torch-mlir/include/npcomp/RefBackend/Passes.td

111 lines
4.4 KiB
TableGen
Raw Normal View History

//===-- Passes.td - Pass definition file -------------------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef NPCOMP_REFBACKEND_PASSES
#define NPCOMP_REFBACKEND_PASSES
include "mlir/Pass/PassBase.td"
Totally rework RefE2E tensor to memref flow. (#42) This now gets the overall "RefE2E" compilation stack to a point that I'm fairly happy with. We simplify it by mostly embracing the "descriptor" view of the world. The overall flow is best understood by reading through the createE2ELoweringPipeline function in lib/E2E/E2E.cpp That function creates a pass pipeline that lowers from "TCF" (which is ~numpy level of abstraction) down to LLVM IR. A brief high-level summary of what happens there: 1. TCF to TCP conversion. This involves reifying error handling in the form of shape constraints. See test/Conversion/TCFToTCP/basic.mlir 2. Lowering shape constraints. This converts shape constraints into eager error-handling code. See test/E2E/lower-shape-constraints.mlir This pass will soon go upstream. Because this lowers to std.assert, some later passes like LowerToNpcomprtABI and LowerToLLVM are updated to properly plumb this through e2e. See test/npcomp-run-mlir/invalid-broadcast.mlir for an execution test that properly aborts in case of an error. 3. Lowering tensors to memrefs. This is done via a series of passes rather than an single mega conversion. Unlike the previous code that mixed in the npcomprt ABI stuff here, it's now a very clean "pure memref" conversion. See test/E2E/lower-*-to-memref.mlir and lib/E2E/TensorToMemref/ Most of the changes are concentrated here. 4. As part of the above, we use the upstream ConvertShapeToStandard for lowering shapes. 5. We lower linalg to loops and lower loops to CFG using upstream passes. 6. Rewrite the "ABI" boundaries of the program to npcomprt data structures (LowerToNpcomprtABI). This mainly affects ABI boundaries and how global tensor constants are represented. One of the major improvements in this commit is that now it's a very clean rewrite that just replaces memrefs on ABI boundaries with !npcomprt.tensor (before there was a get_extent function that is not needed). See test/E2E/lower-to-npcomprt-abi.mlir 7. Lower to LLVM with upstream mlir patterns + some patterns for the npcomprt lowerings. One aspect here that is still a remnant of a non-descriptor-based tensor to memref flow is the BypassShapes + LowerShapedResultsToMemref. BypassShapes wraps the "tensor compute" ops in a tcp.shaped_results (basically a "tie_shape" kind of op), and then LowerShapedResultsToMemref uses those annotations to allocate output buffers while lowering the "tensor compute ops". Note that there are very few "tensor compute" ops currently supported (tcp.add + tcp.broadcast_to), so we just hardcode them in both passes. Realistically, I expect this to go away as we fully embrace the descriptor-based approach for simplicity, so don't look too deep into it.
2020-09-17 08:31:40 +08:00
def BypassShapes : Pass<"bypass-shapes", "FuncOp"> {
let summary = "Bypass shape calculations around ops";
let constructor = "mlir::NPCOMP::createBypassShapesPass()";
}
Totally rework RefE2E tensor to memref flow. (#42) This now gets the overall "RefE2E" compilation stack to a point that I'm fairly happy with. We simplify it by mostly embracing the "descriptor" view of the world. The overall flow is best understood by reading through the createE2ELoweringPipeline function in lib/E2E/E2E.cpp That function creates a pass pipeline that lowers from "TCF" (which is ~numpy level of abstraction) down to LLVM IR. A brief high-level summary of what happens there: 1. TCF to TCP conversion. This involves reifying error handling in the form of shape constraints. See test/Conversion/TCFToTCP/basic.mlir 2. Lowering shape constraints. This converts shape constraints into eager error-handling code. See test/E2E/lower-shape-constraints.mlir This pass will soon go upstream. Because this lowers to std.assert, some later passes like LowerToNpcomprtABI and LowerToLLVM are updated to properly plumb this through e2e. See test/npcomp-run-mlir/invalid-broadcast.mlir for an execution test that properly aborts in case of an error. 