetup,Kubernetes二周年北京-上海 Meetup双城庆生。 2017年9月12日,北京,T11大会,前Pivotal技术专家,现CapitalOne高级专家Kevin Hoffman做了High Level Cloud Native Concepts的演讲。 2017年10月15日,杭州,KEUC 2017- Kubernetes 中国用户大会。由才云科技(Caicloud)、美国 The Linux Foundation 基金会旗下 Cloud Native Computing Foundation (CNCF)、「K8sMeetup 中国社区」联合主办的聚焦Kubernetes中国行业应用与技术落地的盛会。 2017年12月13日-15日,杭州,云原生技术大会——CNTC。这次会议由谐云科技与网易云共同主办,主要探讨云原生技术与应用,同时还进行了云原生集训。 另外还有由才云科技分别在北京、上海、深圳、青岛等地举办了多场k8smeetup。 容器是云原生的基石 容器最初是通过开发者工具而流行,可以使用它来做隔离的开发测试环境和持续集成环境,这些都是因为容器轻量级,易于配置和使用带来的优势,docker和docker-compose这样的工具极大的方便的了应用开发环境的搭建,同时基于容器的CI/CD工具如雨后春笋般出现。 隔离的环境、良好的可移植性、模块化的组件、易于扩展和轻量级的特性,使得容器成为云原生的基石。但是容器不光是docker一种,还有cri-o、rkt等支持OCI标准的容器,以及OpenStack基金会推出的兼容容器标准的号称是轻量级虚拟机的Kata Containers,Kubernetes并不绑定到某一容器引擎,而是支持所有满足OCI运行时标准的容器。 下一代云计算标准 Google通过将云应用进行抽象简化出的Kubernetes中的各种概念对象,如Pod、Deployment、Job、StatefulSet等,形成了Cloud Native应用的通用的可移植的模型,Kubernetes作为云应用的部署标准,直接面向业务应用,将大大提高云应用的可移植性,解决云厂商锁定的问题,让云应用可以在跨云之间无缝迁移,甚至用来管理混合云,成为企业IT云平台的新标准。 现状及影响 Kubernetes既然是下一代云计算的标准,那么它当前的现状如何,距离全面落地还有存在什么问题? 当前存在的问题 如果Kubernetes被企业大量采用,将会是对企业IT价值的重塑,IT将是影响业务速度和健壮性的中流砥柱,但是对于Kubernetes真正落地还存在诸多问题: 部署和运维起来复杂,需要有经过专业的培训才能掌握; 企业的组织架构需要面向DevOps转型,很多问题不是技术上的,而是管理和心态上的; 对于服务级别尤其是微服务的治理不足,暂没有一套切实可行可落地的完整微服务治理方案; 对于上层应用的支持不够完善,需要编写配置大量的YAML文件,难于管理; 当前很多传统应用可能不适合迁移到Kuberentes,或者是成本太高,因此可以落地的项目不多影响推广; 以上这些问题是企业真正落地Kubernetes时将会遇到的比较棘手的问题,针对这些问题,Kubernetes社区早就心领神会有多个SIG)(Special Interest Group)专门负责不同领域的问题,而初创公司和云厂商们也在虎视眈眈觊觎这份大蛋糕。 日益强大的社区 Kubernetes已成为GitHub上参与和讨论人数最多的开源项目,在其官方Slack上有超过两万多名注册用户(其中包括中文用户频道cn-users),而整个Kubernetes中文用户群可达数千名之众。 目前关于Kubernetes和云原生图书也已经琳琳总总,让人眼花缭乱。 英文版的讲解Kubernetes的书籍有:The Kubernetes Book、Kubernetes in Action、Kubernetes Microservices with Docker,关于云原生架构的Cloud Native Infrastructure: Patterns for Scalable Infrastructure and Applications in a Dynamic Environment等已发行和2018年即将发行的有十几本之多,同时还有关于云原生开发的书籍也鳞次栉比,如Cloud Native Go(这本书已经被翻译成中文,由电子工业出版社引进出版)、Cloud Native Python(已由电子工业出版社引进,预计2018年推出中文版),Cloud Native Java等。 关于Kuberentes和云原生的中文版的书籍有:《Kubernetes权威指南:从Docker到Kubernetes实践全接触》,《Java云原生》(预计2018年出版),还有一系列开源的电子书和教程,比如我写的kubernetes-handbook,同时Kubernetes官方官网文档也即将推出完整的汉化版本,该项目目前还在进行中,见kubernetes-docs-cn。 另外,除了图书和官方Slack外,在中国还有很多厂商、社区、爱好者组织的meetup、微信群推广Kubernetes,同时吸引了大量的用户关注和使用Kubernetes。 创业公司与厂商支持 国外的Google的GKE、微软的Azure ACS、AWS的Fargate和2018年即将推出的EKS、Rancher联合Ubuntu推出的RKE,国内的华为云、腾讯云、阿里云等都已推出了公有云上的Kuberentes服务,Kubernetes已经成为公有云的容器部署的标配,私有云领域也有众多厂商在做基于Kubernetes的PaaS平台。随着企业落地Kubernetes的日益增长,相关的人才缺口也将日益显现。