torch-mlir/lib/Conversion/TorchToArith/TorchToArith.cpp

504 lines
20 KiB
C++
Raw Normal View History

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "torch-mlir/Conversion/TorchToArith/TorchToArith.h"
#include "../PassDetail.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Traits.h"
#include "mlir/IR/DialectResourceBlobManager.h"
Introduce `!torch.tensor` / `!torch.vtensor` types. This removes our reliance on the numpy dialect and avoids our off-label use of the builtin tnesor type for modeling unknown dtypes. The `!torch.vtensor` (`ValueTensorType`) type is a value-semantic tensor. The `!torch.tensor` (`NonValueTensorType`) type is a non-value-semantic tensor. The new types look as follows syntactically: ``` // Least-static-information, non-value-semantic tensor. !torch.tensor // Explicit form of least-static-information variant. !torch.tensor<*,unk> // Least-static-information, value-semantic tensor. !torch.vtensor // Explicit form of least-static-information variant. !torch.vtensor<*,unk> // Fixed-set of allowable element types, with first-class support for // Torch's frontend signedness semantics. !torch.tensor<*,si32> // First-class support for unknown dtypes. !torch.tensor<[?,?,?],unk> // Standard MLIR representation of `?` for unknown dimensions. !torch.tensor<[?,2,?,4],unk> // Statically shaped / dtyped example. !torch.vtensor<[1,2,3,4],f32> ``` This required fairly significant changes throughout the compiler, but overall it is a big cleanup. We now have a much clearer layering of "the Torch frontend lowering" vs "lowering to std + linalg + etc.". At the C++ level, there is `ValueTensorType`, `NonValueTensorType`. We also have a helper `BaseTensorType` (kind of like ShapedType) which interoperates with those two. Included changes: - New `torch.tensor(dense<0.0> : tensor<5xf32>) : !torch.tensor` op for creating torch tensor literals in the frontend. - Consistently use signedness for the types (except i1 which I didn't touch -- we need to sort out the situation with !basicpy.BoolType there anyway so will be attending to that soon) - Frontend can annotate whether an argument to the function has value semantics. We currently require this, as our backend contract does not currently allow us to even model the non-value-semantic case. Before, the value-semantic assumption was randomly injected in the middle of the pass pipeline. - Move ArrayToTensor (now called MaximizeValueSemantics) and RefinePublicReturn passes to torch dialect. - The TorchToStd and TorchToLinalg passes are now type conversions from `!torch.vtensor` to `tensor` and use the dialect conversion infra. The overall conversion pipeline is set up following the best practices of the "Type Conversions the Not-So-Hard Way" talk. This required introducing `torch-func-builtin-tensorize` and `torch-finalizing-builtin-tensorize` passes analogous to the upstream bufferization passes with the corresponding names (mostly just copypasta from there). - Misc Torch-level canonicalizations -- we now cleanly layer the lowering to std later in the pipeline, so we are gradually lessening our reliance on random std constant folding before we get to that point. Recommended review order: - New types in TorchTypes.td/TorchTypes.h/TorchDialect.cpp - New ops in TorchOps.td / TorchOps.cpp - Less important / more mechanical stuff - Frontend changes. - Pass changes/additions in `Torch/Transforms` and `Conversion/`
2021-05-21 08:07:18 +08:00
#include "mlir/Transforms/DialectConversion.h"
#include "torch-mlir/Conversion/Utils/Utils.h"
[torch-mlir earthmoving (1/N)] C/C++ code movement. This creates the `external/torch-mlir` directory as an LLVM_EXTERNAL_PROJECTS-compatible project (analogous to `iree-dialects`) and completes movement/rename of all pure MLIR C/C++ compiler code into there. The next step will be to move all the Python code / code that links/includes PyTorch C++ code (which currently lives in `frontends/pytorch`) into a subdirectory here. I call this "earthmoving" because it is mostly mechanical changes and renames. As a quick summary (we can change this down the road easily) - C++ `mlir::NPCOMP::Torch -> mlir::torch::Torch` - CAPI `npcompTorchListTypeGet -> torchMlirTorchListTypeGet` - preprocessor `#ifndef NPCOMP_ -> #ifndef TORCHMLIR_` - CMake `NPCOMPFoo -> TorchMLIRFoo` The goal of this is to create a standalone project creating a center of mass for entry into the MLIR ecosystem from PyTorch, suitable in scope for eventual inclusion/ownership in PyTorch. The idea is that `external/torch-mlir` will some day be pulled out into its own repository, and then npcomp will simply pull it in as a submodule. Layering-wise, what lives in `torch-mlir` lowers code from PyTorch (currently TorchScript, but TorchFX or pytorch/xla-style tracing are possible extensions) down to what we have been calling the "Torch backend contract" which is cleaned up IR (inlining, simplifcation, conversion to value tensors, ...) entirely in the `torch` dialect. This is the branching off point for further lowering, of which npcomp takes one opinion (outside `torch-mlir` of course!), namely the `TorchConversion` dialect/transforms which lower to IR suitable for IREE and other linalg-on-tensors based lower-level compilers. Summary of changes: - move `{include,lib,test}/Dialect/Torch` into `torch-mlir` - move relevant parts of CAPI into `torch-mlir`. - leave a few things related to the `torch-mlir` Python build commented out, which should be resolved in a subsequent change.
