Python-100-Days/Day61-65/61.网络爬虫和相关工具.md

320 lines
16 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

## 网络爬虫和相关工具
### 网络爬虫的概念
网络爬虫web crawler以前经常称之为网络蜘蛛spider是按照一定的规则自动浏览万维网并获取信息的机器人程序或脚本曾经被广泛的应用于互联网搜索引擎。使用过互联网和浏览器的人都知道网页中除了供用户阅读的文字信息之外还包含一些超链接。网络爬虫系统正是通过网页中的超链接信息不断获得网络上的其它页面。正因如此网络数据采集的过程就像一个爬虫或者蜘蛛在网络上漫游所以才被形象的称为网络爬虫或者网络蜘蛛。
#### 爬虫的应用领域
在理想的状态下所有ICPInternet Content Provider都应该为自己的网站提供API接口来共享它们允许其他程序获取的数据在这种情况下爬虫就不是必需品国内比较有名的电商平台如淘宝、京东等、社交平台如腾讯微博等等网站都提供了自己的Open API但是这类Open API通常会对可以抓取的数据以及抓取数据的频率进行限制。对于大多数的公司而言及时的获取行业相关数据是企业生存的重要环节之一然而大部分企业在行业数据方面的匮乏是其与生俱来的短板合理的利用爬虫来获取数据并从中提取出有商业价值的信息是至关重要的。当然爬虫还有很多重要的应用领域下面列举了其中的一部分
1. 搜索引擎
2. 新闻聚合
3. 社交应用
4. 舆情监控
5. 行业数据
### 合法性和背景调研
#### 爬虫合法性探讨
1. 网络爬虫领域目前还属于拓荒阶段,虽然互联网世界已经通过自己的游戏规则建立起一定的道德规范(Robots协议全称是“网络爬虫排除标准”),但法律部分还在建立和完善中,也就是说,现在这个领域暂时还是灰色地带。
2. “法不禁止即为许可”,如果爬虫就像浏览器一样获取的是前端显示的数据(网页上的公开信息)而不是网站后台的私密敏感信息,就不太担心法律法规的约束,因为目前大数据产业链的发展速度远远超过了法律的完善程度。
3. 在爬取网站的时候需要限制自己的爬虫遵守Robots协议同时控制网络爬虫程序的抓取数据的速度在使用数据的时候必须要尊重网站的知识产权从Web 2.0时代开始虽然Web上的数据很多都是由用户提供的但是网站平台是投入了运营成本的当用户在注册和发布内容时平台通常就已经获得了对数据的所有权、使用权和分发权。如果违反了这些规定在打官司的时候败诉几率相当高。
#### Robots.txt文件
大多数网站都会定义robots.txt文件下面以淘宝的[robots.txt](http://www.taobao.com/robots.txt)文件为例,看看该网站对爬虫有哪些限制。
```
User-agent: Baiduspider
Allow: /article
Allow: /oshtml
Disallow: /product/
Disallow: /
User-Agent: Googlebot
Allow: /article
Allow: /oshtml
Allow: /product
Allow: /spu
Allow: /dianpu
Allow: /oversea
Allow: /list
Disallow: /
User-agent: Bingbot
Allow: /article
Allow: /oshtml
Allow: /product
Allow: /spu
Allow: /dianpu
Allow: /oversea
Allow: /list
Disallow: /
User-Agent: 360Spider
Allow: /article
Allow: /oshtml
Disallow: /
User-Agent: Yisouspider
Allow: /article
Allow: /oshtml
Disallow: /
User-Agent: Sogouspider
Allow: /article
Allow: /oshtml
Allow: /product
Disallow: /
User-Agent: Yahoo! Slurp
Allow: /product
Allow: /spu
Allow: /dianpu
Allow: /oversea
Allow: /list
Disallow: /
User-Agent: *
Disallow: /
```
注意上面robots.txt第一段的最后一行通过设置“Disallow: /”禁止百度爬虫访问除了“Allow”规定页面外的其他所有页面。因此当你在百度搜索“淘宝”的时候搜索结果下方会出现“由于该网站的robots.txt文件存在限制指令限制搜索引擎抓取系统无法提供该页面的内容描述”。百度作为一个搜索引擎至少在表面上遵守了淘宝网的robots.txt协议所以用户不能从百度上搜索到淘宝内部的产品信息。
![](./res/baidu-search-taobao.png)
### 相关工具介绍
#### HTTP协议
在开始讲解爬虫之前我们稍微对HTTP超文本传输协议做一些回顾因为我们在网页上看到的内容通常是浏览器执行HTML语言得到的结果而HTTP就是传输HTML数据的协议。HTTP和其他很多应用级协议一样是构建在TCP传输控制协议之上的它利用了TCP提供的可靠的传输服务实现了Web应用中的数据交换。按照维基百科上的介绍设计HTTP最初的目的是为了提供一种发布和接收[HTML](https://zh.wikipedia.org/wiki/HTML)页面的方法也就是说这个协议是浏览器和Web服务器之间传输的数据的载体。关于这个协议的详细信息以及目前的发展状况大家可以阅读阮一峰老师的[《HTTP 协议入门》](http://www.ruanyifeng.com/blog/2016/08/http.html)、[《互联网协议入门》](http://www.ruanyifeng.com/blog/2012/05/internet_protocol_suite_part_i.html)系列以及[《图解HTTPS协议》](http://www.ruanyifeng.com/blog/2014/09/illustration-ssl.html)进行了解下图是我在四川省网络通信技术重点实验室工作期间用开源协议分析工具Ethereal抓包工具WireShark的前身截取的访问百度首页时的HTTP请求和响应的报文协议数据由于Ethereal截取的是经过网络适配器的数据因此可以清晰的看到从物理链路层到应用层的协议数据。
