torch-mlir/lib/Dialect/Torch/Transforms/DecomposeComplexOps.cpp

693 lines
27 KiB
C++
Raw Normal View History

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Transforms/DialectConversion.h"
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/Torch/Transforms/Passes.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
#include "llvm/ADT/StringExtras.h"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
// Helper funtion to get rank of `Base tensor type`.
// -1 is returned if the tensorRank can't be determined.
static int getTensorRank(Value tensor) {
int tensorRank = -1;
BaseTensorType tensorType = tensor.getType().cast<BaseTensorType>();
if (tensorType.hasSizes()) {
ArrayRef<int64_t> tensorShape = tensorType.getSizes();
tensorRank = tensorShape.size();
}
return tensorRank;
}
static Value createSumAlongDimension(PatternRewriter &rewriter, Location loc,
Operation *op, Value input, Value dim,
bool keepDim) {
BaseTensorType tensorType = input.getType().cast<BaseTensorType>();
Value dimList = rewriter.create<PrimListConstructOp>(
loc, Torch::ListType::get(dim.getType()), dim);
Value keepDimCst = rewriter.create<ConstantBoolOp>(loc, keepDim);
Value dtype = rewriter.create<ConstantNoneOp>(loc);
SmallVector<int64_t> sizes;
int64_t dimInt;
if (tensorType.hasSizes()) {
ArrayRef<int64_t> inputShape = tensorType.getSizes();
int64_t inputRank = inputShape.size();
if (matchPattern(dim, m_TorchConstantInt(&dimInt))) {
dimInt = toPositiveDim(dimInt, inputRank);
if (!isValidDim(dimInt, inputRank)) {
(void)rewriter.notifyMatchFailure(op, "dim is not a valid dim");
return nullptr;
}
sizes.append(inputShape.begin(), inputShape.end());
sizes[dimInt] = 1;
} else {
sizes.resize(inputRank, kUnknownSize);
}
}
Type resultType = tensorType.getWithSizesAndDtype(
sizes.size() == 0 ? Optional<ArrayRef<int64_t>>()
: llvm::makeArrayRef(sizes),
tensorType.getDtype());
Value sum = rewriter.create<AtenSumDimIntListOp>(loc, resultType, input,
dimList, keepDimCst, dtype);
return sum;
}
// Helper for creating `aten::sub_tensor_op`.
static Value createTensorSub(PatternRewriter &rewriter, Location loc,
Type tensorType, Value lhs, Value rhs) {
Value alpha =
rewriter.create<ConstantFloatOp>(loc, rewriter.getF64FloatAttr(1));
Value sub =
rewriter.create<AtenSubTensorOp>(loc, tensorType, lhs, rhs, alpha);
return sub;
}
// Share code between `softmax_backward` and `log_softmax_backward` ops.
// Returns x - y * sum(z, dim).
static Value createSoftmaxBackwardCommonKernel(PatternRewriter &rewriter,
Location loc, Operation *op,
Type tensorType, Value x,
Value y, Value z, Value dim) {
Value sum = createSumAlongDimension(rewriter, loc, op, z, dim, /*keepDim=*/true);
if (!sum)
return nullptr;
auto broadcastSizeType =
Torch::ListType::get(Torch::IntType::get(op->getContext()));
Value broadcastSize = rewriter.create<AtenSizeOp>(loc, broadcastSizeType, z);
Value sumBroadcast =
rewriter.create<AtenBroadcastToOp>(loc, tensorType, sum, broadcastSize);
Value temp =
rewriter.create<AtenMulTensorOp>(loc, tensorType, y, sumBroadcast);
Value sub = createTensorSub(rewriter, loc, tensorType, x, temp);
return sub;
}
namespace {
class DecomposeAtenSizeOp : public OpRewritePattern<AtenSizeOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenSizeOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value self = op.self();
MLIRContext *context = op.getContext();
int64_t rank = getTensorRank(self);
if (rank < 0)
return rewriter.notifyMatchFailure(op, "Unimplemented: unranked tensor");
SmallVector<Value> sizes;
for (int i = 0; i < rank; i++) {
Value dim = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(i));
sizes.push_back(rewriter.create<AtenSizeIntOp>(loc, self, dim));
}
Value sizeList = rewriter.create<PrimListConstructOp>(
loc, Torch::ListType::get(Torch::IntType::get(context)), sizes);
rewriter.replaceOp(op, sizeList);
return success();
}
};
} // namespace
namespace {
class DecomposeAtenSelectIntOp : public OpRewritePattern<AtenSelectIntOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenSelectIntOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value one =
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(1));
Value end =
rewriter.create<AtenAddIntOp>(loc, one.getType(), op.index(), one);
rewriter.replaceOpWithNewOp<AtenSliceTensorOp>(op, op.getResult().getType(),
op.self(), op.dim(),
op.index(), end, one);
return success();
}
};
} // namespace
// Calculates the softmax function on the given `input` tensor. Softmax(x) =
// exp(x)/sum(exp(x)).
