更新了数据分析部分的文档

pull/724/head
jackfrued 2020-12-20 19:08:04 +08:00
parent ed49ed9a52
commit 84fe683c6d
1 changed files with 4 additions and 4 deletions

View File

@ -228,7 +228,7 @@ Notebook是基于网页的用于交互计算的应用程序可以用于代码
- **分位数**将一个随机变量的概率分布范围分为几个具有相同概率的连续区间比如最常见的中位数二分位数median就是将数据集划分为数量相等的上下两个部分。除此之外常见的分位数还有四分位数quartile、百分位数percentile等。 - **分位数**将一个随机变量的概率分布范围分为几个具有相同概率的连续区间比如最常见的中位数二分位数median就是将数据集划分为数量相等的上下两个部分。除此之外常见的分位数还有四分位数quartile、百分位数percentile等。
- 中位数:${Q}_{\frac{1}{2}}(x)=\{\begin{matrix} x_{\frac{n+1}{2}} &{n \mbox{ is odd}} \\ (x_{\frac{n}{2}}+x_{{\frac{n}{2}}+1})/2 &{n \mbox{ is even}}\end{matrix}$ - 中位数:${Q}_{\frac{1}{2}}(x)=\left\{\begin{matrix} x_{\frac{n+1}{2}} &{n \mbox{ is odd}} \\ (x_{\frac{n}{2}}+x_{{\frac{n}{2}}+1})/2 &{n \mbox{ is even}}\end{matrix}\right.$
- 四分位数: - 四分位数:
@ -272,12 +272,12 @@ Notebook是基于网页的用于交互计算的应用程序可以用于代码
- 离散型分布:如果随机发生的事件之间是毫无联系的,每一次随机事件发生都是独立的、不连续的、不受其他事件影响的,那么这些事件的概率分布就属于离散型分布。 - 离散型分布:如果随机发生的事件之间是毫无联系的,每一次随机事件发生都是独立的、不连续的、不受其他事件影响的,那么这些事件的概率分布就属于离散型分布。
- 二项分布binomial distribution$n$个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为$p$。一般地,如果随机变量$X$服从参数为$n$和$p$的二项分布,记为$X\sim B(n,p)$。$n$次试验中正好得到$k$次成功的概率由概率质量函数给出,$$\displaystyle f(k,n,p)=\Pr(X=k)={n \choose k}p^{k}(1-p)^{n-k}$$,对于$k= 0, 1, 2, ..., n$,其中${n \choose k}={\frac {n!}{k!(n-k)!}}$。 - 二项分布binomial distribution$n$个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为$p$。一般地,如果随机变量$X$服从参数为$n$和$p$的二项分布,记为$X\sim B(n,p)$。$n$次试验中正好得到$k$次成功的概率由概率质量函数给出,$\displaystyle f(k,n,p)=\Pr(X=k)={n \choose k}p^{k}(1-p)^{n-k}$,对于$k= 0, 1, 2, ..., n$,其中${n \choose k}={\frac {n!}{k!(n-k)!}}$。
- 泊松分布poisson distribution适合于描述单位时间内随机事件发生的次数的概率分布。如某一服务设施在一定时间内受到的服务请求的次数、汽车站台的候客人数、机器出现的故障数、自然灾害发生的次数、DNA序列的变异数、放射性原子核的衰变数等等。泊松分布的概率质量函数为$P(X=k)=\frac{e^{-\lambda}\lambda^k}{k!}$,泊松分布的参数$\lambda$是单位时间(或单位面积)内随机事件的平均发生率。 - 泊松分布poisson distribution适合于描述单位时间内随机事件发生的次数的概率分布。如某一服务设施在一定时间内受到的服务请求的次数、汽车站台的候客人数、机器出现的故障数、自然灾害发生的次数、DNA序列的变异数、放射性原子核的衰变数等等。泊松分布的概率质量函数为$P(X=k)=\frac{e^{-\lambda}\lambda^k}{k!}$,泊松分布的参数$\lambda$是单位时间(或单位面积)内随机事件的平均发生率。
- 连续型分布: - 连续型分布:
- 均匀分布uniform distribution如果连续型随机变量$X$具有概率密度函数$f(x)=\{\begin{matrix}{\frac{1}{b-a}} &{a \leq x \leq b} \\ 0 &{\mbox{other}}\end{matrix}$,则称$X$服从$[a,b]$上的均匀分布,记作$X\sim U[a,b]$。 - 均匀分布uniform distribution如果连续型随机变量$X$具有概率密度函数$f(x)=\left\{\begin{matrix}{\frac{1}{b-a}} &{a \leq x \leq b} \\ 0 &{\mbox{other}}\end{matrix}\right.$,则称$X$服从$[a,b]$上的均匀分布,记作$X\sim U[a,b]$。
