kubespray/contrib/terraform/gcp/README.md

99 lines
4.5 KiB
Markdown

# Kubernetes on GCP with Terraform
Provision a Kubernetes cluster on GCP using Terraform and Kubespray
## Overview
The setup looks like following
```text
Kubernetes cluster
+-----------------------+
+---------------+ | +--------------+ |
| | | | +--------------+ |
| API server LB +---------> | | | |
| | | | | Master/etcd | |
+---------------+ | | | node(s) | |
| +-+ | |
| +--------------+ |
| ^ |
| | |
| v |
+---------------+ | +--------------+ |
| | | | +--------------+ |
| Ingress LB +---------> | | | |
| | | | | Worker | |
+---------------+ | | | node(s) | |
| +-+ | |
| +--------------+ |
+-----------------------+
```
## Requirements
* Terraform 0.12.0 or newer
## Quickstart
To get a cluster up and running you'll need a JSON keyfile.
Set the path to the file in the `tfvars.json` file and run the following:
```bash
terraform apply -var-file tfvars.json -state dev-cluster.tfstate -var gcp_project_id=<ID of your GCP project> -var keyfile_location=<location of the json keyfile>
```
To generate kubespray inventory based on the terraform state file you can run the following:
```bash
./generate-inventory.sh dev-cluster.tfstate > inventory.ini
```
You should now have a inventory file named `inventory.ini` that you can use with kubespray, e.g.
```bash
ansible-playbook -i contrib/terraform/gcs/inventory.ini cluster.yml -b -v
```
## Variables
### Required
* `keyfile_location`: Location to the keyfile to use as credentials for the google terraform provider
* `gcp_project_id`: ID of the GCP project to deploy the cluster in
* `ssh_pub_key`: Path to public ssh key to use for all machines
* `region`: The region where to run the cluster
* `machines`: Machines to provision. Key of this object will be used as the name of the machine
* `node_type`: The role of this node *(master|worker)*
* `size`: The size to use
* `zone`: The zone the machine should run in
* `additional_disks`: Extra disks to add to the machine. Key of this object will be used as the disk name
* `size`: Size of the disk (in GB)
* `boot_disk`: The boot disk to use
* `image_name`: Name of the image
* `size`: Size of the boot disk (in GB)
* `ssh_whitelist`: List of IP ranges (CIDR) that will be allowed to ssh to the nodes
* `api_server_whitelist`: List of IP ranges (CIDR) that will be allowed to connect to the API server
* `nodeport_whitelist`: List of IP ranges (CIDR) that will be allowed to connect to the kubernetes nodes on port 30000-32767 (kubernetes nodeports)
### Optional
* `prefix`: Prefix to use for all resources, required to be unique for all clusters in the same project *(Defaults to `default`)*
* `master_sa_email`: Service account email to use for the control plane nodes *(Defaults to `""`, auto generate one)*
* `master_sa_scopes`: Service account email to use for the control plane nodes *(Defaults to `["https://www.googleapis.com/auth/cloud-platform"]`)*
* `master_preemptible`: Enable [preemptible](https://cloud.google.com/compute/docs/instances/preemptible)
for the control plane nodes *(Defaults to `false`)*
* `master_additional_disk_type`: [Disk type](https://cloud.google.com/compute/docs/disks/#disk-types)
for extra disks added on the control plane nodes *(Defaults to `"pd-ssd"`)*
* `worker_sa_email`: Service account email to use for the worker nodes *(Defaults to `""`, auto generate one)*
* `worker_sa_scopes`: Service account email to use for the worker nodes *(Defaults to `["https://www.googleapis.com/auth/cloud-platform"]`)*
* `worker_preemptible`: Enable [preemptible](https://cloud.google.com/compute/docs/instances/preemptible)
for the worker nodes *(Defaults to `false`)*
* `worker_additional_disk_type`: [Disk type](https://cloud.google.com/compute/docs/disks/#disk-types)
for extra disks added on the worker nodes *(Defaults to `"pd-ssd"`)*
An example variables file can be found `tfvars.json`
## Known limitations
This solution does not provide a solution to use a bastion host. Thus all the nodes must expose a public IP for kubespray to work.