template <typename OpTy>
static Value getSoftmaxResult(OpTy op, Type resultType,
PatternRewriter &rewriter) {
Location loc = op.getLoc();
Value dim = op.dim();
Value self = op.self();
// exp(x)
Value exp = rewriter.create<AtenExpOp>(loc, resultType, self);
// sum(exp(x))
Value sum =
createSumAlongDimension(rewriter, loc, op, exp, dim, /*keepDim=*/true);
if (!sum)
return nullptr;
// exp(x) / sum(exp(x))
return rewriter.create<AtenDivTensorOp>(loc, resultType, exp, sum);
}
// Decompose softmax into: exp(x) / sum(exp(x))
namespace {
class DecomposeAtenSoftmaxIntOp : public OpRewritePattern<AtenSoftmaxIntOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenSoftmaxIntOp op,
PatternRewriter &rewriter) const override {
Value self = op.self();
if (!op.dtype().getType().isa<Torch::NoneType>())
return rewriter.notifyMatchFailure(
op, "Unimplemented non-None dtype for softmax");
BaseTensorType tensorType = self.getType().cast<BaseTensorType>();
if (!tensorType.hasDtype() || !tensorType.getDtype().isa<mlir::FloatType>())
return rewriter.notifyMatchFailure(op, "Only support floating type");
Value result = getSoftmaxResult(op, tensorType, rewriter);
if (!result)
return failure();
rewriter.replaceOpWithNewOp<TensorStaticInfoCastOp>(op, op.getType(),
result);
return success();
}
};
} // namespace
namespace {
class DecomposeAten_SoftmaxOp : public OpRewritePattern<Aten_SoftmaxOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(Aten_SoftmaxOp op,
PatternRewriter &rewriter) const override {
Value self = op.self();
BaseTensorType tensorType = self.getType().cast<BaseTensorType>();
if (!tensorType.hasDtype() || !tensorType.getDtype().isa<mlir::FloatType>())
return rewriter.notifyMatchFailure(op, "Only support floating type");
bool halfToFloat;
if (!matchPattern(op.half_to_float(), m_TorchConstantBool(&halfToFloat)))
return rewriter.notifyMatchFailure(
op, "Expected a boolean value for half_to_float");
// Currently, setting `halfToFloat` is not supported as the E2E testing for
// the same is not present on CPU.
if (halfToFloat)
return rewriter.notifyMatchFailure(
op, "halfToFloat is currently not supported.");
Value result = getSoftmaxResult(op, tensorType, rewriter);
if (!result)
return op.emitError("failed to get softmax result");
rewriter.replaceOpWithNewOp<TensorStaticInfoCastOp>(op, op.getType(),
result);
return success();
}
};
} // namespace
// Aten_SoftmaxBackwardDataOp(gradOutput, output, dim) =>
// newGrad = gradOutput * output
// result = newGrad - output * sum(newGrad, dim))
//
// Refer to
// https://github.com/pytorch/pytorch/blob/15fecc4c830a3907fde4b44c9962dc4144da50a4/torch/csrc/jit/codegen/cuda/ops/normalization.cpp#L31
namespace {
class DecomposeAten_SoftmaxBackwardDataOp
: public OpRewritePattern<Aten_SoftmaxBackwardDataOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(Aten_SoftmaxBackwardDataOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value gradOutput = op.grad_output();
Value output = op.output();
Value dim = op.dim();
BaseTensorType tensorType = gradOutput.getType().cast<BaseTensorType>();
if (!tensorType.hasDtype() || !tensorType.getDtype().isa<mlir::FloatType>())
return rewriter.notifyMatchFailure(op, "Only support floating type");
Value newGrad =
rewriter.create<AtenMulTensorOp>(loc, tensorType, gradOutput, output);
Value result = createSoftmaxBackwardCommonKernel(
rewriter, loc, op, tensorType, newGrad, output, newGrad, dim);
if (!result)
return rewriter.notifyMatchFailure(
op,
"nullptr returned by createSoftmaxBackwardCommonKernel function.");
rewriter.replaceOp(op, result);
return success();
}
};
} // namespace
// AtenTanhBackwardOp(gradOutput, output) =>
// result = gradOutput * (1 - output^2)
// To get away from broadcasts the above formula is expanded i.e.,
// result = gradOutput - (gradOutput * output^2)
namespace {
class DecomposeAtenTanhBackwardOp
: public OpRewritePattern<AtenTanhBackwardOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenTanhBackwardOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value gradOutput = op.grad_output();
// `output` is the value flowing out from tanh. Hence, tanh(x) = output.
