torch-mlir/python/torch_mlir/extras/onnx_importer.py

1232 lines
47 KiB
Python
Raw Normal View History

Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
# Based on code Copyright (c) Advanced Micro Devices, Inc.
#
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
# Also available under a BSD-style license. See LICENSE.
"""Imports ONNX graphs to `torch` dialect ops.
See documentation:
https://github.com/llvm/torch-mlir/blob/main/docs/importers/onnx_importer.md
This file is distributed/forked verbatim into various downstream projects, and
it must abide by several rules above and beyond the rest of the codebase:
- It must be standalone, only depending on:
- `onnx`
- `..ir` relative imports to the main IR directory
- `..dialects.func` relative import to the `func` dialect (TODO:
we are looking to eliminate this dep).
- Python standard library
- It does not directly use the ODS generated `torch` dialect Python
wrappers. This allows it to be used in contexts that only build a C++
compiler with minimal IR Python bindings.
- It is intended as an enabler for full onnx compilation, only handling
the import from ONNX -> the `torch` dialect. Testing, full pipelines,
and utilities belong elsewhere.
"""
try:
import onnx
except ModuleNotFoundError as e:
raise ModuleNotFoundError(
"The onnx package (`pip install onnx`) is required to use the onnx importer"
) from e
from typing import Optional, List, Dict, Tuple
import warnings
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
Create MLIR functions for ONNX operators that are functions (#3409) Resolves #3384. Many ONNX operators are defined by functions and therefore could be expanded into simpler ONNX operations during importing, avoiding the need for tools downstream to support these operators directly. This commit adds this capability to onnx_importer.py. When importing a node, the schema for the node's operator is retrieved. If the schema provides a function for the operator, a specialized version for the node's types and attributes will be created and imported as an MLIR function with private visibility. An MLIR function call will then be emitted, instead of a normal operator node. Caching is used to avoid generating redundant functions within the same module. In order to avoid a disruptive change to the importer output for a large number of operators that already have TorchOnnxToTorch support, an allowlist strategy is used by default. With this commit, only one operator is allowlisted for expansion, MeanVarianceNormalization. However, many other operators can be correctly expanded by the current code, so hopefully the allowlist can be gradually extended. It is possible to disable the allowlist in the configuration, in which case all functions are expanded (useful for testing). Tools downstream of the importer may now need to do inlining when consuming the output of the importer, e.g.: cat imported.mlir | torch-mlir-opt --inline --convert-onnx-to-torch Explanations for subtle code changes: - Looking up the correct schema and function for an operator requires knowing the opset version. NodeImporter retrieves this from the opset imports on the ModelProto retained by the GraphInfo. Previously, the model_proto field on GraphInfo was None when importing a subgraph in import_regions, but this conflicts with the new need for opset version info. Since the apparent purpose of setting it to None was to control how GraphInfo generates its input map, a new flag is added to GraphInfo (is_subgraph) to control this behavior, so that the actual ModelProto can now be provided without breaking this. This also turned out to be useful for getting the Config via ModelInfo via GraphInfo. - Some operators' functions are context-dependent, which means the function definition depends on the types of the inputs. Therefore node importing now needs to look up the types of a node's inputs, not just its outputs as was the case previously. Consequently the operand to find_type_proto_for_name() may now be a graph input or initializer in some cases, so it has to be updated.
2024-06-15 01:11:26 +08:00
from dataclasses import dataclass, field
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
import numpy as np
import re
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
from ..ir import (
ArrayAttr,
Attribute,
Block,
Context,
DenseElementsAttr,
DenseResourceElementsAttr,
DictAttr,
FloatAttr,
BF16Type,
ComplexType,
F16Type,
F32Type,
F64Type,
Float8E4M3FNType,
Float8E5M2FNUZType,
Float8E5M2Type,
FunctionType,
InsertionPoint,
IntegerAttr,
IntegerType,
MLIRError,
RankedTensorType,
Location,
Module,
Operation,
StringAttr,
Type as IrType,
Value,
)
from ..dialects import (
func as func_dialect,
)
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
@dataclass
class Config:
"""Various configuration settings for the importer."""
# Ancient ONNX exporters would often add a model input for anything that
# might be mutable, providing an initializer for it as well. More modern
# tools tools realized this is a really bad idea for a lot of reasons.
# We choose to assume more recent norms, even if encountering older
# models. Setting this to False probably won't do what you want but
# should produce interesting errors to waste your time deciphering.
# We mainly use it as a way to document in the code that we are
# making an assumption.
elide_initialized_inputs: bool = True
Create MLIR functions for ONNX operators that are functions (#3409) Resolves #3384. Many ONNX operators are defined by functions and therefore could be expanded into simpler ONNX operations during importing, avoiding the need for tools downstream to support these operators directly. This commit adds this capability to onnx_importer.py. When importing a node, the schema for the node's operator is retrieved. If the schema provides a function for the operator, a specialized version for the node's types and attributes will be created and imported as an MLIR function with private visibility. An MLIR function call will then be emitted, instead of a normal operator node. Caching is used to avoid generating redundant functions within the same module. In order to avoid a disruptive change to the importer output for a large number of operators that already have TorchOnnxToTorch support, an allowlist strategy is used by default. With this commit, only one operator is allowlisted for expansion, MeanVarianceNormalization. However, many other operators can be correctly expanded by the current code, so hopefully the allowlist can be gradually extended. It is possible to disable the allowlist in the configuration, in which case all functions are expanded (useful for testing). Tools downstream of the importer may now need to do inlining when consuming the output of the importer, e.g.: cat imported.mlir | torch-mlir-opt --inline --convert-onnx-to-torch Explanations for subtle code changes: - Looking up the correct schema and function for an operator requires knowing the opset version. NodeImporter retrieves this from the opset imports on the ModelProto retained by the GraphInfo. Previously, the model_proto field on GraphInfo was None when importing a subgraph in import_regions, but this conflicts with the new need for opset version info. Since the apparent purpose of setting it to None was to control how GraphInfo generates its input map, a new flag is added to GraphInfo (is_subgraph) to control this behavior, so that the actual ModelProto can now be provided without breaking this. This also turned out to be useful for getting the Config via ModelInfo via GraphInfo. - Some operators' functions are context-dependent, which means the function definition depends on the types of the inputs. Therefore node importing now needs to look up the types of a node's inputs, not just its outputs as was the case previously. Consequently the operand to find_type_proto_for_name() may now be a graph input or initializer in some cases, so it has to be updated.
2024-06-15 01:11:26 +08:00
# Some ONNX operators are defined by ONNX functions and will be
# automatically expanded (see get_operator_function() below) to MLIR
# functions by the importer. This option allows allowlisting functions that
# should be expanded. If this is None, then allowlisting is not used (all
# functions not explicitly denylisted will be expanded).
#
# Since function expansion has not always been supported, the default should
# be to use allowlisting, to avoid disruption.
function_expansion_allowlists_by_domain: Optional[Dict[str, set[str]]] = field(
default_factory=lambda: {
# Default domain (ONNX built-in ops)
"": {
"MeanVarianceNormalization",
}
}
)
# Some ONNX operators are defined by ONNX functions and will be
# automatically expanded (see get_operator_function() below) to MLIR
# functions by the importer. This option allows denylisting functions that
# should not be expanded.
function_expansion_denylists_by_domain: Dict[str, set[str]] = field(
default_factory=lambda: {
# Default domain (ONNX built-in ops)
"": {
# CastLike's second input `target_type` is used only for its
# type (T2), from which its output's type is inferred, but
# because its value is unused, ONNX's shape inference doesn't
# annotate the input value with a type, so looking up the
# function by the provided input types will fail.
"CastLike",
# ONNX errors when trying to infer the type of the Loop op
# within this function: "[ShapeInferenceError] Inferred shape
# and existing shape differ in rank: (1) vs (0)"
"Range",
}
}
)
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
class ModelInfo:
"""Top-level accounting and accessors for an ONNX model."""
def __init__(self, model_proto: onnx.ModelProto, *, config: Config = Config()):
self.config = config
self.model_proto = model_proto
assert model_proto.graph, "Model must contain a main Graph"
self.main_graph = GraphInfo(self, model_proto.graph)
def create_module(self, context: Optional[Context] = None) -> Module:
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
if not context:
context = Context()
module = Module.create(Location.unknown(context))
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
# TODO: Populate module level metadata from the ModelProto
return module
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
class GraphInfo:
"""Information about a Graph within a model."""
Create MLIR functions for ONNX operators that are functions (#3409) Resolves #3384. Many ONNX operators are defined by functions and therefore could be expanded into simpler ONNX operations during importing, avoiding the need for tools downstream to support these operators directly. This commit adds this capability to onnx_importer.py. When importing a node, the schema for the node's operator is retrieved. If the schema provides a function for the operator, a specialized version for the node's types and attributes will be created and imported as an MLIR function with private visibility. An MLIR function call will then be emitted, instead of a normal operator node. Caching is used to avoid generating redundant functions within the same module. In order to avoid a disruptive change to the importer output for a large number of operators that already have TorchOnnxToTorch support, an allowlist strategy is used by default. With this commit, only one operator is allowlisted for expansion, MeanVarianceNormalization. However, many other operators can be correctly expanded by the current code, so hopefully the allowlist can be gradually extended. It is possible to disable the allowlist in the configuration, in which case all functions are expanded (useful for testing). Tools downstream of the importer may now need to do inlining when consuming the output of the importer, e.g.: cat imported.mlir | torch-mlir-opt --inline --convert-onnx-to-torch Explanations for subtle code changes: - Looking up the correct schema and function for an operator requires knowing the opset version. NodeImporter retrieves this from the opset imports on the ModelProto retained by the GraphInfo. Previously, the model_proto field on GraphInfo was None when importing a subgraph in import_regions, but this conflicts with the new need for opset version info. Since the apparent purpose of setting it to None was to control how GraphInfo generates its input map, a new flag is added to GraphInfo (is_subgraph) to control this behavior, so that the actual ModelProto can now be provided without breaking this. This also turned out to be useful for getting the Config via ModelInfo via GraphInfo. - Some operators' functions are context-dependent, which means the function definition depends on the types of the inputs. Therefore node importing now needs to look up the types of a node's inputs, not just its outputs as was the case previously. Consequently the operand to find_type_proto_for_name() may now be a graph input or initializer in some cases, so it has to be updated.
