torch-mlir/include/npcomp/Dialect/Torch/IR/TorchOps.td

574 lines
19 KiB
TableGen
Raw Normal View History

2020-09-29 03:02:35 +08:00
//===-------------------------------------------------------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef TORCH_OPS
#define TORCH_OPS
include "npcomp/Dialect/Torch/IR/TorchTypes.td"
include "npcomp/Dialect/Torch/IR/OpInterfaces.td"
include "mlir/IR/SymbolInterfaces.td"
include "mlir/Interfaces/ControlFlowInterfaces.td"
Properly model "derefinement". In terms of IR structure, TorchScript allows types to vary in many circumstances where MLIR requires pointer-identical types. In particular, it is valid to pass any subtype in place of a type. For example, if an `Optional[int]` is required somewhere in the IR, it is legal to pass a value of just `int` (but not the other way around; see `torch.prim.unchecked_cast`). In effect, every *use* can have a different type. We introduce a new op `torch.derefine` that models that impedance mismatch. This op allows casting a value from one type to a type that it is a subtype of to model this behavior. Recommended review order: - TorchOps.td for new torch.derefine (and updated docs for `torch.prim.unchecked_cast`) - new test code in if.py, loop.py, function-derefine.py - new code in node_importer.cpp for handling derefinement insertion - function_importer.cpp and utils changes in torch_to_mlir_utils.cpp Properly handling derefinement on function boundaries required relayering the code so that graph_importer.cpp/.h is now function_importer.cpp/.h because only the `torch::jit::Function` (actually the `c10::FunctionSchema` it holds) knows the derefined types that are actually needed at the boundary (see `function-derefine.py` for a test). Annoyingly, this churns all the functions which are now prefixed with `__torch__.` but that is more correct anyway (that is their linkage name in the `torch::jit::CompilationUnit`; the previous `mb.import_function` was actually buggy in the case of functions calling each other as it would reference their unqualified name). With this change, we can import `resnet18` from `torchvision` :) IR: https://gist.github.com/silvasean/6426a5272d8a6c7caae533fce05ab704
2021-03-02 09:24:15 +08:00
include "mlir/Interfaces/SideEffectInterfaces.td"
2020-09-29 03:02:35 +08:00
class Torch_Op<string mnemonic, list<OpTrait> traits = []>
: Op<Torch_Dialect, mnemonic, traits> {
}
// TODO: Add alias mapping from the signature and use it to implement the
// effects interface (since whether the kernel_call has side effects is
// dependent on its metadata).
def Torch_KernelCallOp : Torch_Op<"kernel_call", [
DeclareOpInterfaceMethods<TorchKernelOpInterface>]> {
let summary = "Calls a Torch custom kernel";
let description = [{
Torch kernel calls are matched by the runtime based on signature, including
the fully qualified kernel name (i.e. "namespace::name") and the tuple of
argument types. This op models such an invocation.
}];
let arguments = (ins
StrAttr:$kernelName,
Variadic<AnyTorchType>:$args,
StrArrayAttr:$sigArgTypes,
StrArrayAttr:$sigRetTypes,
BoolAttr:$sigIsVararg,
BoolAttr:$sigIsVarret,
BoolAttr:$sigIsMutable
// TODO: Add alias mapping.
);
let results = (outs
Variadic<AnyTorchType>:$results
);
let assemblyFormat = [{
$kernelName $args `:` functional-type($args, results) attr-dict
}];
2020-09-29 03:02:35 +08:00
}
//===----------------------------------------------------------------------===//
// TorchScript `torch.nn.Module` object instantiation ops.
//===----------------------------------------------------------------------===//
def Torch_NnModuleOp : Torch_Op<"nn_module", [
DeclareOpInterfaceMethods<SymbolUserOpInterface>,
SingleBlockImplicitTerminator<"::mlir::NPCOMP::Torch::NnModuleTerminatorOp">]> {
let summary = "Constructs a torch.nn.Module";
let description = [{
This op is used to represent a torch.nn.Module when importing a
graph of Python objects.
This op returns a new torch.nn.Module as an SSA value, with a set of
declaratively specified properties.