// Since, dTanh(x) = (1 - tanh(x)^2) hence, dOutput = (1 - output^2).
Value output = op.output();
BaseTensorType tensorType = gradOutput.getType().cast<BaseTensorType>();
if (!tensorType.hasDtype() || !tensorType.getDtype().isa<mlir::FloatType>())
return rewriter.notifyMatchFailure(op, "Only support floating type");
Value tanhSquare =
rewriter.create<AtenMulTensorOp>(loc, tensorType, output, output);
Value gradMulTanhSquare = rewriter.create<AtenMulTensorOp>(
loc, tensorType, tanhSquare, gradOutput);
Value newGrad = createTensorSub(rewriter, loc, tensorType, gradOutput,
gradMulTanhSquare);
rewriter.replaceOp(op, newGrad);
return success();
}
};
} // namespace
// Aten_LogSoftmaxBackwardDataOp(gradOutput, output, dim) =>
// result = gradOutput - (exp(output) * sum(gradOutput, dim))
namespace {
class DecomposeAten_LogSoftmaxBackwardDataOp
: public OpRewritePattern<Aten_LogSoftmaxBackwardDataOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(Aten_LogSoftmaxBackwardDataOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value gradOutput = op.grad_output();
Value output = op.output();
Value dim = op.dim();
BaseTensorType tensorType = gradOutput.getType().cast<BaseTensorType>();
if (!tensorType.hasDtype() || !tensorType.getDtype().isa<mlir::FloatType>())
return rewriter.notifyMatchFailure(op, "Only support floating type");
Value expOut = rewriter.create<AtenExpOp>(loc, tensorType, output);
Value result = createSoftmaxBackwardCommonKernel(
rewriter, loc, op, tensorType, gradOutput, expOut, gradOutput, dim);
if (!result)
return rewriter.notifyMatchFailure(
op,
"nullptr returned by createSoftmaxBackwardCommonKernel function.");
rewriter.replaceOp(op, result);
return success();
}
};
} // namespace
// Decompose aten.log_softmax op into: log(softmax(x))
namespace {
class DecomposeAtenLogSoftmaxIntOp
: public OpRewritePattern<AtenLogSoftmaxIntOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenLogSoftmaxIntOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value self = op.self();
Value dim = op.dim();
if (!op.dtype().getType().isa<Torch::NoneType>())
return rewriter.notifyMatchFailure(
op, "Unimplemented non-None dtype for log_softmax");
BaseTensorType tensorType = self.getType().cast<BaseTensorType>();
if (!tensorType.hasDtype() || !tensorType.getDtype().isa<mlir::FloatType>())
return rewriter.notifyMatchFailure(op, "Only support floating type");
// softmax(x, dim)
Value softmax = rewriter.create<AtenSoftmaxIntOp>(loc, tensorType, self,
dim, op.dtype());
rewriter.replaceOpWithNewOp<AtenLogOp>(op, op.getType(), softmax);
return success();
}
};
} // namespace
// Decompose torch.matmul into: torch.mm and torch.bmm according to ranks.
namespace {
class DecomposeAtenMatmulOp : public OpRewritePattern<AtenMatmulOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenMatmulOp op,
PatternRewriter &rewriter) const override {
Value lhs = op.self();
Value rhs = op.other();
int lhsRank = getTensorRank(lhs);
int rhsRank = getTensorRank(rhs);
// If both lhs and rhs ranks are 2 then map it to `aten.mm` op.
if (lhsRank == 2 && rhsRank == 2)
rewriter.replaceOpWithNewOp<AtenMmOp>(op, op.getType(), lhs, rhs);
// If both lhs and rhs ranks are 3 then map it to `aten.bmm` op.