3. Lowering tensors to memrefs. This is done via a series of passes rather than an single mega conversion. Unlike the previous code that mixed in the npcomprt ABI stuff here, it's now a very clean "pure memref" conversion. See test/E2E/lower-*-to-memref.mlir and lib/E2E/TensorToMemref/ Most of the changes are concentrated here. 4. As part of the above, we use the upstream ConvertShapeToStandard for lowering shapes. 5. We lower linalg to loops and lower loops to CFG using upstream passes. 6. Rewrite the "ABI" boundaries of the program to npcomprt data structures (LowerToNpcomprtABI). This mainly affects ABI boundaries and how global tensor constants are represented. One of the major improvements in this commit is that now it's a very clean rewrite that just replaces memrefs on ABI boundaries with !npcomprt.tensor (before there was a get_extent function that is not needed). See test/E2E/lower-to-npcomprt-abi.mlir 7. Lower to LLVM with upstream mlir patterns + some patterns for the npcomprt lowerings. One aspect here that is still a remnant of a non-descriptor-based tensor to memref flow is the BypassShapes + LowerShapedResultsToMemref. BypassShapes wraps the "tensor compute" ops in a tcp.shaped_results (basically a "tie_shape" kind of op), and then LowerShapedResultsToMemref uses those annotations to allocate output buffers while lowering the "tensor compute ops". Note that there are very few "tensor compute" ops currently supported (tcp.add + tcp.broadcast_to), so we just hardcode them in both passes. Realistically, I expect this to go away as we fully embrace the descriptor-based approach for simplicity, so don't look too deep into it.
2020-09-17 08:31:40 +08:00
def LowerShapedResultsToMemref : Pass<"lower-shaped-results-to-memref", "FuncOp"> {
let summary = "Lower refback.shaped_results regions";
Totally rework RefE2E tensor to memref flow. (#42) This now gets the overall "RefE2E" compilation stack to a point that I'm fairly happy with. We simplify it by mostly embracing the "descriptor" view of the world. The overall flow is best understood by reading through the createE2ELoweringPipeline function in lib/E2E/E2E.cpp That function creates a pass pipeline that lowers from "TCF" (which is ~numpy level of abstraction) down to LLVM IR. A brief high-level summary of what happens there: 1. TCF to TCP conversion. This involves reifying error handling in the form of shape constraints. See test/Conversion/TCFToTCP/basic.mlir 2. Lowering shape constraints. This converts shape constraints into eager error-handling code. See test/E2E/lower-shape-constraints.mlir This pass will soon go upstream. Because this lowers to std.assert, some later passes like LowerToNpcomprtABI and LowerToLLVM are updated to properly plumb this through e2e. See test/npcomp-run-mlir/invalid-broadcast.mlir for an execution test that properly aborts in case of an error. 3. Lowering tensors to memrefs. This is done via a series of passes rather than an single mega conversion. Unlike the previous code that mixed in the npcomprt ABI stuff here, it's now a very clean "pure memref" conversion. See test/E2E/lower-*-to-memref.mlir and lib/E2E/TensorToMemref/ Most of the changes are concentrated here. 4. As part of the above, we use the upstream ConvertShapeToStandard for lowering shapes. 5. We lower linalg to loops and lower loops to CFG using upstream passes. 6. Rewrite the "ABI" boundaries of the program to npcomprt data structures (LowerToNpcomprtABI). This mainly affects ABI boundaries and how global tensor constants are represented. One of the major improvements in this commit is that now it's a very clean rewrite that just replaces memrefs on ABI boundaries with !npcomprt.tensor (before there was a get_extent function that is not needed). See test/E2E/lower-to-npcomprt-abi.mlir 7. Lower to LLVM with upstream mlir patterns + some patterns for the npcomprt lowerings. One aspect here that is still a remnant of a non-descriptor-based tensor to memref flow is the BypassShapes + LowerShapedResultsToMemref. BypassShapes wraps the "tensor compute" ops in a tcp.shaped_results (basically a "tie_shape" kind of op), and then LowerShapedResultsToMemref uses those annotations to allocate output buffers while lowering the "tensor compute ops". Note that there are very few "tensor compute" ops currently supported (tcp.add + tcp.broadcast_to), so we just hardcode them in both passes. Realistically, I expect this to go away as we fully embrace the descriptor-based approach for simplicity, so don't look too deep into it.