2024-06-15 01:11:26 +08:00
def __init__(
self,
model_info: ModelInfo,
graph_proto: onnx.GraphProto,
is_subgraph: bool = False,
):
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
self.model_info = model_info
self.graph_proto = graph_proto
self.initializer_map: Dict[str, onnx.TensorProto] = {
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
n.name: n for n in graph_proto.initializer
}
self.value_info_map: Dict[str, onnx.ValueInfoProto] = {
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
n.name: n for n in graph_proto.value_info
}
self.declared_input_map: Dict[str, onnx.ValueInfoProto] = {
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
n.name: n for n in graph_proto.input
}
self.output_map: Dict[str, onnx.ValueInfoProto] = {
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
n.name: n for n in graph_proto.output
}
# Generate the effective input map, which for old models can be a
# subset of the input map.
Create MLIR functions for ONNX operators that are functions (#3409) Resolves #3384. Many ONNX operators are defined by functions and therefore could be expanded into simpler ONNX operations during importing, avoiding the need for tools downstream to support these operators directly. This commit adds this capability to onnx_importer.py. When importing a node, the schema for the node's operator is retrieved. If the schema provides a function for the operator, a specialized version for the node's types and attributes will be created and imported as an MLIR function with private visibility. An MLIR function call will then be emitted, instead of a normal operator node. Caching is used to avoid generating redundant functions within the same module. In order to avoid a disruptive change to the importer output for a large number of operators that already have TorchOnnxToTorch support, an allowlist strategy is used by default. With this commit, only one operator is allowlisted for expansion, MeanVarianceNormalization. However, many other operators can be correctly expanded by the current code, so hopefully the allowlist can be gradually extended. It is possible to disable the allowlist in the configuration, in which case all functions are expanded (useful for testing). Tools downstream of the importer may now need to do inlining when consuming the output of the importer, e.g.: cat imported.mlir | torch-mlir-opt --inline --convert-onnx-to-torch Explanations for subtle code changes: - Looking up the correct schema and function for an operator requires knowing the opset version. NodeImporter retrieves this from the opset imports on the ModelProto retained by the GraphInfo. Previously, the model_proto field on GraphInfo was None when importing a subgraph in import_regions, but this conflicts with the new need for opset version info. Since the apparent purpose of setting it to None was to control how GraphInfo generates its input map, a new flag is added to GraphInfo (is_subgraph) to control this behavior, so that the actual ModelProto can now be provided without breaking this. This also turned out to be useful for getting the Config via ModelInfo via GraphInfo. - Some operators' functions are context-dependent, which means the function definition depends on the types of the inputs. Therefore node importing now needs to look up the types of a node's inputs, not just its outputs as was the case previously. Consequently the operand to find_type_proto_for_name() may now be a graph input or initializer in some cases, so it has to be updated.
2024-06-15 01:11:26 +08:00
if (
not is_subgraph
and model_info
and model_info.config.elide_initialized_inputs
):
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
self.input_map = {
k: v
for k, v in self.declared_input_map.items()
if k not in self.initializer_map
}
else:
self.input_map = self.declared_input_map
illegal_input_keys = self.input_map.keys() - (
self.input_map.keys() - self.initializer_map.keys()
)
assert self.input_map.keys().isdisjoint(self.initializer_map.keys()), (
f"When not in elide_initialized_inputs=True, we expect inputs to not "
f"have an initial value (got {illegal_input_keys})."
)
def find_type_proto_for_name(self, name: str) -> onnx.TypeProto:
# Node outputs don't typically have type information, but shape inference
# will associate them in the value_info. If not there, it may be a
# graph output, which must have type information.
Create MLIR functions for ONNX operators that are functions (#3409) Resolves #3384. Many ONNX operators are defined by functions and therefore could be expanded into simpler ONNX operations during importing, avoiding the need for tools downstream to support these operators directly. This commit adds this capability to onnx_importer.py. When importing a node, the schema for the node's operator is retrieved. If the schema provides a function for the operator, a specialized version for the node's types and attributes will be created and imported as an MLIR function with private visibility. An MLIR function call will then be emitted, instead of a normal operator node. Caching is used to avoid generating redundant functions within the same module. In order to avoid a disruptive change to the importer output for a large number of operators that already have TorchOnnxToTorch support, an allowlist strategy is used by default. With this commit, only one operator is allowlisted for expansion, MeanVarianceNormalization. However, many other operators can be correctly expanded by the current code, so hopefully the allowlist can be gradually extended. It is possible to disable the allowlist in the configuration, in which case all functions are expanded (useful for testing). Tools downstream of the importer may now need to do inlining when consuming the output of the importer, e.g.: cat imported.mlir | torch-mlir-opt --inline --convert-onnx-to-torch Explanations for subtle code changes: - Looking up the correct schema and function for an operator requires knowing the opset version. NodeImporter retrieves this from the opset imports on the ModelProto retained by the GraphInfo. Previously, the model_proto field on GraphInfo was None when importing a subgraph in import_regions, but this conflicts with the new need for opset version info. Since the apparent purpose of setting it to None was to control how GraphInfo generates its input map, a new flag is added to GraphInfo (is_subgraph) to control this behavior, so that the actual ModelProto can now be provided without breaking this. This also turned out to be useful for getting the Config via ModelInfo via GraphInfo. - Some operators' functions are context-dependent, which means the function definition depends on the types of the inputs. Therefore node importing now needs to look up the types of a node's inputs, not just its outputs as was the case previously. Consequently the operand to find_type_proto_for_name() may now be a graph input or initializer in some cases, so it has to be updated.
2024-06-15 01:11:26 +08:00
value_info = (
self.value_info_map.get(name)
or self.output_map.get(name)
or self.declared_input_map.get(name)
)
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
if value_info is not None:
return value_info.type
Create MLIR functions for ONNX operators that are functions (#3409) Resolves #3384. Many ONNX operators are defined by functions and therefore could be expanded into simpler ONNX operations during importing, avoiding the need for tools downstream to support these operators directly. This commit adds this capability to onnx_importer.py. When importing a node, the schema for the node's operator is retrieved. If the schema provides a function for the operator, a specialized version for the node's types and attributes will be created and imported as an MLIR function with private visibility. An MLIR function call will then be emitted, instead of a normal operator node. Caching is used to avoid generating redundant functions within the same module. In order to avoid a disruptive change to the importer output for a large number of operators that already have TorchOnnxToTorch support, an allowlist strategy is used by default. With this commit, only one operator is allowlisted for expansion, MeanVarianceNormalization. However, many other operators can be correctly expanded by the current code, so hopefully the allowlist can be gradually extended. It is possible to disable the allowlist in the configuration, in which case all functions are expanded (useful for testing). Tools downstream of the importer may now need to do inlining when consuming the output of the importer, e.g.: cat imported.mlir | torch-mlir-opt --inline --convert-onnx-to-torch Explanations for subtle code changes: - Looking up the correct schema and function for an operator requires knowing the opset version. NodeImporter retrieves this from the opset imports on the ModelProto retained by the GraphInfo. Previously, the model_proto field on GraphInfo was None when importing a subgraph in import_regions, but this conflicts with the new need for opset version info. Since the apparent purpose of setting it to None was to control how GraphInfo generates its input map, a new flag is added to GraphInfo (is_subgraph) to control this behavior, so that the actual ModelProto can now be provided without breaking this. This also turned out to be useful for getting the Config via ModelInfo via GraphInfo. - Some operators' functions are context-dependent, which means the function definition depends on the types of the inputs. Therefore node importing now needs to look up the types of a node's inputs, not just its outputs as was the case previously. Consequently the operand to find_type_proto_for_name() may now be a graph input or initializer in some cases, so it has to be updated.
2024-06-15 01:11:26 +08:00
tensor_proto = self.initializer_map.get(name)
if tensor_proto is not None:
return onnx.helper.make_tensor_type_proto(
tensor_proto.data_type, tensor_proto.dims
)
# No type information is associated, this can occur when the value is unused:
return ""
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
class OnnxImportError(Exception): ...
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
class NodeImporter:
"""Imports graph nodes into MLIR.
Typically, the top level graph will be imported into a func whereas dependent
graphs may just be imported with references to pre-existing values.
Note that ONNX requires that graphs be sorted topologically and free of cycles,
so we don't take any special steps to order them for dominance.
"""
__slots__ = [
"_c",
"_cc",
Create MLIR functions for ONNX operators that are functions (#3409) Resolves #3384. Many ONNX operators are defined by functions and therefore could be expanded into simpler ONNX operations during importing, avoiding the need for tools downstream to support these operators directly. This commit adds this capability to onnx_importer.py. When importing a node, the schema for the node's operator is retrieved. If the schema provides a function for the operator, a specialized version for the node's types and attributes will be created and imported as an MLIR function with private visibility. An MLIR function call will then be emitted, instead of a normal operator node. Caching is used to avoid generating redundant functions within the same module. In order to avoid a disruptive change to the importer output for a large number of operators that already have TorchOnnxToTorch support, an allowlist strategy is used by default. With this commit, only one operator is allowlisted for expansion, MeanVarianceNormalization. However, many other operators can be correctly expanded by the current code, so hopefully the allowlist can be gradually extended. It is possible to disable the allowlist in the configuration, in which case all functions are expanded (useful for testing). Tools downstream of the importer may now need to do inlining when consuming the output of the importer, e.g.: cat imported.mlir | torch-mlir-opt --inline --convert-onnx-to-torch Explanations for subtle code changes: - Looking up the correct schema and function for an operator requires knowing the opset version. NodeImporter retrieves this from the opset imports on the ModelProto retained by the GraphInfo. Previously, the model_proto field on GraphInfo was None when importing a subgraph in import_regions, but this conflicts with the new need for opset version info. Since the apparent purpose of setting it to None was to control how GraphInfo generates its input map, a new flag is added to GraphInfo (is_subgraph) to control this behavior, so that the actual ModelProto can now be provided without breaking this. This also turned out to be useful for getting the Config via ModelInfo via GraphInfo. - Some operators' functions are context-dependent, which means the function definition depends on the types of the inputs. Therefore node importing now needs to look up the types of a node's inputs, not just its outputs as was the case previously. Consequently the operand to find_type_proto_for_name() may now be a graph input or initializer in some cases, so it has to be updated.
2024-06-15 01:11:26 +08:00
"_m",
"_mc",
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
"_gi",
"_p",
"_b",
"_nv_map",
]
def __init__(
self,
graph_info: GraphInfo,
*,
parent_op: Operation,
block: Block,
context_cache: "ContextCache",
Create MLIR functions for ONNX operators that are functions (#3409) Resolves #3384. Many ONNX operators are defined by functions and therefore could be expanded into simpler ONNX operations during importing, avoiding the need for tools downstream to support these operators directly. This commit adds this capability to onnx_importer.py. When importing a node, the schema for the node's operator is retrieved. If the schema provides a function for the operator, a specialized version for the node's types and attributes will be created and imported as an MLIR function with private visibility. An MLIR function call will then be emitted, instead of a normal operator node. Caching is used to avoid generating redundant functions within the same module. In order to avoid a disruptive change to the importer output for a large number of operators that already have TorchOnnxToTorch support, an allowlist strategy is used by default. With this commit, only one operator is allowlisted for expansion, MeanVarianceNormalization. However, many other operators can be correctly expanded by the current code, so hopefully the allowlist can be gradually extended. It is possible to disable the allowlist in the configuration, in which case all functions are expanded (useful for testing). Tools downstream of the importer may now need to do inlining when consuming the output of the importer, e.g.: cat imported.mlir | torch-mlir-opt --inline --convert-onnx-to-torch Explanations for subtle code changes: - Looking up the correct schema and function for an operator requires knowing the opset version. NodeImporter retrieves this from the opset imports on the ModelProto retained by the GraphInfo. Previously, the model_proto field on GraphInfo was None when importing a subgraph in import_regions, but this conflicts with the new need for opset version info. Since the apparent purpose of setting it to None was to control how GraphInfo generates its input map, a new flag is added to GraphInfo (is_subgraph) to control this behavior, so that the actual ModelProto can now be provided without breaking this. This also turned out to be useful for getting the Config via ModelInfo via GraphInfo. - Some operators' functions are context-dependent, which means the function definition depends on the types of the inputs. Therefore node importing now needs to look up the types of a node's inputs, not just its outputs as was the case previously. Consequently the operand to find_type_proto_for_name() may now be a graph input or initializer in some cases, so it has to be updated.
