2022-03-11 01:54:13 +08:00
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
//
|
|
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
|
|
|
//
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
|
|
#include "torch-mlir/Conversion/TorchToLinalg/TorchToLinalg.h"
|
|
|
|
|
|
|
|
|
|
#include "../PassDetail.h"
|
|
|
|
|
#include "PopulatePatterns.h"
|
|
|
|
|
#include "Utils.h"
|
|
|
|
|
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
|
|
|
|
|
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
|
|
|
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
|
|
|
#include "mlir/Dialect/Math/IR/Math.h"
|
|
|
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
|
|
|
#include "mlir/IR/Matchers.h"
|
|
|
|
|
#include "torch-mlir/Conversion/Utils/Utils.h"
|
|
|
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
|
|
|
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
|
|
|
|
#include "torch-mlir/Dialect/Torch/Utils/TorchUpstream.h"
|
|
|
|
|
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
|
|
|
|
|
|
|
|
|
|
using namespace mlir;
|
|
|
|
|
using namespace mlir::torch;
|
|
|
|
|
using namespace mlir::torch::Torch;
|
|
|
|
|
|
2022-04-05 01:57:49 +08:00
|
|
|
|
// Check if a ranked-tensor has the specified element type.
|
|
|
|
|
template <typename elementType> static bool hasElementType(Value tensor) {
|
|
|
|
|
auto tensorType = tensor.getType().cast<RankedTensorType>();
|
|
|
|
|
Type tensorElementType = tensorType.getElementType();
|
|
|
|
|
return tensorElementType.isa<elementType>();
|
|
|
|
|
}
|
|
|
|
|
|
2022-03-11 01:54:13 +08:00
|
|
|
|
template <arith::CmpFPredicate fpred, arith::CmpIPredicate iupred,
|
|
|
|
|
arith::CmpIPredicate ispred>
|
|
|
|
|
static Value createComparisonTemplate(OpBuilder &b, Location loc, Type type,
|
|
|
|
|
Value lhs, Value rhs) {
|
|
|
|
|
if (type.isa<mlir::FloatType>())
|
|
|
|
|
return b.create<arith::CmpFOp>(loc, fpred, lhs, rhs);
|
|
|
|
|
if (IntegerType intType = type.dyn_cast<mlir::IntegerType>()) {
|
|
|
|
|
if (intType.isUnsigned())
|
|
|
|
|
return b.create<arith::CmpIOp>(loc, iupred, lhs, rhs);
|
|
|
|
|
if (intType.isSigned())
|
|
|
|
|
return b.create<arith::CmpIOp>(loc, ispred, lhs, rhs);
|
|
|
|
|
}
|
2022-05-26 05:04:59 +08:00
|
|
|
|
llvm_unreachable("Unhandled element type for comparison");
|
2022-03-11 01:54:13 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static Value createGreaterThan(OpBuilder &b, Location loc, Type elementalType,
|
|
|
|
|
Value lhs, Value rhs) {
|
|
|
|
|
return createComparisonTemplate<arith::CmpFPredicate::UGT,
|
|
|
|
|
arith::CmpIPredicate::ugt,
|
|
|
|
|
arith::CmpIPredicate::sgt>(
|
|
|
|
|
b, loc, elementalType, lhs, rhs);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static Value createLessThan(OpBuilder &b, Location loc, Type elementalType,
|
|
|
|
|
Value lhs, Value rhs) {
|
|
|
|
|
return createComparisonTemplate<arith::CmpFPredicate::ULT,
|
|
|
|
|
arith::CmpIPredicate::ult,
|
|
|
|
|
arith::CmpIPredicate::slt>(
|
|
|
|
|
b, loc, elementalType, lhs, rhs);
|
|
|
|
|
}
|
|
|
|
|
|
2022-04-04 00:19:01 +08:00
|
|
|
|
static Value createEqual(OpBuilder &b, Location loc, Type elementalType,
|
|
|
|
|
Value lhs, Value rhs) {
|
|
|
|
|
return createComparisonTemplate<arith::CmpFPredicate::UEQ,
|
|
|
|
|
arith::CmpIPredicate::eq,
|
|
|
|
|
arith::CmpIPredicate::eq>(
|
|
|
|
|
b, loc, elementalType, lhs, rhs);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static Value createNotEqual(OpBuilder &b, Location loc, Type elementalType,
|
|
|
|
|
Value lhs, Value rhs) {
|
|
|
|
|
return createComparisonTemplate<arith::CmpFPredicate::UNE,
|
|
|
|
|
arith::CmpIPredicate::ne,
|
|
|
|
|
arith::CmpIPredicate::ne>(
|
|
|
|
|
b, loc, elementalType, lhs, rhs);
|
|
|
|
|
}
|
|
|
|
|
|
2022-03-11 01:54:13 +08:00
|
|
|
|
static Value buildNormalCdf(OpBuilder &b, Location &loc, Value x, Value mean,
|
|
|
|
|
Value sigma) {
|
|
|
|
|
Type elementType = x.getType();
|
|
|
|
|
Value xMinusMean = b.create<arith::SubFOp>(loc, x, mean);
|
|
|
|
|
Value two = b.create<arith::ConstantOp>(loc, FloatAttr::get(elementType, 2));
|
|
|
|
|
Value sqrt2 = b.create<math::SqrtOp>(loc, two);
|
|
|
|
|
Value erfArg = b.create<arith::DivFOp>(loc, xMinusMean, sqrt2);
|
|
|
|
|
Value erf = b.create<math::ErfOp>(loc, erfArg);
|
|
|
|
|
Value one = b.create<arith::ConstantOp>(loc, FloatAttr::get(elementType, 1));
|
|
|
|
|
Value erfPlus1 = b.create<arith::AddFOp>(loc, one, erf);
|
|
|
|
|
Value oneHalf =
|
|
|
|
|
b.create<arith::ConstantOp>(loc, FloatAttr::get(elementType, 0.5));
|
|
|
|
|
Value normalCdf = b.create<arith::MulFOp>(loc, oneHalf, erfPlus1);
|
|
|
|
|
return normalCdf;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static Value buildUnitNormalCdf(OpBuilder &b, Location &loc, Value x) {
|
|
|
|
|
Type elementType = x.getType();
|
|
|
|
|
Value zero = b.create<arith::ConstantOp>(loc, FloatAttr::get(elementType, 0));
|
|
|
|
|
Value one = b.create<arith::ConstantOp>(loc, FloatAttr::get(elementType, 1));
|
|
|
|
|
return buildNormalCdf(b, loc, x, zero, one);
|
|
|
|
|
}
|
|
|
|
|
|
2022-03-24 04:35:43 +08:00
|
|
|
|
template <typename MathOpTy>
|
|
|
|
|
static Value createCalculationForMathOpWithDtypeConversion(
|
|
|
|
|
OpBuilder &b, TypeConverter *converter, Value payloadArg, Operation *op) {
|
|
|
|
|
Type dtype = converter->convertType(op->getResult(0).getType())
|
|
|
|
|
.template cast<RankedTensorType>()
|
|
|
|
|
.getElementType();
|
|
|
|
|
Location loc = op->getLoc();
|
|
|
|
|
Value arg = convertScalarToDtype(b, loc, payloadArg, dtype);
|
|
|
|
|
return b.create<MathOpTy>(loc, arg);
|
|
|
|
|
}
|
|
|
|
|
|
2022-03-11 01:54:13 +08:00
|
|
|
|
static Value createLinalgPayloadCalculationForElementwiseOp(
|
|
|
|
|
OpBuilder &b, Location loc, TypeConverter *converter,
|
|
|
|
|
ValueRange payloadArgs, Operation *op, ArrayRef<Value> operands) {
|
|
|
|
|
if (isa<AtenFloorOp>(op))
|
|
|
|
|
return b.create<math::FloorOp>(loc, payloadArgs[0]);
|
|
|
|
|
if (isa<AtenCeilOp>(op))
|
|
|
|
|
return b.create<math::CeilOp>(loc, payloadArgs[0]);
|
2022-03-24 04:35:43 +08:00
|
|
|
|
if (isa<AtenTanhOp>(op)) {
|
|
|
|
|
return createCalculationForMathOpWithDtypeConversion<math::TanhOp>(
|
|
|
|
|
b, converter, payloadArgs[0], op);
|
|
|
|
|
}
|
|
|
|
|
if (isa<AtenExpOp>(op)) {
|
|
|
|
|
return createCalculationForMathOpWithDtypeConversion<math::ExpOp>(
|
|
|
|
|
b, converter, payloadArgs[0], op);
|
|
|
|
|
}
|
|
|
|
|
if (isa<AtenLogOp>(op)) {
|
|
|
|
|
return createCalculationForMathOpWithDtypeConversion<math::LogOp>(
|
|
|
|
|
b, converter, payloadArgs[0], op);
|
|
|
|
|
}
|
|
|
|
|
if (isa<AtenLog2Op>(op)) {
|
|
|
|
|
return createCalculationForMathOpWithDtypeConversion<math::Log2Op>(
|
|
|
|
|
b, converter, payloadArgs[0], op);
|
|
|
|
|
}
|
|
|
|
|
if (isa<AtenErfOp>(op)) {
|
|
|
|
|
return createCalculationForMathOpWithDtypeConversion<math::ErfOp>(
|
|
|
|
|
b, converter, payloadArgs[0], op);
|
|
|
|
|
}
|
|
|
|
|
if (isa<AtenSqrtOp>(op)) {
|
|
|
|
|
return createCalculationForMathOpWithDtypeConversion<math::SqrtOp>(
|
|
|
|
|
b, converter, payloadArgs[0], op);
|
|
|
|
|
}
|
|
|
|
|
if (isa<AtenRsqrtOp>(op)) {
|
|
|
|
|
return createCalculationForMathOpWithDtypeConversion<math::RsqrtOp>(
|
|
|
|
|
b, converter, payloadArgs[0], op);
|
|
|
|
|
}
|
2022-04-16 02:11:22 +08:00
|
|
|
|
if (isa<AtenNegOp>(op)) {
|
|
|
|
|
return createCalculationForMathOpWithDtypeConversion<arith::NegFOp>(
|
|
|
|
|
b, converter, payloadArgs[0], op);
|
|
|
|
|
}
|
2022-03-24 04:35:43 +08:00
|
|
|
|
if (isa<AtenSinOp>(op)) {
|
|
|
|
|
return createCalculationForMathOpWithDtypeConversion<math::SinOp>(
|
|
|
|
|
b, converter, payloadArgs[0], op);
|
|
|
|
|
}
|
|
|
|
|
if (isa<AtenCosOp>(op)) {
|
|
|
|
|
return createCalculationForMathOpWithDtypeConversion<math::CosOp>(
|
|
|
|
|
b, converter, payloadArgs[0], op);
|
|
|
|
|
}
|
2022-03-11 01:54:13 +08:00
|
|
|
|
if (auto clone = dyn_cast<AtenCloneOp>(op)) {
|
|
|
|
|
int64_t memoryFormat;
|
|
|
|
|
if (!clone.memory_format().getType().isa<Torch::NoneType>() &&
|
|
|
|
|
(!matchPattern(clone.memory_format(),
|
|
|
|
|
m_TorchConstantInt(&memoryFormat)) ||
|
|
|
|
|
memoryFormat != torch_upstream::MemoryFormat::Contiguous)) {
|
|
|
|
|
clone.emitError("unimplemented: only default memory format is supported");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
return payloadArgs[0];
|
|
|
|
|
}
|
|
|
|
|
if (auto bitwiseAndTensor = dyn_cast<AtenBitwiseAndTensorOp>(op)) {
|
|
|
|
|
if (bitwiseAndTensor.getType()
|
|
|
|
|
.cast<ValueTensorType>()
|
|
|
|
|
.getDtype()
|
|
|
|
|
.isa<mlir::FloatType>()) {
|
|
|
|
|
bitwiseAndTensor.emitError(
|
|
|
|
|
"Bitwise_And does not support floating point dtype");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
Type dtype = converter->convertType(bitwiseAndTensor.getType())
|
|
|
|
|
.cast<RankedTensorType>()
|
|
|
|
|
.getElementType();
|
|
|
|
|
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
|
|
|
|
|
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], dtype);
|
|
|
|
|
return b.create<arith::AndIOp>(loc, lhs, rhs);
|
|
|
|
|
}
|
2022-06-04 07:21:03 +08:00
|
|
|
|
if (auto logicalOr = dyn_cast<AtenLogicalOrOp>(op)) {
|
|
|
|
|
MLIRContext *context = op->getContext();
|
|
|
|
|
Type floatDtype = mlir::FloatType::getF64(context);
|
|
|
|
|
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], floatDtype);
|
|
|
|
|
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], floatDtype);
|
|
|
|
|
Value zero =
|
|
|
|
|
b.create<arith::ConstantOp>(loc, b.getFloatAttr(floatDtype, 0));
|
|
|
|
|
Value lhsTest = createNotEqual(b, loc, floatDtype, lhs, zero);
|
|
|
|
|
Value rhsTest = createNotEqual(b, loc, floatDtype, rhs, zero);
|
|
|
|
|
return b.create<arith::OrIOp>(loc, lhsTest, rhsTest);
|
|
|
|
|
}
|
2022-03-11 01:54:13 +08:00
|
|
|
|
if (isa<AtenAbsOp>(op))
|
|
|
|
|
return b.create<math::AbsOp>(loc, payloadArgs[0]);
|
|
|
|
|
if (isa<AtenSigmoidOp>(op)) {
|
2022-03-24 04:35:43 +08:00
|
|
|
|
auto negate = createCalculationForMathOpWithDtypeConversion<arith::NegFOp>(
|
|
|
|
|
b, converter, payloadArgs[0], op);
|
|
|
|
|
auto one =
|
|
|
|
|
b.create<arith::ConstantOp>(loc, FloatAttr::get(negate.getType(), 1));
|
2022-03-11 01:54:13 +08:00
|
|
|
|
auto exp = b.create<math::ExpOp>(loc, negate);
|
|
|
|
|
auto added = b.create<arith::AddFOp>(loc, exp, one);
|
|
|
|
|
return b.create<arith::DivFOp>(loc, one, added);
|
|
|
|
|
}
|
|
|
|
|
if (auto relu = dyn_cast<AtenReluOp>(op)) {
|
|
|
|
|
if (!relu.getType()
|
|
|
|
|
.cast<ValueTensorType>()
|
|
|
|
|
.getDtype()
|
|
|
|
|
.isa<mlir::FloatType>()) {
|
|
|
|
|
relu.emitError("unimplemented: non-floating point dtype");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
Type elementType = payloadArgs[0].getType();
|
|
|
|
|
Value constZero =
|
|
|
|
|
b.create<arith::ConstantOp>(loc, b.getZeroAttr(elementType));
|
|
|
|
|
Value pred = b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UGT,
|
|
|
|
|
payloadArgs[0], constZero);
|
|
|
|
|
return b.create<arith::SelectOp>(loc, pred, payloadArgs[0], constZero);
|
|
|
|
|
}
|
|
|
|
|
if (auto lrelu = dyn_cast<AtenLeakyReluOp>(op)) {
|
|
|
|
|
if (!lrelu.getType()
|
|
|
|
|
.cast<ValueTensorType>()
|
|
|
|
|
.getDtype()
|
|
|
|
|
.isa<mlir::FloatType>()) {
|
|
|
|
|
lrelu.emitError("unimplemented: non-floating point dtype");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
Type elementType = payloadArgs[0].getType();
|
|
|
|
|
Value constZero =
|
|
|
|
|
b.create<arith::ConstantOp>(loc, b.getZeroAttr(elementType));
|
|
|
|
|
Value pred = b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UGT,
|
|
|
|
|
payloadArgs[0], constZero);
|
|
|
|
|
Value positivePart =
|
|
|
|
|
b.create<arith::SelectOp>(loc, pred, payloadArgs[0], constZero);
|
|
|
|
|
Value negativePart =
|
|
|
|
|
b.create<arith::SelectOp>(loc, pred, constZero, payloadArgs[0]);
|
|
|
|
|
Value scale = convertScalarToDtype(b, loc, operands[1], elementType);
|
|
|
|
|
Value scaledNegativePart =
|
|
|
|
|
b.create<arith::MulFOp>(loc, negativePart, scale);
|
|
|
|
|
return b.create<arith::AddFOp>(loc, positivePart, scaledNegativePart);
|
|
|
|
|
}
|
|
|
|
|
if (auto gelu = dyn_cast<AtenGeluOp>(op)) {
|
|
|
|
|
if (!gelu.getType()
|
|
|
|
|
.cast<ValueTensorType>()
|
|
|
|
|
.getDtype()
|
|
|
|
|
.isa<mlir::FloatType>()) {
|
|
|
|
|
gelu.emitError("unimplemented: non-floating point dtype");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
// TODO: Take approximation into account.