HTTP请求请求行+请求头+空行+[消息体]
![](./res/http-request.png)
HTTP响应响应行+响应头+空行+消息体):
![](./res/http-response.png)
> 说明但愿这两张如同泛黄照片般的截图帮助你大概的了解到HTTP是一个怎样的协议。
#### 相关工具
1. Chrome Developer Tools谷歌浏览器内置的开发者工具。
![](./res/chrome-developer-tools.png)
2. Postman功能强大的网页调试与RESTful请求工具。
![](./res/postman.png)
3. HTTPie命令行HTTP客户端。
```Bash
pip3 install httpie
```
```Bash
http --header http://www.scu.edu.cn
HTTP/1.1 200 OK
Accept-Ranges: bytes
Cache-Control: private, max-age=600
Connection: Keep-Alive
Content-Encoding: gzip
Content-Language: zh-CN
Content-Length: 14403
Content-Type: text/html
Date: Sun, 27 May 2018 15:38:25 GMT
ETag: "e6ec-56d3032d70a32-gzip"
Expires: Sun, 27 May 2018 15:48:25 GMT
Keep-Alive: timeout=5, max=100
Last-Modified: Sun, 27 May 2018 13:44:22 GMT
Server: VWebServer
Vary: User-Agent,Accept-Encoding
X-Frame-Options: SAMEORIGIN
```
4. `builtwith`库:识别网站所用技术的工具。
```Bash
pip3 install builtwith
```
```Python
>>> import builtwith
>>> builtwith.parse('http://www.bootcss.com/')
{'web-servers': ['Nginx'], 'font-scripts': ['Font Awesome'], 'javascript-frameworks': ['Lo-dash', 'Underscore.js', 'Vue.js', 'Zepto', 'jQuery'], 'web-frameworks': ['Twitter Bootstrap']}
>>>
>>> import ssl
>>> ssl._create_default_https_context = ssl._create_unverified_context
>>> builtwith.parse('https://www.jianshu.com/')
{'web-servers': ['Tengine'], 'web-frameworks': ['Twitter Bootstrap', 'Ruby on Rails'], 'programming-languages': ['Ruby']}
```
5. `python-whois`库:查询网站所有者的工具。
```Bash
pip3 install python-whois
```
```Python
>>> import whois
>>> whois.whois('baidu.com')
{'domain_name': ['BAIDU.COM', 'baidu.com'], 'registrar': 'MarkMonitor, Inc.', 'whois_server': 'whois.markmonitor.com', 'referral_url': None, 'updated_date': [datetime.datetime(2017, 7, 28, 2, 36, 28), datetime.datetime(2017, 7, 27, 19, 36, 28)], 'creation_date': [datetime.datetime(1999, 10, 11, 11, 5, 17), datetime.datetime(1999, 10, 11, 4, 5, 17)], 'expiration_date': [datetime.datetime(2026, 10, 11, 11, 5, 17), datetime.datetime(2026, 10, 11, 0, 0)], 'name_servers': ['DNS.BAIDU.COM', 'NS2.BAIDU.COM', 'NS3.BAIDU.COM', 'NS4.BAIDU.COM', 'NS7.BAIDU.COM', 'dns.baidu.com', 'ns4.baidu.com', 'ns3.baidu.com', 'ns7.baidu.com', 'ns2.baidu.com'], 'status': ['clientDeleteProhibited https://icann.org/epp#clientDeleteProhibited', 