Example:
```mlir
%2 = torch.nn_module {
torch.slot "b", %bool_true : !basicpy.BoolType
torch.slot "i", %num3_i64 : i64
torch.slot "f", %num : f64
torch.slot "t", %0 : !numpy.ndarray<*:!numpy.any_dtype>
torch.slot "submodule", %1 : !torch.nn.Module
} : !torch.nn.Module<"my_class_name">
```
This op is tightly coupled to the `torch.class_type` op named in the
`!torch.nn.Module<"my_class_name">` type. Each slot must match precisely
with the corresponding `torch.attr` in the `torch.class_type`.
See the documentation for `torch.class_type` for information.
}];
let arguments = (ins);
let results = (outs Torch_NnModuleType:$result);
let regions = (region SizedRegion<1>:$region);
let verifier = "return ::verify(*this);";
let assemblyFormat = "$region attr-dict `:` type($result)";
let extraClassDeclaration = [{
StringRef getClassName() { return getType().getClassName(); }
}];
}
def Torch_NnModuleTerminatorOp : Torch_Op<"nn_module_terminator", [Terminator,
HasParent<"::mlir::NPCOMP::Torch::NnModuleOp">]> {
let summary = "Implicit terminator for torch.nn_module";
let arguments = (ins);
let results = (outs);
let assemblyFormat = "attr-dict";
}
def Torch_SlotOp : Torch_Op<"slot", [
HasParent<"::mlir::NPCOMP::Torch::NnModuleOp">]> {
let summary = "Define the value of a slot of a torch.nn.Module";
let description = [{
This op specifies that the initial value of the slot `name` of the
parent torch.nn_module should be `value`, which is allowed to be an
arbitrary Torch-compatible SSA value, including other !torch.nn.Module's.
}];
let arguments = (ins StrAttr:$name, AnyTorchType:$value);
let results = (outs);
let assemblyFormat = [{
$name `,` $value attr-dict `:` type($value)
}];
}
//===----------------------------------------------------------------------===//
// Modeling of TorchScript class types
//===----------------------------------------------------------------------===//
def Torch_ClassTypeOp : Torch_Op<"class_type", [
Symbol,
SingleBlockImplicitTerminator<"::mlir::NPCOMP::Torch::ClassTypeTerminatorOp">]> {
let summary = "Constructs a torch.ClassType";
let description = [{
Declares a class type. Class types are the types used to describe
TorchScript `torch.nn.Module`'s. The terminology "class type" is for
consistency with TorchScript (a better name in our context might be
"nn module subtype"). The `syn_name` of this op is the same string
as in the `!torch.nn.Module<"...">` type.
Example:
```mlir
// A simple empty torch.class_type, with corresponding torch.nn_module.
torch.class_type @empty {}
%submodule = torch.nn_module {} : !torch.nn.Module<"empty">
// A class type with many members.
torch.class_type @test {
torch.attr "b" : !basicpy.BoolType
torch.attr "i" : i64
torch.attr "f" : f64
torch.attr "t" : !numpy.ndarray<*:!numpy.any_dtype>
torch.attr "submodule" : !torch.nn.Module<"empty">
torch.method "method", @f
}
torch.nn_module {
// These must match the order and names in the `torch.class_type`.
torch.slot "b", %bool_true : !basicpy.BoolType
torch.slot "i", %num3_i64 : i64
torch.slot "f", %num : f64
torch.slot "t", %array : !numpy.ndarray<*:!numpy.any_dtype>
torch.slot "submodule", %submodule : !torch.nn.Module<"empty">
} : !torch.nn.Module<"test">
```
}];
let arguments = (ins SymbolNameAttr:$sym_name);
let results = (outs);
let regions = (region SizedRegion<1>:$region);
let verifier = "return ::verify(*this);";
let assemblyFormat = "$sym_name $region attr-dict";
}
def Torch_ClassTypeTerminatorOp : Torch_Op<"class_type_terminator", [Terminator,
HasParent<"::mlir::NPCOMP::Torch::ClassTypeOp">]> {
let summary = "Implicit terminator for torch.class_type";
let arguments = (ins);
let results = (outs);
let assemblyFormat = "attr-dict";
}
def Torch_MethodOp : Torch_Op<"method", [
HasParent<"::mlir::NPCOMP::Torch::ClassTypeOp">,
DeclareOpInterfaceMethods<SymbolUserOpInterface>
]> {
let summary = "Declare a method of a torch.class_type";
let description = [{
This op declaratively specifies that the parent torch.class_type has a
method `name` which calls `function`. `function` is an unbound function.
