LearnPython/python_numpy.py

319 lines
7.8 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# _*_coding:utf-8-*_
import numpy as np
# 定义矩阵变量并输出变量的一些属性
# 用np.array()生成矩阵
arr=np.array([[1,2,3],
[4,5,6]])
print(arr)
print('number of arr dimensions: ',arr.ndim)
print('~ ~ ~ shape: ',arr.shape)
print('~ ~ ~ size: ', arr.size)
# 输出结果:
[[1 2 3]
[4 5 6]]
number of arr dimensions: 2
~ ~ ~ shape: (2, 3)
~ ~ ~ size: 6
# 定义一些特殊矩阵
# 指定矩阵数据类型
arr=np.array([[1,2,3],
[4,5,6]],
dtype=np.float64) # 我的电脑np.int是int32还可以使用np.int32/np.int64/np.float32/np.float64
print(arr.dtype)
# 用np.zeros()生成全零矩阵
arr_zeros=np.zeros( (2,3) )
print(arr_zeros)
# 用np.ones()生成全一矩阵
arr_ones=np.ones( (2,3) )
print(arr_ones)
# 生成随机矩阵np.random.random()
arr_random=np.random.random((2,3))
print(arr_random)
# 用np.arange()生成数列
arr=np.arange(6,12)
print(arr)
# 用np.arange().reshape()将数列转成矩阵
arr=np.arange(6,12).reshape( (2,3) )
print(arr)
# 用np.linspace(开始,结束,多少点划分线段)同样也可以用reshape()
arr=np.linspace(1,5,3)
print(arr)
# 矩阵运算
arr1=np.array([1,2,3,6])
arr2=np.arange(4)
# 矩阵减法,加法同理
arr_sub=arr1-arr2
print(arr1)
print(arr2)
print(arr_sub)
# 矩阵乘法
arr_multi=arr1**3 # 求每个元素的立方在python中幂运算用**来表示
print(arr_multi)
arr_multi=arr1*arr2 # 元素逐个相乘
print(arr_multi)
arr_multi=np.dot(arr1, arr2.reshape((4,1))) # 维度1*4和4*1矩阵相乘
print(arr_multi)
arr_multi=np.dot(arr1.reshape((4,1)), arr2.reshape((1,4))) # 维度4*1和1*4矩阵相乘
print(arr_multi)
arr_multi=arr1.dot(arr2.reshape((4,1))) # 也可以使用矩阵名.doc(矩阵名)
print(arr_multi)
# 三角运算np.sin()/np.cos()/np.tan()
arr_sin=np.sin(arr1)
print(arr_sin)
# 逻辑运算
print(arr1<3) # 查看arr1矩阵中哪些元素小于3返回[ True True False False]
# 矩阵求和,求矩阵最大最小值
arr1=np.array([[1,2,3],
[4,5,6]])
print(arr1)
print(np.sum(arr1)) # 矩阵求和
print(np.sum(arr1,axis=0)) # 矩阵每列求和
print(np.sum(arr1,axis=1).reshape(2,1)) # 矩阵每行求和
print(np.min(arr1)) # 求矩阵最小值
print(np.min(arr1,axis=0))
print(np.min(arr1,axis=1))
print(np.max(arr1)) # 求矩阵最大值
print(np.mean(arr1)) # 输出矩阵平均值也可以用arr1.mean()
print(np.median(arr1)) # 输出矩阵中位数
# 输出矩阵某些值的位置
arr1=np.arange(2,14).reshape((3,4))
print(arr1)
print(np.argmin(arr1)) # 输出矩阵最小值的位置0
print(np.argmax(arr1)) # 输出矩阵最大值的位置11
print(np.cumsum(arr1)) # 输出前一个数的和,前两个数的和,等等
print(np.diff(arr1)) # 输出相邻两个数的差值
arr_zeros=np.zeros((3,4))
print(np.nonzero(arr_zeros)) #输出矩阵非零元素位置返回多个行向量第i个行向量表示第i个维度
print(np.nonzero(arr1))
print(np.sort(arr1)) # 矩阵逐行排序
print(np.transpose(arr1)) # 矩阵转置也可以用arr1.T
print(np.clip(arr1,5,9)) #将矩阵中小于5的数置5大于9的数置9
# numpy索引
arr1=np.array([1,2,3,6])
arr2=np.arange(2,8).reshape(2,3)
print(arr1)
print(arr1[0]) # 索引从0开始计数
print(arr2)
print(arr2[0][2]) # arr[行][列]也可以用arr[行,列]
print(arr2[0,:]) # 用:来代表所有元素的意思
print(arr2[0,0:3]) # 表示输出第0行从第0列到第2列所有元素
# 注意python索引一般是左闭右开
# 通过for循环每次输出矩阵的一行
for row in arr2:
print(row)
# 如果要每次输出矩阵的一列,就先将矩阵转置
arr2_T=arr2.T
print(arr2_T)
for row in arr2_T:
print(row)
# 将矩阵压成一行逐个输出元素
arr2_flat=arr2.flatten()
