312 lines
8.3 KiB
Markdown
312 lines
8.3 KiB
Markdown
# HPA 使用自定义指标进行伸缩
|
||
|
||
Kubernetes 默认提供 CPU 和内存作为 HPA 弹性伸缩的指标,如果有更复杂的场景需求,比如基于业务单副本 QPS 大小来进行自动扩缩容,可以考虑自行安装 [prometheus-adapter](https://github.com/DirectXMan12/k8s-prometheus-adapter) 来实现基于自定义指标的 Pod 弹性伸缩。
|
||
|
||
## 实现原理
|
||
|
||
Kubernetes 提供了 [Custom Metrics API](https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/custom-metrics-api.md) 与 [External Metrics API](https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/external-metrics-api.md) 来对 HPA 的指标进行扩展,让用户能够根据实际需求进行自定义。
|
||
|
||
prometheus-adapter 对这两种 API 都有支持,通常使用 Custom Metrics API 就够了,本文也主要针对此 API 来实现使用自定义指标进行弹性伸缩。
|
||
|
||
## 前提条件
|
||
|
||
* 部署有 Prometheus 并做了相应的自定义指标采集。
|
||
* 已安装 [helm](https://helm.sh/docs/intro/install/) 。
|
||
|
||
## 业务暴露监控指标
|
||
|
||
这里以一个简单的 golang 业务程序为例,暴露 HTTP 请求的监控指标:
|
||
|
||
``` go
|
||
package main
|
||
|
||
import (
|
||
"github.com/prometheus/client_golang/prometheus"
|
||
"github.com/prometheus/client_golang/prometheus/promhttp"
|
||
"net/http"
|
||
"strconv"
|
||
)
|
||
|
||
var (
|
||
HTTPRequests = prometheus.NewCounterVec(
|
||
prometheus.CounterOpts{
|
||
Name: "httpserver_requests_total",
|
||
Help: "Number of the http requests received since the server started",
|
||
},
|
||
[]string{"status"},
|
||
)
|
||
)
|
||
|
||
func init() {
|
||
prometheus.MustRegister(HTTPRequests)
|
||
}
|
||
|
||
func main() {
|
||
http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
|
||
path := r.URL.Path
|
||
code := 200
|
||
switch path {
|
||
case "/test":
|
||
w.WriteHeader(200)
|
||
w.Write([]byte("OK"))
|
||
case "/metrics":
|
||
promhttp.Handler().ServeHTTP(w, r)
|
||
default:
|
||
w.WriteHeader(404)
|
||
w.Write([]byte("Not Found"))
|
||
}
|
||
HTTPRequests.WithLabelValues(strconv.Itoa(code)).Inc()
|
||
})
|
||
http.ListenAndServe(":80", nil)
|
||
}
|
||
```
|
||
|
||
该示例程序暴露了 `httpserver_requests_total` 指标,记录 HTTP 的请求,通过这个指标可以计算出该业务程序的 QPS 值。
|
||
|
||
## 部署业务程序
|
||
|
||
将前面的程序打包成容器镜像,然后部署到集群,比如使用 Deployment 部署:
|
||
|
||
``` yaml
|
||
apiVersion: apps/v1
|
||
kind: Deployment
|
||
metadata:
|
||
name: httpserver
|
||
namespace: httpserver
|
||
spec:
|
||
replicas: 1
|
||
selector:
|
||
matchLabels:
|
||
app: httpserver
|
||
template:
|
||
metadata:
|
||
labels:
|
||
app: httpserver
|
||
spec:
|
||
containers:
|
||
- name: httpserver
|
||
image: registry.imroc.cc/test/httpserver:custom-metrics
|
||
imagePullPolicy: Always
|
||
|
||
---
|
||
|
||
apiVersion: v1
|
||
kind: Service
|
||
metadata:
|
||
name: httpserver
|
||
namespace: httpserver
|
||
labels:
|
||
app: httpserver
|
||
annotations:
|
||