CNCF又就此推出了CKA(Certified Kubernetes Administrator)和CKD(Certified Kubernetes Developer),假若在Kubernetes的生态构建与市场发展顺利的情况下,该证书将会展现其含金量。 另外在国外还有一大批基于Kubernetes的创业公司,如Kubernetes创始人之一Joe Beda创立了Heptio(于今年9月获获得2500万美元B轮融资),还有Platform9、Kismatic、Diamanti、Bitnami、CoreOS、Hypernetes、Weave、NavOps等,他们中有的提供Kubernetes的技术咨询和培训,有的专研某项具体技术,还有一系列基于Kubernetes的自动化工具、监控厂商如雨后春笋般出现。 国内前几年诞生了多家容器创业公司,例如DaoCloud、精灵云、时速云、数人云、灵雀云、有容云、好雨云、希云、才云、博云等,这些厂商有的可能一开始不是基于Kubernetes作为容器编排调度引擎,但是现在已经全部支持,其中灵雀云于11月8日获得腾讯云领投的B轮融资。这些容器厂商全部涉及私有云业务,主要对接金融、政府和电信行业,帮助传统企业进行IT转型,虽然很多厂商都生成支持Kubernetes,但是在Kubernetes的易用性上还需要很多改进,单纯基于容器部署应用已经无法满足企业的需求,帮助企业上云、将传统应用改造以适应云的弹性与高效,构建PaaS平台,通过基于容器的基础调度平台运行大数据及AI应用,成为创业公司的众矢之的,对于特定行业的整体的解决方案将是国内的容器厂商的主要商业化方式。 目前大部分容器云提供的产品大同小异,从云平台管理、容器应用的生命周期管理、DevOps、微服务架构等,这些大多是对原有应用的部署和资源申请流程的优化,没有形成杀手级的平台级服务,这些都是原来容器时代的产物。而容器云进化到高级阶段Cloud Native(云原生)后,容器技术将成为该平台的基础,虽然大家都生成具有全面的功能,但是厂商在推行容器技术时需要结合企业的具体应用场景下进行优化。 2018年展望 2017年可以说是Cloud Native蓬勃发展和大发异彩之年,Kuberentes在这一年中连续发布了4个版本,从1.6到1.9,Containerd、Fluentd、CoreDNS、Jeager分别发布自己的1.0版本。 在今年12月的KubeCon&CloudNativeCon Austin会议上,已经为2018年的云原生生态圈的发展确定几大关键词: 服务网格(Service Mesh),在Kubernetes上践行微服务架构进行服务治理所必须的组件; 无服务器架构(Serverless),以FaaS为代表的无服务器架构将会流行开来; 加强数据服务承载能力,例如在Kubernetes上运行大数据应用; 简化应用部署与运维包括云应用的监控与日志收集分析等; 这些功能是Kubernetes生态已有但是亟待加强的功能,它们能够解决我们在上文中提到的当前生态中存在的问题。 2018年的IaaS的运营商将主要提供基础架构服务,如虚拟机、存储和数据库等传统的基础架构和服务,仍然会使用现有的工具如Chef、Terraform、Ansible等来管理;Kubernetes则可能直接运行在裸机上运行,结合CI/CD成为DevOps的得力工具,并成为高级开发人员的应用部署首选;Kubernetes也将成为PaaS层的重要组成部分,为开发者提供应用程序部署的简单方法,但是开发者可能不会直接与Kubernetes或者PaaS交互,实际的应用部署流程很可能落在自动化CI工具如Jenkins上。 2018年,Kubernetes将更加稳定好用,云原生将会出现更多的落地与最佳实践,这都值得我们期待! 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"appendix/kubernetes-and-cloud-native-summary-in-2018-and-outlook-for-2019.html":{"url":"appendix/kubernetes-and-cloud-native-summary-in-2018-and-outlook-for-2019.html","title":"Kubernetes 与云原生 2018 年年终总结及 2019 年展望","keywords":"","body":"Kubernetes与云原生2018年年终总结及2019年展望 去年我写了Kubernetes与云原生2017年年终总结及2018年展望,按照惯例也应该推出2018年的总结和2019年的展望了,写这篇文章的时候已经是2019年的1月末了,如果不写点什么回顾下2018年总觉得这一年过的不完整。 本文将回顾 Kubernetes 与云原生在2018年的进展,可以说2018年是 Kubernetes 大规模落地,Service Mesh 蓄势待发的一年。 2017年时对2018年的预测 首先我先带大家回顾下2017年时我对2018年的预测。