2024-06-15 01:11:26 +08:00
module_op: Operation,
module_cache: "ModuleCache",
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
):
self._c = parent_op.context
self._cc = context_cache
Create MLIR functions for ONNX operators that are functions (#3409) Resolves #3384. Many ONNX operators are defined by functions and therefore could be expanded into simpler ONNX operations during importing, avoiding the need for tools downstream to support these operators directly. This commit adds this capability to onnx_importer.py. When importing a node, the schema for the node's operator is retrieved. If the schema provides a function for the operator, a specialized version for the node's types and attributes will be created and imported as an MLIR function with private visibility. An MLIR function call will then be emitted, instead of a normal operator node. Caching is used to avoid generating redundant functions within the same module. In order to avoid a disruptive change to the importer output for a large number of operators that already have TorchOnnxToTorch support, an allowlist strategy is used by default. With this commit, only one operator is allowlisted for expansion, MeanVarianceNormalization. However, many other operators can be correctly expanded by the current code, so hopefully the allowlist can be gradually extended. It is possible to disable the allowlist in the configuration, in which case all functions are expanded (useful for testing). Tools downstream of the importer may now need to do inlining when consuming the output of the importer, e.g.: cat imported.mlir | torch-mlir-opt --inline --convert-onnx-to-torch Explanations for subtle code changes: - Looking up the correct schema and function for an operator requires knowing the opset version. NodeImporter retrieves this from the opset imports on the ModelProto retained by the GraphInfo. Previously, the model_proto field on GraphInfo was None when importing a subgraph in import_regions, but this conflicts with the new need for opset version info. Since the apparent purpose of setting it to None was to control how GraphInfo generates its input map, a new flag is added to GraphInfo (is_subgraph) to control this behavior, so that the actual ModelProto can now be provided without breaking this. This also turned out to be useful for getting the Config via ModelInfo via GraphInfo. - Some operators' functions are context-dependent, which means the function definition depends on the types of the inputs. Therefore node importing now needs to look up the types of a node's inputs, not just its outputs as was the case previously. Consequently the operand to find_type_proto_for_name() may now be a graph input or initializer in some cases, so it has to be updated.
2024-06-15 01:11:26 +08:00
self._m = module_op
self._mc = module_cache
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
self._gi = graph_info
self._p = parent_op
self._b = block
self._nv_map: Dict[str, Value] = {}
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
@classmethod
def define_function(
Create MLIR functions for ONNX operators that are functions (#3409) Resolves #3384. Many ONNX operators are defined by functions and therefore could be expanded into simpler ONNX operations during importing, avoiding the need for tools downstream to support these operators directly. This commit adds this capability to onnx_importer.py. When importing a node, the schema for the node's operator is retrieved. If the schema provides a function for the operator, a specialized version for the node's types and attributes will be created and imported as an MLIR function with private visibility. An MLIR function call will then be emitted, instead of a normal operator node. Caching is used to avoid generating redundant functions within the same module. In order to avoid a disruptive change to the importer output for a large number of operators that already have TorchOnnxToTorch support, an allowlist strategy is used by default. With this commit, only one operator is allowlisted for expansion, MeanVarianceNormalization. However, many other operators can be correctly expanded by the current code, so hopefully the allowlist can be gradually extended. It is possible to disable the allowlist in the configuration, in which case all functions are expanded (useful for testing). Tools downstream of the importer may now need to do inlining when consuming the output of the importer, e.g.: cat imported.mlir | torch-mlir-opt --inline --convert-onnx-to-torch Explanations for subtle code changes: - Looking up the correct schema and function for an operator requires knowing the opset version. NodeImporter retrieves this from the opset imports on the ModelProto retained by the GraphInfo. Previously, the model_proto field on GraphInfo was None when importing a subgraph in import_regions, but this conflicts with the new need for opset version info. Since the apparent purpose of setting it to None was to control how GraphInfo generates its input map, a new flag is added to GraphInfo (is_subgraph) to control this behavior, so that the actual ModelProto can now be provided without breaking this. This also turned out to be useful for getting the Config via ModelInfo via GraphInfo. - Some operators' functions are context-dependent, which means the function definition depends on the types of the inputs. Therefore node importing now needs to look up the types of a node's inputs, not just its outputs as was the case previously. Consequently the operand to find_type_proto_for_name() may now be a graph input or initializer in some cases, so it has to be updated.
2024-06-15 01:11:26 +08:00
cls,
graph_info: GraphInfo,
module_op: Operation,
context_cache: Optional["ContextCache"] = None,
module_cache: Optional["ModuleCache"] = None,
private: bool = False,
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
) -> "NodeImporter":
Create MLIR functions for ONNX operators that are functions (#3409) Resolves #3384. Many ONNX operators are defined by functions and therefore could be expanded into simpler ONNX operations during importing, avoiding the need for tools downstream to support these operators directly. This commit adds this capability to onnx_importer.py. When importing a node, the schema for the node's operator is retrieved. If the schema provides a function for the operator, a specialized version for the node's types and attributes will be created and imported as an MLIR function with private visibility. An MLIR function call will then be emitted, instead of a normal operator node. Caching is used to avoid generating redundant functions within the same module. In order to avoid a disruptive change to the importer output for a large number of operators that already have TorchOnnxToTorch support, an allowlist strategy is used by default. With this commit, only one operator is allowlisted for expansion, MeanVarianceNormalization. However, many other operators can be correctly expanded by the current code, so hopefully the allowlist can be gradually extended. It is possible to disable the allowlist in the configuration, in which case all functions are expanded (useful for testing). Tools downstream of the importer may now need to do inlining when consuming the output of the importer, e.g.: cat imported.mlir | torch-mlir-opt --inline --convert-onnx-to-torch Explanations for subtle code changes: - Looking up the correct schema and function for an operator requires knowing the opset version. NodeImporter retrieves this from the opset imports on the ModelProto retained by the GraphInfo. Previously, the model_proto field on GraphInfo was None when importing a subgraph in import_regions, but this conflicts with the new need for opset version info. Since the apparent purpose of setting it to None was to control how GraphInfo generates its input map, a new flag is added to GraphInfo (is_subgraph) to control this behavior, so that the actual ModelProto can now be provided without breaking this. This also turned out to be useful for getting the Config via ModelInfo via GraphInfo. - Some operators' functions are context-dependent, which means the function definition depends on the types of the inputs. Therefore node importing now needs to look up the types of a node's inputs, not just its outputs as was the case previously. Consequently the operand to find_type_proto_for_name() may now be a graph input or initializer in some cases, so it has to be updated.
2024-06-15 01:11:26 +08:00
cc = (
context_cache
if context_cache is not None
else ContextCache(module_op.context)
)
mc = module_cache if module_cache is not None else ModuleCache(module_op, cc)
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
with module_op.context, Location.name(f"graph:{graph_info.graph_proto.name}"):
body = module_op.regions[0].blocks[0]
func_name = graph_info.graph_proto.name
input_types = [
cc.type_proto_to_type(inp.type) for inp in graph_info.input_map.values()
]
output_types = [
cc.type_proto_to_type(out.type)
for out in graph_info.output_map.values()
]
ftype = FunctionType.get(input_types, output_types)
Create MLIR functions for ONNX operators that are functions (#3409) Resolves #3384. Many ONNX operators are defined by functions and therefore could be expanded into simpler ONNX operations during importing, avoiding the need for tools downstream to support these operators directly. This commit adds this capability to onnx_importer.py. When importing a node, the schema for the node's operator is retrieved. If the schema provides a function for the operator, a specialized version for the node's types and attributes will be created and imported as an MLIR function with private visibility. An MLIR function call will then be emitted, instead of a normal operator node. Caching is used to avoid generating redundant functions within the same module. In order to avoid a disruptive change to the importer output for a large number of operators that already have TorchOnnxToTorch support, an allowlist strategy is used by default. With this commit, only one operator is allowlisted for expansion, MeanVarianceNormalization. However, many other operators can be correctly expanded by the current code, so hopefully the allowlist can be gradually extended. It is possible to disable the allowlist in the configuration, in which case all functions are expanded (useful for testing). Tools downstream of the importer may now need to do inlining when consuming the output of the importer, e.g.: cat imported.mlir | torch-mlir-opt --inline --convert-onnx-to-torch Explanations for subtle code changes: - Looking up the correct schema and function for an operator requires knowing the opset version. NodeImporter retrieves this from the opset imports on the ModelProto retained by the GraphInfo. Previously, the model_proto field on GraphInfo was None when importing a subgraph in import_regions, but this conflicts with the new need for opset version info. Since the apparent purpose of setting it to None was to control how GraphInfo generates its input map, a new flag is added to GraphInfo (is_subgraph) to control this behavior, so that the actual ModelProto can now be provided without breaking this. This also turned out to be useful for getting the Config via ModelInfo via GraphInfo. - Some operators' functions are context-dependent, which means the function definition depends on the types of the inputs. Therefore node importing now needs to look up the types of a node's inputs, not just its outputs as was the case previously. Consequently the operand to find_type_proto_for_name() may now be a graph input or initializer in some cases, so it has to be updated.