prometheus.io/scrape: "true"
|
||
prometheus.io/path: "/metrics"
|
||
prometheus.io/port: "http"
|
||
spec:
|
||
type: ClusterIP
|
||
ports:
|
||
- port: 80
|
||
protocol: TCP
|
||
name: http
|
||
selector:
|
||
app: httpserver
|
||
```
|
||
|
||
## Prometheus 采集业务监控
|
||
|
||
业务部署好了,我们需要让我们的 Promtheus 去采集业务暴露的监控指标。
|
||
|
||
### 方式一: 配置 Promtheus 采集规则
|
||
|
||
在 Promtheus 的采集规则配置文件添加采集规则:
|
||
|
||
``` yaml
|
||
- job_name: httpserver
|
||
scrape_interval: 5s
|
||
kubernetes_sd_configs:
|
||
- role: endpoints
|
||
namespaces:
|
||
names:
|
||
- httpserver
|
||
relabel_configs:
|
||
- action: keep
|
||
source_labels:
|
||
- __meta_kubernetes_service_label_app
|
||
regex: httpserver
|
||
- action: keep
|
||
source_labels:
|
||
- __meta_kubernetes_endpoint_port_name
|
||
regex: http
|
||
```
|
||
|
||
### 方式二: 配置 ServiceMonitor
|
||
|
||
若已安装 prometheus-operator,则可通过创建 ServiceMonitor 的 CRD 对象配置 Prometheus。示例如下:
|
||
|
||
``` yaml
|
||
apiVersion: monitoring.coreos.com/v1
|
||
kind: ServiceMonitor
|
||
metadata:
|
||
name: httpserver
|
||
spec:
|
||
endpoints:
|
||
- port: http
|
||
interval: 5s
|
||
namespaceSelector:
|
||
matchNames:
|
||
- httpserver
|
||
selector:
|
||
matchLabels:
|
||
app: httpserver
|
||
```
|
||
|
||
## 安装 prometheus-adapter
|
||
|
||
我们使用 helm 安装 [prometheus-adapter](https://artifacthub.io/packages/helm/prometheus-community/prometheus-adapter),安装前最重要的是确定并配置自定义指标,按照前面的示例,我们业务中使用 `httpserver_requests_total` 这个指标来记录 HTTP 请求,那么我们可以通过类似下面的 PromQL 计算出每个业务 Pod 的 QPS 监控:
|
||
|
||
```
|
||
sum(rate(http_requests_total[2m])) by (pod)
|
||
```
|
||
|
||
我们需要将其转换为 prometheus-adapter 的配置,准备一个 `values.yaml`:
|
||
|
||
``` yaml
|
||
rules:
|
||
default: false
|
||
custom:
|
||
- seriesQuery: 'httpserver_requests_total'
|
||
resources:
|
||
template: <<.Resource>>
|
||
name:
|
||
matches: "httpserver_requests_total"
|
||
as: "httpserver_requests_qps" # PromQL 计算出来的 QPS 指标
|
||
metricsQuery: sum(rate(<<.Series>>{<<.LabelMatchers>>}[1m])) by (<<.GroupBy>>)
|
||
prometheus:
|
||
url: http://prometheus.monitoring.svc.cluster.local # 替换 Prometheus API 的地址 (不写端口)
|
||
port: 9090u
|
||
```
|
||
|
||
执行 helm 命令进行安装:
|
||
|
||
``` bash
|
||
helm repo add prometheus-community https://prometheus-community.github.io/helm-charts
|
||
helm repo update
|
||
# Helm 3
|
||
helm install prometheus-adapter prometheus-community/prometheus-adapter -f values.yaml
|
||
# Helm 2
|
||
# helm install --name prometheus-adapter prometheus-community/prometheus-adapter -f values.yaml
|
||
```
|
||
|
||
## 测试是否安装正确
|
||
|
||
如果安装正确,是可以看到 Custom Metrics API 返回了我们配置的 QPS 相关指标:
|
||
|
||
``` bash
|
||