2021-09-10 03:24:10 +08:00
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionDialect.h"
#include "torch-mlir/Dialect/TorchConversion/Transforms/BackendTypeConversion.h"
using namespace mlir;
using namespace mlir::torch;
[torch-mlir earthmoving (1/N)] C/C++ code movement. This creates the `external/torch-mlir` directory as an LLVM_EXTERNAL_PROJECTS-compatible project (analogous to `iree-dialects`) and completes movement/rename of all pure MLIR C/C++ compiler code into there. The next step will be to move all the Python code / code that links/includes PyTorch C++ code (which currently lives in `frontends/pytorch`) into a subdirectory here. I call this "earthmoving" because it is mostly mechanical changes and renames. As a quick summary (we can change this down the road easily) - C++ `mlir::NPCOMP::Torch -> mlir::torch::Torch` - CAPI `npcompTorchListTypeGet -> torchMlirTorchListTypeGet` - preprocessor `#ifndef NPCOMP_ -> #ifndef TORCHMLIR_` - CMake `NPCOMPFoo -> TorchMLIRFoo` The goal of this is to create a standalone project creating a center of mass for entry into the MLIR ecosystem from PyTorch, suitable in scope for eventual inclusion/ownership in PyTorch. The idea is that `external/torch-mlir` will some day be pulled out into its own repository, and then npcomp will simply pull it in as a submodule. Layering-wise, what lives in `torch-mlir` lowers code from PyTorch (currently TorchScript, but TorchFX or pytorch/xla-style tracing are possible extensions) down to what we have been calling the "Torch backend contract" which is cleaned up IR (inlining, simplifcation, conversion to value tensors, ...) entirely in the `torch` dialect. This is the branching off point for further lowering, of which npcomp takes one opinion (outside `torch-mlir` of course!), namely the `TorchConversion` dialect/transforms which lower to IR suitable for IREE and other linalg-on-tensors based lower-level compilers. Summary of changes: - move `{include,lib,test}/Dialect/Torch` into `torch-mlir` - move relevant parts of CAPI into `torch-mlir`. - leave a few things related to the `torch-mlir` Python build commented out, which should be resolved in a subsequent change.
2021-09-10 03:24:10 +08:00
using namespace mlir::torch::Torch;
// -----------------------------------------------------------------------------
// Patterns (as this grows, it should be organized into multiple files)
// -----------------------------------------------------------------------------
Introduce `!torch.tensor` / `!torch.vtensor` types. This removes our reliance on the numpy dialect and avoids our off-label use of the builtin tnesor type for modeling unknown dtypes. The `!torch.vtensor` (`ValueTensorType`) type is a value-semantic tensor. The `!torch.tensor` (`NonValueTensorType`) type is a non-value-semantic tensor. The new types look as follows syntactically: ``` // Least-static-information, non-value-semantic tensor. !torch.tensor // Explicit form of least-static-information variant. !torch.tensor<*,unk> // Least-static-information, value-semantic tensor. !torch.vtensor // Explicit form of least-static-information variant. !torch.vtensor<*,unk> // Fixed-set of allowable element types, with first-class support for // Torch's frontend signedness semantics. !torch.tensor<*,si32> // First-class support for unknown dtypes. !torch.tensor<[?,?,?],unk> // Standard MLIR representation of `?` for unknown dimensions. !torch.tensor<[?,2,?,4],unk> // Statically shaped / dtyped example. !torch.vtensor<[1,2,3,4],f32> ``` This required fairly significant changes throughout the compiler, but overall it is a big cleanup. We now have a much clearer layering of "the Torch frontend lowering" vs "lowering to std + linalg + etc.". At the C++ level, there is `ValueTensorType`, `NonValueTensorType`. We also have a helper `BaseTensorType` (kind of like ShapedType) which interoperates with those two. Included changes: - New `torch.tensor(dense<0.0> : tensor<5xf32>) : !torch.tensor` op for creating torch tensor literals in the frontend. - Consistently use signedness for the types (except i1 which I didn't touch -- we need to sort out the situation with !basicpy.BoolType there anyway so will be attending to that soon) - Frontend can annotate whether an argument to the function has value semantics. We currently require this, as our backend contract does not currently allow us to even model the non-value-semantic case. Before, the value-semantic assumption was randomly injected in the middle of the pass pipeline. - Move ArrayToTensor (now called MaximizeValueSemantics) and RefinePublicReturn passes to torch dialect. - The TorchToStd and TorchToLinalg passes are now type conversions from `!torch.vtensor` to `tensor` and use the dialect conversion infra. The overall conversion pipeline is set up following the best practices of the "Type Conversions the Not-So-Hard Way" talk. This required introducing `torch-func-builtin-tensorize` and `torch-finalizing-builtin-tensorize` passes analogous to the upstream bufferization passes with the corresponding names (mostly just copypasta from there). - Misc Torch-level canonicalizations -- we now cleanly layer the lowering to std later in the pipeline, so we are gradually lessening our reliance on random std constant folding before we get to that point. Recommended review order: - New types in TorchTypes.td/TorchTypes.h/TorchDialect.cpp - New ops in TorchOps.td / TorchOps.cpp - Less important / more mechanical stuff - Frontend changes. - Pass changes/additions in `Torch/Transforms` and `Conversion/`
2021-05-21 08:07:18 +08:00
// This is going to eventually be O(#torch operators), which is in the 100s.