2024-06-15 01:11:26 +08:00
func_op = func_dialect.FuncOp(
func_name,
ftype,
ip=InsertionPoint(body),
visibility="private" if private else None,
)
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
block = func_op.add_entry_block(
[Location.name(k) for k in graph_info.input_map.keys()]
)
Create MLIR functions for ONNX operators that are functions (#3409) Resolves #3384. Many ONNX operators are defined by functions and therefore could be expanded into simpler ONNX operations during importing, avoiding the need for tools downstream to support these operators directly. This commit adds this capability to onnx_importer.py. When importing a node, the schema for the node's operator is retrieved. If the schema provides a function for the operator, a specialized version for the node's types and attributes will be created and imported as an MLIR function with private visibility. An MLIR function call will then be emitted, instead of a normal operator node. Caching is used to avoid generating redundant functions within the same module. In order to avoid a disruptive change to the importer output for a large number of operators that already have TorchOnnxToTorch support, an allowlist strategy is used by default. With this commit, only one operator is allowlisted for expansion, MeanVarianceNormalization. However, many other operators can be correctly expanded by the current code, so hopefully the allowlist can be gradually extended. It is possible to disable the allowlist in the configuration, in which case all functions are expanded (useful for testing). Tools downstream of the importer may now need to do inlining when consuming the output of the importer, e.g.: cat imported.mlir | torch-mlir-opt --inline --convert-onnx-to-torch Explanations for subtle code changes: - Looking up the correct schema and function for an operator requires knowing the opset version. NodeImporter retrieves this from the opset imports on the ModelProto retained by the GraphInfo. Previously, the model_proto field on GraphInfo was None when importing a subgraph in import_regions, but this conflicts with the new need for opset version info. Since the apparent purpose of setting it to None was to control how GraphInfo generates its input map, a new flag is added to GraphInfo (is_subgraph) to control this behavior, so that the actual ModelProto can now be provided without breaking this. This also turned out to be useful for getting the Config via ModelInfo via GraphInfo. - Some operators' functions are context-dependent, which means the function definition depends on the types of the inputs. Therefore node importing now needs to look up the types of a node's inputs, not just its outputs as was the case previously. Consequently the operand to find_type_proto_for_name() may now be a graph input or initializer in some cases, so it has to be updated.
2024-06-15 01:11:26 +08:00
imp = NodeImporter(
graph_info,
parent_op=func_op,
block=block,
context_cache=cc,
module_op=module_op,
module_cache=mc,
)
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
for node_name, input_value in zip(graph_info.input_map.keys(), block.arguments):
imp._nv_map[node_name] = input_value
imp._populate_graph_attrs(func_op)
return imp
def _populate_graph_attrs(self, container_op: Operation):
"""Populates graph level meta attributes on the given container op."""
m = self._gi.model_info.model_proto
with container_op.context:
i64_type = IntegerType.get_signed(64)
default_opset_version = 0
opset_versions: Dict[str, IntegerAttr] = {}
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
for opset_import in m.opset_import:
if opset_import.domain:
opset_versions[opset_import.domain] = IntegerAttr.get(
i64_type, opset_import.version
)
else:
default_opset_version = opset_import.version
if default_opset_version:
container_op.attributes["torch.onnx_meta.opset_version"] = (
IntegerAttr.get(i64_type, default_opset_version)
)
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
if opset_versions:
container_op.attributes["torch.onnx_meta.opset_versions"] = (
DictAttr.get(opset_versions)
)
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
container_op.attributes["torch.onnx_meta.ir_version"] = IntegerAttr.get(
IntegerType.get_signed(64), m.ir_version
)
container_op.attributes["torch.onnx_meta.producer_name"] = StringAttr.get(
m.producer_name
)
container_op.attributes["torch.onnx_meta.producer_version"] = (
StringAttr.get(m.producer_version)
)
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
def import_all(self, func=True):
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
"""Imports all nodes topologically."""
# TODO: Consider pulling in initializers on demand since there can be so
# much unused crap.
for init in self._gi.initializer_map.values():
self.import_initializer(init)
self.get_none()
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
for node in self._gi.graph_proto.node:
self.import_node(node)
outputs = []
for output_name in self._gi.output_map.keys():
try:
outputs.append(self._nv_map[output_name])
except KeyError:
raise OnnxImportError(
f"Non topologically produced ONNX graph output '{output_name}'"
)
with InsertionPoint(self._b), Location.unknown():
if func:
func_dialect.ReturnOp(outputs)
else:
Operation.create(name="torch.operator_terminator", operands=outputs)
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
def get_none(self):
if "" in self._nv_map:
return self._nv_map[""]
with InsertionPoint(self._b), Location.name("onnx_importer.none"):
nne = Operation.create(
name="torch.constant.none",
results=[self._cc.get_none_type()],
operands=[],
attributes={},
).results[0]
self._nv_map[""] = nne
return nne
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
def import_node(self, node: onnx.NodeProto):
with InsertionPoint(self._b), Location.name(node.name):
op_type = node.op_type
Create MLIR functions for ONNX operators that are functions (#3409) Resolves #3384. Many ONNX operators are defined by functions and therefore could be expanded into simpler ONNX operations during importing, avoiding the need for tools downstream to support these operators directly. This commit adds this capability to onnx_importer.py. When importing a node, the schema for the node's operator is retrieved. If the schema provides a function for the operator, a specialized version for the node's types and attributes will be created and imported as an MLIR function with private visibility. An MLIR function call will then be emitted, instead of a normal operator node. Caching is used to avoid generating redundant functions within the same module. In order to avoid a disruptive change to the importer output for a large number of operators that already have TorchOnnxToTorch support, an allowlist strategy is used by default. With this commit, only one operator is allowlisted for expansion, MeanVarianceNormalization. However, many other operators can be correctly expanded by the current code, so hopefully the allowlist can be gradually extended. It is possible to disable the allowlist in the configuration, in which case all functions are expanded (useful for testing). Tools downstream of the importer may now need to do inlining when consuming the output of the importer, e.g.: cat imported.mlir | torch-mlir-opt --inline --convert-onnx-to-torch Explanations for subtle code changes: - Looking up the correct schema and function for an operator requires knowing the opset version. NodeImporter retrieves this from the opset imports on the ModelProto retained by the GraphInfo. Previously, the model_proto field on GraphInfo was None when importing a subgraph in import_regions, but this conflicts with the new need for opset version info. Since the apparent purpose of setting it to None was to control how GraphInfo generates its input map, a new flag is added to GraphInfo (is_subgraph) to control this behavior, so that the actual ModelProto can now be provided without breaking this. This also turned out to be useful for getting the Config via ModelInfo via GraphInfo. - Some operators' functions are context-dependent, which means the function definition depends on the types of the inputs. Therefore node importing now needs to look up the types of a node's inputs, not just its outputs as was the case previously. Consequently the operand to find_type_proto_for_name() may now be a graph input or initializer in some cases, so it has to be updated.
2024-06-15 01:11:26 +08:00
op_domain = node.domain
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
# Handle special op types that materialize to non-op IR constructs.
# Handlers return True if the op was handled, else this function
# should process it as a general node.
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
special_key = f"_handle_node_{op_type}"
if hasattr(self, special_key):
was_handled = getattr(self, special_key)(node)
if was_handled:
return
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
# General node import.
input_values = []
Create MLIR functions for ONNX operators that are functions (#3409) Resolves #3384. Many ONNX operators are defined by functions and therefore could be expanded into simpler ONNX operations during importing, avoiding the need for tools downstream to support these operators directly. This commit adds this capability to onnx_importer.py. When importing a node, the schema for the node's operator is retrieved. If the schema provides a function for the operator, a specialized version for the node's types and attributes will be created and imported as an MLIR function with private visibility. An MLIR function call will then be emitted, instead of a normal operator node. Caching is used to avoid generating redundant functions within the same module. In order to avoid a disruptive change to the importer output for a large number of operators that already have TorchOnnxToTorch support, an allowlist strategy is used by default. With this commit, only one operator is allowlisted for expansion, MeanVarianceNormalization. However, many other operators can be correctly expanded by the current code, so hopefully the allowlist can be gradually extended. It is possible to disable the allowlist in the configuration, in which case all functions are expanded (useful for testing). Tools downstream of the importer may now need to do inlining when consuming the output of the importer, e.g.: cat imported.mlir | torch-mlir-opt --inline --convert-onnx-to-torch Explanations for subtle code changes: - Looking up the correct schema and function for an operator requires knowing the opset version. NodeImporter retrieves this from the opset imports on the ModelProto retained by the GraphInfo. Previously, the model_proto field on GraphInfo was None when importing a subgraph in import_regions, but this conflicts with the new need for opset version info. Since the apparent purpose of setting it to None was to control how GraphInfo generates its input map, a new flag is added to GraphInfo (is_subgraph) to control this behavior, so that the actual ModelProto can now be provided without breaking this. This also turned out to be useful for getting the Config via ModelInfo via GraphInfo. - Some operators' functions are context-dependent, which means the function definition depends on the types of the inputs. Therefore node importing now needs to look up the types of a node's inputs, not just its outputs as was the case previously. Consequently the operand to find_type_proto_for_name() may now be a graph input or initializer in some cases, so it has to be updated.
2024-06-15 01:11:26 +08:00
input_type_protos = []
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
for input_name in node.input:
try:
input_values.append(self._nv_map[input_name])
Create MLIR functions for ONNX operators that are functions (#3409) Resolves #3384. Many ONNX operators are defined by functions and therefore could be expanded into simpler ONNX operations during importing, avoiding the need for tools downstream to support these operators directly. This commit adds this capability to onnx_importer.py. When importing a node, the schema for the node's operator is retrieved. If the schema provides a function for the operator, a specialized version for the node's types and attributes will be created and imported as an MLIR function with private visibility. An MLIR function call will then be emitted, instead of a normal operator node. Caching is used to avoid generating redundant functions within the same module. In order to avoid a disruptive change to the importer output for a large number of operators that already have TorchOnnxToTorch support, an allowlist strategy is used by default. With this commit, only one operator is allowlisted for expansion, MeanVarianceNormalization. However, many other operators can be correctly expanded by the current code, so hopefully the allowlist can be gradually extended. It is possible to disable the allowlist in the configuration, in which case all functions are expanded (useful for testing). Tools downstream of the importer may now need to do inlining when consuming the output of the importer, e.g.: cat imported.mlir | torch-mlir-opt --inline --convert-onnx-to-torch Explanations for subtle code changes: - Looking up the correct schema and function for an operator requires knowing the opset version. NodeImporter retrieves this from the opset imports on the ModelProto retained by the GraphInfo. Previously, the model_proto field on GraphInfo was None when importing a subgraph in import_regions, but this conflicts with the new need for opset version info. Since the apparent purpose of setting it to None was to control how GraphInfo generates its input map, a new flag is added to GraphInfo (is_subgraph) to control this behavior, so that the actual ModelProto can now be provided without breaking this. This also turned out to be useful for getting the Config via ModelInfo via GraphInfo. - Some operators' functions are context-dependent, which means the function definition depends on the types of the inputs. Therefore node importing now needs to look up the types of a node's inputs, not just its outputs as was the case previously. Consequently the operand to find_type_proto_for_name() may now be a graph input or initializer in some cases, so it has to be updated.