2020-09-17 08:31:40 +08:00
let constructor = "mlir::NPCOMP::createLowerShapedResultsToMemrefPass()";
}
Totally rework RefE2E tensor to memref flow. (#42) This now gets the overall "RefE2E" compilation stack to a point that I'm fairly happy with. We simplify it by mostly embracing the "descriptor" view of the world. The overall flow is best understood by reading through the createE2ELoweringPipeline function in lib/E2E/E2E.cpp That function creates a pass pipeline that lowers from "TCF" (which is ~numpy level of abstraction) down to LLVM IR. A brief high-level summary of what happens there: 1. TCF to TCP conversion. This involves reifying error handling in the form of shape constraints. See test/Conversion/TCFToTCP/basic.mlir 2. Lowering shape constraints. This converts shape constraints into eager error-handling code. See test/E2E/lower-shape-constraints.mlir This pass will soon go upstream. Because this lowers to std.assert, some later passes like LowerToNpcomprtABI and LowerToLLVM are updated to properly plumb this through e2e. See test/npcomp-run-mlir/invalid-broadcast.mlir for an execution test that properly aborts in case of an error. 3. Lowering tensors to memrefs. This is done via a series of passes rather than an single mega conversion. Unlike the previous code that mixed in the npcomprt ABI stuff here, it's now a very clean "pure memref" conversion. See test/E2E/lower-*-to-memref.mlir and lib/E2E/TensorToMemref/ Most of the changes are concentrated here. 4. As part of the above, we use the upstream ConvertShapeToStandard for lowering shapes. 5. We lower linalg to loops and lower loops to CFG using upstream passes. 6. Rewrite the "ABI" boundaries of the program to npcomprt data structures (LowerToNpcomprtABI). This mainly affects ABI boundaries and how global tensor constants are represented. One of the major improvements in this commit is that now it's a very clean rewrite that just replaces memrefs on ABI boundaries with !npcomprt.tensor (before there was a get_extent function that is not needed). See test/E2E/lower-to-npcomprt-abi.mlir 7. Lower to LLVM with upstream mlir patterns + some patterns for the npcomprt lowerings. One aspect here that is still a remnant of a non-descriptor-based tensor to memref flow is the BypassShapes + LowerShapedResultsToMemref. BypassShapes wraps the "tensor compute" ops in a tcp.shaped_results (basically a "tie_shape" kind of op), and then LowerShapedResultsToMemref uses those annotations to allocate output buffers while lowering the "tensor compute ops". Note that there are very few "tensor compute" ops currently supported (tcp.add + tcp.broadcast_to), so we just hardcode them in both passes. Realistically, I expect this to go away as we fully embrace the descriptor-based approach for simplicity, so don't look too deep into it.
2020-09-17 08:31:40 +08:00
def LowerStdToMemref : Pass<"lower-std-to-memref", "FuncOp"> {
let summary = "Lower std ops to memref";
let constructor = "mlir::NPCOMP::createLowerStdToMemrefPass()";
}
Totally rework RefE2E tensor to memref flow. (#42) This now gets the overall "RefE2E" compilation stack to a point that I'm fairly happy with. We simplify it by mostly embracing the "descriptor" view of the world. The overall flow is best understood by reading through the createE2ELoweringPipeline function in lib/E2E/E2E.cpp That function creates a pass pipeline that lowers from "TCF" (which is ~numpy level of abstraction) down to LLVM IR. A brief high-level summary of what happens there: 1. TCF to TCP conversion. This involves reifying error handling in the form of shape constraints. See test/Conversion/TCFToTCP/basic.mlir 2. Lowering shape constraints. This converts shape constraints into eager error-handling code. See test/E2E/lower-shape-constraints.mlir This pass will soon go upstream. Because this lowers to std.assert, some later passes like LowerToNpcomprtABI and LowerToLLVM are updated to properly plumb this through e2e. See test/npcomp-run-mlir/invalid-broadcast.mlir for an execution test that properly aborts in case of an error. 3. Lowering tensors to memrefs. This is done via a series of passes rather than an single mega conversion. Unlike the previous code that mixed in the npcomprt ABI stuff here, it's now a very clean "pure memref" conversion. See test/E2E/lower-*-to-memref.mlir and lib/E2E/TensorToMemref/ Most of the changes are concentrated here. 4. As part of the above, we use the upstream ConvertShapeToStandard for lowering shapes. 5. We lower linalg to loops and lower loops to CFG using upstream passes. 6. Rewrite the "ABI" boundaries of the program to npcomprt data structures (LowerToNpcomprtABI). This mainly affects ABI boundaries and how global tensor constants are represented. One of the major improvements in this commit is that now it's a very clean rewrite that just replaces memrefs on ABI boundaries with !npcomprt.tensor (before there was a get_extent function that is not needed). See test/E2E/lower-to-npcomprt-abi.mlir 7. Lower to LLVM with upstream mlir patterns + some patterns for the npcomprt lowerings. One aspect here that is still a remnant of a non-descriptor-based tensor to memref flow is the BypassShapes + LowerShapedResultsToMemref. BypassShapes wraps the "tensor compute" ops in a tcp.shaped_results (basically a "tie_shape" kind of op), and then LowerShapedResultsToMemref uses those annotations to allocate output buffers while lowering the "tensor compute ops". Note that there are very few "tensor compute" ops currently supported (tcp.add + tcp.broadcast_to), so we just hardcode them in both passes. Realistically, I expect this to go away as we fully embrace the descriptor-based approach for simplicity, so don't look too deep into it.
