torch-mlir/lib/Dialect/Torch/Transforms/SimplifyShapeCalculations.cpp

163 lines
6.5 KiB
C++
Raw Normal View History

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "SimplifyAbstractInterpCalculationsUtils.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "torch-mlir/Dialect/Torch/Transforms/Passes.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
namespace {
class DecomposeAtenSizeOp : public OpRewritePattern<AtenSizeOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenSizeOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value self = op.getSelf();
MLIRContext *context = op.getContext();
auto tensorType = self.getType().cast<BaseTensorType>();
if (!tensorType.hasSizes())
return rewriter.notifyMatchFailure(op, "unranked tensor");
int64_t rank = tensorType.getSizes().size();
SmallVector<Value> sizes;
for (int i = 0; i < rank; i++) {
Value dim = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(i));
sizes.push_back(rewriter.create<AtenSizeIntOp>(loc, self, dim));
}
Value sizeList = rewriter.create<PrimListConstructOp>(
loc, Torch::ListType::get(Torch::IntType::get(context)), sizes);
rewriter.replaceOp(op, sizeList);
return success();
}
};
} // namespace
static LogicalResult refineShapeCalculateResult(ShapeCalculateOp op,
int resultNum,
PatternRewriter &rewriter) {
auto yieldShapes = op.getCalculation().front().getTerminator();
auto shape = yieldShapes->getOperand(resultNum);
auto result = op->getResult(resultNum);
// If the yielded shape is not a list literal, we can't analyze it.
// AbstractlyInterpretListOpsWithinABlock should already have converted as
// much as possible to literals.
auto listConstruct = shape.getDefiningOp<PrimListConstructOp>();
if (!listConstruct)
return rewriter.notifyMatchFailure(
op, "Expected result from ShapeCalculateOp calculation to be a "
"`PrimListConstructOp`");
llvm::BitVector clobberedElements(listConstruct->getNumOperands());
// Analyze the users to determine if we can refine the shape.
for (Operation *user : listConstruct->getUsers()) {
// If an op doesn't mutate the list, then we can handle it.
if (!potentiallyMutatesListOperands(user))
continue;
// We can handle Aten_SetItemTOp specially, since we know that it doesn't
// change the size of the list. It might clobber some elements, which then
// become dimensions with unknown size.
if (auto setItem = dyn_cast<Aten_SetItemTOp>(user)) {
// If the index is statically known, we can clobber only a single index.
// Otherwise, we conservatively clobber all of them.
std::optional<int64_t> indexOpt = matchLegalConstantIndexIntoListOfSize(
setItem.getIdx(), listConstruct->getNumOperands());
if (indexOpt)
clobberedElements.set(*indexOpt);
else
clobberedElements.set();
continue;
}
// An unhandled op! We can't make any assumptions about the shape.
return rewriter.notifyMatchFailure(op, "Unhandled op that mutates lists");
}
// Construct the list of sizes implied by the yielded shape.
SmallVector<int64_t> sizes;
for (auto operand : llvm::enumerate(listConstruct->getOperands())) {
int64_t size;
if (matchPattern(operand.value(), m_TorchConstantInt(&size)) &&
!clobberedElements[operand.index()])
sizes.push_back(size);
else
sizes.push_back(kUnknownSize);
}
auto originalResultType = result.getType().cast<BaseTensorType>();
auto impliedTypesFromShape =
originalResultType.cast<BaseTensorType>()
.getWithSizesAndDtype(ArrayRef(sizes),
originalResultType.getOptionalDtype())
.cast<BaseTensorType>();
return updateCalculateOpResultTypes(op, resultNum, impliedTypesFromShape,
rewriter);
}
namespace {
// This pattern propagates information out of the shape calculation region and
// into the ShapeCalculateOp result types.
class RefineShapeCalculateOp : public OpRewritePattern<ShapeCalculateOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(ShapeCalculateOp op,
PatternRewriter &rewriter) const override {
LogicalResult result = failure();
for (int i = 0, e = op->getNumResults(); i != e; i++)
if (succeeded(refineShapeCalculateResult(op, i, rewriter)))
result = success();
return result;
}
};
} // namespace
namespace {
class SimplifyShapeCalculationsPass
: public SimplifyShapeCalculationsBase<SimplifyShapeCalculationsPass> {
void runOnOperation() override {
MLIRContext *context = &getContext();
RewritePatternSet patterns(context);
populateFullyUnrollPrimLoopOpPattern(patterns, context);
populateAbstractlyInterpretListOpsWithinABlockPattern(patterns, context);
populateFoldPrimUncheckedCastOpPattern(patterns, context);
patterns.insert<DecomposeAtenSizeOp>(context);
patterns.insert<RefineShapeCalculateOp>(context);
PrimIfOp::getCanonicalizationPatterns(patterns, context);
Aten__Getitem__TOp::getCanonicalizationPatterns(patterns, context);
AtenSizeOp::getCanonicalizationPatterns(patterns, context);
AtenLenTOp::getCanonicalizationPatterns(patterns, context);
AtenAddTOp::getCanonicalizationPatterns(patterns, context);
// TODO: Debug visitation order to make this more efficient.
// A single linear scan should suffice.
GreedyRewriteConfig config;
config.useTopDownTraversal = true;
config.maxIterations = GreedyRewriteConfig::kNoLimit;
if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns),
config))) {
return signalPassFailure();
}
}
};
} // namespace
std::unique_ptr<OperationPass<func::FuncOp>>
mlir::torch::Torch::createSimplifyShapeCalculationsPass() {
return std::make_unique<SimplifyShapeCalculationsPass>();
}