2024-06-15 01:11:26 +08:00
# Missing optional arguments will have empty types
input_type_protos.append(
self._gi.find_type_proto_for_name(input_name)
or onnx.TypeProto()
)
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
except KeyError:
raise OnnxImportError(
f"Non topologically produced ONNX node input '{input_name}': {node}"
)
Create MLIR functions for ONNX operators that are functions (#3409) Resolves #3384. Many ONNX operators are defined by functions and therefore could be expanded into simpler ONNX operations during importing, avoiding the need for tools downstream to support these operators directly. This commit adds this capability to onnx_importer.py. When importing a node, the schema for the node's operator is retrieved. If the schema provides a function for the operator, a specialized version for the node's types and attributes will be created and imported as an MLIR function with private visibility. An MLIR function call will then be emitted, instead of a normal operator node. Caching is used to avoid generating redundant functions within the same module. In order to avoid a disruptive change to the importer output for a large number of operators that already have TorchOnnxToTorch support, an allowlist strategy is used by default. With this commit, only one operator is allowlisted for expansion, MeanVarianceNormalization. However, many other operators can be correctly expanded by the current code, so hopefully the allowlist can be gradually extended. It is possible to disable the allowlist in the configuration, in which case all functions are expanded (useful for testing). Tools downstream of the importer may now need to do inlining when consuming the output of the importer, e.g.: cat imported.mlir | torch-mlir-opt --inline --convert-onnx-to-torch Explanations for subtle code changes: - Looking up the correct schema and function for an operator requires knowing the opset version. NodeImporter retrieves this from the opset imports on the ModelProto retained by the GraphInfo. Previously, the model_proto field on GraphInfo was None when importing a subgraph in import_regions, but this conflicts with the new need for opset version info. Since the apparent purpose of setting it to None was to control how GraphInfo generates its input map, a new flag is added to GraphInfo (is_subgraph) to control this behavior, so that the actual ModelProto can now be provided without breaking this. This also turned out to be useful for getting the Config via ModelInfo via GraphInfo. - Some operators' functions are context-dependent, which means the function definition depends on the types of the inputs. Therefore node importing now needs to look up the types of a node's inputs, not just its outputs as was the case previously. Consequently the operand to find_type_proto_for_name() may now be a graph input or initializer in some cases, so it has to be updated.
2024-06-15 01:11:26 +08:00
output_names = []
output_type_protos = []
output_types = []
for output_name in node.output:
output_names.append(output_name)
type_proto = self._gi.find_type_proto_for_name(output_name)
output_type_protos.append(type_proto)
output_types.append(self._cc.type_proto_to_type(type_proto))
for opset_import in self._gi.model_info.model_proto.opset_import:
if opset_import.domain == op_domain:
opset_version = opset_import.version
break
operator_func_op = self._mc.get_operator_function(
op_type,
op_domain,
opset_version,
input_type_protos,
output_type_protos,
node,
self._gi.model_info.config,
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
)
Create MLIR functions for ONNX operators that are functions (#3409) Resolves #3384. Many ONNX operators are defined by functions and therefore could be expanded into simpler ONNX operations during importing, avoiding the need for tools downstream to support these operators directly. This commit adds this capability to onnx_importer.py. When importing a node, the schema for the node's operator is retrieved. If the schema provides a function for the operator, a specialized version for the node's types and attributes will be created and imported as an MLIR function with private visibility. An MLIR function call will then be emitted, instead of a normal operator node. Caching is used to avoid generating redundant functions within the same module. In order to avoid a disruptive change to the importer output for a large number of operators that already have TorchOnnxToTorch support, an allowlist strategy is used by default. With this commit, only one operator is allowlisted for expansion, MeanVarianceNormalization. However, many other operators can be correctly expanded by the current code, so hopefully the allowlist can be gradually extended. It is possible to disable the allowlist in the configuration, in which case all functions are expanded (useful for testing). Tools downstream of the importer may now need to do inlining when consuming the output of the importer, e.g.: cat imported.mlir | torch-mlir-opt --inline --convert-onnx-to-torch Explanations for subtle code changes: - Looking up the correct schema and function for an operator requires knowing the opset version. NodeImporter retrieves this from the opset imports on the ModelProto retained by the GraphInfo. Previously, the model_proto field on GraphInfo was None when importing a subgraph in import_regions, but this conflicts with the new need for opset version info. Since the apparent purpose of setting it to None was to control how GraphInfo generates its input map, a new flag is added to GraphInfo (is_subgraph) to control this behavior, so that the actual ModelProto can now be provided without breaking this. This also turned out to be useful for getting the Config via ModelInfo via GraphInfo. - Some operators' functions are context-dependent, which means the function definition depends on the types of the inputs. Therefore node importing now needs to look up the types of a node's inputs, not just its outputs as was the case previously. Consequently the operand to find_type_proto_for_name() may now be a graph input or initializer in some cases, so it has to be updated.
2024-06-15 01:11:26 +08:00
if operator_func_op is not None:
custom_op = func_dialect.CallOp(operator_func_op, input_values)
else:
attrs = self.import_attributes(node.attribute)
attrs["name"] = StringAttr.get(f"onnx.{op_type}")
regions = self.count_regions(node.attribute)
custom_op = Operation.create(
name="torch.operator",
results=output_types,
operands=input_values,
attributes=attrs,
regions=regions,
)
self.import_regions(node.attribute, custom_op)
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
for output_name, output_value in zip(output_names, custom_op.results):
self._nv_map[output_name] = output_value
def import_attributes(self, onnx_attrs: List[onnx.AttributeProto]):
attrs = {}
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
for onnx_attr in onnx_attrs:
attr_type = onnx_attr.type
if attr_type not in ATTRIBUTE_TYPE_HANDLERS:
raise OnnxImportError(
f"Unhandled ONNX attribute type code {attr_type}: {onnx_attr}"
)
handler = ATTRIBUTE_TYPE_HANDLERS[attr_type]
if handler is None:
# Active skip.
continue
elif handler is False:
# Active error.
# try matching attribute type ID to name for a more descriptive error message
try:
attr_type_name = onnx.AttributeProto.AttributeType.Name(attr_type)
except ValueError:
attr_type_name = "UNKNOWN"
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
raise OnnxImportError(
f"ONNX importer does not support generic node attribute type {attr_type_name} "
f"with ID {attr_type}. "
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
f"This likely means that this is a special node which requires specific "
f"handling in the importer: {onnx_attr}"
)
result = handler(onnx_attr, self._cc)
attrs[f"torch.onnx.{onnx_attr.name}"] = result
return attrs
def count_regions(self, onnx_attrs: List[onnx.AttributeProto]):
count = 0
for onnx_attr in onnx_attrs:
if onnx_attr.type == onnx.AttributeProto.AttributeType.GRAPH:
count += 1
return count
def import_regions(self, onnx_attrs: List[onnx.AttributeProto], op):
attr_map = {}
for onnx_attr in onnx_attrs:
attr_type = onnx_attr.type
if attr_type != onnx.AttributeProto.AttributeType.GRAPH:
continue
attr_map[onnx_attr.name] = onnx_attr
for name, region in zip(sorted(attr_map.keys()), op.regions):
attr = attr_map[name]
block_types = [
self._cc.type_proto_to_type(input.type) for input in attr.g.input
]
block_names = [input.name for input in attr.g.input]
region.blocks.append(
*block_types, arg_locs=[op.location] * len(block_types)
)
block = region.blocks[0]
Create MLIR functions for ONNX operators that are functions (#3409) Resolves #3384. Many ONNX operators are defined by functions and therefore could be expanded into simpler ONNX operations during importing, avoiding the need for tools downstream to support these operators directly. This commit adds this capability to onnx_importer.py. When importing a node, the schema for the node's operator is retrieved. If the schema provides a function for the operator, a specialized version for the node's types and attributes will be created and imported as an MLIR function with private visibility. An MLIR function call will then be emitted, instead of a normal operator node. Caching is used to avoid generating redundant functions within the same module. In order to avoid a disruptive change to the importer output for a large number of operators that already have TorchOnnxToTorch support, an allowlist strategy is used by default. With this commit, only one operator is allowlisted for expansion, MeanVarianceNormalization. However, many other operators can be correctly expanded by the current code, so hopefully the allowlist can be gradually extended. It is possible to disable the allowlist in the configuration, in which case all functions are expanded (useful for testing). Tools downstream of the importer may now need to do inlining when consuming the output of the importer, e.g.: cat imported.mlir | torch-mlir-opt --inline --convert-onnx-to-torch Explanations for subtle code changes: - Looking up the correct schema and function for an operator requires knowing the opset version. NodeImporter retrieves this from the opset imports on the ModelProto retained by the GraphInfo. Previously, the model_proto field on GraphInfo was None when importing a subgraph in import_regions, but this conflicts with the new need for opset version info. Since the apparent purpose of setting it to None was to control how GraphInfo generates its input map, a new flag is added to GraphInfo (is_subgraph) to control this behavior, so that the actual ModelProto can now be provided without breaking this. This also turned out to be useful for getting the Config via ModelInfo via GraphInfo. - Some operators' functions are context-dependent, which means the function definition depends on the types of the inputs. Therefore node importing now needs to look up the types of a node's inputs, not just its outputs as was the case previously. Consequently the operand to find_type_proto_for_name() may now be a graph input or initializer in some cases, so it has to be updated.
2024-06-15 01:11:26 +08:00
graph_info = GraphInfo(self._gi.model_info, attr.g, is_subgraph=True)
imp = NodeImporter(
Create MLIR functions for ONNX operators that are functions (#3409) Resolves #3384. Many ONNX operators are defined by functions and therefore could be expanded into simpler ONNX operations during importing, avoiding the need for tools downstream to support these operators directly. This commit adds this capability to onnx_importer.py. When importing a node, the schema for the node's operator is retrieved. If the schema provides a function for the operator, a specialized version for the node's types and attributes will be created and imported as an MLIR function with private visibility. An MLIR function call will then be emitted, instead of a normal operator node. Caching is used to avoid generating redundant functions within the same module. In order to avoid a disruptive change to the importer output for a large number of operators that already have TorchOnnxToTorch support, an allowlist strategy is used by default. With this commit, only one operator is allowlisted for expansion, MeanVarianceNormalization. However, many other operators can be correctly expanded by the current code, so hopefully the allowlist can be gradually extended. It is possible to disable the allowlist in the configuration, in which case all functions are expanded (useful for testing). Tools downstream of the importer may now need to do inlining when consuming the output of the importer, e.g.: cat imported.mlir | torch-mlir-opt --inline --convert-onnx-to-torch Explanations for subtle code changes: - Looking up the correct schema and function for an operator requires knowing the opset version. NodeImporter retrieves this from the opset imports on the ModelProto retained by the GraphInfo. Previously, the model_proto field on GraphInfo was None when importing a subgraph in import_regions, but this conflicts with the new need for opset version info. Since the apparent purpose of setting it to None was to control how GraphInfo generates its input map, a new flag is added to GraphInfo (is_subgraph) to control this behavior, so that the actual ModelProto can now be provided without breaking this. This also turned out to be useful for getting the Config via ModelInfo via GraphInfo. - Some operators' functions are context-dependent, which means the function definition depends on the types of the inputs. Therefore node importing now needs to look up the types of a node's inputs, not just its outputs as was the case previously. Consequently the operand to find_type_proto_for_name() may now be a graph input or initializer in some cases, so it has to be updated.