|
|
|
|
|
std::string approximate;
|
|
|
|
|
if (!matchPattern(gelu.approximate(), m_TorchConstantStr(approximate)) ||
|
|
|
|
|
approximate != "none")
|
|
|
|
|
return nullptr;
|
|
|
|
|
Value cdf = buildUnitNormalCdf(b, loc, payloadArgs[0]);
|
|
|
|
|
return b.create<arith::MulFOp>(loc, payloadArgs[0], cdf);
|
|
|
|
|
}
|
|
|
|
|
if (auto geluBackward = dyn_cast<AtenGeluBackwardOp>(op)) {
|
|
|
|
|
if (!geluBackward.getType()
|
|
|
|
|
.cast<ValueTensorType>()
|
|
|
|
|
.getDtype()
|
|
|
|
|
.isa<mlir::FloatType>()) {
|
|
|
|
|
geluBackward.emitError("unimplemented: non-floating point dtype");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
// TODO: Take approximation into account.
|
|
|
|
|
std::string approximate;
|
|
|
|
|
if (!matchPattern(geluBackward.approximate(),
|
|
|
|
|
m_TorchConstantStr(approximate)) ||
|
|
|
|
|
approximate != "none")
|
|
|
|
|
return nullptr;
|
|
|
|
|
Type elementType = payloadArgs[1].getType();
|
|
|
|
|
Value cstAlpha0 = b.create<arith::ConstantOp>(
|
|
|
|
|
loc, FloatAttr::get(elementType, 1.12837916709551257390));
|
|
|
|
|
Value cstAlpha1 = b.create<arith::ConstantOp>(
|
|
|
|
|
loc, FloatAttr::get(elementType, 0.70710678118654752440));
|
|
|
|
|
Value oneHalf =
|
|
|
|
|
b.create<arith::ConstantOp>(loc, FloatAttr::get(elementType, 0.5));
|
|
|
|
|
Value kAlpha = b.create<arith::MulFOp>(loc, cstAlpha0, cstAlpha1);
|
|
|
|
|
Value kAlphaHalf = b.create<arith::MulFOp>(loc, kAlpha, oneHalf);
|
|
|
|
|
Value negOneHalf =
|
|
|
|
|
b.create<arith::ConstantOp>(loc, FloatAttr::get(elementType, -0.5));
|
|
|
|
|
Value inputSquared =
|
|
|
|
|
b.create<arith::MulFOp>(loc, payloadArgs[1], payloadArgs[1]);
|
|
|
|
|
Value negHalfInputSquared =
|
|
|
|
|
b.create<arith::MulFOp>(loc, inputSquared, negOneHalf);
|
|
|
|
|
Value dinput = b.create<math::ExpOp>(loc, negHalfInputSquared);
|
|
|
|
|
Value cdf = buildUnitNormalCdf(b, loc, payloadArgs[1]);
|
|
|
|
|
Value dinputInput = b.create<arith::MulFOp>(loc, dinput, payloadArgs[1]);
|
|
|
|
|
Value dinputInputAlpha =
|
|
|
|
|
b.create<arith::MulFOp>(loc, dinputInput, kAlphaHalf);
|
|
|
|
|
Value cdfExt = b.create<arith::AddFOp>(loc, dinputInputAlpha, cdf);
|
|
|
|
|
return b.create<arith::MulFOp>(loc, payloadArgs[0], cdfExt);
|
|
|
|
|
}
|
|
|
|
|
if (auto add = dyn_cast<AtenAddTensorOp>(op)) {
|
|
|
|
|
AtenAddTensorOp::Adaptor adaptor(operands);
|
|
|
|
|
Type dtype = converter->convertType(add.getType())
|
|
|
|
|
.cast<RankedTensorType>()
|
|
|
|
|
.getElementType();
|
|
|
|
|
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
|
|
|
|
|
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], dtype);
|
|
|
|
|
Value alpha = convertScalarToDtype(b, loc, adaptor.alpha(), dtype);
|
|
|
|
|
if (dtype.isa<mlir::FloatType>()) {
|
|
|
|
|
Value scaled = b.create<arith::MulFOp>(loc, rhs, alpha);
|
|
|
|
|
return b.create<arith::AddFOp>(loc, lhs, scaled);
|
|
|
|
|
} else {
|
|
|
|
|
Value scaled = b.create<arith::MulIOp>(loc, rhs, alpha);
|
|
|
|
|
return b.create<arith::AddIOp>(loc, lhs, scaled);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (auto sub = dyn_cast<AtenSubTensorOp>(op)) {
|
|
|
|
|
AtenSubTensorOp::Adaptor adaptor(operands);
|
|
|
|
|
Type dtype = converter->convertType(sub.getType())
|
|
|
|
|
.cast<RankedTensorType>()
|
|
|
|
|
.getElementType();
|
|
|
|
|
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
|
|
|
|
|
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], dtype);
|
|
|
|
|
Value alpha = convertScalarToDtype(b, loc, adaptor.alpha(), dtype);
|
|
|
|
|
if (dtype.isa<mlir::FloatType>()) {
|
|
|
|
|
Value scaled = b.create<arith::MulFOp>(loc, rhs, alpha);
|
|
|
|
|
return b.create<arith::SubFOp>(loc, lhs, scaled);
|
|
|
|
|
} else {
|
|
|
|
|
Value scaled = b.create<arith::MulIOp>(loc, rhs, alpha);
|
|
|
|
|
return b.create<arith::SubIOp>(loc, lhs, scaled);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (auto subScalar = dyn_cast<AtenSubScalarOp>(op)) {
|
|
|
|
|
Type dtype = converter->convertType(subScalar.getType())
|
|
|
|
|
.cast<RankedTensorType>()
|
|
|
|
|
.getElementType();
|
|
|
|
|
Value self = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
|
|
|
|
|
Value other = convertScalarToDtype(b, loc, operands[1], dtype);
|
|
|
|
|
Value alpha = convertScalarToDtype(b, loc, operands[2], dtype);
|
|
|
|
|
if (dtype.isa<mlir::FloatType>()) {
|
|
|
|
|
Value mult = b.create<arith::MulFOp>(loc, other, alpha);
|
|
|
|
|
return b.create<arith::SubFOp>(loc, self, mult);
|
|
|
|
|
} else if (dtype.isa<mlir::IntegerType>()) {
|
|
|
|
|
Value mult = b.create<arith::MulIOp>(loc, other, alpha);
|
|
|
|
|
return b.create<arith::SubIOp>(loc, self, mult);
|
|
|
|
|
}
|
|
|
|
|
subScalar.emitError("unimplemented: dtype other than float and integer "
|
|
|
|
|
"types are not supported.");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
if (auto addScalar = dyn_cast<AtenAddScalarOp>(op)) {
|
|
|
|
|
Type dtype = converter->convertType(addScalar.getType())
|
|
|
|
|
.cast<RankedTensorType>()
|
|
|
|
|
.getElementType();
|
|
|
|
|
Value self = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
|
|
|
|
|
Value other = convertScalarToDtype(b, loc, operands[1], dtype);
|
|
|
|
|
Value alpha = convertScalarToDtype(b, loc, operands[2], dtype);
|
|
|
|
|
if (dtype.isa<mlir::FloatType>()) {
|
|
|
|
|
Value mult = b.create<arith::MulFOp>(loc, other, alpha);
|
|
|
|
|
return b.create<arith::AddFOp>(loc, self, mult);
|
|
|
|
|
} else if (dtype.isa<mlir::IntegerType>()) {
|
|
|
|
|
Value mult = b.create<arith::MulIOp>(loc, other, alpha);
|
|
|
|
|
return b.create<arith::AddIOp>(loc, self, mult);
|
|
|
|
|
}
|
|
|
|
|
addScalar.emitError("unimplemented: dtype other than float and integer "
|
|
|
|
|
"types are not supported.");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
if (auto mul = dyn_cast<AtenMulTensorOp>(op)) {
|
|
|
|
|
AtenMulTensorOp::Adaptor adaptor(operands);
|
|
|
|
|
Type dtype = converter->convertType(mul.getType())
|
|
|
|
|
.cast<RankedTensorType>()
|
|
|
|
|
.getElementType();
|
|
|
|
|
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
|
|
|
|
|
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], dtype);
|
|
|
|
|
if (dtype.isa<mlir::FloatType>()) {
|
|
|
|
|
return b.create<arith::MulFOp>(loc, lhs, rhs);
|
|
|
|
|
} else {
|
|
|
|
|
return b.create<arith::MulIOp>(loc, lhs, rhs);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (auto gtTensor = dyn_cast<AtenGtTensorOp>(op)) {
|
|
|
|
|
AtenGtTensorOp::Adaptor adaptor(operands);
|
|
|
|
|
Type lhsDtype = payloadArgs[0].getType();
|
|
|
|
|
Type rhsDtype = payloadArgs[1].getType();
|
|
|
|
|
|
|
|
|
|
// TODO: Type promotion in case of different `lhsDtype` and `rhsDtype` needs
|
|
|
|
|
// to be handled.
|
|
|
|
|
if (lhsDtype != rhsDtype) {
|
|
|
|
|
gtTensor.emitError("unimplemented: different lhs and rhs dtype");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Type elementalType =
|
|
|
|
|
gtTensor.self().getType().cast<BaseTensorType>().getDtype();
|
|
|
|
|
return createGreaterThan(b, loc, elementalType, payloadArgs[0],
|
|
|
|
|
payloadArgs[1]);
|
|
|
|
|
}
|
|
|
|
|
if (auto eqTensor = dyn_cast<AtenEqTensorOp>(op)) {
|
|
|
|
|
AtenEqTensorOp::Adaptor adaptor(operands);
|
|
|
|
|
Type lhsDtype = payloadArgs[0].getType();
|
|
|
|
|
Type rhsDtype = payloadArgs[1].getType();
|
|
|
|
|
|
|
|
|
|
// TODO: Type promotion in case of different `lhsDtype` and `rhsDtype` needs
|
|
|
|
|
// to be handled.
|
|
|
|
|
if (lhsDtype != rhsDtype) {
|
|
|
|
|
eqTensor.emitError("unimplemented: lhs and rhs dtype must be same");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Type elementalType =
|
|
|
|
|
eqTensor.self().getType().cast<BaseTensorType>().getDtype();
|
|
|
|
|
|
|
|
|
|
if (elementalType.isa<mlir::FloatType>())
|
|
|
|
|
return b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UEQ,
|
|
|
|
|
payloadArgs[0], payloadArgs[1]);
|
|
|
|
|
if (elementalType.isa<mlir::IntegerType>()) {
|
|
|
|
|
return b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
|
|
|
|
|
payloadArgs[0], payloadArgs[1]);
|
|
|
|
|
}
|
|
|
|
|
eqTensor.emitError("unimplemented: dtype isn't supported.");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
if (auto ltTensor = dyn_cast<AtenLtTensorOp>(op)) {
|
|
|
|
|
AtenLtTensorOp::Adaptor adaptor(operands);
|
|
|
|
|
Type lhsDtype = payloadArgs[0].getType();
|
|
|
|
|
Type rhsDtype = payloadArgs[1].getType();
|
|
|
|
|
|
|
|
|
|
// TODO: Type promotion in case of different `lhsDtype` and `rhsDtype` needs
|
|
|
|
|
// to be handled.
