Create python_numpy.py

master
李中梁 2018-02-23 14:48:36 +08:00 committed by GitHub
parent 8e2ad8ffb6
commit 098c310b85
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 150 additions and 0 deletions

150
python_numpy.py 100644
View File

@ -0,0 +1,150 @@
# _*_coding:utf-8-*_
import numpy as np
# 定义矩阵变量并输出变量的一些属性
# 用np.array()生成矩阵
arr=np.array([[1,2,3],
[4,5,6]])
print(arr)
print('number of arr dimensions: ',arr.ndim)
print('~ ~ ~ shape: ',arr.shape)
print('~ ~ ~ size: ', arr.size)
# 输出结果:
[[1 2 3]
[4 5 6]]
number of arr dimensions: 2
~ ~ ~ shape: (2, 3)
~ ~ ~ size: 6
# 定义一些特殊矩阵
# 指定矩阵数据类型
arr=np.array([[1,2,3],
[4,5,6]],
dtype=np.float64) # 我的电脑np.int是int32还可以使用np.int32/np.int64/np.float32/np.float64
print(arr.dtype)
# 用np.zeros()生成全零矩阵
arr_zeros=np.zeros( (2,3) )
print(arr_zeros)
# 用np.ones()生成全一矩阵
arr_ones=np.ones( (2,3) )
print(arr_ones)
# 生成随机矩阵np.random.random()
arr_random=np.random.random((2,3))
print(arr_random)
# 用np.arange()生成数列
arr=np.arange(6,12)
print(arr)
# 用np.arange().reshape()将数列转成矩阵
arr=np.arange(6,12).reshape( (2,3) )
print(arr)
# 用np.linspace(开始,结束,多少点划分线段)同样也可以用reshape()
arr=np.linspace(1,5,3)
print(arr)
# 矩阵运算
arr1=np.array([1,2,3,6])
arr2=np.arange(4)
# 矩阵减法,加法同理
arr_sub=arr1-arr2
print(arr1)
print(arr2)
print(arr_sub)
# 矩阵乘法
arr_multi=arr1**3 # 求每个元素的立方在python中幂运算用**来表示
print(arr_multi)
arr_multi=arr1*arr2 # 元素逐个相乘
print(arr_multi)
arr_multi=np.dot(arr1, arr2.reshape((4,1))) # 维度1*4和4*1矩阵相乘
print(arr_multi)
arr_multi=np.dot(arr1.reshape((4,1)), arr2.reshape((1,4))) # 维度4*1和1*4矩阵相乘
print(arr_multi)
arr_multi=arr1.dot(arr2.reshape((4,1))) # 也可以使用矩阵名.doc(矩阵名)
print(arr_multi)
# 三角运算np.sin()/np.cos()/np.tan()
arr_sin=np.sin(arr1)
print(arr_sin)
# 逻辑运算
print(arr1<3) # 查看arr1矩阵中哪些元素小于3返回[ True True False False]
# 矩阵求和,求矩阵最大最小值
arr1=np.array([[1,2,3],
[4,5,6]])
print(arr1)
print(np.sum(arr1)) # 矩阵求和
print(np.sum(arr1,axis=0)) # 矩阵每列求和
print(np.sum(arr1,axis=1).reshape(2,1)) # 矩阵每行求和
print(np.min(arr1)) # 求矩阵最小值
print(np.min(arr1,axis=0))
print(np.min(arr1,axis=1))
print(np.max(arr1)) # 求矩阵最大值
print(np.mean(arr1)) # 输出矩阵平均值也可以用arr1.mean()
print(np.median(arr1)) # 输出矩阵中位数
# 输出矩阵某些值的位置
arr1=np.arange(2,14).reshape((3,4))
print(arr1)
print(np.argmin(arr1)) # 输出矩阵最小值的位置0
print(np.argmax(arr1)) # 输出矩阵最大值的位置11
print(np.cumsum(arr1)) # 输出前一个数的和,前两个数的和,等等
print(np.diff(arr1)) # 输出相邻两个数的差值
arr_zeros=np.zeros((3,4))
print(np.nonzero(arr_zeros)) #输出矩阵非零元素位置返回多个行向量第i个行向量表示第i个维度
print(np.nonzero(arr1))
print(np.sort(arr1)) # 矩阵逐行排序
print(np.transpose(arr1)) # 矩阵转置也可以用arr1.T
print(np.clip(arr1,5,9)) #将矩阵中小于5的数置5大于9的数置9
# numpy索引
arr1=np.array([1,2,3,6])
arr2=np.arange(2,8).reshape(2,3)
print(arr1)
print(arr1[0]) # 索引从0开始计数
print(arr2)
print(arr2[0][2]) # arr[行][列]也可以用arr[行,列]
print(arr2[0,:]) # 用:来代表所有元素的意思
print(arr2[0,0:3]) # 表示输出第0行从第0列到第2列所有元素
# 注意python索引一般是左闭右开
# 通过for循环每次输出矩阵的一行
for row in arr2:
print(row)
# 如果要每次输出矩阵的一列,就先将矩阵转置
arr2_T=arr2.T
print(arr2_T)
for row in arr2_T:
print(row)
# 将矩阵压成一行逐个输出元素
arr2_flat=arr2.flatten()
print(arr2_flat)
for i in arr2.flat: # 也可以用arr2.flatten()
print(i)