2024-06-15 01:11:26 +08:00
graph_info,
parent_op=op,
block=block,
context_cache=self._cc,
module_op=self._m,
module_cache=self._mc,
)
for node_name, input_value in zip(block_names, block.arguments):
imp._nv_map[node_name] = input_value
for k in self._nv_map:
imp._nv_map[k] = self._nv_map[k]
imp.import_all(False)
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
def import_initializer(
self, initializer: onnx.TensorProto, extern_name: str = None
) -> Value:
# If an explicitly specified name is given, use that; otherwise, pick
# up the name from the tensor proto itself
iname = extern_name if extern_name else initializer.name
with InsertionPoint(self._b), Location.name(iname):
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
value_attr = self._cc.tensor_proto_to_attr(initializer)
vtensor_type = self._cc.tensor_proto_to_type(initializer)
attrs = {
"name": StringAttr.get(f"onnx.Constant"),
"torch.onnx.value": value_attr,
}
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
literal_op = Operation.create(
name="torch.operator",
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
results=[vtensor_type],
attributes=attrs,
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
)
self._nv_map[iname] = literal_op.result
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
return literal_op.result
def _get_immediate_tensor(self, name: str) -> np.array:
try:
initializer = self._gi.initializer_map[name]
except KeyError:
raise OnnxImportError(
f"An immediate value for '{name}' was required but it is dynamically produced."
)
try:
dtype = ELEM_TYPE_TO_NUMPY_DTYPE[initializer.data_type]
except KeyError:
raise OnnxImportError(
f"Unknown ONNX tensor element type to numpy dtype mapping: {initializer.data_type}"
)
raw_data = initializer.raw_data
if raw_data:
return np.frombuffer(raw_data, dtype=dtype).reshape(tuple(initializer.dims))
else:
raise OnnxImportError(
f"Unhandled ONNX TensorProto immediate data: {initializer}"
)
def _handle_node_Constant(self, node: onnx.NodeProto) -> bool:
# Special case only for constants specified by value attribute (for now)
value_proto = _get_attr(node, "value", False)
if not value_proto:
return False
# Produce an initializer for the constant, so that it can be used in
# combination with other ops, such as ConstantOfShape, requiring
# a constant input
assert value_proto.type == onnx.AttributeProto.AttributeType.TENSOR
assert len(node.output) == 1
const_name = node.output[0]
self.import_initializer(value_proto.t, const_name)
self._gi.initializer_map[const_name] = value_proto.t
return True
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
class ContextCache:
"""Caches per-context lookups of various things."""
__slots__ = [
"_c",
"_elem_type_map",
"_list_type_map",
"_optional_type_map",
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
"_vtensor_type_map",
]
def __init__(self, context: Context):
self._c = context
self._elem_type_map: Dict[int, IrType] = {}
self._list_type_map: Dict[str, IrType] = {}
self._optional_type_map: Dict[str, IrType] = {}
self._vtensor_type_map: Dict[Tuple[Tuple[Optional[int]], IrType], IrType] = {}
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
def tensor_element_type(self, elem_type: int) -> IrType:
t = self._elem_type_map.get(elem_type)
if t is None:
try:
with self._c:
t = ELEM_TYPE_TO_IR_TYPE_CB[elem_type]()
except KeyError:
raise OnnxImportError(f"Unknown ONNX tensor element type: {elem_type}")
self._elem_type_map[elem_type] = t
return t
def get_none_type(self):
return IrType.parse("!torch.none", context=self._c)
def get_list_type(self, element_type: IrType) -> IrType:
key = str(element_type)
t = self._list_type_map.get(key)
if t is None:
asm = f"!torch.list<{str(element_type)}>"
try:
t = IrType.parse(asm, context=self._c)
except MLIRError as e:
raise OnnxImportError(
f"Unparseable torch type (MLIR asm format bug?): {asm}"
) from e
self._list_type_map[key] = t
return t
def get_optional_type(self, element_type: IrType) -> IrType:
key = str(element_type)
t = self._optional_type_map.get(key)
if t is None:
asm = f"!torch.optional<{str(element_type)}>"
try:
t = IrType.parse(asm, context=self._c)
except MLIRError as e:
raise OnnxImportError(
f"Unparseable torch type (MLIR asm format bug?): {asm}"
) from e
self._optional_type_map[key] = t
return t
def get_list_element_type(self, tp: onnx.TypeProto) -> IrType:
tt = tp.tensor_type
if tt.elem_type:
element_type = self.tensor_element_type(tt.elem_type)
dims = tuple(
(d.dim_value if not d.dim_param else None) for d in tt.shape.dim
)
shape_asm = ",".join("?" if d is None else str(d) for d in dims)
return f"vtensor<[{shape_asm}],{element_type}>"
raise OnnxImportError(f"Unsupport list element type")
def get_optional_element_type(self, tp: onnx.TypeProto) -> IrType:
st = tp.sequence_type
tt = tp.tensor_type
if tt.elem_type:
element_type = self.tensor_element_type(tt.elem_type)
dims = tuple(
(d.dim_value if not d.dim_param else None) for d in tt.shape.dim
)
shape_asm = ",".join("?" if d is None else str(d) for d in dims)
return f"vtensor<[{shape_asm}],{element_type}>"
if st.elem_type:
element_type = self.get_list_element_type(st.elem_type)
return f"list<{element_type}>"
raise OnnxImportError(f"Unsupport optional element type")
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
def get_vtensor_type(
self, dims: Tuple[Optional[int]], element_type: IrType
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
) -> IrType:
key = (dims, element_type)
t = self._vtensor_type_map.get(key)
if t is None:
shape_asm = ",".join("?" if d is None else str(d) for d in dims)
asm = f"!torch.vtensor<[{shape_asm}],{str(element_type)}>"
try:
t = IrType.parse(asm, context=self._c)
except MLIRError as e:
raise OnnxImportError(
f"Unparseable torch type (MLIR asm format bug?): {asm}"
) from e
self._vtensor_type_map[key] = t
return t
def tensor_proto_to_type(self, tp: onnx.TensorProto) -> IrType:
element_type = self.tensor_element_type(tp.data_type)
return self.get_vtensor_type(tuple(tp.dims), element_type)
def tensor_proto_to_builtin_type(self, tp: onnx.TensorProto) -> IrType:
element_type = self.tensor_element_type(tp.data_type)
# TODO: Fixme upstream: RankedTensorType.get should not require a location.
with Location.unknown():
try:
return RankedTensorType.get(tuple(tp.dims), element_type)
except TypeError as e:
raise OnnxImportError(f"Unsupported builtin tensor type") from e
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
def type_proto_to_type(self, tp: onnx.TypeProto) -> IrType:
if tp == "":
warnings.warn(
"Found a node without a valid type proto. Consider updating the opset_version of"
" the model and/or running the importer with the flag '--clear-domain'."
)
return self.get_none_type()
tt = tp.tensor_type
if tt.elem_type:
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
if not tt.shape:
raise OnnxImportError(
f"Unsupported Tensor type without shape (run shape inference?): {tp}"
)
element_type = self.tensor_element_type(tt.elem_type)
dims = tuple(
(d.dim_value if not d.dim_param else None) for d in tt.shape.dim
)
return self.get_vtensor_type(dims, element_type)
st = tp.sequence_type
if len(str(st.elem_type)) > 0:
element_type = self.get_list_element_type(st.elem_type)
return self.get_list_type(element_type)
ot = tp.optional_type
if len(str(ot.elem_type)) > 0:
element_type = self.get_optional_element_type(ot.elem_type)
return self.get_optional_type(element_type)
Create MLIR functions for ONNX operators that are functions (#3409) Resolves #3384. Many ONNX operators are defined by functions and therefore could be expanded into simpler ONNX operations during importing, avoiding the need for tools downstream to support these operators directly. This commit adds this capability to onnx_importer.py. When importing a node, the schema for the node's operator is retrieved. If the schema provides a function for the operator, a specialized version for the node's types and attributes will be created and imported as an MLIR function with private visibility. An MLIR function call will then be emitted, instead of a normal operator node. Caching is used to avoid generating redundant functions within the same module. In order to avoid a disruptive change to the importer output for a large number of operators that already have TorchOnnxToTorch support, an allowlist strategy is used by default. With this commit, only one operator is allowlisted for expansion, MeanVarianceNormalization. However, many other operators can be correctly expanded by the current code, so hopefully the allowlist can be gradually extended. It is possible to disable the allowlist in the configuration, in which case all functions are expanded (useful for testing). Tools downstream of the importer may now need to do inlining when consuming the output of the importer, e.g.: cat imported.mlir | torch-mlir-opt --inline --convert-onnx-to-torch Explanations for subtle code changes: - Looking up the correct schema and function for an operator requires knowing the opset version. NodeImporter retrieves this from the opset imports on the ModelProto retained by the GraphInfo. Previously, the model_proto field on GraphInfo was None when importing a subgraph in import_regions, but this conflicts with the new need for opset version info. Since the apparent purpose of setting it to None was to control how GraphInfo generates its input map, a new flag is added to GraphInfo (is_subgraph) to control this behavior, so that the actual ModelProto can now be provided without breaking this. This also turned out to be useful for getting the Config via ModelInfo via GraphInfo. - Some operators' functions are context-dependent, which means the function definition depends on the types of the inputs. Therefore node importing now needs to look up the types of a node's inputs, not just its outputs as was the case previously. Consequently the operand to find_type_proto_for_name() may now be a graph input or initializer in some cases, so it has to be updated.