- 指数分布exponential distribution如果连续型随机变量$X$具有概率密度函数$f(x)=\{\begin{matrix} \lambda e^{- \lambda x} &{x \ge 0} \\ 0 &{x \lt 0} \end{matrix}$,则称$X$服从参数为$\lambda$的指数分布,记为$X \sim Exp(\lambda)$。指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进入机场的时间间隔、客服中心接入电话的时间间隔、知乎上出现新问题的时间间隔等等。指数分布的一个重要特征是无记忆性(无后效性),这表示如果一个随机变量呈指数分布,它的条件概率遵循:$P(T \gt s+t \ | \ T \gt t)=P(T \gt s) \ \ \forall s,t \ge 0$。 - 指数分布exponential distribution如果连续型随机变量$X$具有概率密度函数$f(x)=\left\{\begin{matrix} \lambda e^{- \lambda x} &{x \ge 0} \\ 0 &{x \lt 0} \end{matrix}\right.$,则称$X$服从参数为$\lambda$的指数分布,记为$X \sim Exp(\lambda)$。指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进入机场的时间间隔、客服中心接入电话的时间间隔、知乎上出现新问题的时间间隔等等。指数分布的一个重要特征是无记忆性(无后效性),这表示如果一个随机变量呈指数分布,它的条件概率遵循:$P(T \gt s+t\ |\ T \gt t)=P(T \gt s), \forall s,t \ge 0$。
- 正态分布normal distribution又名**高斯分布**Gaussian distribution是一个非常常见的连续概率分布经常用自然科学和社会科学中来代表一个不明的随机变量。若随机变量$X$服从一个位置参数为$\mu$、尺度参数为$\sigma$的正态分布,记为$X \sim N(\mu,\sigma^2)$,其概率密度函数为:$\displaystyle f(x)={\frac {1}{\sigma {\sqrt {2\pi }}}}e^{-{\frac {\left(x-\mu \right)^{2}}{2\sigma ^{2}}}}$。 - 正态分布normal distribution又名**高斯分布**Gaussian distribution是一个非常常见的连续概率分布经常用自然科学和社会科学中来代表一个不明的随机变量。若随机变量$X$服从一个位置参数为$\mu$、尺度参数为$\sigma$的正态分布,记为$X \sim N(\mu,\sigma^2)$,其概率密度函数为:$\displaystyle f(x)={\frac {1}{\sigma {\sqrt {2\pi }}}}e^{-{\frac {\left(x-\mu \right)^{2}}{2\sigma ^{2}}}}$。
- 伽马分布gamma distribution假设$X_1, X_2, ... X_n$为连续发生事件的等候时间,且这$n$次等候时间为独立的,那么这$n$次等候时间之和$Y$$Y=X_1+X_2+...+X_n$)服从伽玛分布,即$Y \sim \Gamma(\alpha,\beta)$,其中$\alpha=n, \beta=\lambda$,这里的$\lambda$是连续发生事件的平均发生频率。 - 伽马分布gamma distribution假设$X_1, X_2, ... X_n$为连续发生事件的等候时间,且这$n$次等候时间为独立的,那么这$n$次等候时间之和$Y$$Y=X_1+X_2+...+X_n$)服从伽玛分布,即$Y \sim \Gamma(\alpha,\beta)$,其中$\alpha=n, \beta=\lambda$,这里的$\lambda$是连续发生事件的平均发生频率。
- 卡方分布chi-square distribution若$k$个随机变量$Z_1,Z_2,...,Z_k$是相互独立且符合标准正态分布数学期望为0方差为1的随机变量则随机变量$Z$的平方和$X=\sum_{i=1}^{k}Z_i^2$被称为服从自由度为$k$的卡方分布,记为$X \sim \chi^2(k)$。 - 卡方分布chi-square distribution若$k$个随机变量$Z_1,Z_2,...,Z_k$是相互独立且符合标准正态分布数学期望为0方差为1的随机变量则随机变量$Z$的平方和$X=\sum_{i=1}^{k}Z_i^2$被称为服从自由度为$k$的卡方分布,记为$X \sim \chi^2(k)$。