torch-mlir/lib/Conversion/TorchToTMTensor/TorchToTMTensor.cpp

656 lines
28 KiB
C++
Raw Normal View History

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "torch-mlir/Conversion/TorchToTMTensor/TorchToTMTensor.h"
#include "../PassDetail.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
2022-09-09 12:36:40 +08:00
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/MLIRContext.h"
#include "torch-mlir-dialects/Dialect/TMTensor/IR/TMTensorDialect.h"
#include "torch-mlir-dialects/Dialect/TMTensor/IR/TMTensorOps.h"
#include "torch-mlir/Conversion/Utils/Utils.h"
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/Torch/IR/TorchTypes.h"
#include "torch-mlir/Dialect/Torch/Utils/TorchUpstream.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
#include "torch-mlir/Dialect/TorchConversion/Transforms/BackendTypeConversion.h"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
using namespace mlir::torch::TorchConversion;
using namespace mlir::torch::TMTensor;
// -----------------------------------------------------------------------------
// Patterns (as this grows, it should be organized into multiple files)
// -----------------------------------------------------------------------------
// This is going to eventually be O(#aten ops), which is in the 100s.
//
// Most of these patterns consist of:
// 1. Checking that the operand/result types and other static properties are
// good-enough to create a valid linalg op (such as operands being of
// ranks/dtypes acceptable to the linalg op).
// 2. Creating dynamic error guards, usually checking a predicate on the
// compatibility of operand shapes.
// 3. Creating init tensors for the computation op. Usually this involves
// reifying IR for a shape transfer function based on the operand shapes.
// 4. Creating a named linalg op to replace the original op.
//
// TODO: Use linalg OpDSL to autogenerate at least 1)/2)/3) such
// that these patterns become mostly mechanical associations of
// "aten.foo -> linalg.foo".
static Value createTMTensorScatterOp(
OpBuilder &b, Location loc, Value updates, Value indices, Value original,
bool uniqueIndices,
function_ref<void(OpBuilder &, Location, Value, Value)> bodyBuild) {
auto originalTensorType = original.getType().cast<RankedTensorType>();
Type originalElementType = originalTensorType.getElementType();
auto scatterOp = b.create<TMTensor::ScatterOp>(
loc, originalTensorType, ValueRange{updates, indices},
ValueRange{original}, uniqueIndices);
Region &scatterOpRegion = scatterOp.region();
auto &scatterOpBlock = scatterOpRegion.emplaceBlock();
scatterOpBlock.addArguments({originalElementType, originalElementType},
{loc, loc});
OpBuilder regionBuilder(scatterOpRegion);
auto blockArgs = scatterOpBlock.getArguments();
Value updatesElement = blockArgs[0];
Value originalElement = blockArgs[1];
bodyBuild(regionBuilder, loc, updatesElement, originalElement);
return scatterOp->getResult(0);
}
2022-09-09 12:36:40 +08:00
static Value createTMTensorScanOp(
OpBuilder &b, Location loc, Value input, Value output, Value accumulator,
int64_t dim, bool inclusive,
function_ref<void(OpBuilder &, Location, Value, Value)> bodyBuild) {
auto inputType = input.getType().cast<RankedTensorType>();
auto accType = accumulator.getType().cast<RankedTensorType>();
Type elementType = inputType.getElementType();
auto scanOp = b.create<TMTensor::ScanOp>(
loc, TypeRange{inputType, accType}, input,
ValueRange{output, accumulator}, b.getI64IntegerAttr(dim),
b.getBoolAttr(inclusive));
Region &scanOpRegion = scanOp.region();
auto &scanOpBlock = scanOpRegion.emplaceBlock();
scanOpBlock.addArguments({elementType, elementType}, {loc, loc});
OpBuilder regionBuilder(scanOpRegion);
auto blockArgs = scanOpBlock.getArguments();
Value inputElement = blockArgs[0];
Value accElement = blockArgs[1];
bodyBuild(regionBuilder, loc, inputElement, accElement);
return scanOp->getResult(0);
}
namespace {
// aten::bincount op counts the frequency of each value in a 1-d input tensor of
// non-negative ints.
class ConvertAtenBincountOp : public OpConversionPattern<AtenBincountOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenBincountOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
Location loc = op.getLoc();
MLIRContext *context = op->getContext();
TypeConverter *typeConverter = getTypeConverter();
Value input = adaptor.self();
Value torchTypeInput = op.self();
Value minlength = adaptor.minlength();
Value weights = adaptor.weights();
// TODO: Add a check to verify that the input tensor elements are all
// non-negative.
