torch-mlir/lib/InitAll.cpp

54 lines
2.1 KiB
C++
Raw Normal View History

//===----------------------------------------------------------------------===//
//
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "npcomp/InitAll.h"
#include "mlir/IR/Dialect.h"
Add npcomp-verify-backend-contract pass. This pass verifies that a given module satisfies the contract that we have for backends. This is phrased as an "allowlist", because we want to keep this interface tight. Also, this gives much better diagnostics than a backend randomly crashing or failing to compile would (though they could still be improved). This was especially painful because if we had `tensor<?x!numpy.any_dtype>` slip through, at some point RefBackend would convert it to a memref type and trip the "verify type invariants" assertion which gives no location or anything and crashed the process, which was very unpleasant. We implement this with the dialect conversion framework, which works reasonably well and was quick to put together and familiar, but is still very "op oriented". We probably want to make this hand-rolled eventually, especially the error reporting (the most useful kind of error for a dialect conversion user is not necessarily the best for this use case). Also, in production, these error will go to users, and need to be surfaced carefully such as "the compiler needs a type annotation on this function parameter" which in general requires some special analysis, wordsmithing, and overall awareness of the e2e use case (such as how much we can lean into certain source locations) to provide a meaningful user-level diagnostic. Also, add `inline` to the current frontend lowering pass pipeline to allow slightly more complicated programs that otherwise would fail on shape inference.
2021-04-13 09:39:53 +08:00
#include "npcomp/Backend/Common/Passes.h"
Add support for compiling through IREE. Recommended review order: - Changes in frontends/pytorch/examples/ - Changes in python/npcomp/compiler/pytorch/backend/ - Boilerplate for the `npcomp-iree-backend-lower-linkage` pass. This change separates out a `npcomp.compiler.pytorch.backend.frontend_lowering` module that does the common lowering for all backends. The individual compiler backends `npcomp.compiler.pytorch.backend.{refjit,iree}` now accept a loosely defined "TCP + scalar code" IR mix that will be formalized in the future as the interface to codegen backends. This also required adding a small pass `npcomp-iree-backend-lower-linkage` which adds `iree.module.export` onto functions, and layering that into the frontend flow. The pass doesn't require a C++-level dependency on IREE, which is nice for now. TBD how we are going to handle lists (we hope we can get away with sneakerneting some td files and relying on loose IR compatibility). Running through IREE requires the ability to import `iree.compiler` and `iree.runtime`, which can be obtained as follows: ``` python3 -m pip install iree-compiler-snapshot iree-runtime-snapshot -f https://github.com/google/iree/releases/tag/snapshot-20210406.200 PYTHONPATH="${PYTHONPATH}:${MY_IREE_BUILD}/bindings/python/" ``` This patch makes it painfully clear that we don't have any e2e testing harness to really plug into, and also don't have a usable Python API to our compiler stack (something usable in a jupyter notebook). That will be addressed in subsequent commits. We've been flying by the seat of our pants with this `examples` directory that isn't subject to any kind of testing or real usability concerns.