2017年底我预测2018年的Kubernetes和云原生将向以下方向发展: 服务网格(Service Mesh),在Kubernetes上践行微服务架构进行服务治理所必须的组件; 无服务器架构(Serverless),以FaaS为代表的无服务器架构将会流行开来; 加强数据服务承载能力,例如在Kubernetes上运行大数据应用; 简化应用部署与运维包括云应用的监控与日志收集分析等; 下面我来分别总结下以上四点预测: 其中服务网格(Service Mesh)是我2018年一直在大力主张和推广的,并创立了ServiceMesher社区,业界已经对服务网格有了广泛的认知,其在微服务和分布式架构领域将有广阔的前景,2018年7月31日Istio发布1.0,预示着服务网格即将走向成熟; 无服务器架构的理念提出已久但仍需找到合适的应用场景来大面积铺开,2018年Google、Pivotal等公司新开源的knative更加弱化了底层平台的差异,开发者直接定义服务,应用自动打包和部署; 关于Kubernetes承载大数据计算,已经有很多公司应用它来运行大数据应用,还有一些创业公司提供基于Kubernetes的异构计算平台,在大企业内部也有使用Kubernetes来统一大数据、机器学习、人工智能等平台的需求,大数据行业领先的两家公司Cloudera与Hortonworks的合并势必也会在云原生领域发力; 随着越来越多的公司选择Kubernetes作为底层的基础设施平台,Kubernetes周边的生态越来越完善,围绕发布部署、监控和APM相关的SaaS类应用层出不穷; CNCF 的毕业项目 2018年至今按照时间顺序,CNCF中毕业的项目有: 2018年3月:Kubernetes 毕业 2018年8月,Prometheus 毕业 2018年11月,Envoy 毕业 2019年1月,CoreDNS 毕业 截至本文发稿,已有4个项目毕业,2019将会有更多的项目走向成熟。CNCF 托管的全部项目状态请见:https://www.cncf.io/projects-graduated/ Kubernetes在2018年的发展 2018年3月Kubernetes经过CNCF基金会的投票正式毕业,这意味着它拥有足够多的提交者和贡献人员,并被业界广泛的采纳,已经可以依靠社区的维护健康的发展。关于CNCF项目的毕业标准的详情请参考CNCF Graduation Criteria v1.1。 一年里按计划发布了4个版本,详见以下更新日志: Kubernetes1.10更新日志 Kubernetes1.11更新日志 Kubernetes1.12更新日志 Kubernetes1.13更新日志 早在2017年的北美 KubeCon 上就有一种论调说 Kubernetes 正变得 boring,因为它已经越来越成熟,在未来不会出现大的变动,从以上更新日志中也可以看到,大多是一些功能进入 beta 或者 stable 状态,很少有新的功能出现。 下图是 Google trend 中过去一年来全球搜索 Kubernetes 的趋势图。 图 10.8.2.1:Kubernetes 搜索趋势(来自 Google trends) 从图中可以看出 Kubernetes 在全球搜索趋势在2018年底已经达到了最巅峰,2019年可能会开始走下降趋势。 下图是最近5年来 Kubernetes 关键词的百度指数。 图 10.8.2.2:Kubernetes 的百度指数 上图来自百度指数,可以大体概括 Kubernetes 关键字在中国的搜索情况,同 Kubernetes 在全球的搜索情况一样,可能已经过了巅峰期。 Kubernetes Operator 以 Kubernetes 为核心来运维上层应用,诞生了一种名为”Kubernetes Native“的新型运维方式,真正践行 DevOps 理念的产物,开发者将于软件的运维逻辑写成代码,利用 Kubernetes 的控制器模式(Controller Pattern)和 CRD 来扩展 Kubernetes 的 API,各种 Operator 层出不穷,awesome-operators 列举了目前所有的 Operator。例如我们熟悉的 Istio 中就有50个 CRD。 图 10.8.2.3:Istio 中的 CRD CNCF 生态中的诸多应用都已支持 Kubernetes Operator,可以说 Operator 将成为云原生中默认的软件动态运行时管理工具,参考 CoreOS(已被 RedHat 收购,RedHat 已被 IBM 收购) CTO Brandon Philips 的这篇文章 Introducing the Operator Framework: Building Apps on Kubernetes。 ServiceMesher社区 下图展示的是 2019 Q1 的软件架构趋势,(图片来自 Architecture and Design InfoQ Trends Report - January 2019)我们可以看到 Service Mesh 还处于创新者阶段,如果从软件生命周期的全阶段来看,它还只是刚刚进入很多人的眼帘,对于这张的新兴技术,在蚂蚁金服的支持的下创办了 ServiceMesher 社区。 图 10.8.2.4:2019 Q1 软件架构趋势 - 来自 InfoQ 图 10.8.2.5:ServiceMesher 社区 Logo 既然 Kubernetes 已经开始变得无聊,2018年落地 Kubernetes 已经不是初创公司的事情了,很多大公司甚至传统企业都开始试水或者大规模落地,在 Kubernetes 进一步成熟之时,以 Kubernetes 为基础向上发展,开辟新的战场就能收获更多的业务场景和需求。 Kubernetes 并不直接对外提供业务能力,而是作为应用运行的底层平台,在应用和平台间还有一个 Gap,这需要中间件的能力来补充。 图 10.8.2.6:ServiceMesher社区2018年活动一览 2018年5月,ServiceMesher 社区由蚂蚁金服发起成立。 2018年5月30日,Envoy最新官方文档中文版发布——由Service Mesh爱好者倾情奉献。 2018年6月21日,启用新的社区logo。 2018年6月30日,开启新域名servicemesher.com。 2018年6月30日,举办了第一届 Service Mesh Meetup 杭州站,见ServiceMesher杭州Meetup圆满完成。 2018年7月,ServiceMesher 社区成为 Istio 社区中国合作伙伴。 