2020-09-17 08:31:40 +08:00
def LowerConstantTensorsToMemref :
Pass<"lower-constant-tensors-to-memref", "ModuleOp"> {
let summary = "Lower std.constant of tensor type to memref";
let description = [{
This must be a module pass since it involves creating refback.global ops.
Totally rework RefE2E tensor to memref flow. (#42) This now gets the overall "RefE2E" compilation stack to a point that I'm fairly happy with. We simplify it by mostly embracing the "descriptor" view of the world. The overall flow is best understood by reading through the createE2ELoweringPipeline function in lib/E2E/E2E.cpp That function creates a pass pipeline that lowers from "TCF" (which is ~numpy level of abstraction) down to LLVM IR. A brief high-level summary of what happens there: 1. TCF to TCP conversion. This involves reifying error handling in the form of shape constraints. See test/Conversion/TCFToTCP/basic.mlir 2. Lowering shape constraints. This converts shape constraints into eager error-handling code. See test/E2E/lower-shape-constraints.mlir This pass will soon go upstream. Because this lowers to std.assert, some later passes like LowerToNpcomprtABI and LowerToLLVM are updated to properly plumb this through e2e. See test/npcomp-run-mlir/invalid-broadcast.mlir for an execution test that properly aborts in case of an error. 3. Lowering tensors to memrefs. This is done via a series of passes rather than an single mega conversion. Unlike the previous code that mixed in the npcomprt ABI stuff here, it's now a very clean "pure memref" conversion. See test/E2E/lower-*-to-memref.mlir and lib/E2E/TensorToMemref/ Most of the changes are concentrated here. 4. As part of the above, we use the upstream ConvertShapeToStandard for lowering shapes. 5. We lower linalg to loops and lower loops to CFG using upstream passes. 6. Rewrite the "ABI" boundaries of the program to npcomprt data structures (LowerToNpcomprtABI). This mainly affects ABI boundaries and how global tensor constants are represented. One of the major improvements in this commit is that now it's a very clean rewrite that just replaces memrefs on ABI boundaries with !npcomprt.tensor (before there was a get_extent function that is not needed). See test/E2E/lower-to-npcomprt-abi.mlir 7. Lower to LLVM with upstream mlir patterns + some patterns for the npcomprt lowerings. One aspect here that is still a remnant of a non-descriptor-based tensor to memref flow is the BypassShapes + LowerShapedResultsToMemref. BypassShapes wraps the "tensor compute" ops in a tcp.shaped_results (basically a "tie_shape" kind of op), and then LowerShapedResultsToMemref uses those annotations to allocate output buffers while lowering the "tensor compute ops". Note that there are very few "tensor compute" ops currently supported (tcp.add + tcp.broadcast_to), so we just hardcode them in both passes. Realistically, I expect this to go away as we fully embrace the descriptor-based approach for simplicity, so don't look too deep into it.