2021-04-09 04:05:16 +08:00
#include "npcomp/Backend/IREE/Passes.h"
#include "npcomp/Conversion/Passes.h"
#include "npcomp/Dialect/Basicpy/IR/BasicpyDialect.h"
#include "npcomp/Dialect/Basicpy/Transforms/Passes.h"
#include "npcomp/Dialect/Numpy/IR/NumpyDialect.h"
#include "npcomp/Dialect/Numpy/Transforms/Passes.h"
#include "npcomp/Dialect/Refback/IR/RefbackDialect.h"
#include "npcomp/Dialect/Refbackrt/IR/RefbackrtDialect.h"
#include "npcomp/Dialect/TCF/IR/TCFDialect.h"
#include "npcomp/Dialect/TCF/Transforms/Passes.h"
#include "npcomp/Dialect/TCP/IR/TCPDialect.h"
#include "npcomp/Dialect/TCP/Transforms/Passes.h"
2020-09-29 03:02:35 +08:00
#include "npcomp/Dialect/Torch/IR/TorchDialect.h"
#include "npcomp/Dialect/Torch/Transforms/Passes.h"
#include "npcomp/RefBackend/RefBackend.h"
#include "npcomp/Typing/Transforms/Passes.h"
void mlir::NPCOMP::registerAllDialects(mlir::DialectRegistry &registry) {
// clang-format off
Significantly restructure torch/aten import design. This is a really major and invasive restructuring of the way we get torch operators (`torch::jit::Operator` / `c10::OperatorHandle`) into MLIR. Please forgive the challenging review, but due to the sheer invasiveness, it wasn't really practical do do it in sane smaller pieces. This fully replaces everything that was already working on the TorchScript path (actually, more -- we added tanh support to TorchToLinalg in order to delete the older code paths). Additionally, I've kept the lights on for the acap path too, including what little e2e stuff was working before (for expediency I made a few tiny compromises along the way that will be easy to undo when we give that path proper attention). Overview of the new design: - The torch operator `somens::someunqualname.someoverloadname` is imported as `torch.somens.someunqualname.someoverloadname` (skip the last dotted part if the overload name is empty), OR, if we don't have such an op registered, it is imported as `torch.operator "somens.someunqualname.someoverloadname" (...) : ...`. - The addition of the "overload name" is a critical element here, as the `(ns,unqual,overload)` triple is unique, which solves a lot of problems we were having. - This involves having separate MLIR ops for the `trailing_` and `.out` variants and all the different overloads. This seemed necessary, because the set of overloads is so wild and varied and unstructured. The previous design was leaning into some underlying structure that just isn't there -- the default situation is the "random overload that we want to manage on the MLIR side", rather than that being an exception. E.g. `aten::ne` (not-equal) has 21 overloads, only 4 of which are c10 dispatcher ops see [gist](https://gist.github.com/silvasean/190ba918c550c956260e21254e1b8aa1), and the "out" variant is really called `.Tensor_out` instead of `.out` as it frequently is for other ops. - Rationale for all being in `torch` namespace: the set of operators are so varied and unstructured that "dialect per namespace" doesn't result in anything resembling the typical MLIR dialect boundary expectations. We could maybe draw the boundary at dispatcher ops vs non-dispatcher ops, but that doesn't seem to really result in very much useful structure at this point in time. - Note: within the torch operator registry, we effectively have a mini-basicpy subdialect (already type-resolved), which is reasonably structured. - The existing Torch op interfaces are also removed -- now that we track the overload name, we can losslessly find the original operator. - Instead of `ATenRecognizeKernelsPass`, we now have a `ReduceOpVariantsPass` that keys off certain traits (and perhaps eventually interfaces) to reduce variants of ops to a smaller set, ideally operating on immutable tensors and using surrounding ops to model the mutability/aliasing aspects. - Note: `torch.ns.unqual.overload` ops allow both immutable and mutable tensors (unlike the previous hard distinction in the common case). This is a premonition for a future change that will introduce a bona fide `!torch.tensor` type that will clean up a bunch of stuff. - `TorchToLinalg` / `TorchToStd` supercede the existing "ATen->TCF->TCP->Linalg" path. - The new `torch_ods_gen.py` supercedes `torch_signature_ods_gen.py`. It should look somewhat familiar, but the benefit of hindsight has allowed a lot of simplifications. The overall trend seems to be to make the `torch` dialect a nice layer independent of anything else. It feels like as a natural result of various future changes we will be removing the reliance on basicpy+numpy dialects and have a nice self-contained type system too that properly models the TorchScript type system (including proper subtyping, mutable/immutable tensors, optional dtype, etc.). Recommended review order: - Start at some of the new import IR, e.g. in `frontends/pytorch/test/node_import/prim.py`, `frontends/pytorch/test/acap_export/test_export_add3.py`, and other tests. - `frontends/pytorch/python/torch_mlir_utils/codegen/torch_ods_gen.py` and associated generated files: - `include/npcomp/Dialect/Torch/IR/GeneratedAtenOps.td` - `include/npcomp/Dialect/Torch/IR/GeneratedPrimOps.td` - Inspect `ReduceOpVariants.cpp` / `reduce-op-variants.mlir` and the new traits in `include/npcomp/Dialect/Torch/IR/TorchTraits.h` - Various code changes in the import path in `frontends/pytorch/csrc/builder`. Probably most interesting is the new code in `torch_to_mlir_utils.cpp` that has the logic to create the `torch.operator` ops or `torch.ns.unqual.overload` ops. This is the [new ResNet IR](https://gist.github.com/silvasean/5407aafb710d07612b7b5b92eabecebe), just to be able to look at a substantial sample of IR in the new style.