2018年7月29日,举办了第二届 Service Mesh Meetup 北京站,见第二届Service Mesh Meetup北京站回顾、视频回放和资料下载。 2018年8月25日,举办了第三届 Service Mesh Meetup 深圳站,见Service Mesh Meetup深圳站回顾、视频回放及PPT资料分享。 2018年9月19日,开始了开源电子书 istio-handbook 的创作。 2018年11月13日,ServiceMesher社区成员聚首KubeCon&CloudNativeCon上海。 2018年11月25日,举办了第四届 Service Mesh Meetup 上海站,见第四届 Service Mesh Meetup 上海站活动回顾与资料下载。 2019年1月6日,举办了第五届 Service Mesh Meetup 广州站,见第五届 Service Mesh Meetup 广州站活动回顾与资料下载。 Service Mesh Meetup 这一年 ServiceMesher 社区为大家带来5次 Meetup 共 20 次 Topic 分享: 敖小剑(蚂蚁金服):大规模微服务架构下的 Service Mesh 探索之路 刘超(网易):网易云的 Service Mesh 产品架构和实现 唐鹏程(才云科技):在 Kubernetes 上搭建高可用 Service Mesh 监控 徐运元(谐云科技):Service Mesh 结合容器云平台的思考与实践 张亮(京东金融数据研发负责人):Service Mesh的延伸 —— 论道Database Mesh 吴晟(Apache SkyWalking创始人):Observability on Service Mesh —— Apache SkyWalking 6.0 朵晓东(蚂蚁金服,高级技术专家):蚂蚁金服开源的Service Mesh数据平面SOFA MOSN深层揭秘 丁振凯(新浪微博,微博搜索架构师):微博Service Mesh实践 - WeiboMesh 张超盟(华为):Kubernetes容器应用基于Istio的灰度发布实践 朱经惠 (联邦车网):Istio控制平面组件原理解析 邵俊雄(蚂蚁金服):SOFAMesh 的通用协议扩展 杨文(JEX):Kubernetes、Service Mesh、CI/CD 实践 吴晟(Apache SkyWalking 创始人):Observability and Istio telemetry 敖小剑&张瑜标(蚂蚁金服):蚂蚁金服 Service Mesh 渐进式迁移方案 徐运元(谐云科技):探讨和实践基于Isito的微服务治理事件监控 冯玮(七牛容器云平台产品架构师):Envoy、Contour与Kubernetes实践 郑德惠(唯品会Java资深开发工程师):唯品会的Service Mesh 实践与分享 陈逸凡(蚂蚁金服):SOFAMosn 持续演进路径及实践案例 崔秀龙(HPE 软件分析师):在网格的边缘试探——企业 Istio 试水指南 宋净超(蚂蚁金服):Service Mesh 圆桌讨论 Serverless 我们再看 CNCF 的 Landscape,其中右下部分有一个单列的 Serverless 单元,详见 https://landscape.cncf.io/。 图 10.8.2.7:CNCF Landscape 中的 Serverless 单元 我们再看下 Kubernetes、Service Mesh、Serviceless 三者之间的关系: Kubernetes 负责应用的生命周期管理,最小的治理单元是 Pod; Service Mesh 解决服务间的流量治理,最小的治理单元是 Service(可以类比为 Kubernetes 中 Service 资源); 而 Serviceless 是更高一层的抽象,最小的治理单元是 APP; 越向上层就越不关心应用的底层实现,到了 Serverless 开发者只需要关心代码逻辑,其他的一切都是配置,因此 Google 联合 Pivotal 等其他公司于2018年7月创建了 knative 这个基于 Kubernetes 和 Istio 的 Serverless 的开源项目。 出版物 一个繁荣的生态将有大量的开发者支持,有开发者的地方就会有出版物。2018年至本文发稿关于 Kubernetes 和云原生的中文出版物(译作或原著),根据出版时间排序如下: 2018年3月:《每天5分钟玩转Kubernetes》,CloudMan 著 2018年7月:《Python 云原生——构建应对海量用户数据的高可扩展 Web 应用》,Manish Sathi著,宋净超 译 2018年7月:《云原生 Java——Spring Boot、Spring Cloud 与 Cloud Foundry 弹性系统设计》,Josh Long & Kenny Bastani著,张若飞 宋净超 译 2018年8月:《Kubernetes 权威指南:企业级容器云实战》,闫健勇 龚正 吴治辉 刘晓红 崔秀龙 等 著 2018年9月:《云原生基础架构:构建和管理现代可扩展基础架构的模式及实践》,Justin Garrision & Kris Nova著,孙杰、肖力 译 2018年9月:《基于Kubernetes的容器云平台实战》,陆平 左奇 付光 张晗 著 2018年10月:《Kubernetes经典实例》,Sébastien Goasguen & Michael Hausenblas 著,马晶慧 译 2018年11月:《持续演进的Cloud Native:云原生架构下微服务最佳实践》,王启军 著 2018年11月:《云原生分布式存储基石:etcd深入解析》,华为容器服务团队 杜军 等著 2018年12月:《Kubernetes即学即用》,Kelsey Hightower & Brendan Burns & Joe Beda 著,韩波 译 2018年12月:《Kubernetes 进阶实战》,马永亮 著 2018年12月:《Service Mesh实战:基于Linkerd和Kubernetes的微服务实践》,杨章显 著 2019年1月:《深入浅出 Istio:Service Mesh 快速入门与实践》,崔秀龙 著 2019年1月:《Kubernetes in Action中文版,Marko Luksa著,七牛容器云团队 译 注:以上仅列举了2018年至本文发稿时已上市发售的书籍,并不代表本人立场推荐以上书籍。 