// Check whether the input is a 1-d tensor of integer type or not.
RankedTensorType inputType = input.getType().cast<RankedTensorType>();
if (inputType.getRank() != 1 ||
!inputType.getElementType().isa<mlir::IntegerType>())
return rewriter.notifyMatchFailure(
op,
"Input tensor has to be a one-dimensional tensor of integer type.");
// Check whether the input tensor element type is i64 or not.
IntegerType inputIntegerType =
inputType.getElementType().cast<IntegerType>();
if (inputIntegerType.getWidth() != 64)
return rewriter.notifyMatchFailure(
op,
"Unimplemented: Integer width not equal to 64 are not supported.");
// TODO: Incorporate the weight argument.
if (!weights.getType().isa<mlir::torch::Torch::NoneType>())
return rewriter.notifyMatchFailure(
op, "Unimplemented: the weights operand is not incorporated.");
// Finding the maximum value in the input tensor.
SmallVector<int64_t> maxTensorSizes;
ValueTensorType maxTensorType = ValueTensorType::get(
context, llvm::makeArrayRef(maxTensorSizes),
torchTypeInput.getType().cast<ValueTensorType>().getDtype());
Value maxTensor =
rewriter.create<AtenMaxOp>(loc, maxTensorType, torchTypeInput);
maxTensor = typeConverter->materializeTargetConversion(
rewriter, loc, typeConverter->convertType(maxTensor.getType()),
maxTensor);
// `maxTensor` is a 0-d tensor, extracting its only element and
// storing it in `maxInput`.
Value maxInput = rewriter.create<tensor::ExtractOp>(loc, maxTensor);
// Creating a tm_tensor.scatter op with the following mapping:
// 1.) `input` tensor maps to the indices in scatter op. `input` is
// expanded from 1-d to 2-d, and its element type is set to i32 as required
// for the scatter op.
// 2.) `updates` is a 1-d dummy tensor with the size equivalent to the
// `input`.
// 3.) `bincount` a 1-d tensor maps to the original in scatter op
// with size equal to the max(max(input) + 1, minlength).
SmallVector<int64_t> expandedInputSizes{inputType.getShape()[0], 1};
ValueTensorType expandInputType = ValueTensorType::get(
context, llvm::makeArrayRef(expandedInputSizes),
torchTypeInput.getType().cast<ValueTensorType>().getDtype());
Value torchCstOne = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(1));
Value expandedInputTensor = rewriter.create<AtenUnsqueezeOp>(
loc, expandInputType, torchTypeInput, torchCstOne);
// Converting the input element type to i32.
Value indices = convertTensorToDtype(
rewriter, loc, expandedInputTensor,
mlir::IntegerType::get(context, 32, mlir::IntegerType::Signed));
indices = typeConverter->materializeTargetConversion(
rewriter, loc, typeConverter->convertType(indices.getType()), indices);
auto resultType = typeConverter->convertType(op->getResult(0).getType())
.cast<RankedTensorType>();
Type resultElemType = resultType.getElementType();
SmallVector<Value, 1> inputSizeDynamic =
getTensorSizesUntilDim(rewriter, loc, input, 0);
Value updatesTensor = rewriter.create<tensor::EmptyOp>(
loc, getAsOpFoldResult(inputSizeDynamic), resultElemType);
Value constantZero = rewriter.create<arith::ConstantOp>(
loc, rewriter.getZeroAttr(resultElemType));
Value constantOne = rewriter.create<arith::ConstantIntOp>(
loc, 1, resultElemType.getIntOrFloatBitWidth());
// Bincount size = max(max(input) + 1, minlength)
Value maxInputPlusOne =
rewriter.create<arith::AddIOp>(loc, maxInput, constantOne);
Value bincountSize =
rewriter.create<arith::MaxSIOp>(loc, maxInputPlusOne, minlength);
bincountSize = castIntToIndex(rewriter, loc, bincountSize);
Value bincountTensor = createInitTensor(rewriter, loc, {bincountSize},
resultElemType, constantZero);
Value scatterOp = createTMTensorScatterOp(
rewriter, loc, updatesTensor, indices, bincountTensor,
/*uniqueIndices=*/false,
[&](OpBuilder &b, Location loc, Value _, Value bincountElem) {
Value add = b.create<arith::AddIOp>(loc, bincountElem, constantOne);
b.create<TMTensor::YieldOp>(loc, add);
});
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, scatterOp);
return success();
}
};
} // namespace
namespace {
class ConvertAten_IndexPutImplOp
: public OpConversionPattern<Aten_IndexPutImplOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(Aten_IndexPutImplOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
Location loc = op.getLoc();
MLIRContext *context = op->getContext();
Value input = adaptor.self();
Value values = adaptor.values();
RankedTensorType inputType = input.getType().cast<RankedTensorType>();
RankedTensorType valuesType = values.getType().cast<RankedTensorType>();
auto resultType = typeConverter->convertType(op->getResult(0).getType())
.cast<RankedTensorType>();
// The unsafe should be either `False` or `none`.