$ kubectl get --raw /apis/custom.metrics.k8s.io/v1beta1
|
||
{
|
||
"kind": "APIResourceList",
|
||
"apiVersion": "v1",
|
||
"groupVersion": "custom.metrics.k8s.io/v1beta1",
|
||
"resources": [
|
||
{
|
||
"name": "jobs.batch/httpserver_requests_qps",
|
||
"singularName": "",
|
||
"namespaced": true,
|
||
"kind": "MetricValueList",
|
||
"verbs": [
|
||
"get"
|
||
]
|
||
},
|
||
{
|
||
"name": "pods/httpserver_requests_qps",
|
||
"singularName": "",
|
||
"namespaced": true,
|
||
"kind": "MetricValueList",
|
||
"verbs": [
|
||
"get"
|
||
]
|
||
},
|
||
{
|
||
"name": "namespaces/httpserver_requests_qps",
|
||
"singularName": "",
|
||
"namespaced": false,
|
||
"kind": "MetricValueList",
|
||
"verbs": [
|
||
"get"
|
||
]
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
也能看到业务 Pod 的 QPS 值:
|
||
|
||
``` bash
|
||
$ kubectl get --raw /apis/custom.metrics.k8s.io/v1beta1/namespaces/httpserver/pods/*/httpserver_requests_qps
|
||
{
|
||
"kind": "MetricValueList",
|
||
"apiVersion": "custom.metrics.k8s.io/v1beta1",
|
||
"metadata": {
|
||
"selfLink": "/apis/custom.metrics.k8s.io/v1beta1/namespaces/httpserver/pods/%2A/httpserver_requests_qps"
|
||
},
|
||
"items": [
|
||
{
|
||
"describedObject": {
|
||
"kind": "Pod",
|
||
"namespace": "httpserver",
|
||
"name": "httpserver-6f94475d45-7rln9",
|
||
"apiVersion": "/v1"
|
||
},
|
||
"metricName": "httpserver_requests_qps",
|
||
"timestamp": "2020-11-17T09:14:36Z",
|
||
"value": "500m",
|
||
"selector": null
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
> 上面示例 QPS 为 `500m`,表示 QPS 值为 0.5
|
||
|
||
## 测试 HPA
|
||
|
||
假如我们设置每个业务 Pod 的平均 QPS 达到 50,就触发扩容,最小副本为 1 个,最大副本为1000,HPA 可以这么配置:
|
||
|
||
``` yaml
|
||
apiVersion: autoscaling/v2beta2
|
||
kind: HorizontalPodAutoscaler
|
||
metadata:
|
||
name: httpserver
|
||
namespace: httpserver
|
||
spec:
|
||
minReplicas: 1
|
||
maxReplicas: 1000
|
||
scaleTargetRef:
|
||
apiVersion: apps/v1
|
||
kind: Deployment
|
||
name: httpserver
|
||
metrics:
|
||
- type: Pods
|
||
pods:
|
||
metric:
|
||
name: httpserver_requests_qps
|
||
target:
|
||
averageValue: 50
|
||
type: AverageValue
|
||
```
|
||
|
||
然后对业务进行压测,观察是否扩容:
|
||
|
||
``` bash
|
||
$ kubectl get hpa
|
||
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
|
||
httpserver Deployment/httpserver 83933m/50 1 1000 2 18h
|
||
|
||
$ kubectl get pods
|
||
NAME READY STATUS RESTARTS AGE
|
||
httpserver-6f94475d45-47d5w 1/1 Running 0 3m41s
|
||
httpserver-6f94475d45-7rln9 1/1 Running 0 37h
|
||
httpserver-6f94475d45-6c5xm 0/1 ContainerCreating 0 1s
|
||
httpserver-6f94475d45-wl78d 0/1 ContainerCreating 0 1s
|
||
```
|
||
|
||
扩容正常则说明已经实现 HPA 基于业务自定义指标进行弹性伸缩。 |