kubeasz/docs/deprecated/practice/es_cluster.md

8.8 KiB
Raw Permalink Blame History

Elasticsearch 部署实践

Elasticsearch是目前全文搜索引擎的首选,它可以快速地储存、搜索和分析海量数据;也可以看成是真正分布式的高效数据库集群;Elastic的底层是开源库Lucene;封装并提供了REST API的操作接口。

单节点 docker 测试安装

cat > es-start.sh << EOF
#!/bin/bash

sysctl -w vm.max_map_count=262144

docker run --detach \
   --name es01 \
   -p 9200:9200 -p 9300:9300 \
   -e "discovery.type=single-node" \
   -e "bootstrap.memory_lock=true" --ulimit memlock=-1:-1 \
   --ulimit nofile=65536:65536 \
   --volume /srv/elasticsearch/data:/usr/share/elasticsearch/data \
   --volume /srv/elasticsearch/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml \
   jmgao1983/elasticsearch:6.4.0
EOF

执行sh es-start.sh后,就在本地运行了。

  • 验证 docker 镜像运行情况
root@docker-ts:~# docker ps -a
CONTAINER ID        IMAGE                           COMMAND                  CREATED             STATUS              PORTS                                            NAMES
171f3fecb596        jmgao1983/elasticsearch:6.4.0   "/usr/local/bin/do..."   2 hours ago         Up 2 hours          0.0.0.0:9200->9200/tcp, 0.0.0.0:9300->9300/tcp   es01
  • 验证 es 健康检查
root@docker-ts:~# curl http://127.0.0.1:9200/_cat/health
epoch      timestamp cluster       status node.total node.data shards pri relo init unassign pending_tasks max_task_wait_time active_shards_percent
1535523956 06:25:56  docker-es     green           1         1      0   0    0    0        0             0                  -                100.0%

在 k8s 上部署 Elasticsearch 集群

在生产环境下Elasticsearch 集群由不同的角色节点组成:

  • master 节点参与主节点选举不存储数据建议3个以上维护整个集群的稳定可靠状态
  • data 节点:不参与选主,负责存储数据;主要消耗磁盘,内存
  • client 节点:不参与选主,不存储数据;负责处理用户请求,实现请求转发,负载均衡等功能

这里使用helm chart来部署 (https://github.com/helm/charts/tree/master/incubator/elasticsearch)

$ cd /etc/ansible/manifests/es-cluster
# 如果你的helm安装没有启用tls证书请忽略以下--tls参数
$ helm install --tls --name es-cluster --namespace elastic -f es-values.yaml elasticsearch
  • 4.验证 es 集群
# 验证k8s上 es集群状态
$ kubectl get pod,svc -n elastic 
NAME                                                   READY   STATUS    RESTARTS   AGE
pod/es-cluster-elasticsearch-client-778df74c8f-7fj4k   1/1     Running   0          2m17s
pod/es-cluster-elasticsearch-client-778df74c8f-skh8l   1/1     Running   0          2m3s
pod/es-cluster-elasticsearch-data-0                    1/1     Running   0          25m
pod/es-cluster-elasticsearch-data-1                    1/1     Running   0          11m
pod/es-cluster-elasticsearch-master-0                  1/1     Running   0          25m
pod/es-cluster-elasticsearch-master-1                  1/1     Running   0          12m
pod/es-cluster-elasticsearch-master-2                  1/1     Running   0          10m

NAME                                         TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)                         AGE
service/es-cluster-elasticsearch-client      NodePort    10.68.157.105   <none>        9200:29200/TCP,9300:29300/TCP   25m
service/es-cluster-elasticsearch-discovery   ClusterIP   None            <none>        9300/TCP                        25m