That is, it explicitly takes the torch.nn.Module as a parameter (no implicit
"self" object).
If `private` is present, it indicates that external calls cannot be made
to this method.
}];
// We don't use sym_visibility because that only applies to Symbol's, and
// some of the related concepts like "nested" visibility are specific to
// symbols.
let arguments = (ins
StrAttr:$name,
FlatSymbolRefAttr:$function,
// `private` is a C++ keyword, so use `isPrivate`.
UnitAttr:$isPrivate
);
let results = (outs);
let assemblyFormat = [{
(`private` $isPrivate^)? $name `,` $function attr-dict
}];
}
def Torch_AttrOp : Torch_Op<"attr", [
HasParent<"::mlir::NPCOMP::Torch::ClassTypeOp">
]> {
let summary = "Declare an attribute of a torch.class_type";
let description = [{
This op declaratively specifies that torch.nn.Module's of the parent
torch.class_type must have an attribute `name` of type `type`.
If `private` is present, it indicates that the value of this attribute
cannot be accessed externally.
}];
// We don't use sym_visibility because that only applies to Symbol's, and
// some of the related concepts like "nested" visibility are specific to
// symbols.
let arguments = (ins
StrAttr:$name,
TypeAttr:$type,
// `private` is a C++ keyword, so use `isPrivate`
UnitAttr:$isPrivate
);
let results = (outs);
let assemblyFormat = [{
(`private` $isPrivate^)? $name `:` $type attr-dict
}];
}
//===----------------------------------------------------------------------===//
// Global slot ops
//===----------------------------------------------------------------------===//
// TODO: Should these be in a separate dialect?
// At this point, they are fairly specific to torch types, but their get/set
// semantics follow Python.
//===----------------------------------------------------------------------===//
def Torch_GlobalSlotOp : Torch_Op<"global_slot", [
Symbol,
IsolatedFromAbove,
SingleBlockImplicitTerminator<"::mlir::NPCOMP::Torch::GlobalSlotInitOp">
]> {
let summary = "A slot with global storage";
let description = [{
Represents a slot with global storage. The slot semantics are the same
as Python's: getting or setting a slot is done by object identity.
The `typeBound` is a type that the contained type is a subtype of.
}];
let arguments = (ins
SymbolNameAttr:$sym_name,
OptionalAttr<StrAttr>:$sym_visibility,
TypeAttr:$typeBound
);
let results = (outs);
let regions = (region SizedRegion<1>:$initializer);
let assemblyFormat = [{
($sym_visibility^)? $sym_name attr-dict `:` $typeBound ($initializer^)?
}];
}
def Torch_GlobalSlotInitOp : Torch_Op<"global_slot.init", [
Terminator,
HasParent<"::mlir::NPCOMP::Torch::GlobalSlotOp">]> {
let summary = "yield-like terminator for torch.global_slot initializer region";
let description = [{
The operand to this op becomes the initial value of the parent
torch.global_slot.
}];
let arguments = (ins AnyTorchType:$initialValue);
let results = (outs);
// This bulider creates an illegal op, but is needed to appease
// ensureTerminator in the default builders for SingleBlockImplicitTerminator
// on the parent torch.global_slot op.