'clientTransferProhibited https://icann.org/epp#clientTransferProhibited', 'clientUpdateProhibited https://icann.org/epp#clientUpdateProhibited', 'serverDeleteProhibited https://icann.org/epp#serverDeleteProhibited', 'serverTransferProhibited https://icann.org/epp#serverTransferProhibited', 'serverUpdateProhibited https://icann.org/epp#serverUpdateProhibited', 'clientUpdateProhibited (https://www.icann.org/epp#clientUpdateProhibited)', 'clientTransferProhibited (https://www.icann.org/epp#clientTransferProhibited)', 'clientDeleteProhibited (https://www.icann.org/epp#clientDeleteProhibited)', 'serverUpdateProhibited (https://www.icann.org/epp#serverUpdateProhibited)', 'serverTransferProhibited (https://www.icann.org/epp#serverTransferProhibited)', 'serverDeleteProhibited (https://www.icann.org/epp#serverDeleteProhibited)'], 'emails': ['abusecomplaints@markmonitor.com', 'whoisrelay@markmonitor.com'], 'dnssec': 'unsigned', 'name': None, 'org': 'Beijing Baidu Netcom Science Technology Co., Ltd.', 'address': None, 'city': None, 'state': 'Beijing', 'zipcode': None, 'country': 'CN'}
```
6. `robotparser`模块:解析`robots.txt`的工具。
```Python
>>> from urllib import robotparser
>>> parser = robotparser.RobotFileParser()
>>> parser.set_url('https://www.taobao.com/robots.txt')
>>> parser.read()
>>> parser.can_fetch('Baiduspider', 'http://www.taobao.com/article')
True
>>> parser.can_fetch('Baiduspider', 'http://www.taobao.com/product')
False
```
### 一个简单的爬虫
一个基本的爬虫通常分为数据采集(网页下载)、数据处理(网页解析)和数据存储(将有用的信息持久化)三个部分的内容,当然更为高级的爬虫在数据采集和处理时会使用并发编程或分布式技术,这就需要有调度器(安排线程或进程执行对应的任务)、后台管理程序(监控爬虫的工作状态以及检查数据抓取的结果)等的参与。
![](./res/crawler-workflow.png)
一般来说,爬虫的工作流程包括以下几个步骤:
1. 设定抓取目标(种子页面/起始页面)并获取网页。
2. 当服务器无法访问时,按照指定的重试次数尝试重新下载页面。
3. 在需要的时候设置用户代理或隐藏真实IP否则可能无法访问页面。
4. 对获取的页面进行必要的解码操作然后抓取出需要的信息。
5. 在获取的页面中通过某种方式(如正则表达式)抽取出页面中的链接信息。
6. 对链接进行进一步的处理(获取页面并重复上面的动作)。
7. 将有用的信息进行持久化以备后续的处理。
下面的例子给出了一个从“搜狐体育”上获取NBA新闻标题和链接的爬虫。
```Python
import re
from collections import deque
from urllib.parse import urljoin
import requests
LI_A_PATTERN = re.compile(r'<li class="item">.*?</li>')
A_TEXT_PATTERN = re.compile(r'<a\s+[^>]*?>(.*?)</a>')
A_HREF_PATTERN = re.compile(r'<a\s+[^>]*?href="(.*?)"\s*[^>]*?>')
def decode_page(page_bytes, charsets):
"""通过指定的字符集对页面进行解码"""
for charset in charsets:
try:
return page_bytes.decode(charset)
except UnicodeDecodeError:
pass
def get_matched_parts(content_string, pattern):
"""从字符串中提取所有跟正则表达式匹配的内容"""
return pattern.findall(content_string, re.I) \
if content_string else []
def get_matched_part(content_string, pattern, group_no=1):
"""从字符串中提取跟正则表达式匹配的内容"""