预告:2019年2月,《未来架构——从服务化到云原生》张亮 吴晟 敖小剑 宋净超 著即将上市。 另外还有很多线上、线下的 Kubernetes 实训课程、电子出版物不胜枚举,例如极客时间出品的深入剖析 Kubernetes。 2019年展望 2019年才开始学 Kubernetes 依然不晚,这可能是影响云计算未来10年的技术,甚至有人预测,未来的开发者可能一上手就是在云上开发,从提交代码、测试到发布一气呵成,直接基于 Git 操作即可完成,完全感受不到 Kubernetes 的存在。展望2019年,我在2017年的预测的趋势依然不变,2019年将更加深化。如果以 Kubernetes 的发展阶段类比,就像2017年时的 Kubernetes 一样,在一部分企业中 Service Mesh 已经开始快速落地,而 Knative 更像 2015 年时的 Kubernetes,一起才刚刚开始,毕竟也是 2018 年中才开源。 2018年11月 CNCF 在上海举办了第一届中国 KubeCon + CloudNativeCon,2019年6月大会将升级为 KubeCon + CloudNativeCon + Open Source Summit,将进一步推送中国的开源发展与云原生的应用,查看大会详情。 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"appendix/cncf-annual-report.html":{"url":"appendix/cncf-annual-report.html","title":"CNCF 年度报告解读","keywords":"","body":"CNCF年度报告解读 CNCF成立于2015年12月11日,自2018年开始每年年初都会发布一次 CNCF Annual Report(CNCF 年度报告),总结 CNCF 去年一年里在推广云原生技术和理念上付出的行动和取得的进展,这一章节将从2018年的年度报告开始每年都会解读一次 CNCF 年度报告,2018年的年度报告延续了2017年年度报告的大体分类,但2017年的报告过于精简(只列举了一些活动与数字),本章不对其解读,而是从2018年的年度报告开始,感兴趣的读者可以下载其报告自行阅览。 参考 CNCF Annual Report 2017 pdf CNCF Annual Report 2018 pdf CNCF Annual Report 2019 pdf 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"appendix/cncf-annual-report-2018.html":{"url":"appendix/cncf-annual-report-2018.html","title":"CNCF 2018 年年度报告解读","keywords":"","body":"CNCF 2018年年度报告解读 2019年2月初,CNCF 发布了2018年的年度报告,这是 CNCF 继2017年度报告之后,第二次发布年度报告,2017年度的报告只有区区14页,今年的报告长度增长了一倍达31页。下面我将带大家一起来深度解读下这份2018年的年度报告,一窥 CNCF 过去一年里在推广云原生的道路上取得的进展。 注:本文最后附上了2017年和2018年度的报告下载地址。 CNCF 年度报告涵盖的范围 在解读 CNCF 的2018年度报告之前,我们先简单回顾下2017年度的报告,因为2017年度报告是 CNCF 的首份年度报告,这样我们也能更好的了解 CNCF 的来龙去脉。 2017年度报告已经基本确定了 CNCF 每个年度报告所包含的主题: 自我定位 会员参与情况 终端用户社区 项目更新 会议和活动 社区 培训和认证 以上为 CNCF 主要的市场活动,2017年时其成立的第二年,经过一年时间的筹备,这一年里各种市场活动都已经开始确立并有声有色的开展了起来,包括 KubeCon、成员单位、终端用户都已经发展起来了,以后历年里只是对其不断的发展和完善。 2018年度报告中又新增了一些主题,这些主题是从2018年开始开展的,包括: 项目更新与满意度调查 给 CNCF 项目的维护者发调查问卷询问满意度 CNCF charter 的修订(2018年11月) 项目更新与发布 项目服务与支援 专项活动、文档、网站与博客支持 本地化、IT 支持和培训 社区拓展 社区奖项 CNCF Meetup CNCF Ambassador 计划 卡通吉祥物 Phippy 生态系统工具 devstats CNCF Landscape 和路线图 项目 logo 物料 测试一致性项目 国际化 进入中国 本地化网站 详情请大家从本文最后的链接下载报告原文以查看详情。 CNCF 的定位 CNCF(云原生计算基金会)成立于2015年12月11日,每届年度报告的开篇都会阐明 CNCF 的定位,CNCF 的自我定位在2018年发生了一次变动,这也说明基金会是跟随市场形势而动,其定位不是一成不变的,其中的变化暗含着 CNCF 战略的转变。 