LearnPython/python_numpy.py

319 lines
7.8 KiB
Python
Raw Normal View History

2018-02-23 14:48:36 +08:00
# _*_coding:utf-8-*_
import numpy as np
# 定义矩阵变量并输出变量的一些属性
# 用np.array()生成矩阵
arr=np.array([[1,2,3],
[4,5,6]])
print(arr)
print('number of arr dimensions: ',arr.ndim)
print('~ ~ ~ shape: ',arr.shape)
print('~ ~ ~ size: ', arr.size)
# 输出结果:
[[1 2 3]
[4 5 6]]
number of arr dimensions: 2
~ ~ ~ shape: (2, 3)
~ ~ ~ size: 6
# 定义一些特殊矩阵
# 指定矩阵数据类型
arr=np.array([[1,2,3],
[4,5,6]],
dtype=np.float64) # 我的电脑np.int是int32还可以使用np.int32/np.int64/np.float32/np.float64
print(arr.dtype)
# 用np.zeros()生成全零矩阵
arr_zeros=np.zeros( (2,3) )
print(arr_zeros)
# 用np.ones()生成全一矩阵
arr_ones=np.ones( (2,3) )
print(arr_ones)
# 生成随机矩阵np.random.random()
arr_random=np.random.random((2,3))
print(arr_random)
# 用np.arange()生成数列
arr=np.arange(6,12)
print(arr)
# 用np.arange().reshape()将数列转成矩阵
arr=np.arange(6,12).reshape( (2,3) )
print(arr)
# 用np.linspace(开始,结束,多少点划分线段)同样也可以用reshape()
arr=np.linspace(1,5,3)
print(arr)
# 矩阵运算
arr1=np.array([1,2,3,6])
arr2=np.arange(4)
# 矩阵减法,加法同理
arr_sub=arr1-arr2
print(arr1)
print(arr2)
print(arr_sub)
# 矩阵乘法
arr_multi=arr1**3 # 求每个元素的立方在python中幂运算用**来表示
print(arr_multi)
arr_multi=arr1*arr2 # 元素逐个相乘
print(arr_multi)
arr_multi=np.dot(arr1, arr2.reshape((4,1))) # 维度1*4和4*1矩阵相乘
print(arr_multi)
arr_multi=np.dot(arr1.reshape((4,1)), arr2.reshape((1,4))) # 维度4*1和1*4矩阵相乘
print(arr_multi)
arr_multi=arr1.dot(arr2.reshape((4,1))) # 也可以使用矩阵名.doc(矩阵名)
print(arr_multi)
# 三角运算np.sin()/np.cos()/np.tan()
arr_sin=np.sin(arr1)
print(arr_sin)
# 逻辑运算
print(arr1<3) # 查看arr1矩阵中哪些元素小于3返回[ True True False False]
# 矩阵求和,求矩阵最大最小值
arr1=np.array([[1,2,3],
[4,5,6]])
print(arr1)
print(np.sum(arr1)) # 矩阵求和
print(np.sum(arr1,axis=0)) # 矩阵每列求和
print(np.sum(arr1,axis=1).reshape(2,1)) # 矩阵每行求和
print(np.min(arr1)) # 求矩阵最小值
print(np.min(arr1,axis=0))
print(np.min(arr1,axis=1))
print(np.max(arr1)) # 求矩阵最大值
print(np.mean(arr1)) # 输出矩阵平均值也可以用arr1.mean()
print(np.median(arr1)) # 输出矩阵中位数
# 输出矩阵某些值的位置
arr1=np.arange(2,14).reshape((3,4))
print(arr1)
print(np.argmin(arr1)) # 输出矩阵最小值的位置0
print(np.argmax(arr1)) # 输出矩阵最大值的位置11
print(np.cumsum(arr1)) # 输出前一个数的和,前两个数的和,等等
print(np.diff(arr1)) # 输出相邻两个数的差值
arr_zeros=np.zeros((3,4))
print(np.nonzero(arr_zeros)) #输出矩阵非零元素位置返回多个行向量第i个行向量表示第i个维度
print(np.nonzero(arr1))
print(np.sort(arr1)) # 矩阵逐行排序
print(np.transpose(arr1)) # 矩阵转置也可以用arr1.T
print(np.clip(arr1,5,9)) #将矩阵中小于5的数置5大于9的数置9
# numpy索引
arr1=np.array([1,2,3,6])
arr2=np.arange(2,8).reshape(2,3)
print(arr1)
print(arr1[0]) # 索引从0开始计数
print(arr2)
print(arr2[0][2]) # arr[行][列]也可以用arr[行,列]
print(arr2[0,:]) # 用:来代表所有元素的意思
print(arr2[0,0:3]) # 表示输出第0行从第0列到第2列所有元素
# 注意python索引一般是左闭右开
# 通过for循环每次输出矩阵的一行
for row in arr2:
print(row)
# 如果要每次输出矩阵的一列,就先将矩阵转置
arr2_T=arr2.T
print(arr2_T)
for row in arr2_T:
print(row)
# 将矩阵压成一行逐个输出元素
arr2_flat=arr2.flatten()
print(arr2_flat)