match = pattern.search(content_string)
if match:
return match.group(group_no)
def get_page_html(seed_url, *, charsets=('utf-8', )):
"""获取页面的HTML代码"""
resp = requests.get(seed_url)
if resp.status_code == 200:
return decode_page(resp.content, charsets)
def repair_incorrect_href(current_url, href):
"""修正获取的href属性"""
if href.startswith('//'):
href = urljoin('http://', href)
elif href.startswith('/'):
href = urljoin(current_url, href)
return href if href.startswith('http') else ''
def start_crawl(seed_url, pattern, *, max_depth=-1):
"""开始爬取数据"""
new_urls, visited_urls = deque(), set()
new_urls.append((seed_url, 0))
while new_urls:
current_url, depth = new_urls.popleft()
if depth != max_depth:
page_html = get_page_html(current_url, charsets=('utf-8', 'gbk'))
contents = get_matched_parts(page_html, pattern)
for content in contents:
text = get_matched_part(content, A_TEXT_PATTERN)
href = get_matched_part(content, A_HREF_PATTERN)
if href:
href = repair_incorrect_href(href)
print(text, href)
if href and href not in visited_urls:
new_urls.append((href, depth + 1))
def main():
"""主函数"""
start_crawl(
seed_url='http://sports.sohu.com/nba_a.shtml',
pattern=LI_A_PATTERN,
max_depth=2
)
if __name__ == '__main__':
main()
```
### 爬虫注意事项
通过上面的例子,我们对爬虫已经有了一个感性的认识,在编写爬虫时有以下一些注意事项:
1. 上面的代码使用了`requests`三方库来获取网络资源,这是一个非常优质的三方库,关于它的用法可以参考它的[官方文档](https://requests.readthedocs.io/zh_CN/latest/)。
2. 上面的代码中使用了双端队列(`deque`来保存待爬取的URL。双端队列相当于是使用链式存储结构的`list`在双端队列的头尾添加和删除元素性能都比较好刚好可以用来构造一个FIFO先进先出的队列结构。
3. 处理相对路径。有的时候我们从页面中获取的链接不是一个完整的绝对链接而是一个相对链接这种情况下需要将其与URL前缀进行拼接`urllib.parse`中的`urljoin()`函数可以完成此项操作)。
4. 设置代理服务。有些网站会限制访问的区域例如美国的Netflix屏蔽了很多国家的访问有些爬虫需要隐藏自己的身份在这种情况下可以设置使用代理服务器代理服务器有免费的服务器和付费的商业服务器但后者稳定性和可用性都更好强烈建议在商业项目中使用付费的商业代理服务器。如果使用`requests`三方库,可以在请求方法中添加`proxies`参数来指定代理服务器;如果使用标准库,可以通过修改`urllib.request`中的`ProxyHandler`来为请求设置代理服务器。
5. 限制下载速度。如果我们的爬虫获取网页的速度过快,可能就会面临被封禁或者产生“损害动产”的风险(这个可能会导致吃官司且败诉),可以在两次获取页面数据之间添加延时从而对爬虫进行限速。
6. 避免爬虫陷阱。有些网站会动态生成页面内容,这会导致产生无限多的页面(例如在线万年历通常会有无穷无尽的链接)。可以通过记录到达当前页面经过了多少个链接(链接深度)来解决该问题,当达到事先设定的最大深度时,爬虫就不再像队列中添加该网页中的链接了。
7. 避开蜜罐链接。网站上的有些链接是浏览器中不可见的这种链接通常是故意诱使爬虫去访问的蜜罐一旦访问了这些链接服务器就会判定请求是来自于爬虫的这样可能会导致被服务器封禁IP地址。如何避开这些蜜罐链接我们在后面为大家进行讲解。
8. SSL相关问题。如果使用标准库的`urlopen`打开一个HTTPS链接时会验证一次SSL证书如果不做出处理会产生错误提示“SSL: CERTIFICATE_VERIFY_FAILED”可以通过以下两种方式加以解决
- 使用未经验证的上下文
```Python
import ssl
request = urllib.request.Request(url='...', headers={...})
context = ssl._create_unverified_context()
web_page = urllib.request.urlopen(request, context=context)
```
- 设置全局性取消证书验证
```Python
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
```