if (!op.unsafe().getType().isa<Torch::NoneType>()) {
bool unsafe;
if (!matchPattern(op.unsafe(), m_TorchConstantBool(&unsafe)))
return rewriter.notifyMatchFailure(
op, "unimplemented: unsafe must be a constant");
else if (unsafe)
return rewriter.notifyMatchFailure(
op, "unimplemented: unsafe is expected to be false");
}
// The accumulate should be a torch constant of boolean type.
bool accumulate;
if (!matchPattern(op.accumulate(), m_TorchConstantBool(&accumulate)))
return rewriter.notifyMatchFailure(
op, "Expected accumulate to be constant bool.");
// The element type of the `input` and `values` should be same.
if (inputType.getElementType() != valuesType.getElementType())
return rewriter.notifyMatchFailure(
op, "Input element type should be same as the values element type.");
SmallVector<Value> indicesList;
getListConstructElements(adaptor.indices(), indicesList);
// The size of the list of the index tensors should not be greater than the
// input rank.
if ((int64_t)indicesList.size() > inputType.getRank())
return rewriter.notifyMatchFailure(
op, "Indices list size should not be greater than the input rank.");
// TODO: Add support for cases with indices list size not equal to 1.
if (indicesList.size() != 1)
return rewriter.notifyMatchFailure(
op, "Unimplemented: Indices list size != 1");
Value indexTensor = indicesList[0];
if (indexTensor.getType().isa<Torch::NoneType>())
return rewriter.notifyMatchFailure(op, "Index tensor must not be None.");
// Creating a tm_tensor.scatter op with the following mapping:
// 1.) Index tensor from the `indicesList` maps to the indices in scatter
// op. Index tensor is expanded from 1-d to 2-d, and its element type is set
// to i32 as required for the scatter op.
// 2.) `values` is mapped to `updates` in scatter op.
// 3.) `input` is mapped to `original` in scatter op.
if (getTensorRank(indexTensor) != 1)
return rewriter.notifyMatchFailure(
op, "unimplemented: index tensor with rank != 1 is not supported");
auto indexTensorType = indexTensor.getType().cast<BaseTensorType>();
int64_t indexTensorSize = indexTensorType.getSizes()[0];
SmallVector<int64_t> expandedIndexTensorSizes{indexTensorSize, 1};
ValueTensorType expandedIndexTensorType = ValueTensorType::get(
context, llvm::makeArrayRef(expandedIndexTensorSizes),
indexTensorType.getDtype());
Value torchCstOne = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(1));
Value expandedIndexTensor = rewriter.create<AtenUnsqueezeOp>(
loc, expandedIndexTensorType, indexTensor, torchCstOne);
// `TMTensor::ScatterOp` expects indices of element type i32.