if (lhsRank == 3 && rhsRank == 3)
rewriter.replaceOpWithNewOp<AtenBmmOp>(op, op.getType(), lhs, rhs);
return success();
}
};
} // namespace
2021-12-17 12:08:07 +08:00
namespace {
class DecomposeAtenTOp : public OpRewritePattern<AtenTOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenTOp op,
PatternRewriter &rewriter) const override {
Value lhs = op.self();
int lhsRank = getTensorRank(lhs);
auto loc = op.getLoc();
if (lhsRank > 2 || lhsRank < 0) {
std::string errorMessage =
"t() expects a tensor with <=2 dimensions, but self is " +
std::to_string(lhsRank) + "D";
return rewriter.notifyMatchFailure(op, errorMessage.c_str());
} else if (lhsRank < 2)
rewriter.replaceOp(op, lhs);
else {
Value zero =
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(0));
Value one =
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(1));
rewriter.replaceOpWithNewOp<AtenTransposeIntOp>(op, op.getType(), lhs,
zero, one);
}
return success();
}
};
} // namespace
// Decompose torch.expand into torch.broadcast_to op.
namespace {
class DecomposeAtenExpandOp : public OpRewritePattern<AtenExpandOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenExpandOp op,
PatternRewriter &rewriter) const override {
bool implicit = false;
if (!matchPattern(op.implicit(), m_TorchConstantBool(&implicit)) ||
implicit) {
return rewriter.notifyMatchFailure(
op, "unimplemented: requires implicit to be false");
}
rewriter.replaceOpWithNewOp<AtenBroadcastToOp>(op, op.getType(), op.self(),
op.size());
return success();
}
};
} // namespace
// Decompose torch.addmm into torch.mm and torch.add.Tensor op.
namespace {
class DecomposeAtenAddmmOp : public OpRewritePattern<AtenAddmmOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenAddmmOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value input = op.self();
Value mat1 = op.mat1();
Value mat2 = op.mat2();
// The operands `mat1`, `mat2` to aten.addmm must be of rank 2.
if (getTensorRank(mat1) != 2 || getTensorRank(mat2) != 2) {
return rewriter.notifyMatchFailure(
op, "expected mat1, mat2 operands to aten.addmm to be rank 2");
}
// TODO: Handle integer type operands.
if (!input.getType()
.cast<ValueTensorType>()
.getDtype()
.isa<mlir::FloatType>()) {
return rewriter.notifyMatchFailure(
op, "unimplemented: non-floating point dtype");
}
// matrix multiplication: matmul = mat1 @ mat2
Value matmul = rewriter.create<AtenMmOp>(loc, op.getType(), mat1, mat2);
// scaledInput = self * beta
Value scaledInput = rewriter.create<AtenMulScalarOp>(loc, input.getType(),
input, op.beta());
// result = scaledInput + alpha * matmul
rewriter.replaceOpWithNewOp<AtenAddTensorOp>(op, op.getType(), scaledInput,
matmul, op.alpha());
return success();
}
};
} // namespace
// Decompose torch.mean into: sum(x)/div(numTensorElements).
namespace {
class DecomposeAtenMeanOp : public OpRewritePattern<AtenMeanOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenMeanOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value input = op.self();
Value output = op.result();
BaseTensorType outputTensorType = output.getType().cast<BaseTensorType>();
Value sum = rewriter.create<AtenSumOp>(loc, outputTensorType, input, op.dtype());
Value numTensorElements = rewriter.create<AtenNumelOp>(loc, input);
rewriter.replaceOpWithNewOp<AtenDivScalarOp>(op, outputTensorType, sum,
numTensorElements);
return success();
}
};
} // namespace
2021-11-25 06:01:48 +08:00
namespace {
template<typename OpTy, typename T1T2Op>
class DecomposeAtenAddCLikeOp : public OpRewritePattern<OpTy> {
using OpRewritePattern<OpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(OpTy op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value input = op.self();
Value tensor1 = op.tensor1();
Value tensor2 = op.tensor2();
Value value = op.value();
Value product = rewriter.create<T1T2Op>(loc, op.getType(), tensor1, tensor2);
rewriter.replaceOpWithNewOp<AtenAddTensorOp>(op, op.getType(), input, product,
value);
return success();
}
};
class DecomposeAtenLayerNormOp : public OpRewritePattern<AtenLayerNormOp> {
using OpRewritePattern<AtenLayerNormOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AtenLayerNormOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
auto input = op.input().getType().cast<BaseTensorType>();
if (!input.hasSizes())
return rewriter.notifyMatchFailure(
op, "input tensor should have known sizes.");
int64_t inputRank = input.getSizes().size();
Value normalizedShape = op.normalized_shape();
SmallVector<Value> normalizedShapeSizesTorchInt;
getListConstructElements(normalizedShape, normalizedShapeSizesTorchInt);
std::vector<int64_t> meanVarSizes;
for (int i = normalizedShapeSizesTorchInt.size(); i < inputRank; i++)
meanVarSizes.push_back(input.getSizes()[i]);
auto meanVarType = input.getWithSizesAndDtype(
llvm::makeArrayRef(meanVarSizes), input.getDtype());
auto nativeLayerNorm = rewriter.create<AtenNativeLayerNormOp>(
loc, op.getType(), meanVarType, meanVarType, op.input(),
op.normalized_shape(), op.weight(), op.bias(), op.eps());
rewriter.replaceOp(op, nativeLayerNorm.getResult(0));
return success();
}
};
2021-11-25 06:01:48 +08:00
} // namespace
namespace {
// Decompose `aten.empty_like` op into `aten.size` and `aten.empty` ops.