2024-06-15 01:11:26 +08:00
# Check if TypeProto is empty (sometimes happens for unused function
# arguments)
if tp.WhichOneof("value") is None:
return self.get_none_type()
# TODO: Others if ever needed. Or we consider ourselves DNN-only.
# See TypeProto: sequence_type, map_type, optional_type, sparse_tensor_type.
raise OnnxImportError(f"Unsupported ONNX TypeProto: {tp}")
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
def _sanitize_name(self, name):
if not name.isidentifier():
name = "_" + name
return re.sub("[:/]", "_", name)
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
def tensor_proto_to_attr(self, tp: onnx.TensorProto) -> Attribute:
tensor_type = self.tensor_proto_to_builtin_type(tp)
if tp.HasField("raw_data"):
# Conveniently, DenseResourceElementsAttr shares the raw data
# format. We just give it maximum numeric alignment.
resource = DenseResourceElementsAttr.get_from_buffer(
tp.raw_data, self._sanitize_name(tp.name), tensor_type, alignment=8
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
)
return resource
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
else:
# We have to do a data type specific instantiation from proto fields.
# Since this is typically used for small tensor constants, we instantiate
# as a DenseElementsAttr.
handler = ELEM_TYPE_INLINE_TENSOR_PROTO_CB.get(tp.data_type)
if handler is None:
raise OnnxImportError(f"Unhandled ONNX TensorProto data: {tp}")
return handler(tp)
Create MLIR functions for ONNX operators that are functions (#3409) Resolves #3384. Many ONNX operators are defined by functions and therefore could be expanded into simpler ONNX operations during importing, avoiding the need for tools downstream to support these operators directly. This commit adds this capability to onnx_importer.py. When importing a node, the schema for the node's operator is retrieved. If the schema provides a function for the operator, a specialized version for the node's types and attributes will be created and imported as an MLIR function with private visibility. An MLIR function call will then be emitted, instead of a normal operator node. Caching is used to avoid generating redundant functions within the same module. In order to avoid a disruptive change to the importer output for a large number of operators that already have TorchOnnxToTorch support, an allowlist strategy is used by default. With this commit, only one operator is allowlisted for expansion, MeanVarianceNormalization. However, many other operators can be correctly expanded by the current code, so hopefully the allowlist can be gradually extended. It is possible to disable the allowlist in the configuration, in which case all functions are expanded (useful for testing). Tools downstream of the importer may now need to do inlining when consuming the output of the importer, e.g.: cat imported.mlir | torch-mlir-opt --inline --convert-onnx-to-torch Explanations for subtle code changes: - Looking up the correct schema and function for an operator requires knowing the opset version. NodeImporter retrieves this from the opset imports on the ModelProto retained by the GraphInfo. Previously, the model_proto field on GraphInfo was None when importing a subgraph in import_regions, but this conflicts with the new need for opset version info. Since the apparent purpose of setting it to None was to control how GraphInfo generates its input map, a new flag is added to GraphInfo (is_subgraph) to control this behavior, so that the actual ModelProto can now be provided without breaking this. This also turned out to be useful for getting the Config via ModelInfo via GraphInfo. - Some operators' functions are context-dependent, which means the function definition depends on the types of the inputs. Therefore node importing now needs to look up the types of a node's inputs, not just its outputs as was the case previously. Consequently the operand to find_type_proto_for_name() may now be a graph input or initializer in some cases, so it has to be updated.
2024-06-15 01:11:26 +08:00
def _shallow_copy_and_clear_protobuf_list(protobuf_list) -> list:
"""
Workaround for .clear() not being available on protobuf lists for some
reason.
"""
copy = list(protobuf_list)
while len(protobuf_list) > 0:
protobuf_list.pop()
return copy
def _bind_attributes_on_node(
interior_node: onnx.NodeProto,
caller_node: onnx.NodeProto,
op_schema: onnx.defs.OpSchema,
) -> onnx.NodeProto:
"""
Helper for _specialize_function_and_create_model() that binds concrete
values to an attributes on a node in the interior of a function.
This should behave the same as ONNX's C++ attribute binder, please use it as
a reference: https://github.com/onnx/onnx/blob/88f8ef15cfaa3138d336f3502aed5018d802bf43/onnx/shape_inference/attribute_binder.h#L15-L64
"""
def _bind_attributes_in_subgraph(
old_subgraph: onnx.GraphProto,
caller_node: onnx.NodeProto,
op_schema: onnx.defs.OpSchema,
) -> onnx.GraphProto:
"""
Recurse to bind attributes in a subgraph.
"""
new_subgraph.CopyFrom(old_subgraph)
old_nodes = _shallow_copy_and_clear_protobuf_list(new_subgraph.node)
for old_node in old_nodes:
new_subgraph.node.append(
_bind_attributes_on_node(old_node, caller_node, op_schema)
)
return new_subgraph
def _bind_attribute(
old_attribute: onnx.AttributeProto,
caller_node: onnx.NodeProto,
op_schema: onnx.defs.OpSchema,
) -> Optional[onnx.AttributeProto]:
"""
Bind a single attribute.
Bound values either come from attributes on the node calling the
function, or from default values. If the attribute is optional and has
no default value, and no value was provided by the caller, None is
returned and the attribute should be removed.
"""
ref_name = old_attribute.ref_attr_name
if not ref_name:
if not old_attribute.g or len(old_attribute.graphs) == 0:
return old_attribute
# Recurse to bind attributes on subgraphs. ONNX's implementation of
# attribute binding only does this for subgraphs that didn't come
# from a referenced attribute value, so this code doesn't either.
new_attribute = onnx.AttributeProto()
new_attribute.CopyFrom(old_attribute)
if new_attribute.g:
new_attribute.g = _bind_attributes_in_subgraph(
new_attribute.g, caller_node, op_schema
)
if new_attribute.graphs:
old_subgraphs = _shallow_copy_and_clear_protobuf_list(
new_attribute.graphs
)
for old_subgraph in old_subgraphs:
new_attribute.graphs.append(
_bind_attributes_in_subgraph(
old_subgraph, caller_node, op_schema
)
)
return new_attribute
for call_attribute in caller_node.attribute:
if call_attribute.name == ref_name:
new_attribute = onnx.AttributeProto()
new_attribute.CopyFrom(call_attribute)
new_attribute.name = old_attribute.name
return new_attribute
# The default value is sometimes empty for optional attributes
# that don't have a default, in which case it is dropped.
default_value = op_schema.attributes[ref_name].default_value
if default_value and default_value.type:
new_attribute = onnx.AttributeProto()
new_attribute.CopyFrom(default_value)
new_attribute.name = old_attribute.name
return new_attribute
return None
new_node = onnx.NodeProto()
new_node.CopyFrom(interior_node)
old_attributes = _shallow_copy_and_clear_protobuf_list(new_node.attribute)
for node_attribute in old_attributes:
new_attribute = _bind_attribute(node_attribute, caller_node, op_schema)
if new_attribute is not None:
new_node.attribute.append(new_attribute)
continue
return new_node
def _specialize_function_and_create_model(
function_proto: onnx.FunctionProto,
op_schema: onnx.defs.OpSchema,
name_to_give_model: str,
input_type_protos: list[onnx.TypeProto],
output_type_protos: list[onnx.TypeProto],
caller_node: onnx.NodeProto,
) -> onnx.ModelProto:
"""
Helper for ModuleCache::get_operator_function() that specializes a function
and coverts it to a model.
An ONNX function may be polymorphic, parameterized over the types of its
inputs and values of its attributes (~= compile-time constants). We need to
monomorphize it for importing into MLIR. It seems like the only practical
way to do this is by turning it into a model:
- models can have types on their inputs and outputs, unlike functions
- ONNX provides a function to do shape inference (providing concrete
types for everything in the body) for models, but not for functions
- the rest of the code in this importer can only handle models, not
functions
"""
graph_proto = onnx.GraphProto()
for input_name, input_type_proto in zip(function_proto.input, input_type_protos):
input_proto = onnx.ValueInfoProto()
input_proto.name = input_name
input_proto.type.CopyFrom(input_type_proto)
graph_proto.input.append(input_proto)
output_proto = onnx.ValueInfoProto()
for output_name, output_type_proto in zip(
function_proto.output, output_type_protos
):
output_proto.name = output_name
output_proto.type.CopyFrom(output_type_proto)
graph_proto.output.append(output_proto)
for node in function_proto.node:
# Import referenced attributes from call-site or default values
graph_proto.node.append(_bind_attributes_on_node(node, caller_node, op_schema))
graph_proto.name = name_to_give_model
model_proto = onnx.ModelProto()
model_proto.opset_import.extend(function_proto.opset_import)
# FIXME: is this the correct IR version, or should it be the latest, or the
# one used by the actual model, or something else?
model_proto.ir_version = onnx.helper.find_min_ir_version_for(
function_proto.opset_import
)
model_proto.graph.CopyFrom(graph_proto)
model_proto = onnx.shape_inference.infer_shapes(
model_proto, check_type=True, strict_mode=True, data_prop=True
)
graph_proto = model_proto.graph
# Useful for debugging.
# onnx.checker.check_model(model_proto, full_check=True)
return model_proto
class ModuleCache:
"""Caches per-module lookups of various things."""
__slots__ = [
"_m",
"_cc",
"_operator_function_map",
]
def __init__(self, module_op: Operation, context_cache: ContextCache):
self._m = module_op
self._cc = context_cache
self._operator_function_map: Dict[str, func_dialect.FuncOp] = {}
def get_operator_function(
self,
op_name: str,
op_domain: str,
opset_version: int,
input_type_protos: list[onnx.TypeProto],
output_type_protos: list[onnx.TypeProto],
caller_node: onnx.NodeProto,
config: Config,
) -> Optional[func_dialect.FuncOp]:
"""
Get or create MLIR function corresponding to an ONNX operator.
Returns None for ONNX operators that aren't functions.
"""
allowlists = config.function_expansion_allowlists_by_domain
denylists = config.function_expansion_denylists_by_domain
if allowlists is not None and not (
op_domain in allowlists and op_name in allowlists[op_domain]
):
return None
if op_domain in denylists and op_name in denylists[op_domain]:
return None
op_schema = onnx.defs.get_schema(
op_name, domain=op_domain, max_inclusive_version=opset_version
)
# The get_schema() lookup above should get the right version of the
# operator definition, but the function body can change slightly
# within a single operator version, as explained in
# https://github.com/onnx/onnx/blob/093a8d335a66ea136eb1f16b3a1ce6237ee353ab/onnx/defs/schema.h#L1070-L1086
# There also seem to be cases where a function goes from being not
# context-dependent to context-dependent.
f = lambda ver: ver <= opset_version
ncd_function_version = max(
filter(f, op_schema.function_opset_versions),
default=None,
)
cd_function_version = max(
filter(f, op_schema.context_dependent_function_opset_versions),
default=None,
)
if ncd_function_version is None and cd_function_version is None:
# No relevant function definition
return None
if ncd_function_version is not None and (
cd_function_version is None or cd_function_version < ncd_function_version
):
specific_version = ncd_function_version
is_context_dependent = False
else:
specific_version = cd_function_version
is_context_dependent = True
# This is both a key for memoization of function importing and also a
# name mangling scheme, so it must include all information needed to
# uniquely identify a function and anything it might be parameterized
# over.
key = repr(
(
op_name,
op_domain,
opset_version,
input_type_protos,
# Though output types can be inferred from input types, it does
# not seem to be the case that there's only one legal set of
# outputs for a given set of inputs. When attemtping to always
# use onnx.shape_inference.infer_function_output_types instead
# of the caller-provided types, sometimes IR verification fails
output_type_protos,
# Avoid including the attributes twice (once on their own and
# once as part of the node) for context-dependent functions,
# avoid including unused parts of the node for other functions.
caller_node if is_context_dependent else caller_node.attribute,
)
)
existing = self._operator_function_map.get(key)
if existing is not None:
return existing
if is_context_dependent:
function_proto_str = (
op_schema.get_context_dependent_function_with_opset_version(
specific_version,
caller_node.SerializeToString(),
[
t.SerializeToString() if not isinstance(t, bytes) else t
for t in input_type_protos
],
)
)
else:
function_proto_str = op_schema.get_function_with_opset_version(
specific_version
)
if not function_proto_str:
raise OnnxImportError(
f"Function lookup for {op_name}/{op_domain}/{specific_version}/{is_context_dependent} failed unexpectedly. This probably indicates a bug."