Value indices = convertTensorToDtype(
rewriter, loc, expandedIndexTensor,
mlir::IntegerType::get(context, 32, mlir::IntegerType::Signed));
indices = typeConverter->materializeTargetConversion(
rewriter, loc, typeConverter->convertType(indices.getType()), indices);
bool invalidInputTypeFound = false;
Value scatterOp = createTMTensorScatterOp(
rewriter, loc, values, indices, input, /*uniqueIndices=*/false,
[&](OpBuilder &b, Location loc, Value valuesElement,
Value inputElement) {
Value yieldValue = valuesElement;
if (accumulate) {
if (inputElement.getType().isa<mlir::IntegerType>()) {
yieldValue =
b.create<arith::AddIOp>(loc, inputElement, valuesElement);
} else if (inputElement.getType().isa<mlir::FloatType>()) {
yieldValue =
b.create<arith::AddFOp>(loc, inputElement, valuesElement);
} else {
invalidInputTypeFound = true;
return;
}
}
b.create<TMTensor::YieldOp>(loc, yieldValue);
});
if (invalidInputTypeFound) {
return rewriter.notifyMatchFailure(
op,
"unimplemented: input tensor must be of integer type or float type");
}
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, scatterOp);
return success();
}
};
} // namespace
namespace {
// The original implementation of the op is as follows:
//
// Indices and GradOutput Layout: [N, C, H, W] or [C, H, W]
// Input Layout: [N, C, Hin, Win] or [C, Hin, Win]
//
// for i in range(N):
// for j in range(C):
// for k in range(H):
// for l in range(W):
// index = indices[i, j, k, l]
// result[i, j, index/Win, index%Win] += gradOutput[i, j, k, l]
//
// OR
//
// for i in range(C):
// for j in range(H):
// for k in range(W):
// index = indices[i, j, k]
// result[i, index/Win, index%Win] += gradOutput[i, j, k]
//
class ConvertAtenMaxPool2dWithIndicesBackwardOp
: public OpConversionPattern<AtenMaxPool2dWithIndicesBackwardOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenMaxPool2dWithIndicesBackwardOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
Location loc = op.getLoc();
MLIRContext *context = op->getContext();
Value gradOutput = adaptor.grad_output();
Value input = adaptor.self();
RankedTensorType gradOutputType =
gradOutput.getType().cast<RankedTensorType>();
Type gradOutputElemType = gradOutputType.getElementType();
RankedTensorType inputType = input.getType().cast<RankedTensorType>();
Type inputElemType = inputType.getElementType();
int64_t tensorOperandRank = inputType.getRank();
// `TMTensor::ScatterOp` expects indices of element type i32.
Value indices = convertTensorToDtype(
rewriter, loc, op.indices(),
mlir::IntegerType::get(context, 32, mlir::IntegerType::Signed));
indices = typeConverter->materializeTargetConversion(
rewriter, loc, typeConverter->convertType(indices.getType()), indices);
RankedTensorType indicesType = indices.getType().cast<RankedTensorType>();
Type indicesElemType = indicesType.getElementType();
// The element type of the `input` and `grad_output` should be same.
if (inputElemType != gradOutputElemType)
return rewriter.notifyMatchFailure(
op,
"Input element type should be same as the grad_output element type.");
// Since the scatter op requires indices to be a 2-d tensor, we create a new
// 5-d/4-d tensor (depending on the original indices layout) comprising the
// index values. We will collapse this tensor into a 2-d tensor. The
// algorithm for the creation of updated indices tensor is as follows:
//
// for i in range(N):
// for j in range(C):
// for k in range(H):
// for l in range(W):
// for m in range(4):
// if m == 0:
// updatedIndices[N][C][H][W][0] = i
// if m == 1:
// updatedIndices[N][C][H][W][1] = j
// if m == 2:
// updatedIndices[N][C][H][W][2] =
// originalIndices[i, j, k, l] / Win
// if m == 3:
// updatedIndices[N][C][H][W][3] =
// originalIndices[i, j, k, l] % Win
//
// OR
//
// for j in range(C):
// for k in range(H):
// for l in range(W):
// for m in range(3):
// if m == 0:
// updatedIndices[C][H][W][0] = i
// if m == 1:
// updatedIndices[C][H][W][1] = originalIndices[i, j, k, l] / Win
// if m == 2:
// updatedIndices[C][H][W][2] = originalIndices[i, j, k, l] % Win