// TODO: Have a SingleBlockExplicitTerminator trait.
let builders = [OpBuilder<(ins), [{ /*nothing to do */ }]>];
let assemblyFormat = "$initialValue attr-dict `:` type($initialValue)";
}
def Torch_GlobalSlotGetOp : Torch_Op<"global_slot.get", []> {
let summary = "Get the value stored in a torch.global_slot";
let arguments = (ins
FlatSymbolRefAttr:$slot
);
let results = (outs AnyTorchType:$result);
let assemblyFormat = [{
$slot attr-dict `:` type($result)
}];
}
def Torch_GlobalSlotSetOp : Torch_Op<"global_slot.set", []> {
let summary = "Set the value stored in a torch.global_slot";
let arguments = (ins
FlatSymbolRefAttr:$slot,
AnyTorchType:$value
);
let results = (outs);
let assemblyFormat = [{
$slot `=` $value attr-dict `:` type($value)
}];
}
//===----------------------------------------------------------------------===//
// TorchScript `prim::` ops.
//===----------------------------------------------------------------------===//
def Torch_PrimGetAttrOp : Torch_Op<"prim.GetAttr", []> {
let summary = "TorchScript prim::GetAttr op";
let arguments = (ins StrAttr:$name, Torch_NnModuleType:$receiver);
let results = (outs AnyTorchType:$result);
let assemblyFormat = [{
$receiver `[` $name `]` attr-dict `:` type($receiver) `->` type($result)
}];
}
def Torch_PrimSetAttrOp : Torch_Op<"prim.SetAttr", []> {
let summary = "TorchScript prim::SetAttr op";
let arguments = (ins
StrAttr:$name,
Torch_NnModuleType:$receiver,
AnyTorchType:$value
);
let results = (outs);
let assemblyFormat = [{
$receiver `[` $name `]` `=` $value attr-dict `:` type($receiver) `,` type($value)
}];
}
def Torch_PrimCallMethodOp : Torch_Op<"prim.CallMethod", []> {
let summary = "TorchScript prim::CallMethod op";
let arguments = (ins
StrAttr:$name,
Torch_NnModuleType:$receiver,
Variadic<AnyTorchType>:$operands
);
let results = (outs AnyTorchType:$result);
let assemblyFormat = [{
$receiver `[` $name `]` `(` $operands `)` attr-dict `:` type($receiver) `,` functional-type($operands, $result)
}];
}
def Torch_PrimPrintOp : Torch_Op<"prim.Print", []> {
let summary = "TorchScript prim::Print op";
let arguments = (ins Variadic<AnyTorchType>:$operands);
let results = (outs);
let assemblyFormat = [{
`(` $operands `)` attr-dict `:` type($operands)
}];
}
def Torch_PrimLoopOp : Torch_Op<"prim.Loop", [
DeclareOpInterfaceMethods<RegionBranchOpInterface, ["getSuccessorEntryOperands"]>]> {
let summary = "TorchScript prim::Loop op";
let description = [{
This op (together with prim.Loop.condition) define a looping construct
that combines `for` and `while` behavior.
See: https://github.com/pytorch/pytorch/blob/master/torch/csrc/jit/OVERVIEW.md#loops
}];
let arguments = (ins
I64:$maxTripCount,
Basicpy_BoolType:$initialCondition,
Variadic<AnyTorchType>:$iterArgsInit
);
let results = (outs Variadic<AnyTorchType>:$results);
let regions = (region SizedRegion<1>:$region);
let assemblyFormat = [{
$maxTripCount `,` $initialCondition `,` `init` `(` $iterArgsInit `)` $region
attr-dict `:` functional-type(operands, results)
}];
let verifier = [{ return RegionBranchOpInterface::verifyTypes(*this); }];
}
def Torch_PrimLoopConditionOp : Torch_Op<"prim.Loop.condition", [
Terminator,
HasParent<"::mlir::NPCOMP::Torch::PrimLoopOp">]> {
let summary = "yield-like terminator for torch.prim.Loop";
let description = [{
Does not correspond to any torch prim op directly (the way that they model
blocks has a built-in notion of yield-like terminator).