print(arr2_flat)
for i in arr2.flat: # 也可以用arr2.flatten()
print(i)
# 矩阵合并与分割
# 矩阵合并
arr1=np.array([1,2,3,6])
arr2=np.arange(4)
arr3=np.arange(2,16+1,2).reshape(2,4)
print(arr1)
print(arr2)
print(arr3)
arr_hor=np.hstack((arr1,arr2)) # 水平合并horizontal
arr_ver=np.vstack((arr1,arr3)) # 垂直合并vertical
print(arr_hor)
print(arr_ver)
# 矩阵分割
print('arr3: ',arr3)
print(np.split(arr3,4,axis=1)) # 将矩阵按列均分成4块
print(np.split(arr3,2,axis=0)) # 将矩阵按行均分成2块
print(np.hsplit(arr3,4)) # 将矩阵按列均分成4块
print(np.vsplit(arr3,2)) # 将矩阵按行均分成2块
print(np.array_split(arr3,3,axis=1)) # 将矩阵进行不均等划分
# numpy复制浅复制深复制
# 浅复制
arr1=np.array([3,1,2,3])
print(arr1)
a1=arr1
b1=a1
# 通过上述赋值运算arr1,a1,b1都指向了同一个地址浅复制
print(a1 is arr1)
print(b1 is arr1)
print(id(a1))
print(id(b1))
print(id(arr1))
# 会发现通过b1[0]改变内容arr1,a1,b1的内容都改变了
b1[0]=6
print(b1)
print(a1)
print(arr1)
# 深复制
arr2=np.array([3,1,2,3])
print('\n')
print(arr2)
b2=arr2.copy() # 深复制此时b2拥有不同于arr2的空间
a2=b2.copy()
# 通过上述赋值运算arr1,a1,b1都指向了不同的地址深复制
print(id(arr2))
print(id(a2))
print(id(b2))
# 此时改变b2,a2的值互不影响
b2[0]=1
a2[0]=2
print(b2)
print(a2)
print(arr2)
# 线性代数模块linalg
# 求范数
a=np.array([5,12])
print(a)
b=np.linalg.norm(a) # norm表示范数默认求2范数ord=1求1范数ord=np.inf求无穷范数
print(b)
# 求矩阵的迹、行列式、秩、特征值、特征向量
b = np.array([
[1, 2, 3],
[4, 5, 6],
[7, 8, 9]
])
print(np.trace(b)) # 15求矩阵的迹主对角线上各个元素的总和
c=np.linalg.det(b)
print(c) # 输出一个很小的值6.66133814775e-16求矩阵的行列式值
# 如果希望输出为0使用round(c, 2),四舍五入保留小数点后两位
# 不过对精度要求高可以使用decimal模块
c=np.linalg.matrix_rank(b)
print(c) # 2求矩阵的秩
u,v=np.linalg.eig(b) # u为特征值
print(u)
print(v)
# 矩阵分解
# Cholesky分解并重建
d = np.array([
[2, 1],
[1, 2]
])
l = np.linalg.cholesky(d)
print(l) # 得到下三角矩阵
e=np.dot(l, l.T)
print(e) # 重建得到矩阵d
# 对不正定矩阵进行SVD分解并重建
U, s, V = np.linalg.svd(d)
S = np.array([
[s[0], 0],
[0, s[1]]
])
print(np.dot(U, np.dot(S, V))) # 重建得到矩阵d
# 矩阵乘法
# https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html#numpy.dot
print(np.dot(3, 4)) # 120-D矩阵相乘也就是标量相乘
print(np.dot([2j, 3j], [2j, 3j])) # (-13+0j)1-D矩阵相乘实际上是向量做点积
a=[[1, 0], [0, 1]]
b=[[4, 1, 0], [2, 2, 0]]
print(np.dot(a, b))
'''
array([[4, 1],
[2, 2]])
2-D矩阵相乘
这里是2*2矩阵和2*3矩阵相乘结果为2*3矩阵
'''
a=[[1, 0], [1, 2]]
b=[2,2]
c=np.dot(a,b)
print(c)
'''
[2 6]
注意这里b是向量
numpy处理时并不是按照矩阵乘法规则计算
而是向量点积
也就是np.dot([1, 0],[1, 2])和np.dot([1, 2],[2,2])
'''
# 再做个实验来区别向量乘法和矩阵乘法
b=np.array([
[1, 2, 3],
[4, 5, 6],
[7, 8, 9]
])
# 这里插播一下np.array([1,0,1])是3维向量而不是1*3的矩阵
c1=np.array([[1,0,2]])
print(c1.shape) # (1, 3)这是一个1*3的矩阵
c2=np.array([1,0,2])
print(c2.shape) # (3,)这是一个3维向量
# print(np.dot(b,c1)) # 报错,不符合矩阵乘法规则
print(np.dot(b,c2)) # [ 7 16 25],点积运算
print(np.dot(c1,b)) # [[15 18 21]],矩阵乘法运算规则
print(np.dot(c2,b)) # [15 18 21],点积运算
# 还要补充一下如果是用python自带的*运算符计算则是广播机制
print(b*c1) # print(b*c2)结果一样
'''
[[ 1 0 6]
[ 4 0 12]
[ 7 0 18]]
'''
print(b+c1) # print(b*c2)结果一样
'''
[[ 2 2 5]
[ 5 5 8]
[ 8 8 11]]
'''