2020-09-17 08:31:40 +08:00
}];
let constructor = "mlir::NPCOMP::createLowerConstantTensorsToMemrefPass()";
}
Totally rework RefE2E tensor to memref flow. (#42) This now gets the overall "RefE2E" compilation stack to a point that I'm fairly happy with. We simplify it by mostly embracing the "descriptor" view of the world. The overall flow is best understood by reading through the createE2ELoweringPipeline function in lib/E2E/E2E.cpp That function creates a pass pipeline that lowers from "TCF" (which is ~numpy level of abstraction) down to LLVM IR. A brief high-level summary of what happens there: 1. TCF to TCP conversion. This involves reifying error handling in the form of shape constraints. See test/Conversion/TCFToTCP/basic.mlir 2. Lowering shape constraints. This converts shape constraints into eager error-handling code. See test/E2E/lower-shape-constraints.mlir This pass will soon go upstream. Because this lowers to std.assert, some later passes like LowerToNpcomprtABI and LowerToLLVM are updated to properly plumb this through e2e. See test/npcomp-run-mlir/invalid-broadcast.mlir for an execution test that properly aborts in case of an error. 3. Lowering tensors to memrefs. This is done via a series of passes rather than an single mega conversion. Unlike the previous code that mixed in the npcomprt ABI stuff here, it's now a very clean "pure memref" conversion. See test/E2E/lower-*-to-memref.mlir and lib/E2E/TensorToMemref/ Most of the changes are concentrated here. 4. As part of the above, we use the upstream ConvertShapeToStandard for lowering shapes. 5. We lower linalg to loops and lower loops to CFG using upstream passes. 6. Rewrite the "ABI" boundaries of the program to npcomprt data structures (LowerToNpcomprtABI). This mainly affects ABI boundaries and how global tensor constants are represented. One of the major improvements in this commit is that now it's a very clean rewrite that just replaces memrefs on ABI boundaries with !npcomprt.tensor (before there was a get_extent function that is not needed). See test/E2E/lower-to-npcomprt-abi.mlir 7. Lower to LLVM with upstream mlir patterns + some patterns for the npcomprt lowerings. One aspect here that is still a remnant of a non-descriptor-based tensor to memref flow is the BypassShapes + LowerShapedResultsToMemref. BypassShapes wraps the "tensor compute" ops in a tcp.shaped_results (basically a "tie_shape" kind of op), and then LowerShapedResultsToMemref uses those annotations to allocate output buffers while lowering the "tensor compute ops". Note that there are very few "tensor compute" ops currently supported (tcp.add + tcp.broadcast_to), so we just hardcode them in both passes. Realistically, I expect this to go away as we fully embrace the descriptor-based approach for simplicity, so don't look too deep into it.
2020-09-17 08:31:40 +08:00
def LowerStructuralToMemref :
Pass<"lower-structural-to-memref", "FuncOp"> {
let summary = "Lower structural IR constructs to memref";
let description = [{
Structural constructs include:
- control flow ops (both CFG and SCF)
- function signatures
- TODO: calls
An op is "structural" if it doesn't really care about the types it operates
on, but the types just have to converted to be consistent.
Totally rework RefE2E tensor to memref flow. (#42) This now gets the overall "RefE2E" compilation stack to a point that I'm fairly happy with. We simplify it by mostly embracing the "descriptor" view of the world. The overall flow is best understood by reading through the createE2ELoweringPipeline function in lib/E2E/E2E.cpp That function creates a pass pipeline that lowers from "TCF" (which is ~numpy level of abstraction) down to LLVM IR. A brief high-level summary of what happens there: 1. TCF to TCP conversion. This involves reifying error handling in the form of shape constraints. See test/Conversion/TCFToTCP/basic.mlir 2. Lowering shape constraints. This converts shape constraints into eager error-handling code. See test/E2E/lower-shape-constraints.mlir This pass will soon go upstream. Because this lowers to std.assert, some later passes like LowerToNpcomprtABI and LowerToLLVM are updated to properly plumb this through e2e. See test/npcomp-run-mlir/invalid-broadcast.mlir for an execution test that properly aborts in case of an error. 3. Lowering tensors to memrefs. This is done via a series of passes rather than an single mega conversion. Unlike the previous code that mixed in the npcomprt ABI stuff here, it's now a very clean "pure memref" conversion. See test/E2E/lower-*-to-memref.mlir and lib/E2E/TensorToMemref/ Most of the changes are concentrated here. 4. As part of the above, we use the upstream ConvertShapeToStandard for lowering shapes. 5. We lower linalg to loops and lower loops to CFG using upstream passes. 6. Rewrite the "ABI" boundaries of the program to npcomprt data structures (LowerToNpcomprtABI). This mainly affects ABI boundaries and how global tensor constants are represented. One of the major improvements in this commit is that now it's a very clean rewrite that just replaces memrefs on ABI boundaries with !npcomprt.tensor (before there was a get_extent function that is not needed). See test/E2E/lower-to-npcomprt-abi.mlir 7. Lower to LLVM with upstream mlir patterns + some patterns for the npcomprt lowerings. One aspect here that is still a remnant of a non-descriptor-based tensor to memref flow is the BypassShapes + LowerShapedResultsToMemref. BypassShapes wraps the "tensor compute" ops in a tcp.shaped_results (basically a "tie_shape" kind of op), and then LowerShapedResultsToMemref uses those annotations to allocate output buffers while lowering the "tensor compute ops". Note that there are very few "tensor compute" ops currently supported (tcp.add + tcp.broadcast_to), so we just hardcode them in both passes. Realistically, I expect this to go away as we fully embrace the descriptor-based approach for simplicity, so don't look too deep into it.