CNCF 的2017年度定位 2017年度报告中是这样正式介绍自己的: The Cloud Native Computing Foundation (CNCF) is an open source software foundation dedicated to making cloud-native computing universal and sustainable. Cloud-native computing uses an open source software stack to deploy applications as microservices, packaging each part into its own container, and dynamically orchestrating those containers to optimize resource utilization. Cloud-native technologies enable software developers to build great products faster. We are a community of open source projects, including Kubernetes, Envoy and Prometheus. Kubernetes and other CNCF projects are some of the highest velocity projects in the history of open source. 可以看到介绍中的重点技术是:微服务、容器、动态编排。而在2018年 CNCF 对自己进行了重新的定位和包装,增加了新的内容。 CNCF 的2018年度定位 2018年度报告中 CNCF 对自己的定位是: The Cloud Native Computing Foundation (CNCF) is an open source software foundation dedicated to making cloud native computing universal and sustainable. Cloud native technologies empower organizations to build and run scalable applications in modern, dynamic environments such as public, private, and hybrid clouds. Containers, service meshes, microservices, immutable infrastructure, and declarative APIs exemplify this approach. We are a community of open source projects, including Kubernetes, Prometheus, Envoy, and many others. Kubernetes and other CNCF projects are some of the highest velocity projects in the history of open source. 我们可以看到其表述中更加注重多云环境,主要涉及的技术比2017年多了Service Mesh(服务网格)、不可变基础设施和声明式 API。 数读报告 CNCF 年度报告的原文主要是汇报了 CNCF 一年来的所展开的活动和进展,下表示根据 CNCF 2017和2018年度报告整理了关键数据。 Year 2016 2017 2018 Members 63 170 365 Contributors - 18687 47358 CNCF Meetup Members - 53925 89112 Projects 4 14 32 End User Community Members - 32 69 Conference and Events Participants - 4085 - Certified Kubernetes Partners - 44 - Certified Kubernetes Service Providers - 28 74 CNCF Ambassador - - 65 Kubernetes Training Partners - - 18 注:其中2016年是 CNCF 正式开始工作的第一年,大部分数据因为活动尚未开展而缺失。 从上表中我们可以看到 CNCF 诞生三年来基金会成员规模、托管项目的贡献者、参加 CNCF 名义的 Meetup 的人数取得较大范围的增长,尤其是2018年,因为基金会成员的爆发式增长(+130%),CNCF 开始给成员分级,会员级别、费用和权益也在 CNCF 官网上明码标价。 2018年 CNCF 组织的 KubeCon&CloudNativeCon 开始固定每年在西欧、北美和中国举行,且2018年是首次进入中国;原来的 Certified Kubernetes Partners 也取消了变成了 Certified Kubernetes Service Providers;CNCF 的 Ambassador 计划拥有了来自15个国家的65位 Ambassador,在世界各地为云原生布道;CNCF 还首次引入了 Kubernetes Training Partner。 2018 年 CNCF 又推出了一系列新的认证(CKA 为2017年推出),包括: CKA(Kubernetes 管理员认证):这是 CNCF 最早制定的一个证书,顾名思义,通过该认证证明用户具有管理 Kubernetes 集群的技能、知识和能力。虽然该证书在2017年即推出,但2018年对考试做了更细致的指导。KCSP 要求企业必须有至少三人通过 CKA。 