update python_visual.py

master
xianhu 2017-05-08 14:11:50 +08:00
parent 9156f11ec6
commit 84eec7bc32
1 changed files with 76 additions and 49 deletions

View File

@ -5,10 +5,16 @@ python_visual.py by xianhu
"""
import numpy as np
import matplotlib
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
import matplotlib.font_manager as fm
from mpl_toolkits.mplot3d import Axes3D
# 解决中文乱码问题
myfont = fm.FontProperties(fname="/Library/Fonts/Songti.ttc", size=14)
matplotlib.rcParams["axes.unicode_minus"] = False
def simple_plot():
"""
@ -18,27 +24,27 @@ def simple_plot():
x = np.linspace(-np.pi, np.pi, 256, endpoint=True)
y_cos, y_sin = np.cos(x), np.sin(x)
# 生成画布
# 生成画布,并设定标题
plt.figure(figsize=(8, 6), dpi=80)
plt.title("plot title")
plt.title("plot title", fontproperties=myfont)
plt.grid(True)
# 设置X轴
plt.xlabel("x label")
plt.xlabel("X轴", fontproperties=myfont)
plt.xlim(-4.0, 4.0)
plt.xticks(np.linspace(-4, 4, 9, endpoint=True))
# 设置Y轴
plt.ylabel("y label")
plt.ylabel("Y轴", fontproperties=myfont)
plt.ylim(-1.0, 1.0)
plt.yticks(np.linspace(-1, 1, 9, endpoint=True))
# 画两条曲线
plt.plot(x, y_cos, "b--", linewidth=2.0, label="cos")
plt.plot(x, y_sin, "g-", linewidth=2.0, label="sin")
plt.plot(x, y_cos, "b--", linewidth=2.0, label="cos事例")
plt.plot(x, y_sin, "g-", linewidth=2.0, label="sin事例")
# 设置图例位置,loc可以为[upper, lower, left, right, center]
plt.legend(loc="upper left", shadow=True)
plt.legend(loc="upper left", prop=myfont, shadow=True)
# 图形显示
plt.show()
@ -54,7 +60,7 @@ def simple_advanced_plot():
x = np.linspace(-np.pi, np.pi, 256, endpoint=True)
y_cos, y_sin = np.cos(x), np.sin(x)
# 生成画布
# 生成画布, 并设定标题
plt.figure(figsize=(8, 6), dpi=80)
plt.title("plot title")
plt.grid(True)
@ -80,9 +86,9 @@ def simple_advanced_plot():
ax_2.set_yticks(np.linspace(-2, 2, 9, endpoint=True))
# 设置X轴(共同)
ax_2.set_xlabel("x label")
ax_2.set_xlim(-4.0, 4.0)
ax_2.set_xticks(np.linspace(-4, 4, 9, endpoint=True))
ax_1.set_xlabel("x label")
ax_1.set_xlim(-4.0, 4.0)
ax_1.set_xticks(np.linspace(-4, 4, 9, endpoint=True))
# 图形显示
plt.show()
@ -105,6 +111,7 @@ def subplot_plot():
# 子图的生成方式
plt.subplot(2, 2, num+1)
plt.title("subplot %d" % (num+1))
plt.plot(x, y, style_list[num])
# 图形显示
@ -122,6 +129,9 @@ def bar_plot():
means_men = (20, 35, 30, 35, 27)
means_women = (25, 32, 34, 20, 25)
# 设置标题
plt.title("plot title")
# 设置相关参数
index = np.arange(len(means_men))
bar_width = 0.35
@ -133,15 +143,15 @@ def bar_plot():
# 设置柱状图标示
for x, y in zip(index, means_men):
plt.text(x+(bar_width/2), y+0.3, y, ha="center", va="bottom")
plt.text(x, y+0.3, y, ha="center", va="bottom")
for x, y in zip(index, means_women):
plt.text(x+bar_width+(bar_width/2), y+0.3, y, ha="center", va="bottom")
plt.text(x+bar_width, y+0.3, y, ha="center", va="bottom")
# 设置刻度范围/坐标轴名称等
plt.ylim(0, 45)
plt.xlabel("Group")
plt.ylabel("Scores")
plt.xticks(index+bar_width, ("A", "B", "C", "D", "E"))
plt.xticks(index+(bar_width/2), ("A", "B", "C", "D", "E"))
# 图形显示
plt.show()
@ -157,6 +167,9 @@ def barh_plot():
means_men = (20, 35, 30, 35, 27)