2021-05-05 05:42:50 +08:00
registry.insert<Basicpy::BasicpyDialect,
Numpy::NumpyDialect,
refbackrt::RefbackrtDialect,
refback::RefbackDialect,
tcf::TCFDialect,
2020-09-29 03:02:35 +08:00
tcp::TCPDialect,
mlir::NPCOMP::Torch::TorchDialect>();
// clang-format on
}
void mlir::NPCOMP::registerAllPasses() {
mlir::NPCOMP::registerRefBackendPasses();
mlir::NPCOMP::registerConversionPasses();
mlir::NPCOMP::registerBasicpyPasses();
mlir::NPCOMP::registerNumpyPasses();
mlir::NPCOMP::registerTCFPasses();
mlir::NPCOMP::registerTCPPasses();
mlir::NPCOMP::registerTorchPasses();
mlir::NPCOMP::registerTypingPasses();
Add support for compiling through IREE. Recommended review order: - Changes in frontends/pytorch/examples/ - Changes in python/npcomp/compiler/pytorch/backend/ - Boilerplate for the `npcomp-iree-backend-lower-linkage` pass. This change separates out a `npcomp.compiler.pytorch.backend.frontend_lowering` module that does the common lowering for all backends. The individual compiler backends `npcomp.compiler.pytorch.backend.{refjit,iree}` now accept a loosely defined "TCP + scalar code" IR mix that will be formalized in the future as the interface to codegen backends. This also required adding a small pass `npcomp-iree-backend-lower-linkage` which adds `iree.module.export` onto functions, and layering that into the frontend flow. The pass doesn't require a C++-level dependency on IREE, which is nice for now. TBD how we are going to handle lists (we hope we can get away with sneakerneting some td files and relying on loose IR compatibility). Running through IREE requires the ability to import `iree.compiler` and `iree.runtime`, which can be obtained as follows: ``` python3 -m pip install iree-compiler-snapshot iree-runtime-snapshot -f https://github.com/google/iree/releases/tag/snapshot-20210406.200 PYTHONPATH="${PYTHONPATH}:${MY_IREE_BUILD}/bindings/python/" ``` This patch makes it painfully clear that we don't have any e2e testing harness to really plug into, and also don't have a usable Python API to our compiler stack (something usable in a jupyter notebook). That will be addressed in subsequent commits. We've been flying by the seat of our pants with this `examples` directory that isn't subject to any kind of testing or real usability concerns.
2021-04-09 04:05:16 +08:00
mlir::NPCOMP::IREEBackend::registerIREEBackendPasses();
Add npcomp-verify-backend-contract pass. This pass verifies that a given module satisfies the contract that we have for backends. This is phrased as an "allowlist", because we want to keep this interface tight. Also, this gives much better diagnostics than a backend randomly crashing or failing to compile would (though they could still be improved). This was especially painful because if we had `tensor<?x!numpy.any_dtype>` slip through, at some point RefBackend would convert it to a memref type and trip the "verify type invariants" assertion which gives no location or anything and crashed the process, which was very unpleasant. We implement this with the dialect conversion framework, which works reasonably well and was quick to put together and familiar, but is still very "op oriented". We probably want to make this hand-rolled eventually, especially the error reporting (the most useful kind of error for a dialect conversion user is not necessarily the best for this use case). Also, in production, these error will go to users, and need to be surfaced carefully such as "the compiler needs a type annotation on this function parameter" which in general requires some special analysis, wordsmithing, and overall awareness of the e2e use case (such as how much we can lean into certain source locations) to provide a meaningful user-level diagnostic. Also, add `inline` to the current frontend lowering pass pipeline to allow slightly more complicated programs that otherwise would fail on shape inference.
2021-04-13 09:39:53 +08:00
mlir::NPCOMP::CommonBackend::registerCommonBackendPasses();
}