更新了数据分析部分的文档
parent
ed49ed9a52
commit
84fe683c6d
|
@ -228,7 +228,7 @@ Notebook是基于网页的用于交互计算的应用程序,可以用于代码
|
|||
|
||||
- **分位数**:将一个随机变量的概率分布范围分为几个具有相同概率的连续区间,比如最常见的中位数(二分位数,median),就是将数据集划分为数量相等的上下两个部分。除此之外,常见的分位数还有四分位数(quartile)、百分位数(percentile)等。
|
||||
|
||||
- 中位数:${Q}_{\frac{1}{2}}(x)=\{\begin{matrix} x_{\frac{n+1}{2}} &{n \mbox{ is odd}} \\ (x_{\frac{n}{2}}+x_{{\frac{n}{2}}+1})/2 &{n \mbox{ is even}}\end{matrix}$
|
||||
- 中位数:${Q}_{\frac{1}{2}}(x)=\left\{\begin{matrix} x_{\frac{n+1}{2}} &{n \mbox{ is odd}} \\ (x_{\frac{n}{2}}+x_{{\frac{n}{2}}+1})/2 &{n \mbox{ is even}}\end{matrix}\right.$
|
||||
|
||||
- 四分位数:
|
||||
|
||||
|
@ -272,12 +272,12 @@ Notebook是基于网页的用于交互计算的应用程序,可以用于代码
|
|||
|
||||
- 离散型分布:如果随机发生的事件之间是毫无联系的,每一次随机事件发生都是独立的、不连续的、不受其他事件影响的,那么这些事件的概率分布就属于离散型分布。
|
||||
|
||||
- 二项分布(binomial distribution):$n$个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为$p$。一般地,如果随机变量$X$服从参数为$n$和$p$的二项分布,记为$X\sim B(n,p)$。$n$次试验中正好得到$k$次成功的概率由概率质量函数给出,$$\displaystyle f(k,n,p)=\Pr(X=k)={n \choose k}p^{k}(1-p)^{n-k}$$,对于$k= 0, 1, 2, ..., n$,其中${n \choose k}={\frac {n!}{k!(n-k)!}}$。
|
||||
- 二项分布(binomial distribution):$n$个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为$p$。一般地,如果随机变量$X$服从参数为$n$和$p$的二项分布,记为$X\sim B(n,p)$。$n$次试验中正好得到$k$次成功的概率由概率质量函数给出,$\displaystyle f(k,n,p)=\Pr(X=k)={n \choose k}p^{k}(1-p)^{n-k}$,对于$k= 0, 1, 2, ..., n$,其中${n \choose k}={\frac {n!}{k!(n-k)!}}$。
|
||||
- 泊松分布(poisson distribution):适合于描述单位时间内随机事件发生的次数的概率分布。如某一服务设施在一定时间内受到的服务请求的次数、汽车站台的候客人数、机器出现的故障数、自然灾害发生的次数、DNA序列的变异数、放射性原子核的衰变数等等。泊松分布的概率质量函数为:$P(X=k)=\frac{e^{-\lambda}\lambda^k}{k!}$,泊松分布的参数$\lambda$是单位时间(或单位面积)内随机事件的平均发生率。
|
||||
- 连续型分布:
|
||||
|
||||
- 均匀分布(uniform distribution):如果连续型随机变量$X$具有概率密度函数$f(x)=\{\begin{matrix}{\frac{1}{b-a}} &{a \leq x \leq b} \\ 0 &{\mbox{other}}\end{matrix}$,则称$X$服从$[a,b]$上的均匀分布,记作$X\sim U[a,b]$。
|
||||
- 指数分布(exponential distribution):如果连续型随机变量$X$具有概率密度函数$f(x)=\{\begin{matrix} \lambda e^{- \lambda x} &{x \ge 0} \\ 0 &{x \lt 0} \end{matrix}$,则称$X$服从参数为$\lambda$的指数分布,记为$X \sim Exp(\lambda)$。指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进入机场的时间间隔、客服中心接入电话的时间间隔、知乎上出现新问题的时间间隔等等。指数分布的一个重要特征是无记忆性(无后效性),这表示如果一个随机变量呈指数分布,它的条件概率遵循:$P(T \gt s+t \ | \ T \gt t)=P(T \gt s) \ \ \forall s,t \ge 0$。
|
||||
- 均匀分布(uniform distribution):如果连续型随机变量$X$具有概率密度函数$f(x)=\left\{\begin{matrix}{\frac{1}{b-a}} &{a \leq x \leq b} \\ 0 &{\mbox{other}}\end{matrix}\right.$,则称$X$服从$[a,b]$上的均匀分布,记作$X\sim U[a,b]$。
|
||||
- 指数分布(exponential distribution):如果连续型随机变量$X$具有概率密度函数$f(x)=\left\{\begin{matrix} \lambda e^{- \lambda x} &{x \ge 0} \\ 0 &{x \lt 0} \end{matrix}\right.$,则称$X$服从参数为$\lambda$的指数分布,记为$X \sim Exp(\lambda)$。指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进入机场的时间间隔、客服中心接入电话的时间间隔、知乎上出现新问题的时间间隔等等。指数分布的一个重要特征是无记忆性(无后效性),这表示如果一个随机变量呈指数分布,它的条件概率遵循:$P(T \gt s+t\ |\ T \gt t)=P(T \gt s), \forall s,t \ge 0$。
|
||||
- 正态分布(normal distribution):又名**高斯分布**(Gaussian distribution),是一个非常常见的连续概率分布,经常用自然科学和社会科学中来代表一个不明的随机变量。若随机变量$X$服从一个位置参数为$\mu$、尺度参数为$\sigma$的正态分布,记为$X \sim N(\mu,\sigma^2)$,其概率密度函数为:$\displaystyle f(x)={\frac {1}{\sigma {\sqrt {2\pi }}}}e^{-{\frac {\left(x-\mu \right)^{2}}{2\sigma ^{2}}}}$。
|
||||
- 伽马分布(gamma distribution):假设$X_1, X_2, ... X_n$为连续发生事件的等候时间,且这$n$次等候时间为独立的,那么这$n$次等候时间之和$Y$($Y=X_1+X_2+...+X_n$)服从伽玛分布,即$Y \sim \Gamma(\alpha,\beta)$,其中$\alpha=n, \beta=\lambda$,这里的$\lambda$是连续发生事件的平均发生频率。
|
||||
- 卡方分布(chi-square distribution):若$k$个随机变量$Z_1,Z_2,...,Z_k$是相互独立且符合标准正态分布(数学期望为0,方差为1)的随机变量,则随机变量$Z$的平方和$X=\sum_{i=1}^{k}Z_i^2$被称为服从自由度为$k$的卡方分布,记为$X \sim \chi^2(k)$。
|
||||
|
|
Loading…
Reference in New Issue