SmallVector<Value> inputShape = getTensorSizes(rewriter, loc, input);
SmallVector<AffineExpr> originalIndicesDimExprs, updatedIndicesDimExprs;
for (int64_t i = 0; i < tensorOperandRank; i++) {
originalIndicesDimExprs.push_back(rewriter.getAffineDimExpr(i));
updatedIndicesDimExprs.push_back(rewriter.getAffineDimExpr(i));
}
updatedIndicesDimExprs.push_back(
rewriter.getAffineDimExpr(tensorOperandRank));
SmallVector<AffineMap> indexingMaps = AffineMap::inferFromExprList(
{originalIndicesDimExprs, updatedIndicesDimExprs});
SmallVector<utils::IteratorType> iteratorTypes(
tensorOperandRank + 1, utils::IteratorType::parallel);
SmallVector<OpFoldResult> updatedIndicesShape =
getAsOpFoldResult(getTensorSizes(rewriter, loc, indices));
updatedIndicesShape.push_back(rewriter.getIndexAttr(tensorOperandRank));
Value initTensor = rewriter.create<tensor::EmptyOp>(
loc, updatedIndicesShape, indicesElemType);
Value wIn = inputShape[tensorOperandRank - 1];
SmallVector<Value> cstValues;
for (int64_t i = 0; i < tensorOperandRank; i++)
cstValues.push_back(rewriter.create<arith::ConstantIndexOp>(loc, i));
Value updatedIndices =
rewriter
.create<linalg::GenericOp>(
loc, initTensor.getType(), indices, initTensor, indexingMaps,
iteratorTypes,
[tensorOperandRank, wIn, cstValues,
indicesElemType](OpBuilder &b, Location loc, ValueRange args) {
Value index = castIntToIndex(b, loc, args[0]);
Value updatedIndex = cstValues[0];
Value lastDim =
b.create<linalg::IndexOp>(loc, tensorOperandRank);
for (int64_t i = tensorOperandRank - 1; i >= 0; i--) {
Value result;
if (i == tensorOperandRank - 1)
result = b.create<arith::RemSIOp>(loc, index, wIn);
if (i == tensorOperandRank - 2)
result = b.create<arith::FloorDivSIOp>(loc, index, wIn);
if (i == tensorOperandRank - 3 ||
i == tensorOperandRank - 4)
result = b.create<linalg::IndexOp>(loc, i);
Value pred = b.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, lastDim, cstValues[i]);
Value addAmount = b.create<arith::SelectOp>(
loc, pred, result, cstValues[0]);
updatedIndex =
b.create<arith::AddIOp>(loc, updatedIndex, addAmount);
}
updatedIndex = b.create<arith::IndexCastOp>(
loc, indicesElemType, updatedIndex);
b.create<linalg::YieldOp>(loc, updatedIndex);
})
.getResult(0);
// Creating a new tensor initialized with zeros and size same as the input
// tensor.
Value outputTensor =
createZeroInitTensor(rewriter, loc, inputShape, inputElemType);
// Collapsing `gradOutput` into a 1-d tensor.
SmallVector<ReassociationIndices> reassociationCollapse(1);
for (auto i = 0; i < gradOutputType.getRank(); i++)
reassociationCollapse[0].push_back(i);
RankedTensorType gradOutputFlattenedType;
int64_t numelGradOutput = getNumberOfElements(gradOutputType);
gradOutputFlattenedType =
RankedTensorType::get({numelGradOutput}, gradOutputElemType);
Value gradOutputFlattened = rewriter.create<tensor::CollapseShapeOp>(
loc, gradOutputFlattenedType, gradOutput, reassociationCollapse);
// Collapsing updated indices into a 2-d tensor.
SmallVector<ReassociationIndices> reassociationCollapseIndices(2);
for (auto i = 0; i < tensorOperandRank; i++)
reassociationCollapseIndices[0].push_back(i);
reassociationCollapseIndices[1].push_back(tensorOperandRank);
int64_t numelIndices = getNumberOfElements(indicesType);
Value indicesCollapsed = rewriter.create<tensor::CollapseShapeOp>(
loc,
RankedTensorType::get({numelIndices, tensorOperandRank},
indicesElemType),
updatedIndices, reassociationCollapseIndices);
bool invalidInputTypeFound = false;
Value scatterOp = createTMTensorScatterOp(
rewriter, loc, /*updates=*/gradOutputFlattened,
/*indices=*/indicesCollapsed, /*original=*/outputTensor,
/*uniqueIndices=*/false,
[&](OpBuilder &b, Location loc, Value valuesElement,
Value inputElement) {
Value yieldValue = valuesElement;
if (inputElement.getType().isa<mlir::IntegerType>()) {
yieldValue =
b.create<arith::AddIOp>(loc, inputElement, valuesElement);
} else if (inputElement.getType().isa<mlir::FloatType>()) {
yieldValue =
b.create<arith::AddFOp>(loc, inputElement, valuesElement);
} else {
invalidInputTypeFound = true;
return;