Introduce `!torch.tensor` / `!torch.vtensor` types. This removes our reliance on the numpy dialect and avoids our off-label use of the builtin tnesor type for modeling unknown dtypes. The `!torch.vtensor` (`ValueTensorType`) type is a value-semantic tensor. The `!torch.tensor` (`NonValueTensorType`) type is a non-value-semantic tensor. The new types look as follows syntactically: ``` // Least-static-information, non-value-semantic tensor. !torch.tensor // Explicit form of least-static-information variant. !torch.tensor<*,unk> // Least-static-information, value-semantic tensor. !torch.vtensor // Explicit form of least-static-information variant. !torch.vtensor<*,unk> // Fixed-set of allowable element types, with first-class support for // Torch's frontend signedness semantics. !torch.tensor<*,si32> // First-class support for unknown dtypes. !torch.tensor<[?,?,?],unk> // Standard MLIR representation of `?` for unknown dimensions. !torch.tensor<[?,2,?,4],unk> // Statically shaped / dtyped example. !torch.vtensor<[1,2,3,4],f32> ``` This required fairly significant changes throughout the compiler, but overall it is a big cleanup. We now have a much clearer layering of "the Torch frontend lowering" vs "lowering to std + linalg + etc.". At the C++ level, there is `ValueTensorType`, `NonValueTensorType`. We also have a helper `BaseTensorType` (kind of like ShapedType) which interoperates with those two. Included changes: - New `torch.tensor(dense<0.0> : tensor<5xf32>) : !torch.tensor` op for creating torch tensor literals in the frontend. - Consistently use signedness for the types (except i1 which I didn't touch -- we need to sort out the situation with !basicpy.BoolType there anyway so will be attending to that soon) - Frontend can annotate whether an argument to the function has value semantics. We currently require this, as our backend contract does not currently allow us to even model the non-value-semantic case. Before, the value-semantic assumption was randomly injected in the middle of the pass pipeline. - Move ArrayToTensor (now called MaximizeValueSemantics) and RefinePublicReturn passes to torch dialect. - The TorchToStd and TorchToLinalg passes are now type conversions from `!torch.vtensor` to `tensor` and use the dialect conversion infra. The overall conversion pipeline is set up following the best practices of the "Type Conversions the Not-So-Hard Way" talk. This required introducing `torch-func-builtin-tensorize` and `torch-finalizing-builtin-tensorize` passes analogous to the upstream bufferization passes with the corresponding names (mostly just copypasta from there). - Misc Torch-level canonicalizations -- we now cleanly layer the lowering to std later in the pipeline, so we are gradually lessening our reliance on random std constant folding before we get to that point. Recommended review order: - New types in TorchTypes.td/TorchTypes.h/TorchDialect.cpp - New ops in TorchOps.td / TorchOps.cpp - Less important / more mechanical stuff - Frontend changes. - Pass changes/additions in `Torch/Transforms` and `Conversion/`
2021-05-21 08:07:18 +08:00
namespace {
// Note: Confusingly, ATen's "dim" means "number of dimensions" which is what
// MLIR calls "rank".