|
|
|
|
|
if (lhsDtype != rhsDtype) {
|
|
|
|
|
ltTensor.emitError("unimplemented: lhs and rhs dtype must be same");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Type elementalType =
|
|
|
|
|
ltTensor.self().getType().cast<BaseTensorType>().getDtype();
|
|
|
|
|
return createLessThan(b, loc, elementalType, payloadArgs[0],
|
|
|
|
|
payloadArgs[1]);
|
|
|
|
|
}
|
|
|
|
|
if (auto div = dyn_cast<AtenDivTensorOp>(op)) {
|
|
|
|
|
AtenDivTensorOp::Adaptor adaptor(operands);
|
|
|
|
|
Type dtype = converter->convertType(div.getType())
|
|
|
|
|
.cast<RankedTensorType>()
|
|
|
|
|
.getElementType();
|
2022-06-03 15:03:34 +08:00
|
|
|
|
if (!dtype.isa<mlir::FloatType>()) {
|
2022-03-11 01:54:13 +08:00
|
|
|
|
div.emitError("unimplemented: non-floating point dtype");
|
2022-06-03 15:03:34 +08:00
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
2022-03-11 01:54:13 +08:00
|
|
|
|
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
|
|
|
|
|
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], dtype);
|
|
|
|
|
return b.create<arith::DivFOp>(loc, lhs, rhs);
|
|
|
|
|
}
|
2022-06-03 15:03:34 +08:00
|
|
|
|
if (auto divTensorMode = dyn_cast<AtenDivTensorModeOp>(op)) {
|
|
|
|
|
AtenDivTensorModeOp::Adaptor adaptor(operands);
|
|
|
|
|
Type dtype = converter->convertType(divTensorMode.getType())
|
|
|
|
|
.cast<RankedTensorType>()
|
|
|
|
|
.getElementType();
|
|
|
|
|
if (!dtype.isa<mlir::FloatType>()) {
|
|
|
|
|
divTensorMode.emitError("unimplemented: non-floating point dtype");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
|
|
|
|
|
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], dtype);
|
|
|
|
|
Value div = b.create<arith::DivFOp>(loc, lhs, rhs);
|
|
|
|
|
|
|
|
|
|
if (divTensorMode.rounding_mode().getType().isa<Torch::NoneType>())
|
|
|
|
|
return div;
|
|
|
|
|
|
|
|
|
|
std::string roundingMode;
|
|
|
|
|
if (!matchPattern(divTensorMode.rounding_mode(),
|
|
|
|
|
m_TorchConstantStr(roundingMode))) {
|
|
|
|
|
divTensorMode.emitError("only support constant str rounding mode");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
if (roundingMode == "trunc") {
|
|
|
|
|
// "trunc" - rounds the results of the division towards zero. Equivalent
|
|
|
|
|
// to C-style integer division.
|
|
|
|
|
Value ceil = b.create<math::CeilOp>(loc, div);
|
|
|
|
|
Value floor = b.create<math::FloorOp>(loc, div);
|
|
|
|
|
Value cstZero = b.create<arith::ConstantOp>(loc, b.getZeroAttr(dtype));
|
|
|
|
|
Value pred =
|
|
|
|
|
b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::ULT, div, cstZero);
|
|
|
|
|
return b.create<arith::SelectOp>(loc, pred, ceil, floor);
|
|
|
|
|
}
|
|
|
|
|
if (roundingMode == "floor") {
|
|
|
|
|
// "floor" - rounds the results of the division down. Equivalent to
|
|
|
|
|
// floor division in Python (the // operator)
|
|
|
|
|
return b.create<math::FloorOp>(loc, div);
|
|
|
|
|
}
|
|
|
|
|
divTensorMode.emitError("invalid rounding mode");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
2022-03-11 01:54:13 +08:00
|
|
|
|
if (auto pow = dyn_cast<AtenPowTensorScalarOp>(op)) {
|
|
|
|
|
if (!pow.getType()
|
|
|
|
|
.cast<ValueTensorType>()
|
|
|
|
|
.getDtype()
|
|
|
|
|
.isa<mlir::FloatType>()) {
|
|
|
|
|
pow.emitError("unimplemented: non-floating point dtype");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
Type dtype = pow.self().getType().cast<ValueTensorType>().getDtype();
|
|
|
|
|
Value expPromoted = convertScalarToDtype(b, loc, operands[1], dtype);
|
|
|
|
|
return b.create<math::PowFOp>(loc, payloadArgs[0], expPromoted);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (auto gtScalar = dyn_cast<AtenGtScalarOp>(op)) {
|
|
|
|
|
Type dtype = gtScalar.self().getType().cast<BaseTensorType>().getDtype();
|
|
|
|
|
|
|
|
|
|
// TODO: `gtTensor` and `gtScalar` share similar code and can be called from
|
|
|
|
|
// one static function.
|
|
|
|
|
Value otherPromoted =
|
|
|
|
|
convertScalarToDtype(b, loc, operands[1], payloadArgs[0].getType());
|
|
|
|
|
|
|
|
|
|
if (dtype.isa<mlir::FloatType>())
|
|
|
|
|
return b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UGT,
|
|
|
|
|
payloadArgs[0], otherPromoted);
|
|
|
|
|
if (IntegerType intType = dtype.dyn_cast<mlir::IntegerType>()) {
|
|
|
|
|
if (!operands[1].getType().isa<mlir::IntegerType>()) {
|
|
|
|
|
// TODO: Promote tensor args from integer to float.
|
|
|
|
|
gtScalar.emitError(
|
|
|
|
|
"unimplemented: type promotion from tensor to scalar.");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (intType.isUnsigned())
|
|
|
|
|
return b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ugt,
|
|
|
|
|
payloadArgs[0], otherPromoted);
|
|
|
|
|
if (intType.isSigned())
|
|
|
|
|
return b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sgt,
|
|
|
|
|
payloadArgs[0], otherPromoted);
|
|
|
|
|
}
|
|
|
|
|
gtScalar.emitError("unimplemented: dtype isn't supported.");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (auto geScalar = dyn_cast<AtenGeScalarOp>(op)) {
|
|
|
|
|
Type dtype = geScalar.self().getType().cast<BaseTensorType>().getDtype();
|
|
|
|
|
|
|
|
|
|
// TODO: The `AtenGeScalarOp` and `AtenGtScalarOp` share a lot of code that
|
|
|
|
|
// can be refactored.
|
|
|
|
|
Value otherPromoted =
|
|
|
|
|
convertScalarToDtype(b, loc, operands[1], payloadArgs[0].getType());
|
|
|
|
|
|
|
|
|
|
if (dtype.isa<mlir::FloatType>())
|
|
|
|
|
return b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UGE,
|
|
|
|
|
payloadArgs[0], otherPromoted);
|
|
|
|
|
if (IntegerType intType = dtype.dyn_cast<mlir::IntegerType>()) {
|
|
|
|
|
if (!operands[1].getType().isa<mlir::IntegerType>()) {
|
|
|
|
|
// TODO: Promote tensor args from integer to float.
|
|
|
|
|
geScalar.emitError(
|
|
|
|
|
"unimplemented: type promotion from tensor to scalar.");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (intType.isUnsigned())
|
|
|
|
|
return b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::uge,
|
|
|
|
|
payloadArgs[0], otherPromoted);
|
|
|
|
|
if (intType.isSigned())
|
|
|
|
|
return b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sge,
|
|
|
|
|
payloadArgs[0], otherPromoted);
|
|
|
|
|
}
|
|
|
|
|
geScalar.emitError("unimplemented: dtype isn't supported.");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (auto eqScalar = dyn_cast<AtenEqScalarOp>(op)) {
|
|
|
|
|
Type dtype = eqScalar.self().getType().cast<BaseTensorType>().getDtype();
|
|
|
|
|
Value otherPromoted =
|
|
|
|
|
convertScalarToDtype(b, loc, operands[1], payloadArgs[0].getType());
|
|
|
|
|
|
|
|
|
|
if (dtype.isa<mlir::IntegerType>()) {
|
|
|
|
|
if (!operands[1].getType().isa<mlir::IntegerType>()) {
|
|
|
|
|
// TODO: Promote tensor operand from integer to float.
|
|
|
|
|
eqScalar.emitError(
|
|
|
|
|
"unimplemented: type promotion from tensor to scalar");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
}
|
2022-04-04 00:19:01 +08:00
|
|
|
|
return createEqual(b, loc, dtype, payloadArgs[0], otherPromoted);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (auto neScalar = dyn_cast<AtenNeScalarOp>(op)) {
|
|
|
|
|
Type dtype = neScalar.self().getType().cast<BaseTensorType>().getDtype();
|
|
|
|
|
Value otherPromoted =
|
|
|
|
|
convertScalarToDtype(b, loc, operands[1], payloadArgs[0].getType());
|
|
|
|
|
|
|
|
|
|
if (dtype.isa<mlir::IntegerType>()) {
|
|
|
|
|
if (!operands[1].getType().isa<mlir::IntegerType>()) {
|
|
|
|
|
// TODO: Promote tensor operand from integer to float.
|
|
|
|
|
neScalar.emitError(
|
|
|
|
|
"unimplemented: type promotion from tensor to scalar");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return createNotEqual(b, loc, dtype, payloadArgs[0], otherPromoted);
|
2022-03-11 01:54:13 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (auto ltScalar = dyn_cast<AtenLtScalarOp>(op)) {
|
|
|
|
|
Type dtype = ltScalar.self().getType().cast<BaseTensorType>().getDtype();
|
|
|
|
|
Value otherPromoted =
|
|
|
|
|
convertScalarToDtype(b, loc, operands[1], payloadArgs[0].getType());
|
|
|
|
|
|
2022-04-04 00:19:01 +08:00
|
|
|
|
// TODO: Both tensor and scalar variants of `aten.gt` and `aten.lt` share
|
|
|
|
|
// a lot of code that can be refactored.
|
2022-03-11 01:54:13 +08:00
|
|
|
|
if (dtype.isa<mlir::FloatType>())
|
|
|
|
|
return b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::ULT,
|
|
|
|
|
payloadArgs[0], otherPromoted);
|
|
|
|
|
if (IntegerType intType = dtype.dyn_cast<mlir::IntegerType>()) {
|
|
|
|
|
if (!operands[1].getType().isa<mlir::IntegerType>()) {
|
|
|
|
|
// TODO: Promote tensor operand from integer to float.
|
|
|
|
|
ltScalar.emitError(
|
|
|
|
|
"unimplemented: type promotion from tensor to scalar");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
if (intType.isUnsigned())
|
|
|
|
|
return b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
|
|
|
|
|
payloadArgs[0], otherPromoted);
|
|
|
|
|
if (intType.isSigned())
|
|
|
|
|
return b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt,
|
|
|
|
|
payloadArgs[0], otherPromoted);
|
|
|
|
|
}
|
|
|
|
|
ltScalar.emitError("unimplemented: dtype isn't supported.");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (auto leScalar = dyn_cast<AtenLeScalarOp>(op)) {
|
|
|
|
|
Type dtype = leScalar.self().getType().cast<BaseTensorType>().getDtype();
|
|
|
|
|
Value otherPromoted =
|
|
|
|
|
convertScalarToDtype(b, loc, operands[1], payloadArgs[0].getType());
|
|
|
|
|
|
2022-04-04 00:19:01 +08:00
|
|
|
|
// TODO: The `AtenLeScalarOp` and `AtenLtScalarOp` share a lot of code
|
|
|
|
|
// that can be refactored.
|
2022-03-11 01:54:13 +08:00
|
|
|
|
if (dtype.isa<mlir::FloatType>())
|
|
|
|
|
return b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::ULE,
|
|
|
|
|
payloadArgs[0], otherPromoted);
|
|
|
|
|
if (IntegerType intType = dtype.dyn_cast<mlir::IntegerType>()) {
|
|
|
|
|
if (!operands[1].getType().isa<mlir::IntegerType>()) {
|
|
|
|
|
// TODO: Promote tensor operand from integer to float.