# 验证 es集群本身状态
$ curl $NODE_IP:29200/_cat/health
1539335131 09:05:31 es-on-k8s green 7 2 0 0 0 0 0 0 - 100.0%

$ curl $NODE_IP:29200/_cat/indices?v
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
root@k8s401:/etc/ansible# curl 10.100.97.41:29200/_cat/nodes?
172.31.2.4 27 80 5 0.09 0.11 0.21 mi - es-cluster-elasticsearch-master-0
172.31.1.7 30 97 3 0.39 0.29 0.27 i  - es-cluster-elasticsearch-client-778df74c8f-skh8l
172.31.3.7 20 97 3 0.11 0.17 0.18 i  - es-cluster-elasticsearch-client-778df74c8f-7fj4k
172.31.1.5  8 97 5 0.39 0.29 0.27 di - es-cluster-elasticsearch-data-0
172.31.2.5  8 80 3 0.09 0.11 0.21 di - es-cluster-elasticsearch-data-1
172.31.1.6 18 97 4 0.39 0.29 0.27 mi - es-cluster-elasticsearch-master-2
172.31.3.6 20 97 4 0.11 0.17 0.18 mi * es-cluster-elasticsearch-master-1

es 性能压测

如上已使用 chart 在 k8s上部署了 7 节点的 elasticsearch 集群;各位应该十分好奇性能怎么样;官方提供了压测工具esrally可以方便的进行性能压测,这里省略安装和测试过程;压测机上执行:
esrally --track=http_logs --target-hosts="$NODE_IP:29200" --pipeline=benchmark-only --report-file=report.md
压测过程需要1-2个小时部分压测结果如下

------------------------------------------------------
    _______             __   _____
   / ____(_)___  ____ _/ /  / ___/_________  ________
  / /_  / / __ \/ __ `/ /   \__ \/ ___/ __ \/ ___/ _ \
 / __/ / / / / / /_/ / /   ___/ / /__/ /_/ / /  /  __/
/_/   /_/_/ /_/\__,_/_/   /____/\___/\____/_/   \___/
------------------------------------------------------

|   Lap |                               Metric |         Task |       Value |    Unit |
|------:|-------------------------------------:|-------------:|------------:|--------:|
...
|   All |                       Min Throughput | index-append |     16903.2 |  docs/s |
|   All |                    Median Throughput | index-append |     17624.4 |  docs/s |
|   All |                       Max Throughput | index-append |     19382.8 |  docs/s |
|   All |              50th percentile latency | index-append |     1865.74 |      ms |
|   All |              90th percentile latency | index-append |     3708.04 |      ms |
|   All |              99th percentile latency | index-append |     6379.49 |      ms |
|   All |            99.9th percentile latency | index-append |     8389.74 |      ms |
|   All |           99.99th percentile latency | index-append |     9612.84 |      ms |
|   All |             100th percentile latency | index-append |     9861.02 |      ms |
|   All |         50th percentile service time | index-append |     1865.74 |      ms |
|   All |         90th percentile service time | index-append |     3708.04 |      ms |
|   All |         99th percentile service time | index-append |     6379.49 |      ms |
|   All |       99.9th percentile service time | index-append |     8389.74 |      ms |
|   All |      99.99th percentile service time | index-append |     9612.84 |      ms |
|   All |        100th percentile service time | index-append |     9861.02 |      ms |
|   All |                           error rate | index-append |           0 |       % |
|   All |                       Min Throughput |      default |        0.66 |   ops/s |
|   All |                    Median Throughput |      default |        0.66 |   ops/s |
|   All |                       Max Throughput |      default |        0.66 |   ops/s |
|   All |              50th percentile latency |      default |      770131 |      ms |
|   All |              90th percentile latency |      default |      825511 |      ms |
|   All |              99th percentile latency |      default |      838030 |      ms |
|   All |             100th percentile latency |      default |      839382 |      ms |
|   All |         50th percentile service time |      default |      1539.4 |      ms |
|   All |         90th percentile service time |      default |     1635.39 |      ms |
|   All |         99th percentile service time |      default |     1728.02 |      ms |
|   All |        100th percentile service time |      default |      1736.2 |      ms |
|   All |                           error rate |      default |           0 |       % |
...

从测试结果看集群的吞吐可以k8s es-client pod还可以扩展延迟略高一些因为使用了nfs共享存储整体效果不错。

中文分词安装

安装 ik 插件即可可以自定义已安装ik插件的es docker镜像创建如下 Dockerfile

FROM jmgao1983/elasticsearch:6.4.0

RUN /usr/share/elasticsearch/bin/elasticsearch-plugin install \
  --batch https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.4.0/elasticsearch-analysis-ik-6.4.0.zip \
  && cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime

参考阅读

  1. Elasticsearch 入门教程
  2. Elasticsearch 压测方案之 esrally 简介