Introduce `!torch.tensor` / `!torch.vtensor` types. This removes our reliance on the numpy dialect and avoids our off-label use of the builtin tnesor type for modeling unknown dtypes. The `!torch.vtensor` (`ValueTensorType`) type is a value-semantic tensor. The `!torch.tensor` (`NonValueTensorType`) type is a non-value-semantic tensor. The new types look as follows syntactically: ``` // Least-static-information, non-value-semantic tensor. !torch.tensor // Explicit form of least-static-information variant. !torch.tensor<*,unk> // Least-static-information, value-semantic tensor. !torch.vtensor // Explicit form of least-static-information variant. !torch.vtensor<*,unk> // Fixed-set of allowable element types, with first-class support for // Torch's frontend signedness semantics. !torch.tensor<*,si32> // First-class support for unknown dtypes. !torch.tensor<[?,?,?],unk> // Standard MLIR representation of `?` for unknown dimensions. !torch.tensor<[?,2,?,4],unk> // Statically shaped / dtyped example. !torch.vtensor<[1,2,3,4],f32> ``` This required fairly significant changes throughout the compiler, but overall it is a big cleanup. We now have a much clearer layering of "the Torch frontend lowering" vs "lowering to std + linalg + etc.". At the C++ level, there is `ValueTensorType`, `NonValueTensorType`. We also have a helper `BaseTensorType` (kind of like ShapedType) which interoperates with those two. Included changes: - New `torch.tensor(dense<0.0> : tensor<5xf32>) : !torch.tensor` op for creating torch tensor literals in the frontend. - Consistently use signedness for the types (except i1 which I didn't touch -- we need to sort out the situation with !basicpy.BoolType there anyway so will be attending to that soon) - Frontend can annotate whether an argument to the function has value semantics. We currently require this, as our backend contract does not currently allow us to even model the non-value-semantic case. Before, the value-semantic assumption was randomly injected in the middle of the pass pipeline. - Move ArrayToTensor (now called MaximizeValueSemantics) and RefinePublicReturn passes to torch dialect. - The TorchToStd and TorchToLinalg passes are now type conversions from `!torch.vtensor` to `tensor` and use the dialect conversion infra. The overall conversion pipeline is set up following the best practices of the "Type Conversions the Not-So-Hard Way" talk. This required introducing `torch-func-builtin-tensorize` and `torch-finalizing-builtin-tensorize` passes analogous to the upstream bufferization passes with the corresponding names (mostly just copypasta from there). - Misc Torch-level canonicalizations -- we now cleanly layer the lowering to std later in the pipeline, so we are gradually lessening our reliance on random std constant folding before we get to that point. Recommended review order: - New types in TorchTypes.td/TorchTypes.h/TorchDialect.cpp - New ops in TorchOps.td / TorchOps.cpp - Less important / more mechanical stuff - Frontend changes. - Pass changes/additions in `Torch/Transforms` and `Conversion/`
2021-05-21 08:07:18 +08:00
class ConvertAtenDimOp : public OpConversionPattern<AtenDimOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenDimOp op, OpAdaptor adaptor,
Introduce `!torch.tensor` / `!torch.vtensor` types. This removes our reliance on the numpy dialect and avoids our off-label use of the builtin tnesor type for modeling unknown dtypes. The `!torch.vtensor` (`ValueTensorType`) type is a value-semantic tensor. The `!torch.tensor` (`NonValueTensorType`) type is a non-value-semantic tensor. The new types look as follows syntactically: ``` // Least-static-information, non-value-semantic tensor. !torch.tensor // Explicit form of least-static-information variant. !torch.tensor<*,unk> // Least-static-information, value-semantic tensor. !torch.vtensor // Explicit form of least-static-information variant. !torch.vtensor<*,unk> // Fixed-set of allowable element types, with first-class support for // Torch's frontend signedness semantics. !torch.tensor<*,si32> // First-class support for unknown dtypes. !torch.tensor<[?,?,?],unk> // Standard MLIR representation of `?` for unknown dimensions. !torch.tensor<[?,2,?,4],unk> // Statically shaped / dtyped example. !torch.vtensor<[1,2,3,4],f32> ``` This required fairly significant changes throughout the compiler, but overall it is a big cleanup. We now have a much clearer layering of "the Torch frontend lowering" vs "lowering to std + linalg + etc.". At the C++ level, there is `ValueTensorType`, `NonValueTensorType`. We also have a helper `BaseTensorType` (kind of like ShapedType) which interoperates with those two. Included changes: - New `torch.tensor(dense<0.0> : tensor<5xf32>) : !torch.tensor` op for creating torch tensor literals in the frontend. - Consistently use signedness for the types (except i1 which I didn't touch -- we need to sort out the situation with !basicpy.BoolType there anyway so will be attending to that soon) - Frontend can annotate whether an argument to the function has value semantics. We currently require this, as our backend contract does not currently allow us to even model the non-value-semantic case. Before, the value-semantic assumption was randomly injected in the middle of the pass pipeline. - Move ArrayToTensor (now called MaximizeValueSemantics) and RefinePublicReturn passes to torch dialect. - The TorchToStd and TorchToLinalg passes are now type conversions from `!torch.vtensor` to `tensor` and use the dialect conversion infra. The overall conversion pipeline is set up following the best practices of the "Type Conversions the Not-So-Hard Way" talk. This required introducing `torch-func-builtin-tensorize` and `torch-finalizing-builtin-tensorize` passes analogous to the upstream bufferization passes with the corresponding names (mostly just copypasta from there). - Misc Torch-level canonicalizations -- we now cleanly layer the lowering to std later in the pipeline, so we are gradually lessening our reliance on random std constant folding before we get to that point. Recommended review order: - New types in TorchTypes.td/TorchTypes.h/TorchDialect.cpp - New ops in TorchOps.td / TorchOps.cpp - Less important / more mechanical stuff - Frontend changes. - Pass changes/additions in `Torch/Transforms` and `Conversion/`