|
|
|
|
|
leScalar.emitError(
|
|
|
|
|
"unimplemented: type promotion from tensor to scalar");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
if (intType.isUnsigned())
|
|
|
|
|
return b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ule,
|
|
|
|
|
payloadArgs[0], otherPromoted);
|
|
|
|
|
if (intType.isSigned())
|
|
|
|
|
return b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sle,
|
|
|
|
|
payloadArgs[0], otherPromoted);
|
|
|
|
|
}
|
|
|
|
|
leScalar.emitError("unimplemented: dtype isn't supported.");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (auto whereSelf = dyn_cast<AtenWhereSelfOp>(op)) {
|
|
|
|
|
Type dtype = converter->convertType(whereSelf.getType())
|
|
|
|
|
.cast<RankedTensorType>()
|
|
|
|
|
.getElementType();
|
|
|
|
|
Value lhs = convertScalarToDtype(b, loc, payloadArgs[1], dtype);
|
|
|
|
|
Value rhs = convertScalarToDtype(b, loc, payloadArgs[2], dtype);
|
|
|
|
|
return b.create<arith::SelectOp>(loc, payloadArgs[0], lhs, rhs);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (auto lerp = dyn_cast<AtenLerpTensorOp>(op)) {
|
|
|
|
|
if (!lerp.getType()
|
|
|
|
|
.cast<ValueTensorType>()
|
|
|
|
|
.getDtype()
|
|
|
|
|
.isa<mlir::FloatType>()) {
|
|
|
|
|
lerp.emitError("unimplemented: non-floating point dtype");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
AtenLerpTensorOp::Adaptor adaptor(payloadArgs);
|
|
|
|
|
auto start = adaptor.self();
|
|
|
|
|
auto end = adaptor.end();
|
|
|
|
|
auto weight = adaptor.weight();
|
|
|
|
|
auto delta = b.create<arith::SubFOp>(loc, end, start);
|
|
|
|
|
auto weightedDelta = b.create<arith::MulFOp>(loc, delta, weight);
|
|
|
|
|
return b.create<arith::AddFOp>(loc, start, weightedDelta);
|
|
|
|
|
}
|
|
|
|
|
if (auto minimum = dyn_cast<AtenMinimumOp>(op)) {
|
|
|
|
|
Type dtype = minimum.getType().cast<BaseTensorType>().getDtype();
|
|
|
|
|
Type elemTy = converter->convertType(minimum.getType())
|
|
|
|
|
.cast<RankedTensorType>()
|
|
|
|
|
.getElementType();
|
|
|
|
|
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], elemTy);
|
|
|
|
|
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], elemTy);
|
|
|
|
|
Value pred = createLessThan(b, loc, dtype, lhs, rhs);
|
|
|
|
|
return b.create<arith::SelectOp>(loc, pred, lhs, rhs);
|
|
|
|
|
}
|
|
|
|
|
if (auto maximum = dyn_cast<AtenMaximumOp>(op)) {
|
|
|
|
|
Type dtype = maximum.getType().cast<BaseTensorType>().getDtype();
|
|
|
|
|
Type elemTy = converter->convertType(maximum.getType())
|
|
|
|
|
.cast<RankedTensorType>()
|
|
|
|
|
.getElementType();
|
|
|
|
|
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], elemTy);
|
|
|
|
|
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], elemTy);
|
|
|
|
|
Value pred = createGreaterThan(b, loc, dtype, lhs, rhs);
|
|
|
|
|
return b.create<arith::SelectOp>(loc, pred, lhs, rhs);
|
|
|
|
|
}
|
|
|
|
|
if (auto clamp = dyn_cast<AtenClampOp>(op)) {
|
|
|
|
|
Type dtype = converter->convertType(clamp.getType())
|
|
|
|
|
.cast<RankedTensorType>()
|
|
|
|
|
.getElementType();
|
|
|
|
|
if (!dtype.isa<mlir::FloatType>()) {
|
|
|
|
|
clamp.emitError("unimplemented: non-floating point dtype");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
AtenClampOp::Adaptor adaptor(operands);
|
|
|
|
|
auto min = adaptor.min();
|
|
|
|
|
auto max = adaptor.max();
|
|
|
|
|
if (min.getType().isa<Torch::OptionalType>() ||
|
|
|
|
|
max.getType().isa<Torch::OptionalType>()) {
|
|
|
|
|
clamp.emitError("unimplemented: runtime optional type");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
auto result = payloadArgs[0];
|
|
|
|
|
if (!min.getType().isa<Torch::NoneType>()) {
|
|
|
|
|
auto minPromoted = convertScalarToDtype(b, loc, min, dtype);
|
|
|
|
|
auto pred = b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::ULT,
|
|
|
|
|
result, minPromoted);
|
|
|
|
|
result = b.create<arith::SelectOp>(loc, pred, minPromoted, result);
|
|
|
|
|
}
|
|
|
|
|
if (!max.getType().isa<Torch::NoneType>()) {
|
|
|
|
|
auto maxPromoted = convertScalarToDtype(b, loc, max, dtype);
|
|
|
|
|
auto pred = b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UGT,
|
|
|
|
|
result, maxPromoted);
|
|
|
|
|
result = b.create<arith::SelectOp>(loc, pred, maxPromoted, result);
|
|
|
|
|
}
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
if (auto rsub = dyn_cast<AtenRsubScalarOp>(op)) {
|
|
|
|
|
Type dtype = converter->convertType(rsub.getType())
|
|
|
|
|
.cast<RankedTensorType>()
|
|
|
|
|
.getElementType();
|
2022-06-14 20:31:30 +08:00
|
|
|
|
Value self = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
|
2022-03-11 01:54:13 +08:00
|
|
|
|
Value other = convertScalarToDtype(b, loc, operands[1], dtype);
|
|
|
|
|
Value alpha = convertScalarToDtype(b, loc, operands[2], dtype);
|
2022-06-14 20:31:30 +08:00
|
|
|
|
if (dtype.isa<mlir::FloatType>()) {
|
|
|
|
|
Value mult = b.create<arith::MulFOp>(loc, self, alpha);
|
|
|
|
|
return b.create<arith::SubFOp>(loc, other, mult);
|
|
|
|
|
} else if (dtype.isa<mlir::IntegerType>()) {
|
|
|
|
|
Value mult = b.create<arith::MulIOp>(loc, self, alpha);
|
|
|
|
|
return b.create<arith::SubIOp>(loc, other, mult);
|
|
|
|
|
}
|
|
|
|
|
rsub.emitError("unimplemented: dtype other than float and integer "
|
|
|
|
|
"types are not supported.");
|
|
|
|
|
return nullptr;
|
2022-03-11 01:54:13 +08:00
|
|
|
|
}
|
|
|
|
|
if (auto mulScalar = dyn_cast<AtenMulScalarOp>(op)) {
|
|
|
|
|
Type dtype = converter->convertType(mulScalar.getType())
|
|
|
|
|
.cast<RankedTensorType>()
|
|
|
|
|
.getElementType();
|
|
|
|
|
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
|
|
|
|
|
Value rhs = convertScalarToDtype(b, loc, operands[1], dtype);
|
|
|
|
|
if (dtype.isa<mlir::FloatType>())
|
|
|
|
|
return b.create<arith::MulFOp>(loc, lhs, rhs);
|
|
|
|
|
if (dtype.isa<mlir::IntegerType>())
|
|
|
|
|
return b.create<arith::MulIOp>(loc, lhs, rhs);
|
|
|
|
|
mulScalar.emitError("unimplemented: Only integer/float dtype supported");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
if (auto atenToDtype = dyn_cast<AtenToDtypeOp>(op)) {
|
|
|
|
|
Value input = payloadArgs[0];
|
|
|
|
|
Type dtype = converter->convertType(atenToDtype.getType())
|
|
|
|
|
.cast<RankedTensorType>()
|
|
|
|
|
.getElementType();
|
|
|
|
|
Value result = convertScalarToDtype(b, loc, input, dtype);
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
if (auto divScalar = dyn_cast<AtenDivScalarOp>(op)) {
|
|
|
|
|
Type dtype = converter->convertType(divScalar.getType())
|
|
|
|
|
.cast<RankedTensorType>()
|
|
|
|
|
.getElementType();
|
|
|
|
|
if (!dtype.isa<mlir::FloatType>()) {
|
|
|
|
|
divScalar.emitError("unimplemented: non-floating point dtype");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
Value self = payloadArgs[0];
|
|
|
|
|
Value other = convertScalarToDtype(b, loc, operands[1], dtype);
|
|
|
|
|
return b.create<arith::DivFOp>(loc, self, other);
|
|
|
|
|
}
|
|
|
|
|
if (auto reciprocal = dyn_cast<AtenReciprocalOp>(op)) {
|
2022-03-24 04:35:43 +08:00
|
|
|
|
Type dtype = converter->convertType(reciprocal.getType())
|
|
|
|
|
.cast<RankedTensorType>()
|
|
|
|
|
.getElementType();
|
|
|
|
|
Value arg = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
|
|
|
|
|
Type elementType = arg.getType();
|
2022-03-11 01:54:13 +08:00
|
|
|
|
// assert(element != 0)
|
|
|
|
|
auto zero =
|
|
|
|
|
b.create<arith::ConstantOp>(loc, FloatAttr::get(elementType, 0.0));
|
2022-03-24 04:35:43 +08:00
|
|
|
|
auto pred =
|
|
|
|
|
b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::ONE, arg, zero);
|
2022-03-11 01:54:13 +08:00
|
|
|
|
b.create<cf::AssertOp>(
|
|
|
|
|
loc, pred, b.getStringAttr("unimplemented: tensor with zero element"));
|
|
|
|
|
|
|
|
|
|
auto one =
|
|
|
|
|
b.create<arith::ConstantOp>(loc, FloatAttr::get(elementType, 1.0));
|
2022-03-24 04:35:43 +08:00
|
|
|
|
return b.create<arith::DivFOp>(loc, one, arg);
|
2022-03-11 01:54:13 +08:00
|
|
|
|
}
|
|
|
|
|
if (auto thresholdOp = dyn_cast<AtenThresholdOp>(op)) {
|
|
|
|
|
// The approach used here is as follows:
|
|
|
|
|
// result = self <= threshold ? value : self
|
|
|
|
|
AtenThresholdOp::Adaptor adaptor(operands);
|
|
|
|
|
Type dtype = converter->convertType(thresholdOp.getType())
|
|
|
|
|
.cast<RankedTensorType>()
|
|
|
|
|
.getElementType();
|
|
|
|
|
|
|
|
|
|
Value self = payloadArgs[0];
|
|
|
|
|
Value threshold = convertScalarToDtype(b, loc, adaptor.threshold(), dtype);
|
|
|
|
|
Value value = convertScalarToDtype(b, loc, adaptor.value(), dtype);
|
|
|
|
|
|
|
|
|
|
Value predicate;
|
|
|
|
|
if (dtype.isa<mlir::FloatType>())
|
|
|
|
|
predicate = b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::ULE, self,
|
|
|
|
|
threshold);
|
|
|
|
|
else
|
|
|
|
|
predicate = b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sle, self,
|
|
|
|
|
threshold);
|
|
|
|
|
return b.create<arith::SelectOp>(loc, predicate, value, self);
|
|
|
|
|
}
|
|
|
|
|
if (auto thresholdBackward = dyn_cast<AtenThresholdBackwardOp>(op)) {
|
|
|
|
|
// The approach used here is as follows:
|
|
|
|
|
// result = self <= threshold ? 0 : grad
|
|
|
|
|
AtenThresholdBackwardOp::Adaptor adaptor(operands);
|
|
|
|
|
Type dtype = converter->convertType(thresholdBackward.getType())
|
|
|
|
|
.cast<RankedTensorType>()
|
|
|
|
|
.getElementType();
|
|
|
|
|
|
|
|
|
|
Value grad = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
|
|
|
|
|
Value self = convertScalarToDtype(b, loc, payloadArgs[1], dtype);
|
|
|
|
|
Value threshold = convertScalarToDtype(b, loc, adaptor.threshold(), dtype);
|
|
|
|
|
Value constantZero = b.create<arith::ConstantOp>(loc, b.getZeroAttr(dtype));
|
|
|
|
|
|
|
|
|
|
Value predicate;
|
|
|
|
|
if (dtype.isa<mlir::FloatType>())
|
|
|
|
|
predicate = b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::ULE, self,
|
|
|
|
|
threshold);
|
|
|
|
|
else
|
|
|
|
|
predicate = b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sle, self,
|
|
|
|
|
threshold);
|
|
|
|
|
return b.create<arith::SelectOp>(loc, predicate, constantZero, grad);
|
|
|
|
|
}
|
2022-05-02 19:20:54 +08:00
|
|
|
|
if (auto maskedFill = dyn_cast<AtenMaskedFillScalarOp>(op)) {
|
|
|
|
|
AtenMaskedFillScalarOp::Adaptor adaptor(operands);
|
|
|
|
|
Type dtype = converter->convertType(maskedFill.getType())
|
|
|
|
|
.cast<RankedTensorType>()
|
|
|
|
|
.getElementType();
|
|
|
|
|
|
|
|
|
|
Value input = payloadArgs[0];
|
|
|
|
|
Value mask = payloadArgs[1];
|
|
|
|
|
Value fillValue = convertScalarToDtype(b, loc, adaptor.value(), dtype);
|
|
|
|
|
|
|
|
|
|
return b.create<arith::SelectOp>(loc, mask, fillValue, input);
|
|
|
|
|
}
|
2022-03-11 01:54:13 +08:00
|
|
|
|
|
2022-06-24 13:45:48 +08:00
|
|
|
|
if (auto triu = dyn_cast<AtenTriuOp>(op)) {
|
|
|
|
|
// Check if the rank of the input tensor is valid.
|
|
|
|
|
AtenTriuOp::Adaptor adaptor(operands);
|
|
|
|
|
auto inputType = adaptor.self().getType().cast<RankedTensorType>();
|
|
|
|
|
uint64_t inputRank = inputType.getRank();
|
|
|
|
|
if (inputRank < 2) {
|
|
|
|
|
triu.emitError("too few dimensions to compute triangular part of matrix");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Use the indices of the two innermost dimensions.
|
|
|
|
|
auto rowIndex = b.create<linalg::IndexOp>(loc, inputRank - 2);
|
|
|
|
|
Value rowIndexI64 = castIndexToInt64(b, loc, rowIndex);
|
|
|
|
|
auto colIndex = b.create<linalg::IndexOp>(loc, inputRank - 1);
|
|
|
|
|
Value colIndexI64 = castIndexToInt64(b, loc, colIndex);
|
|
|
|
|
|
|
|
|
|
// columnIndex >= rowIndex + diagonal?
|
|
|
|
|
auto sum = b.create<arith::AddIOp>(loc, rowIndexI64, adaptor.diagonal());
|
|
|
|
|
auto pred = b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sge,
|
|
|
|
|
colIndexI64, sum);
|
|
|
|
|
|
|
|
|
|
Value scalar = payloadArgs[0];
|
|
|
|
|
Type elementType = inputType.getElementType();
|
|
|
|
|
Value zero = getConstant(b, loc, 0, elementType);
|
|
|
|
|
return b.create<arith::SelectOp>(loc, pred, scalar, zero);
|
|
|
|
|
}
|
|
|
|
|
|
2022-03-11 01:54:13 +08:00
|
|
|
|
op->emitError("unimplemented lowering in "
|
|
|
|
|
"createLinalgPayloadCalculationForElementwiseOp");
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
// Converts an elementwise op.
|
|
|
|
|
// This specifically includes:
|
|
|
|
|
// - converting elementwise ops of any tensor arity
|
|
|
|
|
// - converting elementwise ops with any number of scalar captures (such as a
|
|
|
|
|
// scalar alpha to torch.aten.Add)
|
|
|
|
|
// - broadcasting of static size-1 dimensions
|
|
|
|
|
//
|
|
|
|
|
// Currently, we adopt the behavior that "size 1" broadcasting is a runtime
|
|
|
|
|
// error if it happens dynamically.