means_women = (25, 32, 34, 20, 25)
# 设置标题
plt.title("plot title")
# 设置相关参数
index = np.arange(len(means_men))
bar_height = 0.35
@ -168,15 +181,15 @@ def barh_plot():
# 设置柱状图标示
for x, y in zip(index, means_men):
plt.text(y+0.3, x+(bar_height/2), y, ha="left", va="center")
plt.text(y+0.3, x, y, ha="left", va="center")
for x, y in zip(index, means_women):
plt.text(y+0.3, x+bar_height+(bar_height/2), y, ha="left", va="center")
plt.text(y+0.3, x+bar_height, y, ha="left", va="center")
# 设置刻度范围/坐标轴名称等
plt.xlim(0, 45)
plt.xlabel("Scores")
plt.ylabel("Group")
plt.yticks(index+bar_height, ("A", "B", "C", "D", "E"))
plt.yticks(index+(bar_height/2), ("A", "B", "C", "D", "E"))
# 图形显示
plt.show()
@ -192,6 +205,9 @@ def bar_advanced_plot():
means_men = np.array((20, 35, 30, 35, 27, 25, 32, 34, 20, 25))
means_women = np.array((25, 32, 34, 20, 25, 20, 35, 30, 35, 27))
# 设置标题
plt.title("plot title")
# 设置相关参数
index = np.arange(len(means_men))
bar_width = 0.8
@ -201,14 +217,14 @@ def bar_advanced_plot():
plt.bar(index, -means_women, width=bar_width, alpha=0.4, color="r", label="Women")
# 画折线图(两种,和柱状图对应)
plt.plot(index+(bar_width/2), means_men, marker="o", linestyle="-", color="r", label="Men line")
plt.plot(index+(bar_width/2), -means_women, marker=".", linestyle="--", color="b", label="Women line")
plt.plot(index, means_men, marker="o", linestyle="-", color="r", label="Men line")
plt.plot(index, -means_women, marker=".", linestyle="--", color="b", label="Women line")
# 设置图形标示(两种,和柱状图对应)
for x, y in zip(index, means_men):
plt.text(x+(bar_width/2), y+1, y, ha="center", va="bottom")
plt.text(x, y+1, y, ha="center", va="bottom")
for x, y in zip(index, means_women):
plt.text(x+(bar_width/2), -y-1, y, ha="center", va="top")
plt.text(x, -y-1, y, ha="center", va="top")
# 设置Y轴和图例位置
plt.ylim(-45, 80)
@ -231,6 +247,9 @@ def table_plot():
[5, 3, 6, 4, 1]
])
# 设置标题
plt.title("plot title")
# 设置相关参数
index = np.arange(len(data[0]))
color_index = ["r", "g", "b"]
@ -240,7 +259,7 @@ def table_plot():
# 依次画图,并更新底部位置
for i in range(len(data)):
plt.bar(index+0.25, data[i], width=0.5, color=color_index[i], bottom=bottom, alpha=0.7, label="label %d" % i)
plt.bar(index, data[i], width=0.5, color=color_index[i], bottom=bottom, alpha=0.7, label="label %d" % i)
bottom += data[i]
# 设置图例位置
@ -260,11 +279,11 @@ def histograms_plot():
mu, sigma = 100, 15
x = mu + sigma * np.random.randn(10000)
# 设置相关参数
num_bins = 50
# 设置标题
plt.title("plot title")
# 画直方图, 并返回相关结果
n, bins, patches = plt.hist(x, bins=num_bins, normed=1, color="green", alpha=0.6, label="hist")
n, bins, patches = plt.hist(x, bins=50, normed=1, cumulative=False, color="green", alpha=0.6, label="hist")
# 根据直方图返回的结果, 画折线图
y = mlab.normpdf(bins, mu, sigma)
@ -285,10 +304,15 @@ def pie_plot():
"""
# 生成测试数据
sizes = [15, 30, 45, 10]
explode = [0, 0.05, 0, 0]
labels = ["Frogs", "Hogs", "Dogs", "Logs"]
colors = ["yellowgreen", "gold", "lightskyblue", "lightcoral"]
# 设置标题
plt.title("plot title")
# 设置突出参数
explode = [0, 0.05, 0, 0]