2021-05-21 08:07:18 +08:00
ConversionPatternRewriter &rewriter) const override {
auto rank = rewriter.create<tensor::RankOp>(op->getLoc(), adaptor.getSelf());
rewriter.replaceOpWithNewOp<arith::IndexCastOp>(
op, getTypeConverter()->convertType(op.getType()), rank);
Introduce `!torch.tensor` / `!torch.vtensor` types. This removes our reliance on the numpy dialect and avoids our off-label use of the builtin tnesor type for modeling unknown dtypes. The `!torch.vtensor` (`ValueTensorType`) type is a value-semantic tensor. The `!torch.tensor` (`NonValueTensorType`) type is a non-value-semantic tensor. The new types look as follows syntactically: ``` // Least-static-information, non-value-semantic tensor. !torch.tensor // Explicit form of least-static-information variant. !torch.tensor<*,unk> // Least-static-information, value-semantic tensor. !torch.vtensor // Explicit form of least-static-information variant. !torch.vtensor<*,unk> // Fixed-set of allowable element types, with first-class support for // Torch's frontend signedness semantics. !torch.tensor<*,si32> // First-class support for unknown dtypes. !torch.tensor<[?,?,?],unk> // Standard MLIR representation of `?` for unknown dimensions. !torch.tensor<[?,2,?,4],unk> // Statically shaped / dtyped example. !torch.vtensor<[1,2,3,4],f32> ``` This required fairly significant changes throughout the compiler, but overall it is a big cleanup. We now have a much clearer layering of "the Torch frontend lowering" vs "lowering to std + linalg + etc.". At the C++ level, there is `ValueTensorType`, `NonValueTensorType`. We also have a helper `BaseTensorType` (kind of like ShapedType) which interoperates with those two. Included changes: - New `torch.tensor(dense<0.0> : tensor<5xf32>) : !torch.tensor` op for creating torch tensor literals in the frontend. - Consistently use signedness for the types (except i1 which I didn't touch -- we need to sort out the situation with !basicpy.BoolType there anyway so will be attending to that soon) - Frontend can annotate whether an argument to the function has value semantics. We currently require this, as our backend contract does not currently allow us to even model the non-value-semantic case. Before, the value-semantic assumption was randomly injected in the middle of the pass pipeline. - Move ArrayToTensor (now called MaximizeValueSemantics) and RefinePublicReturn passes to torch dialect. - The TorchToStd and TorchToLinalg passes are now type conversions from `!torch.vtensor` to `tensor` and use the dialect conversion infra. The overall conversion pipeline is set up following the best practices of the "Type Conversions the Not-So-Hard Way" talk. This required introducing `torch-func-builtin-tensorize` and `torch-finalizing-builtin-tensorize` passes analogous to the upstream bufferization passes with the corresponding names (mostly just copypasta from there). - Misc Torch-level canonicalizations -- we now cleanly layer the lowering to std later in the pipeline, so we are gradually lessening our reliance on random std constant folding before we get to that point. Recommended review order: - New types in TorchTypes.td/TorchTypes.h/TorchDialect.cpp - New ops in TorchOps.td / TorchOps.cpp - Less important / more mechanical stuff - Frontend changes. - Pass changes/additions in `Torch/Transforms` and `Conversion/`
2021-05-21 08:07:18 +08:00
return success();
}
};
} // namespace
namespace {
class ConvertAtenIsFloatingPointOp
: public OpConversionPattern<AtenIsFloatingPointOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenIsFloatingPointOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto tensorType = op.getSelf().getType().cast<BaseTensorType>();
bool result =
tensorType.hasDtype() && tensorType.getDtype().isa<mlir::FloatType>();
rewriter.replaceOpWithNewOp<arith::ConstantOp>(
op, BoolAttr::get(getContext(), result));
return success();
}
};
} // namespace
namespace {
class ConvertRuntimeAssertOp : public OpConversionPattern<RuntimeAssertOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(RuntimeAssertOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<cf::AssertOp>(op, adaptor.getCondition(),
adaptor.getMessage());
return success();
}
};
} // namespace
namespace {
template <typename AtenOp, typename BinOp>
class ConvertAtenBinaryOp : public OpConversionPattern<AtenOp> {
public:
using OpConversionPattern<AtenOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenOp op,
typename OpConversionPattern<AtenOp>::OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.template replaceOpWithNewOp<BinOp>(op, adaptor.getA(), adaptor.getB());
return success();
}
};
} // namespace
namespace {
template <typename AtenOp, typename UnaryOp>
class ConvertAtenUnaryOpToFloatMathOp : public OpConversionPattern<AtenOp> {
public:
using OpConversionPattern<AtenOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenOp op,
typename OpConversionPattern<AtenOp>::OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value input = adaptor.getA();
Type resultType =
this->getTypeConverter()->convertType(op->getResult(0).getType());
if (!input.getType().isa<mlir::FloatType>())
input = convertScalarToDtype(rewriter, loc, input, rewriter.getF64Type());
Value result = rewriter.create<UnaryOp>(loc, input);
rewriter.replaceOp(op,
convertScalarToDtype(rewriter, loc, result, resultType));
return success();
}
};
} // namespace
namespace {
class ConvertAtenDivIntOp : public OpConversionPattern<AtenDivIntOp> {
public:
using OpConversionPattern<AtenDivIntOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenDivIntOp op,
typename OpConversionPattern<AtenDivIntOp>::OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value a =
convertScalarToDtype(rewriter, loc, adaptor.getA(), rewriter.getF64Type());
Value b =
convertScalarToDtype(rewriter, loc, adaptor.getB(), rewriter.getF64Type());
rewriter.replaceOpWithNewOp<arith::DivFOp>(op, a, b);
return success();
}
};
} // namespace
namespace {
// Lowers aten integer comparison ops.