|
|
|
|
|
//
|
|
|
|
|
// Looking forward a bit, eventually, it probably makes sense to have
|
|
|
|
|
// a "linalg.generic-like" op for modeling a fused subgraph of numpy-broadcasted
|
|
|
|
|
// operands. Modeling elementwise ops that way is potentially useful to allow a
|
|
|
|
|
// more centralized reasoning about multiversioning. However a cost model will
|
|
|
|
|
// be needed for "pre-fusing" elementwise ops that way, as it can potentially be
|
|
|
|
|
// a pessimization. A mild extension of this pattern should work for such a
|
|
|
|
|
// general op.
|
|
|
|
|
class ConvertElementwiseOp : public ConversionPattern {
|
|
|
|
|
public:
|
|
|
|
|
ConvertElementwiseOp(TypeConverter &typeConverter, MLIRContext *context)
|
|
|
|
|
: ConversionPattern(typeConverter, MatchAnyOpTypeTag(), /*benefit=*/1,
|
|
|
|
|
context) {}
|
|
|
|
|
|
|
|
|
|
LogicalResult
|
|
|
|
|
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
|
|
|
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
|
|
|
if (!isa<AtenTanhOp, AtenReluOp, AtenLeakyReluOp, AtenGeluOp,
|
|
|
|
|
AtenGeluBackwardOp, AtenAddTensorOp, AtenMulTensorOp,
|
2022-06-03 15:03:34 +08:00
|
|
|
|
AtenDivTensorOp, AtenDivTensorModeOp, AtenSubTensorOp,
|
|
|
|
|
AtenLerpTensorOp, AtenSigmoidOp, AtenExpOp, AtenMinimumOp,
|
|
|
|
|
AtenMaximumOp, AtenToDtypeOp, AtenClampOp, AtenRsubScalarOp,
|
|
|
|
|
AtenMulScalarOp, AtenLogOp, AtenErfOp, AtenSqrtOp, AtenFloorOp,
|
|
|
|
|
AtenPowTensorScalarOp, AtenLog2Op, AtenRsqrtOp, AtenDivScalarOp,
|
|
|
|
|
AtenAbsOp, AtenReciprocalOp, AtenBitwiseAndTensorOp,
|
|
|
|
|
AtenGtScalarOp, AtenGeScalarOp, AtenEqScalarOp, AtenLtScalarOp,
|
|
|
|
|
AtenLeScalarOp, AtenWhereSelfOp, AtenCeilOp, AtenGtTensorOp,
|
|
|
|
|
AtenEqTensorOp, AtenLtTensorOp, AtenSubScalarOp, AtenAddScalarOp,
|
|
|
|
|
AtenThresholdOp, AtenThresholdBackwardOp, AtenCloneOp, AtenSinOp,
|
|
|
|
|
AtenCosOp, AtenNeScalarOp, AtenNegOp, AtenMaskedFillScalarOp,
|
2022-06-24 13:45:48 +08:00
|
|
|
|
AtenLogicalOrOp, AtenTriuOp>(op))
|
2022-03-11 01:54:13 +08:00
|
|
|
|
return rewriter.notifyMatchFailure(op, "not a supported elementwise op");
|
|
|
|
|
|
|
|
|
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
|
|
Location loc = op->getLoc();
|
|
|
|
|
auto tensorOperands = llvm::to_vector<6>(llvm::make_filter_range(
|
|
|
|
|
operands, [](Value v) { return v.getType().isa<RankedTensorType>(); }));
|
|
|
|
|
auto resultType = getTypeConverter()
|
|
|
|
|
->convertType(op->getResult(0).getType())
|
|
|
|
|
.cast<RankedTensorType>();
|
|
|
|
|
bool hadErrorCreatingPayload = false;
|
torch,linalg: add support for translating aten.linalg.vector_norm (#839)
This patch adds support for the torch.linalg.vector_norm op to the torch
dialect, including the necessary shape function. It also extends the
conversion of reduction operators to support lowering of
AtenLinalgVectorNormOp, in addition to adding a handful of end-to-end
tests to validate the lowering.
There exist several opportunities to make this lowering optimal and
robust. For instance, in its current form, the translation does not
support ord = 0, +inf, or -inf. For L1 norms, we don't need to raise
each element to the power 1.0. Similarly, L2 norms could benefit from
strength reduction. Since the canonicalization pass is not able to
apply these optimizations, we should consider applying them during the
linalg lowering itself.
2022-05-20 06:48:15 +08:00
|
|
|
|
Value generic = torch_to_linalg::createElementwiseLinalgGeneric(
|
2022-03-11 01:54:13 +08:00
|
|
|
|
rewriter, loc, tensorOperands, resultType.getElementType(),
|
|
|
|
|
[&](OpBuilder &b, Location loc, ValueRange payloadArgs) {
|
|
|
|
|
Value result = createLinalgPayloadCalculationForElementwiseOp(
|
|
|
|
|
b, loc, getTypeConverter(), payloadArgs, op, operands);
|
|
|
|
|
if (!result) {
|
|
|
|
|
hadErrorCreatingPayload = true;
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
b.create<linalg::YieldOp>(loc, result);
|
|
|
|
|
});
|
|
|
|
|
if (hadErrorCreatingPayload)
|
|
|
|
|
return failure();
|
|
|
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, generic);
|
|
|
|
|
return success();
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
|
|
// Given `input`, `target`, `nll_loss_forward` is given by:
|
|
|
|
|
// for i in range(0, len(target)):
|
|
|
|
|
// indi = target[i];
|
|
|
|
|
// nll_loss_forward[i] = -(input[i][indi]);
|
|
|
|
|
// TODO: `weight`operand is still to be taken care of.
|
|
|
|
|
namespace {
|
|
|
|
|
class ConvertAtenNllLossForwardOp
|
|
|
|
|
: public OpConversionPattern<AtenNllLossForwardOp> {
|
|
|
|
|
public:
|
|
|
|
|
using OpConversionPattern::OpConversionPattern;
|
|
|
|
|
LogicalResult
|
|
|
|
|
matchAndRewrite(AtenNllLossForwardOp op, OpAdaptor adaptor,
|
|
|
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
|
|
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
|
|
|
|
return failure();
|
|
|
|
|
Location loc = op->getLoc();
|
|
|
|
|
Value input = adaptor.self();
|
|
|
|
|
Value target = adaptor.target();
|
|
|
|
|
Value weight = adaptor.weight();
|
|
|
|
|
|
|
|
|
|
int64_t reduction;
|
|
|
|
|
if (!matchPattern(op.reduction(), m_TorchConstantInt(&reduction)))
|
|
|
|
|
return rewriter.notifyMatchFailure(op, "dim must be constant");
|
|
|
|
|
|
|
|
|
|
// TODO: Incorporate the weight argument.
|
|
|
|
|
if (!weight.getType().isa<mlir::torch::Torch::NoneType>())
|
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
|
op, "Unimplemented, the weight operand is not incorporated.");
|
|
|
|
|
|
|
|
|
|
Value ignoreIndex = adaptor.ignore_index();
|
|
|
|
|
Value ignoreIndexVal = castIntToIndex(rewriter, loc, ignoreIndex);
|
|
|
|
|
|
|
|
|
|
unsigned inputRank = input.getType().cast<RankedTensorType>().getRank();
|
|
|
|
|
unsigned targetRank = target.getType().cast<RankedTensorType>().getRank();
|
|
|
|
|
|
|
|
|
|
// TODO: Add support for k-dim loss.
|
|
|
|
|
if (inputRank > 2) {
|
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
|
op, "expected input and target to be rank <= 2");
|
|
|
|
|
}
|
|
|
|
|
RankedTensorType resultType = getTypeConverter()
|
|
|
|
|
->convertType(op->getResult(0).getType())
|
|
|
|
|
.cast<RankedTensorType>();
|
|
|
|
|
Type elementType = resultType.getElementType();
|
|
|
|
|
|
|
|
|
|
Value zeroVal = rewriter.create<arith::ConstantOp>(
|
|
|
|
|
loc, rewriter.getZeroAttr(elementType));
|
|
|
|
|
|
torch,linalg: add support for translating aten.linalg.vector_norm (#839)
This patch adds support for the torch.linalg.vector_norm op to the torch
dialect, including the necessary shape function. It also extends the
conversion of reduction operators to support lowering of
AtenLinalgVectorNormOp, in addition to adding a handful of end-to-end
tests to validate the lowering.
There exist several opportunities to make this lowering optimal and
robust. For instance, in its current form, the translation does not
support ord = 0, +inf, or -inf. For L1 norms, we don't need to raise
each element to the power 1.0. Similarly, L2 norms could benefit from
strength reduction. Since the canonicalization pass is not able to
apply these optimizations, we should consider applying them during the
linalg lowering itself.
2022-05-20 06:48:15 +08:00
|
|
|
|
Value finalRes = torch_to_linalg::createElementwiseLinalgGeneric(
|
2022-03-11 01:54:13 +08:00
|
|
|
|
rewriter, loc, {target}, elementType,
|
|
|
|
|
[&](OpBuilder &b, Location loc, ValueRange args) {
|
|
|
|
|
Value targetVal = args[0];
|
|
|
|
|
Value indTarget = rewriter.create<arith::IndexCastOp>(
|
|
|
|
|
loc, rewriter.getIndexType(), targetVal);
|
|
|
|
|
|
|
|
|
|
// The final result is given by:
|
|
|
|
|
// final_res = (indTarget == ignoreIndexVal) ? 0 :
|
|
|
|
|
// input[indI][IndTarget]
|
|
|
|
|
Value cmpEq = rewriter.create<arith::CmpIOp>(
|
|
|
|
|
loc, arith::CmpIPredicate::eq, indTarget, ignoreIndexVal);
|
|
|
|
|
|
|
|
|
|
SmallVector<Value> extractionIndices{indTarget};
|
|
|
|
|
if (inputRank == 2) {
|
|
|
|
|
Value indI = rewriter.create<linalg::IndexOp>(loc, 0);
|
|
|
|
|
extractionIndices.insert(extractionIndices.begin(), indI);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Value result =
|
|
|
|
|
rewriter.create<tensor::ExtractOp>(loc, input, extractionIndices);
|
|
|
|
|
|
|
|
|
|
Value negate =
|
|
|
|
|
rewriter.create<arith::NegFOp>(loc, elementType, result);
|
|
|
|
|
Value selectFinal =
|
|
|
|
|
rewriter.create<arith::SelectOp>(loc, cmpEq, zeroVal, negate);
|
|
|
|
|
b.create<linalg::YieldOp>(loc, selectFinal);
|
|
|
|
|
});
|
|
|
|
|
|
|
|
|
|
if (reduction == torch_upstream::Reduction::Sum ||
|
|
|
|
|
reduction == torch_upstream::Reduction::Mean) {
|
|
|
|
|
Value numOfElems = getTensorSize(rewriter, loc, finalRes);
|
|
|
|
|
numOfElems = convertScalarToDtype(rewriter, loc, numOfElems, elementType);
|
|
|
|
|
llvm::iota_range<int64_t> dimsToReduce(0, targetRank,
|
|
|
|
|
/*inclusive=*/false);
|
|
|
|
|
DenseSet<int64_t> dimSet(dimsToReduce.begin(), dimsToReduce.end());
|
|
|
|
|
|
torch,linalg: add support for translating aten.linalg.vector_norm (#839)
This patch adds support for the torch.linalg.vector_norm op to the torch
dialect, including the necessary shape function. It also extends the
conversion of reduction operators to support lowering of
AtenLinalgVectorNormOp, in addition to adding a handful of end-to-end
tests to validate the lowering.
There exist several opportunities to make this lowering optimal and
robust. For instance, in its current form, the translation does not
support ord = 0, +inf, or -inf. For L1 norms, we don't need to raise
each element to the power 1.0. Similarly, L2 norms could benefit from
strength reduction. Since the canonicalization pass is not able to
apply these optimizations, we should consider applying them during the
linalg lowering itself.
2022-05-20 06:48:15 +08:00
|
|
|
|
auto opInfo = torch_to_linalg::ReductionOpInfo{false, finalRes, dimSet};
|
2022-03-11 01:54:13 +08:00
|
|
|
|
finalRes = torch_to_linalg::createReductionLinalgGeneric(
|
torch,linalg: add support for translating aten.linalg.vector_norm (#839)
This patch adds support for the torch.linalg.vector_norm op to the torch
dialect, including the necessary shape function. It also extends the
conversion of reduction operators to support lowering of
AtenLinalgVectorNormOp, in addition to adding a handful of end-to-end
tests to validate the lowering.
There exist several opportunities to make this lowering optimal and
robust. For instance, in its current form, the translation does not
support ord = 0, +inf, or -inf. For L1 norms, we don't need to raise
each element to the power 1.0. Similarly, L2 norms could benefit from
strength reduction. Since the canonicalization pass is not able to
apply these optimizations, we should consider applying them during the
linalg lowering itself.