}];
let arguments = (ins Basicpy_BoolType:$shouldContinue, Variadic<AnyTorchType>:$iterArgs);
let results = (outs);
let assemblyFormat = [{
$shouldContinue `iter` `(` $iterArgs `)`
attr-dict `:` type($shouldContinue) `,` `(` type($iterArgs) `)`
}];
}
def Torch_PrimNumToTensorOp : Torch_Op<"prim.NumToTensor", []> {
let summary = "TorchScript prim::NumToTensor op";
let arguments = (ins AnyTorchNumberType:$num);
let results = (outs AnyTorchTensorType:$result);
let assemblyFormat = [{
$num attr-dict `:` type($num) `->` type($result)
}];
}
def Torch_PrimRaiseExceptionOp : Torch_Op<"prim.RaiseException", []> {
let summary = "TorchScript prim::RaiseException op";
// TODO: Error messages suggest that any exception derived from BaseException
// is allowed at the Python level, but they seem to just be strings at the
// IR level.
let arguments = (ins Basicpy_BytesType:$errorMsg);
let results = (outs);
let assemblyFormat = [{
$errorMsg attr-dict
}];
}
def Torch_PrimUninitializedOp : Torch_Op<"prim.Uninitialized", []> {
let summary = "TorchScript prim::Uninitialized op";
let arguments = (ins);
let results = (outs AnyTorchType:$result);
let assemblyFormat = [{
attr-dict `:` type($result)
}];
}
Properly model "derefinement". In terms of IR structure, TorchScript allows types to vary in many circumstances where MLIR requires pointer-identical types. In particular, it is valid to pass any subtype in place of a type. For example, if an `Optional[int]` is required somewhere in the IR, it is legal to pass a value of just `int` (but not the other way around; see `torch.prim.unchecked_cast`). In effect, every *use* can have a different type. We introduce a new op `torch.derefine` that models that impedance mismatch. This op allows casting a value from one type to a type that it is a subtype of to model this behavior. Recommended review order: - TorchOps.td for new torch.derefine (and updated docs for `torch.prim.unchecked_cast`) - new test code in if.py, loop.py, function-derefine.py - new code in node_importer.cpp for handling derefinement insertion - function_importer.cpp and utils changes in torch_to_mlir_utils.cpp Properly handling derefinement on function boundaries required relayering the code so that graph_importer.cpp/.h is now function_importer.cpp/.h because only the `torch::jit::Function` (actually the `c10::FunctionSchema` it holds) knows the derefined types that are actually needed at the boundary (see `function-derefine.py` for a test). Annoyingly, this churns all the functions which are now prefixed with `__torch__.` but that is more correct anyway (that is their linkage name in the `torch::jit::CompilationUnit`; the previous `mb.import_function` was actually buggy in the case of functions calling each other as it would reference their unqualified name). With this change, we can import `resnet18` from `torchvision` :) IR: https://gist.github.com/silvasean/6426a5272d8a6c7caae533fce05ab704
2021-03-02 09:24:15 +08:00
def Torch_Primunchecked_castOp : Torch_Op<"prim.unchecked_cast", [
NoSideEffect
]> {
let summary = "TorchScript prim::unchecked_cast op";
Properly model "derefinement". In terms of IR structure, TorchScript allows types to vary in many circumstances where MLIR requires pointer-identical types. In particular, it is valid to pass any subtype in place of a type. For example, if an `Optional[int]` is required somewhere in the IR, it is legal to pass a value of just `int` (but not the other way around; see `torch.prim.unchecked_cast`). In effect, every *use* can have a different type. We introduce a new op `torch.derefine` that models that impedance mismatch. This op allows casting a value from one type to a type that it is a subtype of to model this behavior. Recommended review order: - TorchOps.td for new torch.derefine (and updated docs for `torch.prim.unchecked_cast`) - new test code in if.py, loop.py, function-derefine.py - new code in node_importer.cpp for handling derefinement insertion - function_importer.cpp and utils changes in torch_to_mlir_utils.cpp Properly handling derefinement on function boundaries required relayering the code so that graph_importer.cpp/.h is now function_importer.cpp/.h because only the `torch::jit::Function` (actually the `c10::FunctionSchema` it holds) knows the derefined types that are actually needed at the boundary (see `function-derefine.py` for a test). Annoyingly, this churns all the functions which are now prefixed with `__torch__.` but that is more correct anyway (that is their linkage name in the `torch::jit::CompilationUnit`; the previous `mb.import_function` was actually buggy in the case of functions calling each other as it would reference their unqualified name). With this change, we can import `resnet18` from `torchvision` :) IR: https://gist.github.com/silvasean/6426a5272d8a6c7caae533fce05ab704
2021-03-02 09:24:15 +08:00
let description = [{
Refine a type to one of its subtypes.
