mirror of https://github.com/llvm/torch-mlir
193 lines
5.1 KiB
Python
193 lines
5.1 KiB
Python
|
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
# See https://llvm.org/LICENSE.txt for license information.
|
||
|
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
|
||
|
import torch
|
||
|
|
||
|
from npcomp_torchscript.e2e_test.framework import TestUtils
|
||
|
from npcomp_torchscript.e2e_test.registry import register_test_case
|
||
|
from npcomp_torchscript.annotations import annotate_args, export
|
||
|
|
||
|
# TODO: Support scalar !torch.int/!torch.float variants. Add support to
|
||
|
# ReduceOpVariants to implement them in terms of the tensor-only variants +
|
||
|
# torch.prim.NumToTensor.
|
||
|
|
||
|
# TODO: This is pretty verbose. Can we have a helper to reduce
|
||
|
# the boilerplate?
|
||
|
|
||
|
# ==============================================================================
|
||
|
|
||
|
|
||
|
class ElementwiseUnaryModule(torch.nn.Module):
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
|
||
|
@export
|
||
|
@annotate_args([
|
||
|
None,
|
||
|
([-1, -1], torch.float32, True),
|
||
|
])
|
||
|
def forward(self, a):
|
||
|
return torch.tanh(a)
|
||
|
|
||
|
|
||
|
@register_test_case(module_factory=lambda: ElementwiseUnaryModule())
|
||
|
def ElementwiseUnaryModule_basic(module, tu: TestUtils):
|
||
|
module.forward(tu.rand(3, 4))
|
||
|
|
||
|
|
||
|
# ==============================================================================
|
||
|
|
||
|
|
||
|
class ElementwiseBinaryModule(torch.nn.Module):
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
|
||
|
@export
|
||
|
@annotate_args([
|
||
|
None,
|
||
|
([-1, -1], torch.float32, True),
|
||
|
([-1], torch.float32, True),
|
||
|
])
|
||
|
def forward(self, a, b):
|
||
|
return a * b
|
||
|
|
||
|
|
||
|
@register_test_case(module_factory=lambda: ElementwiseBinaryModule())
|
||
|
def ElementwiseBinaryModule_basic(module, tu: TestUtils):
|
||
|
module.forward(tu.rand(3, 4), tu.rand(4))
|
||
|
|
||
|
|
||
|
# ==============================================================================
|
||
|
|
||
|
|
||
|
class ElementwiseTernaryModule(torch.nn.Module):
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
|
||
|
@export
|
||
|
@annotate_args([
|
||
|
None,
|
||
|
([-1, -1, -1], torch.float32, True),
|
||
|
([-1, -1], torch.float32, True),
|
||
|
([-1], torch.float32, True),
|
||
|
])
|
||
|
def forward(self, a, b, c):
|
||
|
return torch.lerp(a, b, c)
|
||
|
|
||
|
|
||
|
@register_test_case(module_factory=lambda: ElementwiseTernaryModule())
|
||
|
def ElementwiseTernaryModule_basic(module, tu: TestUtils):
|
||
|
module.forward(tu.rand(3, 4, 5), tu.rand(4, 5), tu.rand(5))
|
||
|
|
||
|
|
||
|
# ==============================================================================
|
||
|
|
||
|
|
||
|
# Addition is an interesting special case of a binary op, because under the hood
|
||
|
# it carries a third scalar "alpha" parameter, which needs special handling.
|
||
|
class ElementwiseAddModule(torch.nn.Module):
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
|
||
|
@export
|
||
|
@annotate_args([
|
||
|
None,
|
||
|
([-1], torch.float32, True),
|
||
|
([], torch.float32, True),
|
||
|
])
|
||
|
def forward(self, a, b):
|
||
|
return a + b
|
||
|
|
||
|
|
||
|
@register_test_case(module_factory=lambda: ElementwiseAddModule())
|
||
|
def ElementwiseAddModule_basic(module, tu: TestUtils):
|
||
|
module.forward(tu.rand(4), tu.rand())
|
||
|
|
||
|
|
||
|
# ==============================================================================
|
||
|
|
||
|
|
||
|
class ElementwiseUnsqueezeBroadcastModule(torch.nn.Module):
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
|
||
|
@export
|
||
|
@annotate_args([
|
||
|
None,
|
||
|
([-1], torch.float32, True),
|
||
|
([], torch.float32, True),
|
||
|
])
|
||
|
def forward(self, a, b):
|
||
|
return a * b.unsqueeze(0)
|
||
|
|
||
|
|
||
|
@register_test_case(
|
||
|
module_factory=lambda: ElementwiseUnsqueezeBroadcastModule())
|
||
|
def ElementwiseUnsqueezeBroadcastModule_basic(module, tu: TestUtils):
|
||
|
module.forward(tu.rand(4), tu.rand())
|
||
|
|
||
|
|
||
|
# ==============================================================================
|
||
|
|
||
|
|
||
|
class ElementwiseFlattenBroadcastModule(torch.nn.Module):
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
|
||
|
@export
|
||
|
@annotate_args([
|
||
|
None,
|
||
|
([-1], torch.float32, True),
|
||
|
([], torch.float32, True),
|
||
|
])
|
||
|
def forward(self, a, b):
|
||
|
return a * b.flatten(-1, -1)
|
||
|
|
||
|
|
||
|
@register_test_case(module_factory=lambda: ElementwiseFlattenBroadcastModule())
|
||
|
def ElementwiseFlattenBroadcastModule_basic(module, tu: TestUtils):
|
||
|
module.forward(tu.rand(6), tu.rand())
|
||
|
|
||
|
# ==============================================================================
|
||
|
|
||
|
|
||
|
class ElementwiseReluModule(torch.nn.Module):
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
|
||
|
@export
|
||
|
@annotate_args([
|
||
|
None,
|
||
|
([-1, -1], torch.float32, True),
|
||
|
])
|
||
|
def forward(self, x):
|
||
|
return torch.relu(x)
|
||
|
|
||
|
|
||
|
@register_test_case(module_factory=lambda: ElementwiseReluModule())
|
||
|
def ElementwiseReluModule_basic(module, tu: TestUtils):
|
||
|
module.forward(tu.rand(4, 2) - 0.5)
|
||
|
|
||
|
# ==============================================================================
|
||
|
|
||
|
|
||
|
class ElementwiseSigmoidModule(torch.nn.Module):
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
|
||
|
@export
|
||
|
@annotate_args([
|
||
|
None,
|
||
|
([-1, -1], torch.float32, True),
|
||
|
])
|
||
|
def forward(self, x):
|
||
|
return torch.sigmoid(x)
|
||
|
|
||
|
|
||
|
@register_test_case(module_factory=lambda: ElementwiseSigmoidModule())
|
||
|
def ElementwiseSigmoidModule_basic(module, tu: TestUtils):
|
||
|
module.forward(tu.rand(3, 5))
|
||
|
|
||
|
# ==============================================================================
|