2022-05-20 06:48:15 +08:00
|
|
|
|
rewriter, loc, opInfo,
|
2022-03-11 01:54:13 +08:00
|
|
|
|
/*initElem=*/zeroVal,
|
|
|
|
|
[&](OpBuilder &b, Location loc, ValueRange args) {
|
|
|
|
|
Value newVal = args[0];
|
|
|
|
|
Value accumulator = args[1];
|
|
|
|
|
if (reduction == torch_upstream::Reduction::Mean)
|
|
|
|
|
newVal = b.create<arith::DivFOp>(loc, newVal, numOfElems);
|
|
|
|
|
Value result = b.create<arith::AddFOp>(loc, newVal, accumulator);
|
|
|
|
|
b.create<linalg::YieldOp>(loc, result);
|
|
|
|
|
});
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// TODO: Update the second result tensor.
|
|
|
|
|
Value weightUpdated = createZeroInitTensor(rewriter, loc, {}, elementType);
|
|
|
|
|
rewriter.replaceOp(op, {finalRes, weightUpdated});
|
|
|
|
|
return success();
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
} // namespace
|
|
|
|
|
|
2022-03-16 20:51:57 +08:00
|
|
|
|
/// Inverted STD: rSTD = 1 / sqrt(var + eps).
|
|
|
|
|
static Value calculateRSTD(OpBuilder &b, Location loc, Type elemTy, Value eps,
|
|
|
|
|
Value var) {
|
2022-03-11 01:54:13 +08:00
|
|
|
|
// The eps is always f64.
|
|
|
|
|
Value truncatedEps = b.create<arith::TruncFOp>(loc, elemTy, eps);
|
|
|
|
|
Value varPlusEps = b.create<arith::AddFOp>(loc, var, truncatedEps);
|
|
|
|
|
Value rSTD = b.create<math::RsqrtOp>(loc, varPlusEps);
|
2022-03-16 20:51:57 +08:00
|
|
|
|
return rSTD;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Normalization formula:
|
|
|
|
|
// ((input - mean) * rSTD * weight + bias
|
|
|
|
|
static Value createLinalgPayloadCalculationForNormOpsWithRSTD(
|
|
|
|
|
OpBuilder &b, Location loc, Type elemTy, Value input, Value mean,
|
|
|
|
|
Value rSTD, Value eps, Value weight, Value bias) {
|
|
|
|
|
Value inputSubMean = b.create<arith::SubFOp>(loc, input, mean);
|
2022-03-11 01:54:13 +08:00
|
|
|
|
Value temp = b.create<arith::MulFOp>(loc, inputSubMean, rSTD);
|
|
|
|
|
Value timesWeight = b.create<arith::MulFOp>(loc, temp, weight);
|
|
|
|
|
Value plusBias = b.create<arith::AddFOp>(loc, timesWeight, bias);
|
|
|
|
|
return plusBias;
|
|
|
|
|
}
|
|
|
|
|
|
2022-03-16 20:51:57 +08:00
|
|
|
|
static Value createLinalgPayloadCalculationForNormOpsWithVar(
|
|
|
|
|
OpBuilder &b, Location loc, Type elemTy, Value input, Value mean, Value var,
|
|
|
|
|
Value eps, Value weight, Value bias) {
|
|
|
|
|
Value rSTD = calculateRSTD(b, loc, elemTy, eps, var);
|
|
|
|
|
Value result = createLinalgPayloadCalculationForNormOpsWithRSTD(
|
|
|
|
|
b, loc, elemTy, input, mean, rSTD, eps, weight, bias);
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
2022-03-11 01:54:13 +08:00
|
|
|
|
namespace {
|
|
|
|
|
class ConvertAtenBatchNormOp : public OpConversionPattern<AtenBatchNormOp> {
|
|
|
|
|
public:
|
|
|
|
|
using OpConversionPattern::OpConversionPattern;
|
|
|
|
|
LogicalResult
|
|
|
|
|
matchAndRewrite(AtenBatchNormOp op, OpAdaptor adaptor,
|
|
|
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
|
|
|
MLIRContext *context = op->getContext();
|
|
|
|
|
Location loc = op->getLoc();
|
|
|
|
|
Value input = adaptor.input();
|
|
|
|
|
Value weight = adaptor.weight();
|
|
|
|
|
Value bias = adaptor.bias();
|
|
|
|
|
Value runningMean = adaptor.running_mean();
|
|
|
|
|
Value runningVar = adaptor.running_var();
|
|
|
|
|
Value training = adaptor.training();
|
|
|
|
|
Value eps = adaptor.eps();
|
|
|
|
|
|
|
|
|
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
|
|
// TODO: Handle the None cases for the optional parameters:
|
|
|
|
|
// weight, bias.
|
|
|
|
|
if (failed(checkNotNone(rewriter, op, weight)) ||
|
|
|
|
|
failed(checkNotNone(rewriter, op, bias)) ||
|
|
|
|
|
failed(checkNotNone(rewriter, op, runningMean)) ||
|
|
|
|
|
failed(checkNotNone(rewriter, op, runningVar)))
|
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
|
|
auto inputType = input.getType().cast<RankedTensorType>();
|
|
|
|
|
auto weightType = weight.getType().cast<RankedTensorType>();
|
|
|
|
|
auto biasType = bias.getType().cast<RankedTensorType>();
|
|
|
|
|
auto runningMeanType = runningMean.getType().cast<RankedTensorType>();
|
|
|
|
|
auto runningVarType = runningVar.getType().cast<RankedTensorType>();
|
|
|
|
|
|
|
|
|
|
auto inputRank = inputType.getRank();
|
|
|
|
|
if (inputRank <= 2)
|
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
|
op, "input should have rank larger than 2");
|
|
|
|
|
|
|
|
|
|
if (weightType.getRank() != 1 || biasType.getRank() != 1 ||
|
|
|
|
|
runningMeanType.getRank() != 1 || runningVarType.getRank() != 1) {
|
|
|
|
|
return rewriter.notifyMatchFailure(
|
|
|
|
|
op, "expect weight, bias, running_mean and running_var to be rank 1");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// TODO: Add support for training.
|
|
|
|
|
auto constFalse = rewriter.create<arith::ConstantOp>(
|
|
|
|
|
loc, IntegerAttr::get(IntegerType::get(context, 1), 0));
|
|
|
|
|
auto trainingFalse = rewriter.create<arith::CmpIOp>(
|
|
|
|
|
loc, arith::CmpIPredicate::eq, training, constFalse);
|
|
|
|
|
rewriter.create<cf::AssertOp>(
|
|
|
|
|
loc, trainingFalse,
|
|
|
|
|
rewriter.getStringAttr("training is not supported for now"));
|
|
|
|
|
|
|
|
|
|
// num_features – C from an expected input of size (N,C,D,H,W ...)
|
|
|
|
|
Value numFeatures = rewriter.create<tensor::DimOp>(loc, input, 1);
|
|
|
|
|
auto contractingDim0EqualsNumFeatures = [&](Value v) {
|
|
|
|
|
auto dim0 = rewriter.create<tensor::DimOp>(loc, v, 0);
|
|
|
|
|
auto dim0Equal = rewriter.create<arith::CmpIOp>(
|
|
|
|
|
loc, arith::CmpIPredicate::eq, numFeatures, dim0);
|
|
|
|
|
rewriter.create<cf::AssertOp>(
|
|
|
|
|
loc, dim0Equal,
|
|
|
|
|
rewriter.getStringAttr(
|
|
|
|
|
"expect the size of dim 0 equal to the number of features"));
|
|
|
|
|
};
|
|
|
|
|
contractingDim0EqualsNumFeatures(weight);
|
|
|
|
|
contractingDim0EqualsNumFeatures(bias);
|
|
|
|
|
contractingDim0EqualsNumFeatures(runningMean);
|
|
|
|
|
contractingDim0EqualsNumFeatures(runningVar);
|
|
|
|
|
|
|
|
|
|
auto indexingMap = AffineMap::get(
|
|
|
|
|
/*dimCount=*/inputRank,
|
|
|
|
|
/*symbolCount=*/0, rewriter.getAffineDimExpr(1), context);
|
|
|
|
|
SmallVector<AffineMap> indexingMaps = {
|
|
|
|
|
rewriter.getMultiDimIdentityMap(inputRank), // input
|
|
|
|
|
indexingMap, // weight
|
|
|
|
|
indexingMap, // bias
|
|
|
|
|
indexingMap, // runningMean
|
|
|
|
|
indexingMap, // runningVar
|
|
|
|
|
rewriter.getMultiDimIdentityMap(inputRank), // output
|
|
|
|
|
};
|
|
|
|
|
SmallVector<StringRef> iteratorTypes(inputRank, "parallel");
|
|
|
|
|
Value batchNorm =
|
|
|
|
|
rewriter
|
|
|
|
|
.create<linalg::GenericOp>(
|
|
|
|
|
loc, input.getType(),
|
|
|
|
|
ValueRange{input, weight, bias, runningMean, runningVar}, input,
|
|
|
|
|
/*indexingMaps=*/indexingMaps,
|
|
|
|
|
/*iteratorTypes=*/iteratorTypes,
|
|
|
|
|
[&](OpBuilder &b, Location loc, ValueRange args) {
|
|
|
|
|
Value input = args[0], weight = args[1], bias = args[2],
|
|
|
|
|
mean = args[3], var = args[4];
|
2022-03-16 20:51:57 +08:00
|
|
|
|
Value result =
|
|
|
|
|
createLinalgPayloadCalculationForNormOpsWithVar(
|
|
|
|
|
b, loc, var.getType(), input, mean, var, eps, weight,
|
|
|
|
|
bias);
|
2022-03-11 01:54:13 +08:00
|
|
|
|
b.create<linalg::YieldOp>(loc, result);
|
|
|
|
|
})
|
|
|
|
|
.getResult(0);
|
|
|
|
|
Type newResultType = getTypeConverter()->convertType(op.getType());
|
|
|
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, newResultType, batchNorm);
|
|
|
|
|
return success();
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
|
|
// For layernorm, the mean and standard-deviation are calculated separately over
|
|
|
|
|
// the last certain number dimensions which have to be of the shape specified by
|
|
|
|
|
// normalized_shape.
|
|
|
|
|
//
|
|
|
|
|
// The shapes of different parts are as the following:
|
|
|
|
|
// +-------------------+--------------------+
|
|
|
|
|
// | meanAndVarShape | normalizedShape |
|
|
|
|
|
// +-------------------+---------------------
|
|
|
|
|
// <------------+ inputShape +-------------->
|
|
|
|
|
// There are the following steps:
|
|
|
|
|
// Step 1. Check if all the arguments meet the requirements.
|
|
|
|
|
// Step 2. Common parts to be used for getting mean and var.
|
|
|
|
|
// This includes elements count, affineMap and iteratorTypes.
|
|
|
|
|
// Step 3. Get mean.
|
2022-03-16 20:51:57 +08:00
|
|
|
|
// Step 4. Get rSTD.
|
2022-03-11 01:54:13 +08:00
|
|
|
|
// Step 5. Get layernorm.
|
|
|
|
|
namespace {
|
|
|
|
|
class ConvertAtenNativeLayerNormOp
|
|
|
|
|
: public OpConversionPattern<AtenNativeLayerNormOp> {
|
|
|
|
|
public:
|
|
|
|
|
using OpConversionPattern::OpConversionPattern;
|
|
|
|
|
LogicalResult
|
|
|
|
|
matchAndRewrite(AtenNativeLayerNormOp op, OpAdaptor adaptor,
|
|
|
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
|
|
|
MLIRContext *context = op->getContext();
|
|
|
|
|
Location loc = op->getLoc();
|
|
|
|
|
Value input = adaptor.input();
|
|
|
|
|
Value weight = adaptor.weight();
|
|
|
|
|
Value bias = adaptor.bias();
|
|
|
|
|
Value eps = adaptor.eps();
|
|
|
|
|
Value normalizedShape = op.normalized_shape();
|
|
|
|
|
|
|
|
|
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
|
|
// TODO: Handle the None cases for the optional parameters:
|
|
|
|
|
// weight, bias.
|
|
|
|
|
if (failed(checkNotNone(rewriter, op, weight)) ||
|
|
|
|
|
failed(checkNotNone(rewriter, op, bias)))
|
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
|
|
auto inputType = input.getType().cast<RankedTensorType>();
|
|
|
|
|
auto weightType = weight.getType().cast<RankedTensorType>();
|
|
|
|
|
auto biasType = bias.getType().cast<RankedTensorType>();
|
|
|
|
|
int64_t inputRank = inputType.getRank();
|
|
|
|
|
Type elemTy = inputType.getElementType();
|
|
|
|
|
|
|
|
|
|
// Step 1. Check if all the arguments meet the requirements.
|
|
|
|
|
SmallVector<Value> normalizedShapeSizesTorchInt;
|
|
|
|
|
if (!getListConstructElements(normalizedShape,
|
|
|
|
|
normalizedShapeSizesTorchInt)) {
|
|
|
|
|
return rewriter.notifyMatchFailure(op,
|
|
|
|
|
"Unimplemented normalized_shape not"
|
|
|
|
|
"constructed from ListConstruct");
|
|
|
|
|
}
|
|
|
|
|
SmallVector<Value> normalizedShapeSizesInt = getTypeConvertedValues(
|
|
|
|
|
rewriter, loc, getTypeConverter(), normalizedShapeSizesTorchInt);
|
|
|
|
|
int64_t normalizedShapeRank = normalizedShapeSizesInt.size();
|
|
|
|
|
if (weightType.getRank() != normalizedShapeRank ||
|
|
|
|
|
biasType.getRank() != normalizedShapeRank ||
|
|
|
|
|
inputRank < normalizedShapeRank || normalizedShapeRank < 1)
|
|
|
|
|
return rewriter.notifyMatchFailure(op, "Input or weight or bias shape or"
|
|
|
|
|
"normalized shape not compatible");
|
|
|
|
|
|
|
|
|
|
// Check all the dimensions match the normalized_shape
|
|
|
|
|
int64_t meanAndVarShapeRank = inputRank - normalizedShapeSizesInt.size();
|
|
|
|
|
for (auto en : enumerate((normalizedShapeSizesInt))) {
|
|
|
|
|
auto index = en.index();
|
|
|
|
|
auto inputDim =
|
|
|
|
|
getDimOp(rewriter, loc, input, index + meanAndVarShapeRank);
|
|
|
|
|
auto weightDim = getDimOp(rewriter, loc, weight, index);
|
|
|
|
|
auto biasDim = getDimOp(rewriter, loc, bias, index);
|
|
|
|
|
|
|
|
|
|
auto expectedSize = en.value();
|
|
|
|
|
checkDimEqualHelper(rewriter, loc, inputDim, expectedSize);
|
|
|
|
|
checkDimEqualHelper(rewriter, loc, weightDim, expectedSize);
|
|
|
|
|
checkDimEqualHelper(rewriter, loc, biasDim, expectedSize);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Get iterator types for input shape.
|
|
|
|
|
SmallVector<StringRef> normalizedShapeIteratorTypes(
|
|
|
|
|
normalizedShapeRank, getReductionIteratorTypeName());
|
|
|
|
|
SmallVector<StringRef> meanAndVarIterationTypes(
|
|
|
|
|
meanAndVarShapeRank, getParallelIteratorTypeName());
|
|
|
|
|
SmallVector<StringRef> inputShapeIteratorTypes = meanAndVarIterationTypes;
|
|
|
|
|
inputShapeIteratorTypes.append(normalizedShapeIteratorTypes);
|
|
|
|
|
|
|
|
|
|
// Step 2. Common parts to be used for getting mean and var.