For example, refine a type that was only statically known to be
Optional[T] to a T when we obtain static information that guarantees it.
The key observation here is that Optional[T] does not have a corresponding
runtime type (i.e. `c10::IValue` subclass). It represents a set of possible
concrete types which for `Optional[T]` is either `None` or a concrete
subtype of `T` (which in the simplest case is just `T`). In particular,
at runtime there is no way to distinguish `Optional[int]` from
`Optional[Optional[int]]`, because both are either `None` or `int`.
This differs from C++ std::optional.
The best documentation of this op is inspection of the code in
`torch/csrc/jit/frontend/ir_emitter.cpp`.
}];
// TODO: When we model PyTorch's notion of subtyping, verify the types here.
let arguments = (ins AnyTorchType:$operand);
let results = (outs AnyTorchType:$result);
let assemblyFormat = [{
$operand attr-dict `:` type($operand) `->` type($result)
}];
}
//===----------------------------------------------------------------------===//
// Additional ops used to model TorchScript's Graph's / Node's.
//===----------------------------------------------------------------------===//
def Torch_DerefineOp : Torch_Op<"derefine", [
NoSideEffect
]> {
let summary = "De-refine a type";
let description = [{
In terms of IR structure, TorchScript allows types to vary in many
circumstances where MLIR requires pointer-identical types. In particular,
it is valid to pass any subtype in place of a type. For example, if an
`Optional[int]` is required somewhere in the IR, it is legal to pass a
value of just `int` (but not the other way around; see
`torch.prim.unchecked_cast`). In effect, every *use* can have a different
type.
This op bridges that impedance mismatch. This op allows casting a value
from one type to a type that it is a subtype of to model this behavior.
}];
// TODO: When we model PyTorch's notion of subtyping, verify the types here.
let arguments = (ins AnyTorchType:$operand);
let results = (outs AnyTorchType:$result);
let assemblyFormat = [{
$operand attr-dict `:` type($operand) `->` type($result)
}];
}
def Torch_PrimListUnpackOp: Torch_Op<"prim.ListUnpack", []> {
let summary = "TorchScript prim::ListUnpack op";
let arguments = (ins AnyTorchType:$operand);
let results = (outs Variadic<AnyTorchType>:$results);
let assemblyFormat = [{
$operand attr-dict `:` type($operand) `->` type($results)
}];
}
def Torch_PrimTupleUnpackOp: Torch_Op<"prim.TupleUnpack", []> {
let summary = "TorchScript prim::TupleUnpack op";
let arguments = (ins AnyTorchType:$operand);
let results = (outs Variadic<AnyTorchType>:$results);
let assemblyFormat = [{
$operand attr-dict `:` type($operand) `->` type($results)
}];
}
def Torch_PrimTupleIndexOp : Torch_Op<"prim.TupleIndex", []> {
let summary = "TorchScript prim::TupleIndex op";
let arguments = (ins
AnyTorchType:$operand,
AnyTorchNumberType:$idx);
let results = (outs AnyTorchType:$result);
let assemblyFormat = [{
$operand `,` $idx attr-dict `:` type($operand) `,` type($idx) `->` type($result)
}];
}
2021-03-11 08:41:18 +08:00
def Torch_PrimdtypeOp : Torch_Op<"prim.dtype", []> {
let summary = "TorchScript prim::dtype op";
let arguments = (ins AnyTorchTensorType:$tensor);
let results = (outs AnyTorchNumberType:$result);
let assemblyFormat = [{
$tensor attr-dict `:` type($tensor) `->` type($result)
}];
}
def Torch_PrimdeviceOp : Torch_Op<"prim.device", []> {
let summary = "TorchScript prim::device op";
let arguments = (ins AnyTorchTensorType:$tensor);
let results = (outs Torch_DeviceType:$result);
let assemblyFormat = [{
$tensor attr-dict `:` type($tensor) `->` type($result)
}];
}
2020-09-29 03:02:35 +08:00
#endif // TORCH_OPS