)
function_proto = onnx.onnx_pb.FunctionProto()
function_proto.ParseFromString(function_proto_str)
tmp_model_proto = _specialize_function_and_create_model(
function_proto,
op_schema,
key,
input_type_protos,
output_type_protos,
caller_node,
)
tmp_model_info = ModelInfo(tmp_model_proto)
tmp_graph_info = GraphInfo(tmp_model_info, tmp_model_proto.graph)
# Mark function as private so it will be thrown away after inlining
imp = NodeImporter.define_function(
tmp_graph_info, self._m, self._cc, self, private=True
)
imp.import_all()
func_op = imp._p
self._operator_function_map[key] = func_op
return func_op
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
ELEM_TYPE_TO_IR_TYPE_CB = {
onnx.TensorProto.DataType.FLOAT: lambda: F32Type.get(),
onnx.TensorProto.DataType.UINT8: lambda: IntegerType.get_unsigned(8),
onnx.TensorProto.DataType.INT8: lambda: IntegerType.get_signed(8),
onnx.TensorProto.DataType.UINT16: lambda: IntegerType.get_unsigned(16),
onnx.TensorProto.DataType.INT16: lambda: IntegerType.get_signed(16),
onnx.TensorProto.DataType.INT32: lambda: IntegerType.get_signed(32),
onnx.TensorProto.DataType.INT64: lambda: IntegerType.get_signed(64),
onnx.TensorProto.DataType.BOOL: lambda: IntegerType.get_signless(1),
onnx.TensorProto.DataType.FLOAT16: lambda: F16Type.get(),
onnx.TensorProto.DataType.DOUBLE: lambda: F64Type.get(),
onnx.TensorProto.DataType.UINT32: lambda: IntegerType.get_unsigned(32),
onnx.TensorProto.DataType.UINT64: lambda: IntegerType.get_unsigned(64),
onnx.TensorProto.DataType.COMPLEX64: lambda: ComplexType.get(F32Type.get()),
onnx.TensorProto.DataType.COMPLEX128: lambda: ComplexType.get(F64Type.get()),
onnx.TensorProto.DataType.BFLOAT16: lambda: BF16Type.get(),
onnx.TensorProto.DataType.FLOAT8E4M3FN: lambda: Float8E4M3FNType.get(),
onnx.TensorProto.DataType.FLOAT8E4M3FNUZ: lambda: Float8E5M2FNUZType.get(),
onnx.TensorProto.DataType.FLOAT8E5M2: lambda: Float8E5M2Type.get(),
onnx.TensorProto.DataType.FLOAT8E5M2FNUZ: lambda: Float8E5M2FNUZType.get(),
onnx.TensorProto.DataType.STRING: lambda: "!torch.str",
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
# Ommitted: STRING,
}
ELEM_TYPE_SPLAT_TENSOR_PROTO_CB = {
onnx.TensorProto.DataType.FLOAT: lambda tp, shape: DenseElementsAttr.get_splat(
RankedTensorType.get(shape, F32Type.get()), FloatAttr.get_f32(tp.float_data[0])
),
onnx.TensorProto.DataType.INT64: lambda tp, shape: DenseElementsAttr.get_splat(
RankedTensorType.get(shape, IntegerType.get_signed(64)),
IntegerAttr.get(
IntegerType.get_signed(64),
(
int.from_bytes(tp.raw_data, "little", signed=True)
if tp.HasField("raw_data")
else tp.int64_data[0]
),
),
),
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
# TODO: All the rest from ELEM_TYPE_TO_IR_TYPE_CB
}
# Mapping of TensorProto.DataType to lambda TensorProto, returning a DenseElementsAttr
# of the builtin tensor type for cases where the tensor data is inlined as typed
# values instead of raw_data.
ELEM_TYPE_INLINE_TENSOR_PROTO_CB = {
onnx.TensorProto.DataType.FLOAT: lambda tp: DenseElementsAttr.get(
np.asarray(tp.float_data, dtype=np.float32).reshape(tp.dims), signless=False
),
onnx.TensorProto.DataType.BOOL: lambda tp: DenseElementsAttr.get(
np.packbits(
np.asarray(tp.int32_data, dtype=np.bool_).reshape(tp.dims),
axis=None,
bitorder="little",
),
signless=False,
),
onnx.TensorProto.DataType.INT8: lambda tp: DenseElementsAttr.get(
np.asarray(tp.int32_data, dtype=np.int8).reshape(tp.dims), signless=False
),
onnx.TensorProto.DataType.INT16: lambda tp: DenseElementsAttr.get(
np.asarray(tp.int32_data, dtype=np.int16).reshape(tp.dims), signless=False
),
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
onnx.TensorProto.DataType.INT32: lambda tp: DenseElementsAttr.get(
np.asarray(tp.int32_data, dtype=np.int32).reshape(tp.dims), signless=False
),
onnx.TensorProto.DataType.INT64: lambda tp: DenseElementsAttr.get(
np.asarray(tp.int64_data, dtype=np.int64).reshape(tp.dims), signless=False
),
onnx.TensorProto.DataType.DOUBLE: lambda tp: DenseElementsAttr.get(
np.asarray(tp.double_data, dtype=np.float64).reshape(tp.dims)
),
onnx.TensorProto.DataType.UINT32: lambda tp: DenseElementsAttr.get(
# Special case. See proto
np.asarray(tp.uint64_data, dtype=np.uint32).reshape(tp.dims),
signless=False,
),
onnx.TensorProto.DataType.UINT64: lambda tp: DenseElementsAttr.get(
np.asarray(tp.uint64_data, dtype=np.uint64).reshape(tp.dims), signless=False
),
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
# Intentionally unsupported: STRING
}
ELEM_TYPE_TO_NUMPY_DTYPE = {
onnx.TensorProto.DataType.FLOAT: np.float32,
onnx.TensorProto.DataType.UINT8: np.uint8,
onnx.TensorProto.DataType.INT8: np.int8,
onnx.TensorProto.DataType.UINT16: np.uint16,
onnx.TensorProto.DataType.INT16: np.int16,
onnx.TensorProto.DataType.INT32: np.int32,
onnx.TensorProto.DataType.INT64: np.int64,
onnx.TensorProto.DataType.BOOL: np.bool_,
onnx.TensorProto.DataType.FLOAT16: np.float16,
onnx.TensorProto.DataType.DOUBLE: np.float64,
onnx.TensorProto.DataType.UINT32: np.uint32,
onnx.TensorProto.DataType.UINT64: np.uint64,
onnx.TensorProto.DataType.COMPLEX64: np.complex64,
onnx.TensorProto.DataType.COMPLEX128: np.complex128,
# onnx.TensorProto.DataType.BFLOAT16:
# onnx.TensorProto.DataType.FLOAT8E4M3FN:
# onnx.TensorProto.DataType.FLOAT8E4M3FNUZ:
# onnx.TensorProto.DataType.FLOAT8E5M2:
# onnx.TensorProto.DataType.FLOAT8E5M2FNUZ:
# Ommitted: STRING,
}
# Mapping of AttributeType code to one of:
# None: Ignore attribute and do not output to MLIR
# False: Error if an attribute of this type is present
# lambda a:AttributeProto, cc: ContextCache that returns an MLIR Attribute
ATTRIBUTE_TYPE_HANDLERS = {
onnx.AttributeProto.AttributeType.UNDEFINED: False,
onnx.AttributeProto.AttributeType.FLOAT: lambda a, cc: FloatAttr.get(
F32Type.get(), a.f
),
onnx.AttributeProto.AttributeType.INT: lambda a, cc: IntegerAttr.get(
IntegerType.get_signed(64), a.i
),
onnx.AttributeProto.AttributeType.STRING: lambda a, cc: StringAttr.get(a.s),
onnx.AttributeProto.AttributeType.TENSOR: lambda a, cc: cc.tensor_proto_to_attr(
a.t
),
onnx.AttributeProto.AttributeType.GRAPH: None,
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
onnx.AttributeProto.AttributeType.SPARSE_TENSOR: False,
onnx.AttributeProto.AttributeType.TYPE_PROTO: False,
onnx.AttributeProto.AttributeType.FLOATS: lambda a, cc: ArrayAttr.get(
[FloatAttr.get(F32Type.get(), f) for f in a.floats]
),
onnx.AttributeProto.AttributeType.INTS: lambda a, cc: ArrayAttr.get(
[IntegerAttr.get(IntegerType.get_signed(64), i) for i in a.ints]
),
onnx.AttributeProto.AttributeType.STRINGS: lambda a, cc: ArrayAttr.get(
[StringAttr.get(s) for s in a.strings]
),
onnx.AttributeProto.AttributeType.TENSORS: lambda a, cc: ArrayAttr.get(
[cc.tensor_proto_to_attr(t) for t in a.tensors]
),
onnx.AttributeProto.AttributeType.GRAPHS: False,
onnx.AttributeProto.AttributeType.SPARSE_TENSORS: False,
onnx.AttributeProto.AttributeType.TYPE_PROTOS: False,
}
def _get_attr(
node: onnx.NodeProto, attr_name: str, is_required: bool = True
) -> onnx.AttributeProto:
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
for attr in node.attribute:
if attr.name == attr_name:
return attr
if is_required:
Upstream the ONNX importer. (#2636) This is part 1 of 2, which will also include upstreaming the FX importer. I started with ONNX because it forces some project layout updates and is more self contained/easier as a first step. Deviating somewhat from the RFCs on project layout, I made the following decisions: * Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks already has opened up that namespace and it seemed to fit. Better to have fewer things at that level. * Setup the build so that the root project only contains MLIR Python and pure Python deps (like the importers), but this can be augmented with the `projects/` adding more depending on which features are enabled. * The default build continues to build everything whereas in `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a `torch-mlir-core` wheel with the pure contents only. `onnx_importer.py` and `importer_smoke_test.py` are almost verbatim copies from SHARK-Turbine. I made some minor local alterations to adapt to paths and generalize the way they interact with the outer project. I expect I can copy these back to Turbine verbatim from here. I also updated the license boilerplate (they have the same license but slightly different project norms for the headers) but retained the correct copyright. Other updates: * Added the ONNX importer unit test (which also can generate test data) in lit, conditioned on the availability of the Python `onnx` package. In a followup once I know everything is stable, I'll add another env var that the CI can set to always enable this so we know conclusively if tests pass. * Moved the ONNX conversion readme to `docs/`. * Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` -> `TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-13 11:02:51 +08:00
raise OnnxImportError(f"Required attribute {attr_name} not found in {node}")
return None