|
|
|
|
|
|
|
|
|
|
// Get sizes and affineMaps needed for mean and var.
|
|
|
|
|
AffineMap inputShapeAffineMap = rewriter.getMultiDimIdentityMap(inputRank);
|
|
|
|
|
SmallVector<AffineExpr> meanAndVarShapeExprs;
|
|
|
|
|
for (int i = 0; i < meanAndVarShapeRank; i++)
|
|
|
|
|
meanAndVarShapeExprs.push_back(mlir::getAffineDimExpr(i, context));
|
|
|
|
|
auto meanAndVarShapeAffineMap = AffineMap::get(
|
|
|
|
|
/*dimCount=*/inputRank,
|
|
|
|
|
/*symbolCount=*/0, meanAndVarShapeExprs, context);
|
|
|
|
|
SmallVector<Value> meanAndVarShapeSizes =
|
|
|
|
|
getTensorSizesUntilDim(rewriter, loc, input, meanAndVarShapeRank - 1);
|
|
|
|
|
|
|
|
|
|
// Get number of elements to be used for calculating mean and var.
|
|
|
|
|
Value elemCnts = normalizedShapeSizesInt[0];
|
|
|
|
|
for (int i = 1; i < normalizedShapeRank; i++) {
|
|
|
|
|
elemCnts = rewriter.create<arith::MulIOp>(loc, elemCnts,
|
|
|
|
|
normalizedShapeSizesInt[i]);
|
|
|
|
|
}
|
|
|
|
|
Value elemCntsFloat =
|
|
|
|
|
rewriter.create<arith::SIToFPOp>(loc, elemTy, elemCnts);
|
|
|
|
|
|
|
|
|
|
// Helper to calculate mean and var.
|
|
|
|
|
auto genMeanOrVarCalculation = [&](Value sumOrSquareSum) {
|
|
|
|
|
SmallVector<AffineMap> indexingMaps(
|
|
|
|
|
2, rewriter.getMultiDimIdentityMap(meanAndVarShapeRank));
|
|
|
|
|
Value initShapeTensor = rewriter.create<linalg::InitTensorOp>(
|
|
|
|
|
loc, meanAndVarShapeSizes, elemTy);
|
|
|
|
|
return rewriter
|
|
|
|
|
.create<linalg::GenericOp>(
|
|
|
|
|
loc, initShapeTensor.getType(), sumOrSquareSum, initShapeTensor,
|
|
|
|
|
/*indexingMaps=*/indexingMaps,
|
|
|
|
|
/*iteratorTypes=*/meanAndVarIterationTypes,
|
|
|
|
|
[&](OpBuilder &b, Location loc, ValueRange args) {
|
|
|
|
|
Value sumOrSqureSum = args[0];
|
|
|
|
|
Value result =
|
|
|
|
|
b.create<arith::DivFOp>(loc, sumOrSqureSum, elemCntsFloat);
|
|
|
|
|
b.create<linalg::YieldOp>(loc, result);
|
|
|
|
|
})
|
|
|
|
|
.getResult(0);
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Step 3. Get mean.
|
|
|
|
|
|
|
|
|
|
// Get sum to be used for calculating mean.
|
|
|
|
|
SmallVector<AffineMap, 2> sumIndexingMaps = {
|
|
|
|
|
inputShapeAffineMap, // input
|
|
|
|
|
meanAndVarShapeAffineMap, // output
|
|
|
|
|
};
|
|
|
|
|
auto initSumTensor =
|
|
|
|
|
createZeroInitTensor(rewriter, loc, meanAndVarShapeSizes, elemTy);
|
|
|
|
|
Value sum = rewriter
|
|
|
|
|
.create<linalg::GenericOp>(
|
|
|
|
|
loc, initSumTensor.getType(), input, initSumTensor,
|
|
|
|
|
/*indexingMaps=*/sumIndexingMaps,
|
|
|
|
|
/*iteratorTypes=*/inputShapeIteratorTypes,
|
|
|
|
|
[&](OpBuilder &b, Location loc, ValueRange args) {
|
|
|
|
|
Value input = args[0], sum = args[1];
|
|
|
|
|
Value result =
|
|
|
|
|
rewriter.create<arith::AddFOp>(loc, sum, input);
|
|
|
|
|
b.create<linalg::YieldOp>(loc, result);
|
|
|
|
|
})
|
|
|
|
|
.getResult(0);
|
|
|
|
|
Value mean = genMeanOrVarCalculation(sum);
|
|
|
|
|
|
2022-03-16 20:51:57 +08:00
|
|
|
|
// Step 4. Get rSTD.
|
2022-03-11 01:54:13 +08:00
|
|
|
|
|
|
|
|
|
// Calculate squareSum for the layer.
|
|
|
|
|
SmallVector<AffineMap> squareSumIndexingMaps{
|
|
|
|
|
inputShapeAffineMap,
|
|
|
|
|
meanAndVarShapeAffineMap,
|
|
|
|
|
meanAndVarShapeAffineMap,
|
|
|
|
|
};
|
|
|
|
|
auto initSquareSumTensor =
|
|
|
|
|
createZeroInitTensor(rewriter, loc, meanAndVarShapeSizes, elemTy);
|
|
|
|
|
Value squareSum =
|
|
|
|
|
rewriter
|
|
|
|
|
.create<linalg::GenericOp>(
|
|
|
|
|
loc, initSquareSumTensor.getType(), ValueRange{input, mean},
|
|
|
|
|
initSquareSumTensor,
|
|
|
|
|
/*indexingMaps=*/squareSumIndexingMaps,
|
|
|
|
|
/*iteratorTypes=*/inputShapeIteratorTypes,
|
|
|
|
|
[&](OpBuilder &b, Location loc, ValueRange args) {
|
|
|
|
|
Value input = args[0], mean = args[1], squareSum = args[2];
|
|
|
|
|
Value sub = rewriter.create<arith::SubFOp>(loc, input, mean);
|
|
|
|
|
Value square = rewriter.create<arith::MulFOp>(loc, sub, sub);
|
|
|
|
|
Value result =
|
|
|
|
|
rewriter.create<arith::AddFOp>(loc, squareSum, square);
|
|
|
|
|
b.create<linalg::YieldOp>(loc, result);
|
|
|
|
|
})
|
|
|
|
|
.getResult(0);
|
|
|
|
|
Value var = genMeanOrVarCalculation(squareSum);
|
2022-03-16 20:51:57 +08:00
|
|
|
|
Value rSTDTensor = rewriter.create<linalg::InitTensorOp>(
|
|
|
|
|
loc, meanAndVarShapeSizes, elemTy);
|
|
|
|
|
SmallVector<AffineMap> rSTDIndexingMap(
|
|
|
|
|
2, rewriter.getMultiDimIdentityMap(meanAndVarShapeRank));
|
|
|
|
|
|
|
|
|
|
Value rSTD = rewriter
|
|
|
|
|
.create<linalg::GenericOp>(
|
|
|
|
|
loc, rSTDTensor.getType(), var, rSTDTensor,
|
|
|
|
|
rSTDIndexingMap, meanAndVarIterationTypes,
|
|
|
|
|
[&](OpBuilder &b, Location loc, ValueRange args) {
|
|
|
|
|
Value result =
|
|
|
|
|
calculateRSTD(b, loc, elemTy, eps, args[0]);
|
|
|
|
|
b.create<linalg::YieldOp>(loc, result);
|
|
|
|
|
})
|
|
|
|
|
.getResult(0);
|
2022-03-11 01:54:13 +08:00
|
|
|
|
|
|
|
|
|
// Step 5. Get layernorm.
|
|
|
|
|
|
|
|
|
|
// Get affineMap for normalized shape.
|
|
|
|
|
SmallVector<AffineExpr> normalizedShapeExprs;
|
|
|
|
|
for (int i = meanAndVarShapeRank; i < inputRank; i++)
|
|
|
|
|
normalizedShapeExprs.push_back(mlir::getAffineDimExpr(i, context));
|
|
|
|
|
auto normalizedShapeAffineMap = AffineMap::get(
|
|
|
|
|
/*dimCount=*/inputRank,
|
|
|
|
|
/*symbolCount=*/0, normalizedShapeExprs, context);
|
|
|
|
|
auto inputSizes = getTensorSizes(rewriter, loc, input);
|
|
|
|
|
Value initLayerNormTensor =
|
|
|
|
|
rewriter.create<linalg::InitTensorOp>(loc, inputSizes, elemTy);
|
|
|
|
|
SmallVector<AffineMap> indexingMaps(1, inputShapeAffineMap);
|
|
|
|
|
indexingMaps.resize(3, meanAndVarShapeAffineMap);
|
|
|
|
|
indexingMaps.resize(5, normalizedShapeAffineMap);
|
|
|
|
|
indexingMaps.push_back(inputShapeAffineMap);
|
|
|
|
|
SmallVector<StringRef> layerNormIterationTypes(
|
|
|
|
|
inputRank, getParallelIteratorTypeName());
|
|
|
|
|
Value layerNorm =
|
|
|
|
|
rewriter
|
|
|
|
|
.create<linalg::GenericOp>(
|
|
|
|
|
loc, initLayerNormTensor.getType(),
|
2022-03-16 20:51:57 +08:00
|
|
|
|
ValueRange{input, mean, rSTD, weight, bias},
|
|
|
|
|
initLayerNormTensor,
|
2022-03-11 01:54:13 +08:00
|
|
|
|
/*indexingMaps=*/indexingMaps,
|
|
|
|
|
/*iteratorTypes=*/layerNormIterationTypes,
|
|
|
|
|
[&](OpBuilder &b, Location loc, ValueRange args) {
|
2022-03-16 20:51:57 +08:00
|
|
|
|
Value input = args[0], mean = args[1], rSTD = args[2],
|
2022-03-11 01:54:13 +08:00
|
|
|
|
weight = args[3], bias = args[4];
|
2022-03-16 20:51:57 +08:00
|
|
|
|
Value result =
|
|
|
|
|
createLinalgPayloadCalculationForNormOpsWithRSTD(
|
|
|
|
|
b, loc, elemTy, input, mean, rSTD, eps, weight, bias);
|
2022-03-11 01:54:13 +08:00
|
|
|
|
b.create<linalg::YieldOp>(loc, result);
|
|
|
|
|
})
|
|
|
|
|
.getResult(0);
|
2022-03-16 20:51:57 +08:00
|
|
|
|
SmallVector<int64_t> expandShape(inputRank, 1);
|
|
|
|
|
for (int i = 0; i < meanAndVarShapeRank; i++) {
|
|
|
|
|
// `mean` and `rstd` are not yet casted, so they will be having dynamic
|
|
|
|
|
// shape. Hence to match them, for each dimension corresponding to `mean`
|
|
|
|
|
// or `rstd` assign -1.