for i in arr2.flat: # 也可以用arr2.flatten()
print(i)
2018-02-23 16:35:08 +08:00
# 矩阵合并与分割
# 矩阵合并
arr1=np.array([1,2,3,6])
arr2=np.arange(4)
arr3=np.arange(2,16+1,2).reshape(2,4)
print(arr1)
print(arr2)
print(arr3)
arr_hor=np.hstack((arr1,arr2)) # 水平合并horizontal
arr_ver=np.vstack((arr1,arr3)) # 垂直合并vertical
print(arr_hor)
print(arr_ver)
# 矩阵分割
print('arr3: ',arr3)
print(np.split(arr3,4,axis=1)) # 将矩阵按列均分成4块
print(np.split(arr3,2,axis=0)) # 将矩阵按行均分成2块
print(np.hsplit(arr3,4)) # 将矩阵按列均分成4块
print(np.vsplit(arr3,2)) # 将矩阵按行均分成2块
print(np.array_split(arr3,3,axis=1)) # 将矩阵进行不均等划分
# numpy复制浅复制深复制
# 浅复制
arr1=np.array([3,1,2,3])
print(arr1)
a1=arr1
b1=a1
# 通过上述赋值运算arr1,a1,b1都指向了同一个地址浅复制
print(a1 is arr1)
print(b1 is arr1)
print(id(a1))
print(id(b1))
print(id(arr1))
# 会发现通过b1[0]改变内容arr1,a1,b1的内容都改变了
b1[0]=6
print(b1)
print(a1)
print(arr1)
2018-02-23 14:48:36 +08:00
2018-02-23 16:35:08 +08:00
# 深复制
arr2=np.array([3,1,2,3])
print('\n')
print(arr2)
b2=arr2.copy() # 深复制此时b2拥有不同于arr2的空间
a2=b2.copy()
# 通过上述赋值运算arr1,a1,b1都指向了不同的地址深复制
print(id(arr2))
print(id(a2))
print(id(b2))
# 此时改变b2,a2的值互不影响
b2[0]=1
a2[0]=2
print(b2)
print(a2)
print(arr2)
2018-02-24 18:06:48 +08:00
# 线性代数模块linalg
# 求范数
a=np.array([5,12])
print(a)
b=np.linalg.norm(a) # norm表示范数默认求2范数ord=1求1范数ord=np.inf求无穷范数
print(b)
# 求矩阵的迹、行列式、秩、特征值、特征向量
b = np.array([
[1, 2, 3],
[4, 5, 6],
[7, 8, 9]
])
print(np.trace(b)) # 15求矩阵的迹主对角线上各个元素的总和
c=np.linalg.det(b)
print(c) # 输出一个很小的值6.66133814775e-16求矩阵的行列式值
# 如果希望输出为0使用round(c, 2),四舍五入保留小数点后两位
# 不过对精度要求高可以使用decimal模块
c=np.linalg.matrix_rank(b)
print(c) # 2求矩阵的秩
u,v=np.linalg.eig(b) # u为特征值
print(u)
print(v)
# 矩阵分解
# Cholesky分解并重建
d = np.array([
[2, 1],
[1, 2]
])
l = np.linalg.cholesky(d)
print(l) # 得到下三角矩阵
e=np.dot(l, l.T)
print(e) # 重建得到矩阵d
# 对不正定矩阵进行SVD分解并重建
U, s, V = np.linalg.svd(d)
S = np.array([
[s[0], 0],
[0, s[1]]
])
print(np.dot(U, np.dot(S, V))) # 重建得到矩阵d
# 矩阵乘法
# https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html#numpy.dot
print(np.dot(3, 4)) # 120-D矩阵相乘也就是标量相乘
print(np.dot([2j, 3j], [2j, 3j])) # (-13+0j)1-D矩阵相乘实际上是向量做点积
a=[[1, 0], [0, 1]]
b=[[4, 1, 0], [2, 2, 0]]
print(np.dot(a, b))
'''
array([[4, 1],
[2, 2]])
2-D矩阵相乘
这里是2*2矩阵和2*3矩阵相乘结果为2*3矩阵
'''
a=[[1, 0], [1, 2]]
b=[2,2]
c=np.dot(a,b)
print(c)
'''
[2 6]
注意这里b是向量
numpy处理时并不是按照矩阵乘法规则计算
而是向量点积
也就是np.dot([1, 0],[1, 2])和np.dot([1, 2],[2,2])
'''
# 再做个实验来区别向量乘法和矩阵乘法
b=np.array([
[1, 2, 3],
[4, 5, 6],
[7, 8, 9]
])
# 这里插播一下np.array([1,0,1])是3维向量而不是1*3的矩阵
c1=np.array([[1,0,2]])
print(c1.shape) # (1, 3)这是一个1*3的矩阵
c2=np.array([1,0,2])
print(c2.shape) # (3,)这是一个3维向量
# print(np.dot(b,c1)) # 报错,不符合矩阵乘法规则
print(np.dot(b,c2)) # [ 7 16 25],点积运算
print(np.dot(c1,b)) # [[15 18 21]],矩阵乘法运算规则
print(np.dot(c2,b)) # [15 18 21],点积运算
# 还要补充一下如果是用python自带的*运算符计算则是广播机制
print(b*c1) # print(b*c2)结果一样
'''
[[ 1 0 6]
[ 4 0 12]
[ 7 0 18]]
'''
print(b+c1) # print(b*c2)结果一样
'''
[[ 2 2 5]
[ 5 5 8]
[ 8 8 11]]
'''