template <typename AtenOp, arith::CmpIPredicate Pred>
class ConvertAtenIntComparisonOp : public OpConversionPattern<AtenOp> {
public:
using OpConversionPattern<AtenOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenOp op,
typename OpConversionPattern<AtenOp>::OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<arith::CmpIOp>(op, Pred, adaptor.getA(),
adaptor.getB());
return success();
}
};
} // namespace
namespace {
// Lowers aten float and float_int comparison ops.
template <typename AtenOp, arith::CmpFPredicate Pred>
class ConvertAtenFloatComparisonOp : public OpConversionPattern<AtenOp> {
public:
using OpConversionPattern<AtenOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenOp op,
typename OpConversionPattern<AtenOp>::OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value lhs = adaptor.getA(), rhs = adaptor.getB();
rhs = convertScalarToDtype(rewriter, op.getLoc(), rhs, lhs.getType());
rewriter.replaceOpWithNewOp<arith::CmpFOp>(op, Pred, lhs, rhs);
return success();
}
};
} // namespace
// Tensors with integer types need to be converted to signless integer
// element type. All tensors with element types other than integer can reuse
// existing elements attribute.
namespace {
class ConvertTorchTensorLiteralOp
: public OpConversionPattern<ValueTensorLiteralOp> {
public:
using OpConversionPattern<ValueTensorLiteralOp>::OpConversionPattern;
using OpAdaptor = ValueTensorLiteralOp::Adaptor;
LogicalResult
matchAndRewrite(ValueTensorLiteralOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
MLIRContext *context = op->getContext();
if (auto elements = op.getValueAttr().dyn_cast<DenseIntElementsAttr>()) {
Type elemTy = op.getValueAttr().getElementType();
unsigned bitWidth = elemTy.getIntOrFloatBitWidth();
Type builtinTensorElemTy = IntegerType::get(context, bitWidth);
rewriter.replaceOpWithNewOp<arith::ConstantOp>(
op, elements.mapValues(builtinTensorElemTy, [&](const APInt &v) {
return APInt(bitWidth, v.getSExtValue());
}));
return success();
}
if (auto elements = op.getValueAttr().dyn_cast<DenseResourceElementsAttr>()) {
if (auto type = elements.getType().dyn_cast<RankedTensorType>()) {
if (auto intType = type.getElementType().dyn_cast<IntegerType>()) {
Type builtinTensorElemTy =
IntegerType::get(context, intType.getIntOrFloatBitWidth());
auto shapedType =
RankedTensorType::get(type.getShape(), builtinTensorElemTy);
AsmResourceBlob *blob = elements.getRawHandle().getBlob();
assert(blob && "Expecting dense resource with a valid blob");
rewriter.replaceOpWithNewOp<arith::ConstantOp>(
op, DenseElementsAttr::get(shapedType, blob->getData()));
return success();
}
}
}
rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, op.getValueAttr());
return success();
}
};
} // namespace
namespace {
template <typename OpTy>
class ConvertTorchConstantOp : public OpConversionPattern<OpTy> {
public:
using OpConversionPattern<OpTy>::OpConversionPattern;
using OpAdaptor = typename OpTy::Adaptor;
LogicalResult
matchAndRewrite(OpTy op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, op.getValueAttr());
return success();
}
};
class ConvertTorchConstantIntOp
: public OpConversionPattern<Torch::ConstantIntOp> {
public:
using OpConversionPattern<Torch::ConstantIntOp>::OpConversionPattern;
using OpAdaptor = Torch::ConstantIntOp::Adaptor;
LogicalResult
matchAndRewrite(Torch::ConstantIntOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// note: arith.constant only accept singless integer, so convert singed to
// singless
rewriter.replaceOpWithNewOp<arith::ConstantOp>(
op, rewriter.getIntegerAttr(rewriter.getI64Type(),
op.getValueAttr().getValue()));
return success();
}
};
} // namespace
Introduce `!torch.tensor` / `!torch.vtensor` types. This removes our reliance on the numpy dialect and avoids our off-label use of the builtin tnesor type for modeling unknown dtypes. The `!torch.vtensor` (`ValueTensorType`) type is a value-semantic tensor. The `!torch.tensor` (`NonValueTensorType`) type is a non-value-semantic tensor. The new types look as follows syntactically: ``` // Least-static-information, non-value-semantic tensor. !torch.tensor // Explicit form of least-static-information variant. !torch.tensor<*,unk> // Least-static-information, value-semantic tensor. !torch.vtensor // Explicit form of least-static-information variant. !torch.vtensor<*,unk> // Fixed-set of allowable element types, with first-class support for // Torch's frontend signedness semantics. !torch.tensor<*,si32> // First-class support for unknown dtypes. !torch.tensor<[?,?,?],unk> // Standard MLIR representation of `?