class DecomposeAtenEmptyLikeOp : public OpRewritePattern<AtenEmptyLikeOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenEmptyLikeOp op,
PatternRewriter &rewriter) const override {
auto sizeListType =
Torch::ListType::get(Torch::IntType::get(op.getContext()));
Value sizeList =
rewriter.create<AtenSizeOp>(op.getLoc(), sizeListType, op.self());
rewriter.replaceOpWithNewOp<AtenEmptyMemoryFormatOp>(
op, op.getType(), sizeList, op.dtype(), op.layout(), op.device(),
op.pin_memory(), op.memory_format());
return success();
}
};
} // namespace
namespace {
// The `aten.arange` op is converted to `aten.arange.start_step` op.
class DecomposeAtenArangeOp : public OpRewritePattern<AtenArangeOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenArangeOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
// The AtenArangeOp doesn't have a start and step value. Therefore we set
// them as default values 0 and 1, respectively.
Value start, step;
start = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(0));
step = rewriter.create<Torch::ConstantIntOp>(loc,
rewriter.getI64IntegerAttr(1));
rewriter.replaceOpWithNewOp<AtenArangeStartStepOp>(
op, op.getType(), start, op.end(), step, op.dtype(), op.layout(),
op.device(), op.pin_memory());
return success();
}
};
} // namespace
namespace {
// The `aten.arange.start` op is converted to `aten.arange.start_step` op.
class DecomposeAtenArangeStartOp : public OpRewritePattern<AtenArangeStartOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenArangeStartOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
// The AtenArangeStartOp doesn't have a step value. Therefore we set it as
// default value 1.
Value step;
step = rewriter.create<Torch::ConstantIntOp>(loc,
rewriter.getI64IntegerAttr(1));
rewriter.replaceOpWithNewOp<AtenArangeStartStepOp>(
op, op.getType(), op.start(), op.end(), step, op.dtype(), op.layout(),
op.device(), op.pin_memory());
return success();
}
};
} // namespace
namespace {
// Decompose constant tensor allocation like ops.
template <typename OpTy, int fillVal>
class DecomposeConstantTensorAllocLikeOp : public OpRewritePattern<OpTy> {
using OpRewritePattern<OpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(OpTy op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
// Allocate a memory block.
Value initTensor = rewriter.create<AtenEmptyLikeOp>(
loc, op.getType(), op.self(), op.dtype(), op.layout(), op.device(),
op.pin_memory(), op.memory_format());
Value constVal = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(fillVal));
// Initialize the allocated memory block with `fillVal`.