CKAD(Kubernetes 应用开发者认证):该认证证明用户可以为 Kubernetes 设计、构建、配置和发布云原生应用程序。经过认证的 Kubernetes Application Developer 可以定义应用程序资源并使用核心原语来构建、监控 Kubernetes 中可伸缩应用程序和排除故障。 KCSP(Kubernetes 服务提供商认证):截止本文发稿时共有74家企业通过该认证。该认证的主体是企业或组织,通过 KCSP 的企业意味着可以为其他组织提供 Kubernetes 支持、咨询、专业服务和培训。通过该认证的中国企业有:灵雀云、阿里云、博云、才云、DaoCloud、EasyStack、易建科技、精灵云、谐云科技、华为、时速云、星号科技、睿云智合、沃趣、元鼎科技、ZTE。 Certified Kubernetes Conformance(Kubernetes 一致性认证):通过该认证的 Kubernetes 提供商所提供的服务,意味着其可以保证 Kubernetes API 的可移植性及跨云的互操作性;及时更新到最新的 Kubernetes 版本;是否一致是可以通过运行开源脚本验证的。截止本文发稿通过该认证的中国企业的发行版有:灵雀云(ACE、ACP、AKS)、才云 Compass、华为 FusionStage、酷栈科技 CStack MiaoYun、Daocloud Enterprise、新智认知新氦云、浪潮云、京东 TIG、网易云、七牛云、同方有云、睿云智合 WiseCloud;通过认证的中国企业托管平台有:阿里云、百度云、博云、EasyStack、易建科技、谐云科技、华为云 CCE、腾讯云 TKE、时速云、ZTE TECS。 以上是 CNCF 提供的主要证书,一般通过 KCSP 的企业都要先通过 Kubernetes 一致性认证,而通过 Kubernetes 一致性认证不一定要同时通过 KCSP,所以我们看到很多通过 Kubernetes 一致性认证的企业就不一定会通过 KCSP,因为 KCSP 的要求更多,至少要成为 CNCF 会员才可以。 下面将就 CNCF 会员、托管项目的成熟度等级划分、Kubernetes 服务提供商认证和 Kubernetes 提供商认证做详细说明。 CNCF 会员 2018年 CNCF 的会员单位经历了爆发式增长,从170家增长到365家。CNCF 制定了如下的会员等级: Silver Member Gold Member Platinum Member Academic/Nonprofit Member End User Member 不同等级的会员需要交纳的年费与权益不同,详情请见 https://www.cncf.io/about/join/。 成为 CNCF 会员的好处 成为 CNCF 会员包括但不限于如下好处: 将可以参与 CNCF 市场委员会、CNCF Webinar、在 CNCF 和 Kubernetes 官网发表博客、博客被 KubeWeekly 收录、 获得 KubeCon + CloudNativeCon 的门票折扣和参与大会的市场活动 对于 Kubernetes 系列认证如 KCSP、入选 TOC 也要求必须成为 CNCF 会员才可以获得 End User Case Study 有机会加入 Ambassador 计划 在社区里具有更多的话语权,例如 CNCF 在全球范围内组织的活动 项目成熟度等级 自2015年底 CNCF 创立之初 Kubernetes 成为其首个托管项目以来,截止到2018年底,CNCF 已经托管了32个开源项目,随着越来越多的项目加入到 CNCF,为了更好的管理这些项目,为这些项目划分不同的成熟度等级就成了迫在眉睫的事情。 图 10.9.1.1:CNCF 项目成熟度级别 根据《Crossing the Chasm》一书中的技术采用生命周期理论,CNCF 将其托管的项目划分为三个等级: Graduated:对应于早期成熟项目。截止到本文发稿时只有 Kubernetes、Prometheus、Envoy 和 CoreDNS 毕业。 Incubating:对应于早期采用者阶段。截止到本文发稿时有 16 个项目。 Sandbox:对应于创新者阶段。截止到本文发稿时有 12 个项目。 查看 CNCF 托管的项目列表请访问:https://www.cncf.io/projects/ CNCF 通过为项目设置成熟度水平是来建议企业应该采用哪些项目。CNCF 中托管的项目通过向 CNCF 的技术监督委员会(TOC)展示其可持续发展性来提高其成熟度:项目的采用率,健康的变化率,有来自多个组织的提交者,采用了 CNCF 行为准则,实现并维护了核心基础设施倡议(Core Infrastructure Initiative)最佳实践证书。详细信息在 毕业标准v1.1。 Certified Kubernetes Service Provider 通过 KCSP 意味着企业具有为其他企业或组织提供 Kubernetes 支持、咨询、专业服务和培训的资质。 2018年又有46家企业通过了KCSP,通过该认证的企业累计达到76家。 图 10.9.1.2:KCSP 如何通过 KCSP 要想通过 KCSP 必须满足以下三个条件: 三名或更多工程师通过认证Kubernetes管理员(CKA)考试。(CKAD考试不计入此要求) 支持企业最终用户的商业模式,包括为客户提供驻场工程师 成为 CNCF 会员 通过 KCSP 有如下好处: 企业的 logo 会出现在 Kubernetes Partners 页面 参加与云原生项目 leader、TOC 成员、CNCF Governing Board 的月度会议 向终端用户的 leader 寻求帮助 因为有如上这些好处,为了获得 Kubernetes 项目实施的资质,同时保持与基金会至今的交流,Kubernetes 厂商对该认证都趋之若鹜。 