` for unknown dimensions. !torch.tensor<[?,2,?,4],unk> // Statically shaped / dtyped example. !torch.vtensor<[1,2,3,4],f32> ``` This required fairly significant changes throughout the compiler, but overall it is a big cleanup. We now have a much clearer layering of "the Torch frontend lowering" vs "lowering to std + linalg + etc.". At the C++ level, there is `ValueTensorType`, `NonValueTensorType`. We also have a helper `BaseTensorType` (kind of like ShapedType) which interoperates with those two. Included changes: - New `torch.tensor(dense<0.0> : tensor<5xf32>) : !torch.tensor` op for creating torch tensor literals in the frontend. - Consistently use signedness for the types (except i1 which I didn't touch -- we need to sort out the situation with !basicpy.BoolType there anyway so will be attending to that soon) - Frontend can annotate whether an argument to the function has value semantics. We currently require this, as our backend contract does not currently allow us to even model the non-value-semantic case. Before, the value-semantic assumption was randomly injected in the middle of the pass pipeline. - Move ArrayToTensor (now called MaximizeValueSemantics) and RefinePublicReturn passes to torch dialect. - The TorchToStd and TorchToLinalg passes are now type conversions from `!torch.vtensor` to `tensor` and use the dialect conversion infra. The overall conversion pipeline is set up following the best practices of the "Type Conversions the Not-So-Hard Way" talk. This required introducing `torch-func-builtin-tensorize` and `torch-finalizing-builtin-tensorize` passes analogous to the upstream bufferization passes with the corresponding names (mostly just copypasta from there). - Misc Torch-level canonicalizations -- we now cleanly layer the lowering to std later in the pipeline, so we are gradually lessening our reliance on random std constant folding before we get to that point. Recommended review order: - New types in TorchTypes.td/TorchTypes.h/TorchDialect.cpp - New ops in TorchOps.td / TorchOps.cpp - Less important / more mechanical stuff - Frontend changes. - Pass changes/additions in `Torch/Transforms` and `Conversion/`
2021-05-21 08:07:18 +08:00
namespace {
class ConvertAtenFloatScalarOp : public OpConversionPattern<AtenFloatScalarOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenFloatScalarOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type resultType =
this->getTypeConverter()->convertType(op->getResult(0).getType());
Value result =
convertScalarToDtype(rewriter, op.getLoc(), adaptor.getA(), resultType);
rewriter.replaceOp(op, result);
return success();
}
};
} // namespace
namespace {
class ConvertAtenAddOp : public OpConversionPattern<AtenAddOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenAddOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Type resultType =
this->getTypeConverter()->convertType(op->getResult(0).getType());
Value operandA =
convertScalarToDtype(rewriter, loc, adaptor.getA(), resultType);
Value operandB =
convertScalarToDtype(rewriter, loc, adaptor.getB(), resultType);
if (resultType.isa<mlir::FloatType>()) {
rewriter.replaceOpWithNewOp<arith::AddFOp>(op, operandA, operandB);
} else if (resultType.isa<mlir::IntegerType>()) {
rewriter.replaceOpWithNewOp<arith::AddIOp>(op, operandA, operandB);
} else {
return rewriter.notifyMatchFailure(
op, "unimplemented: only support integer or float result type");
}
return success();
}
};
} // namespace
namespace {
template <typename OpTy, typename BinOp>
class ConvertAtenAnyOrAllBoolOp : public OpConversionPattern<OpTy> {
public:
using OpConversionPattern<OpTy>::OpConversionPattern;
using OpAdaptor = typename OpTy::Adaptor;
virtual bool reductionFunction(ArrayRef<bool> inputArray) const = 0;
LogicalResult
matchAndRewrite(OpTy op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value result;
SmallVector<Value> inputListTorchBool;
if (!getListConstructElements(op.getSelf(), inputListTorchBool)) {
return rewriter.notifyMatchFailure(
op, "unimplemented: input list not constructed from ListConstruct");
}
SmallVector<Value> inputList = getTypeConvertedValues(
rewriter, loc, this->getTypeConverter(), inputListTorchBool);
result = inputList[0];
for (unsigned i = 1; i < inputList.size(); i++)
result = rewriter.create<BinOp>(loc, result, inputList[i]);
rewriter.replaceOp(op, result);
return success();
}
};
class ConvertAtenAnyOp
: public ConvertAtenAnyOrAllBoolOp<AtenAnyBoolOp, arith::OrIOp> {
using ConvertAtenAnyOrAllBoolOp<AtenAnyBoolOp,
arith::OrIOp>::ConvertAtenAnyOrAllBoolOp;
bool reductionFunction(ArrayRef<bool> inputArray) const override {
return llvm::any_of(inputArray,
[](bool inputListElem) { return inputListElem; });
}
};
class ConvertAtenAllOp
: public ConvertAtenAnyOrAllBoolOp<AtenAllBoolOp, arith::AndIOp> {
using ConvertAtenAnyOrAllBoolOp<AtenAllBoolOp,
arith::AndIOp>::ConvertAtenAnyOrAllBoolOp;
bool reductionFunction(ArrayRef<bool> inputArray) const override {
return llvm::all_of(inputArray,
[](bool inputListElem) { return inputListElem; });