rewriter.replaceOpWithNewOp<AtenFill_ScalarOp>(op, initTensor.getType(),
initTensor, constVal);
return success();
}
};
} // namespace
namespace {
class DecomposeComplexOpsPass
: public DecomposeComplexOpsBase<DecomposeComplexOpsPass> {
void runOnOperation() override {
MLIRContext *context = &getContext();
RewritePatternSet patterns(context);
ConversionTarget target(*context);
target.addLegalDialect<Torch::TorchDialect>();
patterns.add<DecomposeAtenSoftmaxIntOp>(context);
target.addIllegalOp<AtenSoftmaxIntOp>();
patterns.add<DecomposeAten_SoftmaxOp>(context);
target.addIllegalOp<Aten_SoftmaxOp>();
patterns.add<DecomposeAtenLogSoftmaxIntOp>(context);
target.addIllegalOp<AtenLogSoftmaxIntOp>();
patterns.add<DecomposeAtenEmptyLikeOp>(context);
target.addIllegalOp<AtenEmptyLikeOp>();
patterns.add<DecomposeConstantTensorAllocLikeOp<AtenOnesLikeOp, 1>>(
context);
target.addIllegalOp<AtenOnesLikeOp>();
patterns.add<DecomposeConstantTensorAllocLikeOp<AtenZerosLikeOp, 0>>(
context);
target.addIllegalOp<AtenZerosLikeOp>();
patterns.add<DecomposeAtenExpandOp>(context);
target.addIllegalOp<AtenExpandOp>();
patterns.add<DecomposeAtenSizeOp>(context);
target.addIllegalOp<AtenSizeOp>();
patterns.add<DecomposeAten_SoftmaxBackwardDataOp>(context);
target.addIllegalOp<Aten_SoftmaxBackwardDataOp>();
patterns.add<DecomposeAtenTanhBackwardOp>(context);
target.addIllegalOp<AtenTanhBackwardOp>();
patterns.add<DecomposeAtenAddmmOp>(context);
target.addIllegalOp<AtenAddmmOp>();
patterns.add<DecomposeAtenMeanOp>(context);
target.addIllegalOp<AtenMeanOp>();
patterns.add<DecomposeAtenSelectIntOp>(context);
target.addIllegalOp<AtenSelectIntOp>();
patterns.add<DecomposeAtenMatmulOp>(context);
2021-12-17 12:08:07 +08:00
target.addIllegalOp<AtenTOp>();
patterns.add<DecomposeAtenTOp>(context);
patterns.add<DecomposeAten_LogSoftmaxBackwardDataOp>(context);
target.addIllegalOp<Aten_LogSoftmaxBackwardDataOp>();
target.addDynamicallyLegalOp<AtenMatmulOp>([](AtenMatmulOp op) {
Add type promotion code to refine types. The types have different levels of categories: where complex > floating > integral > boolean (> means left hand side has higher category). The operands have different levels of priorities where: dimensioned tensor > 0-dim tensor > scalar == wrapped 0-dim tensor. This is represented by the `ResultTypeState.dimResult`, `ResultTypeState.zeroResult` and `ResultTypeState..wrappedResult` in the source code. For operands of the same priorities, the result type should be the highest categories with sufficient width to hold all operands. By default, only the highest priority operands participate in the type promotion logic. Lower priority operands participate if they are in a higher category than any higher priority operands. For example, <[],f32> (lower priority) and <[1], si64> tensor would result in <[?],f32> tensor because floating > integeral. Another example <[],f64> (lower priority) and <[1], f32> tensor would result in <[?], f32> tensor because f32 and f64 are the same category. The ScalarType enum definition, type promotion table, ResultTypeState struct definition and some helpers are copied from aten/src/ATen/native/TypeProperties.* Other references: - https://pytorch.org/docs/stable/tensor_attributes.html#type-promotion-doc - https://github.com/pytorch/pytorch/issues/9515 Other minor changes: 1. Fix `visitExpandLikeOp` to consider cases where the given sizes list size is larger than the input rank. 2. Add back the somehow deleted `torch.aten.softmax.int` tests in decompose-complex-ops.mlir.
2021-10-21 03:31:28 +08:00
int lhsRank = getTensorRank(op.self());
int rhsRank = getTensorRank(op.other());
// Make aten.matmul legal if the following condition is satisfied.
return (lhsRank != 2 || rhsRank != 2) && (lhsRank != 3 || rhsRank != 3);
});
patterns.add<DecomposeAtenAddCLikeOp<AtenAddcmulOp, AtenMulTensorOp>>(context);
target.addIllegalOp<AtenAddcmulOp>();
patterns.add<DecomposeAtenAddCLikeOp<AtenAddcdivOp, AtenDivTensorOp>>(context);
target.addIllegalOp<AtenAddcdivOp>();
target.addIllegalOp<AtenLayerNormOp>();
patterns.add<DecomposeAtenLayerNormOp>(context);
patterns.add<DecomposeAtenArangeOp>(context);
target.addIllegalOp<AtenArangeOp>();
patterns.add<DecomposeAtenArangeStartOp>(context);
target.addIllegalOp<AtenArangeStartOp>();
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns)))) {
return signalPassFailure();
}
}
};
} // namespace
std::unique_ptr<OperationPass<FuncOp>>
mlir::torch::Torch::createDecomposeComplexOpsPass() {
return std::make_unique<DecomposeComplexOpsPass>();
}