Certified Kubernetes offering 通过 KCSP 认证只代表企业有为他人实施 Kubernetes 项目的资质,而企业自身可能并不对外提供 Kubernetes 平台或服务,这些企业可能只是系统集成商或 ISV,这时候 CNCF 又推出了 Kubernetes 提供商认证。 Kubernetes 认证的提供商包括 Kubernetes 发行版、托管平台和安装器,通过认证的工具或平台将允许使用 Kubernetes 认证的 Logo,并保证 Kubernetes 一致性认证。 展望 2019 2018年 Kubernetes 成为 CNCF 孵化的首个毕业项目,根据 CNCF 打造的项目成熟度模型,Prometheus、Envoy、CoreDNS 相继毕业,CNCF 的眼光早已不再仅盯着 Kubernetes 了,CNCF Landscape 几乎包揽了所有云计算相关开源项目。可以说 CNCF 早已超出了 Kubernetes 的范畴,而是旨在一个建立在 Kubernetes 为底层资源调度和应用生命周期管理之上的生态系统,CNCF 中还演进出了如 Service Mesh 和 Serverless 之类的分支。 从 CNCF 2017和2018年度的变化来看,其中已经去掉了”dynamically orchestrating“的字眼,也就意味着 Kubernetes 在容器编排领域已经胜出,进而强调多云环境,同时 CNCF 推动的 Kubernetes 一致性认证也受到众多云厂商的支持,这也意味着 Kubernetes 将成为多云环境 API 一致性的保证。 CNCF 在2019年的战略将更聚焦于开发者社区,协助尤其是来自终端用户的开发者成为项目的 contributor 和 maintainer,保证终端用户的意见能够在社区里被正确地传达和并最终成功地采纳云原生。 参考 CNCF Annual Report 2017 pdf CNCF Annual Report 2018 pdf CNCF Projects CNCF Landscape CNCF Ambassadors Kubernetes Certified Service Providers 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "},"appendix/cncf-annual-report-2020.html":{"url":"appendix/cncf-annual-report-2020.html","title":"CNCF 2020 年年度报告解读","keywords":"","body":"CNCF 2020年年度报告解读 2020年底,CNCF 发布了2020年的年度报告,这是 CNCF 第四次发布发布年度报告。2020 年是非同寻常的一年,新冠肺炎疫情席卷全球,大部分线下活动都陷于停摆。那么这一年来 CNCF 取得了哪些成就呢?本文将带你一探究竟。 注:本文最后附上了 2020 年报告的下载地址。 CNCF 的 2020 年 人事变动 这一年里,原 CNCF 执行董事 Dan Kohn 因病离世,Priyanka Sharma 接替了他的位子,CNCF 的员工总数达到了 34 人。 增长 CNCF 成立五年来,截止目前 CNCF 已经托管了超过 80 个项目,拥有超过1000 个组织,177 个国家的 110,000贡献者。 图 10.9.2.1:CNCF 会员增长情况 技术雷达 CNCF 本年度在终端用户社区中推出了类似于 ThoughtWorks 的技术雷达,被给出了 Assess(评估)、Trail(试用)、采纳(Adopt)的技术成熟度划分。目前已评估的技术领域包括: 数据库存储 可观察性 持续交付 大会 因为疫情原因,今年的 KubeCon + CloudNativeCon NA、EU、China 都转移到了线上。 认证 因为 Kubernetes 环境下对安全的需求日益迫切,CNCF 在原有的 CKA(Certified Kubernetes Administrator)和 CKAD(Certified Kubernetes Application Developer)基础上增加了 CKSS(Certified Kubernetes Security Specialist)。 项目 2020 年 CNCF 共接纳了 35 个项目加入基金会,如下所示。 图 10.9.2.2:新收录的开源项目 还有些项目更新(毕业或晋级),如下所示。 图 10.9.2.3:项目更新 展望 2021 2020 年是全球和各行各业困难的一年。尽管如此,CNCF 社区已经迎接挑战,继续成为开源历史上发展最快的基金会。如今,CNCF 托管着 80 多个项目,拥有来自 177 个国家的 11 万多名贡献者。 当我们展望 2021 年和未来,分布式工作的增长为云原生和开源技术创造了更多的机会——除了在生产中已经创下的高使用率之外。我们需要无处不在的创新,不仅是为了应对这一流行病,而且是为了让我们的公司、政府和整个经济比以往任何时候都更加强大。我们的中立知识产权、丰富的贡献者计划,以及最重要的最终用户对我们的信任,使我们有能力加强跨公司合作和互操作性。我们将继续通过我们的活动、新的终端用户和会员计划以及项目服务,促进终端用户、项目创建者和增强者之间的这种创新良性循环。 参考 CNCF Annual Report 2020 加入云原生社区Copyright © 2017-2020 | Distributed under CC BY 4.0 | jimmysong.io all right reserved,powered by Gitbook Updated at 2021-03-28 10:45:04 "}} |