2020-09-17 08:31:40 +08:00
This pass also cleans up any previous memref<->tensor materializations,
finalizing the conversion from tensor to memref.
}];
let constructor = "mlir::NPCOMP::createLowerStructuralToMemrefPass()";
}
def LowerToRefbackrtABI : Pass<"lower-to-refbackrt-abi", "ModuleOp"> {
let summary = "Lower constructs requiring runtime support to `refbackrt`";
Totally rework RefE2E tensor to memref flow. (#42) This now gets the overall "RefE2E" compilation stack to a point that I'm fairly happy with. We simplify it by mostly embracing the "descriptor" view of the world. The overall flow is best understood by reading through the createE2ELoweringPipeline function in lib/E2E/E2E.cpp That function creates a pass pipeline that lowers from "TCF" (which is ~numpy level of abstraction) down to LLVM IR. A brief high-level summary of what happens there: 1. TCF to TCP conversion. This involves reifying error handling in the form of shape constraints. See test/Conversion/TCFToTCP/basic.mlir 2. Lowering shape constraints. This converts shape constraints into eager error-handling code. See test/E2E/lower-shape-constraints.mlir This pass will soon go upstream. Because this lowers to std.assert, some later passes like LowerToNpcomprtABI and LowerToLLVM are updated to properly plumb this through e2e. See test/npcomp-run-mlir/invalid-broadcast.mlir for an execution test that properly aborts in case of an error. 3. Lowering tensors to memrefs. This is done via a series of passes rather than an single mega conversion. Unlike the previous code that mixed in the npcomprt ABI stuff here, it's now a very clean "pure memref" conversion. See test/E2E/lower-*-to-memref.mlir and lib/E2E/TensorToMemref/ Most of the changes are concentrated here. 4. As part of the above, we use the upstream ConvertShapeToStandard for lowering shapes. 5. We lower linalg to loops and lower loops to CFG using upstream passes. 6. Rewrite the "ABI" boundaries of the program to npcomprt data structures (LowerToNpcomprtABI). This mainly affects ABI boundaries and how global tensor constants are represented. One of the major improvements in this commit is that now it's a very clean rewrite that just replaces memrefs on ABI boundaries with !npcomprt.tensor (before there was a get_extent function that is not needed). See test/E2E/lower-to-npcomprt-abi.mlir 7. Lower to LLVM with upstream mlir patterns + some patterns for the npcomprt lowerings. One aspect here that is still a remnant of a non-descriptor-based tensor to memref flow is the BypassShapes + LowerShapedResultsToMemref. BypassShapes wraps the "tensor compute" ops in a tcp.shaped_results (basically a "tie_shape" kind of op), and then LowerShapedResultsToMemref uses those annotations to allocate output buffers while lowering the "tensor compute ops". Note that there are very few "tensor compute" ops currently supported (tcp.add + tcp.broadcast_to), so we just hardcode them in both passes. Realistically, I expect this to go away as we fully embrace the descriptor-based approach for simplicity, so don't look too deep into it.