|
|
|
|
|
expandShape[i] = -1;
|
|
|
|
|
}
|
|
|
|
|
auto expandShapeType = RankedTensorType::get(expandShape, elemTy);
|
|
|
|
|
SmallVector<ReassociationIndices> reassociation(meanAndVarShapeRank);
|
|
|
|
|
for (auto i : llvm::seq<int64_t>(0, meanAndVarShapeRank)) {
|
|
|
|
|
reassociation[i].push_back(i);
|
|
|
|
|
if (i == meanAndVarShapeRank - 1) {
|
|
|
|
|
for (auto j : llvm::seq<int64_t>(0, normalizedShapeRank))
|
|
|
|
|
reassociation[i].push_back(i + j + 1);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
Value meanResult = rewriter.create<tensor::ExpandShapeOp>(
|
|
|
|
|
loc, expandShapeType, mean, reassociation);
|
|
|
|
|
Value rSTDResult = rewriter.create<tensor::ExpandShapeOp>(
|
|
|
|
|
loc, expandShapeType, rSTD, reassociation);
|
2022-03-11 01:54:13 +08:00
|
|
|
|
Type layerNormResultType = getTypeConverter()->convertType(op.getType(0));
|
|
|
|
|
Type meanResultType = getTypeConverter()->convertType(op.getType(1));
|
2022-03-16 20:51:57 +08:00
|
|
|
|
Type rSTDResultType = getTypeConverter()->convertType(op.getType(2));
|
2022-03-11 01:54:13 +08:00
|
|
|
|
Value layerNorm_ =
|
|
|
|
|
rewriter.create<tensor::CastOp>(loc, layerNormResultType, layerNorm);
|
2022-03-16 20:51:57 +08:00
|
|
|
|
Value mean_ =
|
|
|
|
|
rewriter.create<tensor::CastOp>(loc, meanResultType, meanResult);
|
|
|
|
|
Value var_ =
|
|
|
|
|
rewriter.create<tensor::CastOp>(loc, rSTDResultType, rSTDResult);
|
2022-03-11 01:54:13 +08:00
|
|
|
|
rewriter.replaceOp(op, {layerNorm_, mean_, var_});
|
|
|
|
|
return success();
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
class ConvertAtenNllLossBackwardOp
|
|
|
|
|
: public OpConversionPattern<AtenNllLossBackwardOp> {
|
|
|
|
|
public:
|
|
|
|
|
using OpConversionPattern::OpConversionPattern;
|
|
|
|
|
LogicalResult
|
|
|
|
|
matchAndRewrite(AtenNllLossBackwardOp op, OpAdaptor adaptor,
|
|
|
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
|
|
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
|
|
|
|
return failure();
|
2022-04-05 01:57:49 +08:00
|
|
|
|
|
2022-03-11 01:54:13 +08:00
|
|
|
|
Location loc = op->getLoc();
|
2022-04-05 01:57:49 +08:00
|
|
|
|
Value gradOutput = adaptor.grad_output();
|
2022-03-11 01:54:13 +08:00
|
|
|
|
Value input = adaptor.self();
|
|
|
|
|
Value target = adaptor.target();
|
|
|
|
|
Value weight = adaptor.weight();
|
2022-04-05 01:57:49 +08:00
|
|
|
|
bool weightIsNone = op.weight().getType().isa<Torch::NoneType>();
|
|
|
|
|
Value ignoreIndex = castIntToIndex(rewriter, loc, adaptor.ignore_index());
|
|
|
|
|
Value totalWeight = adaptor.total_weight();
|
|
|
|
|
|
|
|
|
|
auto inputType = input.getType().cast<RankedTensorType>();
|
|
|
|
|
int inputRank = inputType.getRank();
|
|
|
|
|
auto gradOutputType = gradOutput.getType().cast<RankedTensorType>();
|
|
|
|
|
Type resultElementType = gradOutputType.getElementType();
|
2022-03-11 01:54:13 +08:00
|
|
|
|
|
|
|
|
|
int64_t reduction;
|
|
|
|
|
if (!matchPattern(op.reduction(), m_TorchConstantInt(&reduction)))
|
|
|
|
|
return rewriter.notifyMatchFailure(op, "dim must be constant");
|
|
|
|
|
|
2022-04-05 01:57:49 +08:00
|
|
|
|
if (!hasElementType<mlir::FloatType>(gradOutput) ||
|
|
|
|
|
!hasElementType<mlir::FloatType>(gradOutput) ||
|
|
|
|
|
(!weightIsNone && !hasElementType<mlir::FloatType>(weight))) {
|
2022-03-11 01:54:13 +08:00
|
|
|
|
return rewriter.notifyMatchFailure(
|
2022-04-05 01:57:49 +08:00
|
|
|
|
op, "`gradOutput`, 'weight', and `totalWeight` must be tensors of "
|
|
|
|
|
"type float");
|
|
|
|
|
}
|
2022-03-11 01:54:13 +08:00
|
|
|
|
|
2022-04-05 01:57:49 +08:00
|
|
|
|
if (!hasElementType<mlir::IntegerType>(target)) {
|
2022-03-11 01:54:13 +08:00
|
|
|
|
return rewriter.notifyMatchFailure(
|
2022-04-05 01:57:49 +08:00
|
|
|
|
op, "`target` must be a tensor of integer type");
|
2022-03-11 01:54:13 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
auto outputSize = getTensorSizes(rewriter, loc, input);
|
2022-04-05 01:57:49 +08:00
|
|
|
|
Value gradInputTensor =
|
|
|
|
|
createZeroInitTensor(rewriter, loc, outputSize, resultElementType);
|
|
|
|
|
|
|
|
|
|
auto getAffineMapForSingleElementTensor = [&](Value tensor) {
|
|
|
|
|
auto tensorType = tensor.getType().cast<RankedTensorType>();
|
|
|
|
|
SmallVector<AffineExpr> affineExprs(tensorType.getRank(),
|
|
|
|
|
rewriter.getAffineConstantExpr(0));
|
|
|
|
|
return AffineMap::get(inputRank, /*symbolCount=*/0, affineExprs,
|
|
|
|
|
op->getContext());
|
|
|
|
|
};
|
2022-03-11 01:54:13 +08:00
|
|
|
|
|
2022-04-05 01:57:49 +08:00
|
|
|
|
AffineMap gradOutMap = AffineMap::get(inputRank, /*symbolCount=*/0,
|
|
|
|
|
rewriter.getAffineDimExpr(0));
|
|
|
|
|
if (reduction != torch_upstream::Reduction::None || inputRank == 1)
|
|
|
|
|
gradOutMap = getAffineMapForSingleElementTensor(gradOutput);
|
|
|
|
|
AffineMap targetMap = AffineMap::get(inputRank, /*symbolCount=*/0,
|
|
|
|
|
rewriter.getAffineDimExpr(0));
|
|
|
|
|
if (inputRank == 1)
|
|
|
|
|
targetMap = getAffineMapForSingleElementTensor(target);
|
|
|
|
|
AffineMap totalWeightMap = getAffineMapForSingleElementTensor(totalWeight);
|
|
|
|
|
AffineMap resultMap = rewriter.getMultiDimIdentityMap(inputRank);
|
|
|
|
|
|
|
|
|
|
SmallVector<AffineMap> indexingMaps{gradOutMap, targetMap, totalWeightMap,
|
|
|
|
|
resultMap};
|
|
|
|
|
SmallVector<StringRef> iteratorTypes(inputRank,
|
|
|
|
|
getParallelIteratorTypeName());
|
|
|
|
|
|
|
|
|
|
// The code generation is equivalent to the following pseudo-code:
|
|
|
|
|
//
|
|
|
|
|
// for batch_index in len(input.size(0)):
|
|
|
|
|
// for class_index in len(input.size(1)):
|
|
|
|
|
// target_elem = target[batch_index]
|
|
|
|
|
//
|
|
|
|
|
// if reduction == None:
|
|
|
|
|
// grad_out_elem = grad_output[batchIndex]
|
|
|
|
|
// else:
|
|
|
|
|
// grad_out_elem = grad_output[0]
|
|
|
|
|
//
|
|
|
|
|
// if reduction == Mean:
|
|
|
|
|
// total_weight_elem = total_weight[0]
|
|
|
|
|
// grad_out_elem /= total_weight_elem
|
|
|
|
|
//
|
|
|
|
|
// weight_elem = weight[target_elem] if weight != None else 1
|
|
|
|
|
//
|
|
|
|
|
// if target_elem != class_index or target_elem == ignore_index:
|
|
|
|
|
// grad_input_elem = -weight_elem * grad_out_elem
|
|
|
|
|
// else:
|
|
|
|
|
// grad_input_elem = 0
|
|
|
|
|
// grad_input[batch_index, target_elem] = grad_input_elem
|
|
|
|
|
//
|
|
|
|
|
// NOTE: In the case of not batch dimension, `batch_index` essentially
|
|
|
|
|
// becomes zero.
|
|
|
|
|
Value gradInput =
|
2022-03-11 01:54:13 +08:00
|
|
|
|
rewriter
|
|
|
|
|
.create<linalg::GenericOp>(
|
2022-04-05 01:57:49 +08:00
|
|
|
|
loc, gradInputTensor.getType(),
|
|
|
|
|
ValueRange{gradOutput, target, totalWeight}, gradInputTensor,
|
|
|
|
|
indexingMaps, iteratorTypes,
|
2022-03-11 01:54:13 +08:00
|
|
|
|
[&](OpBuilder &b, Location loc, ValueRange args) {
|
2022-04-05 01:57:49 +08:00
|
|
|
|
Value gradOutElem = args[0];
|
|
|
|
|
Value targetElem = castIntToIndex(b, loc, args[1]);
|
|
|
|
|
Value totalWeightElem = args[2];
|
|
|
|
|
Value classIndex =
|
|
|
|
|
b.create<linalg::IndexOp>(loc, inputRank - 1);
|
|
|
|
|
|
|
|
|
|
if (reduction == torch_upstream::Reduction::Mean) {
|
|
|
|
|
gradOutElem = b.create<arith::DivFOp>(loc, gradOutElem,
|
|
|
|
|
totalWeightElem);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Value negGradOutElem =
|
|
|
|
|
b.create<arith::NegFOp>(loc, gradOutElem);
|
|
|
|
|
Value weightElem = getConstant(b, loc, 1, resultElementType);
|
|
|
|
|
if (!weightIsNone) {
|
|
|
|
|
weightElem =
|
|
|
|
|
b.create<tensor::ExtractOp>(loc, weight, targetElem);
|
|
|
|
|
}
|
|
|
|
|
Value weightedNegGradOutElem =
|
|
|
|
|
b.create<arith::MulFOp>(loc, weightElem, negGradOutElem);
|
|
|
|
|
|
|
|
|
|
Value targetNeqClassIndex = b.create<arith::CmpIOp>(
|
|
|
|
|
loc, arith::CmpIPredicate::ne, targetElem, classIndex);
|
|
|
|
|
Value targetEqIgnoreIndex = b.create<arith::CmpIOp>(
|
|
|
|
|
loc, arith::CmpIPredicate::eq, targetElem, ignoreIndex);
|
|
|
|
|
Value gradInputIsZero = b.create<arith::OrIOp>(
|
|
|
|
|
loc, targetNeqClassIndex, targetEqIgnoreIndex);
|
|
|
|
|
|
|
|
|
|
Value zero = getConstant(b, loc, 0, resultElementType);
|
|
|
|
|
Value gradInElem = b.create<arith::SelectOp>(
|
|
|
|
|
loc, gradInputIsZero, zero, weightedNegGradOutElem);
|
|
|
|
|
b.create<linalg::YieldOp>(loc, gradInElem);
|
2022-03-11 01:54:13 +08:00
|
|
|
|
})
|
2022-04-05 01:57:49 +08:00
|
|
|
|
->getResult(0);
|
2022-03-11 01:54:13 +08:00
|
|
|
|
|
2022-04-05 01:57:49 +08:00
|
|
|
|
RankedTensorType resultType = getTypeConverter()
|
|
|
|
|
->convertType(op->getResult(0).getType())
|
|
|
|
|
.cast<RankedTensorType>();
|
|
|
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, gradInput);
|
2022-03-11 01:54:13 +08:00
|
|
|
|
return success();
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
} // namespace
|
|
|
|
|
|
2022-05-06 11:30:41 +08:00
|
|
|
|
namespace {
|
|
|
|
|
class ConvertAtenDetachOp : public OpConversionPattern<AtenDetachOp> {
|
|
|
|
|
public:
|
|
|
|
|
using OpConversionPattern::OpConversionPattern;
|
|
|
|
|
LogicalResult
|
|
|
|
|
matchAndRewrite(AtenDetachOp op, OpAdaptor adaptor,
|
|
|
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
|
|
|
|
|
|
|
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
|
|
Type resultType = getTypeConverter()->convertType(op.getType());
|
|
|
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, adaptor.self());
|
|
|
|
|
return success();
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
} // namespace
|
|
|
|
|
|
2022-03-11 01:54:13 +08:00
|
|
|
|
namespace {
|
|
|
|
|
class ConvertTensorStaticInfoCastOp
|
|
|
|
|
: public OpConversionPattern<TensorStaticInfoCastOp> {
|
|
|
|
|
public:
|
|
|
|
|
using OpConversionPattern::OpConversionPattern;
|
|
|
|
|
LogicalResult
|
|
|
|
|
matchAndRewrite(TensorStaticInfoCastOp op, OpAdaptor adaptor,
|
|
|
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
|
|
|
RankedTensorType resultType = getTypeConverter()
|
|
|
|
|
->convertType(op->getResult(0).getType())
|
|
|
|
|
.cast<RankedTensorType>();
|
|
|
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType,
|
|
|
|
|
adaptor.operand());
|
|
|
|
|
return success();
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
|
|
void mlir::torch::torch_to_linalg::populateUncategorizedPatternsAndLegality(
|
|
|
|
|
TypeConverter &typeConverter, RewritePatternSet &patterns,
|
|
|
|
|
ConversionTarget &target) {
|
|
|
|
|
MLIRContext *context = patterns.getContext();
|
|
|
|
|
target.addIllegalOp<
|
|
|
|
|
AtenTanhOp, AtenReluOp, AtenLeakyReluOp, AtenGeluOp, AtenGeluBackwardOp,
|
2022-06-03 15:03:34 +08:00
|
|
|
|
AtenAddTensorOp, AtenMulTensorOp, AtenDivTensorOp, AtenDivTensorModeOp,
|
|
|
|
|
AtenSubTensorOp, AtenLerpTensorOp, AtenSigmoidOp, AtenMinimumOp,
|
|
|
|
|
AtenMaximumOp, AtenToDtypeOp, AtenClampOp, AtenRsubScalarOp, AtenLogOp,
|
|
|
|
|
AtenErfOp, AtenSqrtOp, AtenFloorOp, AtenCeilOp, AtenPowTensorScalarOp,
|
|
|
|
|
AtenLog2Op, AtenRsqrtOp, AtenAbsOp, AtenReciprocalOp,
|
|
|
|
|
AtenBitwiseAndTensorOp, AtenGtScalarOp, AtenGeScalarOp, AtenEqScalarOp,
|
|
|
|
|
AtenLtScalarOp, AtenLeScalarOp, AtenWhereSelfOp, AtenGtTensorOp,
|
|
|
|
|
AtenEqTensorOp, AtenLtTensorOp, AtenThresholdOp, AtenThresholdBackwardOp,
|
|
|
|
|
AtenCloneOp, AtenSinOp, AtenCosOp, AtenNeScalarOp, AtenMaskedFillScalarOp,
|
2022-06-24 13:45:48 +08:00
|
|
|
|
AtenLogicalOrOp, AtenTriuOp>();
|
2022-03-11 01:54:13 +08:00
|
|
|
|
patterns.add<ConvertElementwiseOp>(typeConverter, context);
|
|
|
|
|
target.addIllegalOp<AtenNllLossForwardOp>();
|
2022-05-06 11:30:41 +08:00
|
|
|
|
patterns.add<ConvertAtenDetachOp>(typeConverter, context);
|
|
|
|
|
target.addIllegalOp<AtenDetachOp>();
|
2022-03-11 01:54:13 +08:00
|
|
|
|
patterns.add<ConvertAtenNllLossForwardOp>(typeConverter, context);
|
|
|
|
|
target.addIllegalOp<AtenBatchNormOp>();
|
|
|
|
|
patterns.add<ConvertAtenBatchNormOp>(typeConverter, context);
|
|
|
|
|
target.addIllegalOp<AtenNativeLayerNormOp>();
|
|
|
|
|
patterns.add<ConvertAtenNativeLayerNormOp>(typeConverter, context);
|
|
|
|
|
target.addIllegalOp<AtenNllLossBackwardOp>();
|
|
|
|
|
patterns.add<ConvertAtenNllLossBackwardOp>(typeConverter, context);
|
|
|
|
|
patterns.add<ConvertTensorStaticInfoCastOp>(typeConverter, context);
|
|
|
|
|
target.addIllegalOp<TensorStaticInfoCastOp>();
|
|
|
|
|
}
|