}
b.create<TMTensor::YieldOp>(loc, yieldValue);
});
if (invalidInputTypeFound) {
return rewriter.notifyMatchFailure(
op,
"unimplemented: input tensor must be of integer type or float type");
}
Type newResultType = getTypeConverter()->convertType(op.getType());
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, newResultType, scatterOp);
return success();
}
};
} // namespace
2022-09-09 12:36:40 +08:00
namespace {
class ConvertAtenCumsumOp : public OpConversionPattern<AtenCumsumOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenCumsumOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value input = adaptor.self();
auto resultType = input.getType().cast<RankedTensorType>();
Type elementType = resultType.getElementType();
int64_t inputRank = resultType.getRank();
Location loc = op->getLoc();
Value dtype = op.dtype();
if (!dtype.getType().isa<Torch::NoneType>())
return rewriter.notifyMatchFailure(
op, "unsupported: dtype argument not supported");
int64_t dim;
if (!matchPattern(op.dim(), m_TorchConstantInt(&dim)))
return rewriter.notifyMatchFailure(
op, "unimplemented: only constant dim value is supported");
dim = toPositiveDim(dim, inputRank);
if (!isValidDim(dim, inputRank))
return rewriter.notifyMatchFailure(op, "invalid dim");
SmallVector<Value> sizes = getTensorSizes(rewriter, loc, input);
Value output = createZeroInitTensor(rewriter, loc, sizes, elementType);
output = rewriter.create<tensor::CastOp>(loc, resultType, output);
SmallVector<Value> accSizes(sizes);
accSizes.erase(accSizes.begin() + dim);
SmallVector<int64_t> accStatic(resultType.getShape());
accStatic.erase(accStatic.begin() + dim);
Value acc = createZeroInitTensor(rewriter, loc, accSizes, elementType);
Type accType = RankedTensorType::get(accStatic, elementType);
acc = rewriter.create<tensor::CastOp>(loc, accType, acc);
Value result = createTMTensorScanOp(
rewriter, loc, input, output, acc, dim, /*inclusive=*/true,
[](OpBuilder &b, Location loc, Value input, Value acc) {
Value sum = (input.getType().isa<mlir::FloatType>()
? b.create<arith::AddFOp>(loc, input, acc)
: b.create<arith::AddIOp>(loc, input, acc))
->getResult(0);
b.create<TMTensor::YieldOp>(loc, sum);
});
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, result);
return success();
}
};
} // namespace
// -----------------------------------------------------------------------------
// The pass
// -----------------------------------------------------------------------------
namespace {
class ConvertTorchToTMTensor
: public ConvertTorchToTMTensorBase<ConvertTorchToTMTensor> {
public:
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<linalg::LinalgDialect>();
registry.insert<func::FuncDialect>();
registry.insert<tensor::TensorDialect>();
registry.insert<arith::ArithDialect>();
registry.insert<TMTensorDialect>();
TorchConversion::getBackendTypeConversionDependentDialects(registry);
}
void runOnOperation() override {
MLIRContext *context = &getContext();
ConversionTarget target(*context);
target.addLegalDialect<linalg::LinalgDialect, func::FuncDialect,
tensor::TensorDialect, arith::ArithDialect,
Torch::TorchDialect, TMTensorDialect>();
TypeConverter typeConverter;
typeConverter.addConversion([](Type type) { return type; });
TorchConversion::setupBackendTypeConversion(target, typeConverter);
RewritePatternSet patterns(context);
target.addIllegalOp<AtenBincountOp>();
patterns.add<ConvertAtenBincountOp>(typeConverter, context);
target.addIllegalOp<Aten_IndexPutImplOp>();
patterns.add<ConvertAten_IndexPutImplOp>(typeConverter, context);
target.addIllegalOp<AtenMaxPool2dWithIndicesBackwardOp>();
patterns.add<ConvertAtenMaxPool2dWithIndicesBackwardOp>(typeConverter,
context);
2022-09-09 12:36:40 +08:00
target.addIllegalOp<AtenCumsumOp>();
patterns.add<ConvertAtenCumsumOp>(typeConverter, context);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
return signalPassFailure();
}
};
} // namespace
std::unique_ptr<OperationPass<func::FuncOp>>
mlir::torch::createConvertTorchToTMTensorPass() {
return std::make_unique<ConvertTorchToTMTensor>();
}