2020-09-17 08:31:40 +08:00
let description = [{
We have a specialized dialect `refbackrt` which models our runtime's data
Totally rework RefE2E tensor to memref flow. (#42) This now gets the overall "RefE2E" compilation stack to a point that I'm fairly happy with. We simplify it by mostly embracing the "descriptor" view of the world. The overall flow is best understood by reading through the createE2ELoweringPipeline function in lib/E2E/E2E.cpp That function creates a pass pipeline that lowers from "TCF" (which is ~numpy level of abstraction) down to LLVM IR. A brief high-level summary of what happens there: 1. TCF to TCP conversion. This involves reifying error handling in the form of shape constraints. See test/Conversion/TCFToTCP/basic.mlir 2. Lowering shape constraints. This converts shape constraints into eager error-handling code. See test/E2E/lower-shape-constraints.mlir This pass will soon go upstream. Because this lowers to std.assert, some later passes like LowerToNpcomprtABI and LowerToLLVM are updated to properly plumb this through e2e. See test/npcomp-run-mlir/invalid-broadcast.mlir for an execution test that properly aborts in case of an error. 3. Lowering tensors to memrefs. This is done via a series of passes rather than an single mega conversion. Unlike the previous code that mixed in the npcomprt ABI stuff here, it's now a very clean "pure memref" conversion. See test/E2E/lower-*-to-memref.mlir and lib/E2E/TensorToMemref/ Most of the changes are concentrated here. 4. As part of the above, we use the upstream ConvertShapeToStandard for lowering shapes. 5. We lower linalg to loops and lower loops to CFG using upstream passes. 6. Rewrite the "ABI" boundaries of the program to npcomprt data structures (LowerToNpcomprtABI). This mainly affects ABI boundaries and how global tensor constants are represented. One of the major improvements in this commit is that now it's a very clean rewrite that just replaces memrefs on ABI boundaries with !npcomprt.tensor (before there was a get_extent function that is not needed). See test/E2E/lower-to-npcomprt-abi.mlir 7. Lower to LLVM with upstream mlir patterns + some patterns for the npcomprt lowerings. One aspect here that is still a remnant of a non-descriptor-based tensor to memref flow is the BypassShapes + LowerShapedResultsToMemref. BypassShapes wraps the "tensor compute" ops in a tcp.shaped_results (basically a "tie_shape" kind of op), and then LowerShapedResultsToMemref uses those annotations to allocate output buffers while lowering the "tensor compute ops". Note that there are very few "tensor compute" ops currently supported (tcp.add + tcp.broadcast_to), so we just hardcode them in both passes. Realistically, I expect this to go away as we fully embrace the descriptor-based approach for simplicity, so don't look too deep into it.
2020-09-17 08:31:40 +08:00
structures, and function signatures (and presumably eventually, other
ABI boundaries like external calls if we ever support it) will be
converted.
The constructs requiring runtime support are:
- function signatures / module metadata
- globals
- error handling
}];
let constructor = "mlir::NPCOMP::createLowerToRefbackrtABIPass()";
}
def LowerAllocMemRefOps : Pass<"lower-alloc-memref-ops", "FuncOp"> {
let summary = "Lower AllocMemRefOp's";
let constructor = "mlir::NPCOMP::createLowerAllocMemRefOpsPass()";
}
def LowerToLLVM : Pass<"refback-lower-to-llvm", "ModuleOp"> {
let summary = "Lower everything to LLVM";
let constructor = "mlir::NPCOMP::createLowerToLLVMPass();";
}
// TODO: Move this pass to upstream.
// TODO: This pass will still do "folding" on all ops.
// The applyPatternsAndFoldGreedily driver will need to be changed to restrict
// folding to the specified dialects as well.
// Perhaps a better design is having a pass that uses the conversion framework.
// The the pass constructor would take a set of op names, and it would
// set up a conversion target that makes all those ops illegal, and uses
// the canonicalization patterns from those ops to legalize them.
def RestrictedCanonicalizer : Pass<"restricted-canonicalize"> {
let summary = "Canonicalize operations";
let description = [{
This pass is the same as the regular `canonicalize` pass, but it only
applies a restricted set of patterns.
This is useful when a particular canonicalization is actually needed for
correctness of a lowering flow. For such cases, running a restricted set of
canonicalizations makes it clearer which passes are needed for correctness
and which passes are "just optimizations". This helps when debugging
miscompiles and other situations where the compiler is not behaving as
expected.
}];
let constructor = "mlir::NPCOMP::createRestrictedCanonicalizerPass()";
let options = [
ListOption<"includedDialects", "included-dialects", "std::string",
"Which dialects should be canonicalized",
"llvm::cl::MiscFlags::CommaSeparated">
];
}
#endif // NPCOMP_REFBACKEND_PASSES