# 画饼状图
plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct="%1.1f%%", shadow=True, startangle=90)
plt.axis("equal")
@ -308,6 +332,9 @@ def scatter_plot():
x_index = np.random.random(point_count)
y_index = np.random.random(point_count)
# 设置标题
plt.title("plot title")
# 设置相关参数
color_list = np.random.random(point_count)
scale_list = np.random.random(point_count) * 100
@ -329,13 +356,15 @@ def fill_plot():
x = np.linspace(-2*np.pi, 2*np.pi, 1000, endpoint=True)
y = np.sin(x)
# 设置标题
plt.title("plot title")
# 画图
plt.plot(x, y, color="blue", alpha=1.00)
# 填充图形
# plt.fill_between(x, y1, y2, where=None, *kwargs)
plt.fill_between(x, 0, y, y > 0, color="blue", alpha=.25)
plt.fill_between(x, 0, y, y < 0, color="red", alpha=.25)
# 填充图形, plt.fill_between(x, y1, y2, where=None, *kwargs)
plt.fill_between(x, 0, y, where=(y > 0), color="blue", alpha=0.25)
plt.fill_between(x, 0, y, where=(y < 0), color="red", alpha=0.25)
# 图形显示
plt.show()
@ -349,7 +378,7 @@ def radar_plot():
"""
# 生成测试数据
labels = np.array(["A", "B", "C", "D", "E", "F"])
data = np.array([38, 43, 90, 67, 89, 73])
data = np.array([68, 83, 90, 77, 89, 73])
theta = np.linspace(0, 2*np.pi, len(data), endpoint=False)
# 数据预处理
@ -358,10 +387,11 @@ def radar_plot():
# 画图方式
plt.subplot(111, polar=True)
plt.title("plot title")
# 设置"theta grid"/"radar grid"
plt.thetagrids(theta*(180/np.pi), labels=labels)
plt.rgrids(np.arange(20, 101, 20), labels=np.arange(20, 101, 20), angle=0)
plt.rgrids(np.arange(20, 100, 20), labels=np.arange(20, 100, 20), angle=0)
plt.ylim(0, 100)
# 画雷达图,并填充雷达图内部区域
@ -379,17 +409,16 @@ def three_dimension_scatter():
3d scatter plot
"""
# 生成测试数据
number = 1000
x = np.random.random(number)
y = np.random.random(number)
z = np.random.random(number)
color = np.random.random(number)
scale = np.random.random(number) * 100
x = np.random.random(100)
y = np.random.random(100)
z = np.random.random(100)
color = np.random.random(100)
scale = np.random.random(100) * 100
# 生成画布(两种形式)
fig = plt.figure()
# ax = fig.gca(projection="3d")
ax = fig.add_subplot(111, projection="3d")
# ax = fig.gca(projection="3d", title="plot title")
ax = fig.add_subplot(111, projection="3d", title="plot title")
# 画三维散点图
ax.scatter(x, y, z, s=scale, c=color, marker=".")
@ -415,15 +444,14 @@ def three_dimension_line():
3d line plot
"""
# 生成测试数据
number = 1000
x = np.linspace(0, 1, number)
y = np.linspace(0, 1, number)
x = np.linspace(0, 1, 1000)
y = np.linspace(0, 1, 1000)
z = np.sin(x * 2 * np.pi) / (y + 0.1)
# 生成画布(两种形式)
fig = plt.figure()
ax = fig.gca(projection="3d")
# ax = fig.add_subplot(111, projection="3d")
ax = fig.gca(projection="3d", title="plot title")
# ax = fig.add_subplot(111, projection="3d", title="plot title")
# 画三维折线图
ax.plot(x, y, z, color="red", linestyle="-")
@ -455,8 +483,7 @@ def three_dimension_bar():
# 生成画布(两种形式)
fig = plt.figure()
ax = fig.gca(projection="3d")
# ax = fig.add_subplot(111, projection="3d")
ax = fig.gca(projection="3d", title="plot title")
# 画三维柱状图
ax.bar3d(xpos, ypos, zpos, dx, dy, dz, alpha=0.5)