}
};
} // namespace
namespace {
template <typename OpTy, typename CmpOpTy, typename CmpOpPred, CmpOpPred Pred>
class ConvertAtenBoolLikeOp : public OpConversionPattern<OpTy> {
public:
using OpConversionPattern<OpTy>::OpConversionPattern;
using OpAdaptor = typename OpTy::Adaptor;
LogicalResult
matchAndRewrite(OpTy op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Type inputType = adaptor.getA().getType();
Value cstZero = rewriter.create<arith::ConstantOp>(
loc, rewriter.getZeroAttr(inputType));
Value cstTrue =
rewriter.create<arith::ConstantOp>(loc, rewriter.getBoolAttr(true));
Value cstFalse =
rewriter.create<arith::ConstantOp>(loc, rewriter.getBoolAttr(false));
Value cmpPred;
cmpPred = rewriter.create<CmpOpTy>(loc, Pred, adaptor.getA(), cstZero);
rewriter.replaceOpWithNewOp<arith::SelectOp>(op, cmpPred, cstTrue,
cstFalse);
return success();
}
};
} // namespace
// -----------------------------------------------------------------------------
// The pass
// -----------------------------------------------------------------------------
namespace {
class ConvertTorchToArith : public ConvertTorchToArithBase<ConvertTorchToArith> {
public:
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<func::FuncDialect>();
registry.insert<arith::ArithDialect>();
registry.insert<tensor::TensorDialect>();
registry.insert<cf::ControlFlowDialect>();
registry.insert<math::MathDialect>();
Add TorchToIREE and factor out TorchConversion dialect. This converts a basic list op (torch.prim.ListConstruct) to the IREE dialect. ``` def forward(self, x: float): return [x, x] ``` turns into: ``` builtin.func @forward(%arg0: !torch.float) -> !torch.list<!torch.float> { %0 = torch.prim.ListConstruct %arg0, %arg0 : (!torch.float, !torch.float) -> !torch.list<!torch.float> return %0 : !torch.list<!torch.float> } ``` which turns into: ``` builtin.func @forward(%arg0: f64) -> !iree.list<f64> { %c1 = constant 1 : index %c0 = constant 0 : index %c2 = constant 2 : index %0 = iree.list.create %c2 : !iree.list<f64> iree.list.set %0[%c0], %arg0 : !iree.list<f64>, f64 iree.list.set %0[%c1], %arg0 : !iree.list<f64>, f64 return %0 : !iree.list<f64> } ``` As part of doing this, I realized that it was time to formalize the IR form that we reach right before running TorchTo{Linalg,Std,...}. We now call it the "Torch backend contract". We then lower the "Torch backend contract" to the "npcomp backend contract", which involves the new TorchConversion (`torch_c`) dialect, which holds ops that need to operate on both the npcomp backend types (e.g. builtin tensors, i1, IREE list, etc.) and the `!torch` types. This made more sense, as I realized that if I didn't factor out `torch_c` then the Torch dialect would have a dependency on IREE dialect (we previously didn't notice this was an issue because we only depended on `builtin` types), which seemed wrong to me. Recommended review order: - TorchToIREE.cpp / `TorchToIREE/basic.mlir` - Look at the new structure of createTorchScriptToNpcompBackendPipeline. It now lives in TorchConversion/Transforms/Passes.cpp and cleanly calls into `Torch::createTorchScriptToTorchBackendPipeline` for the frontend lowering to the Torch backend contract. - Mechanical change extracting `torch_c.{to,from}_{i1,i64,f64,builtin_tensor,iree_list}` into a new TorchConversion dialect, and a few passes specific to the lowering from the Torch backend contract to the npcomp backend contract. - Minor fixes to TorchToLinalg.cpp to use unconverted operands (now that we convert lists as part of operand materialization, we need to use the original operands). Also added test for AtenMaxPool2dOp and fixed m_TorchConstantIntList. - TmpDeleteDeadIREELists pass. Temporary pass for deleting dead IREE lists that are created as part of operand materialization for conv/max pool/avg pool ops in TorchToLinalg.
2021-08-12 05:40:08 +08:00
TorchConversion::getBackendTypeConversionDependentDialects(registry);
}
void runOnOperation() override {
MLIRContext *context = &getContext();
Introduce `!torch.tensor` / `!torch.vtensor` types. This removes our reliance on the numpy dialect and avoids our off-label use of the builtin tnesor type for modeling unknown dtypes. The `!torch.vtensor` (`ValueTensorType`) type is a value-semantic tensor. The `!torch.tensor` (`NonValueTensorType`) type is a non-value-semantic tensor. The new types look as follows syntactically: ``` // Least-static-information, non-value-semantic tensor. !torch.tensor // Explicit form of least-static-information variant. !torch.tensor<*,unk> // Least-static-information, value-semantic tensor. !torch.vtensor // Explicit form of least-static-information variant. !torch.vtensor<*,unk> // Fixed-set of allowable element types, with first-class support for // Torch's frontend signedness semantics. !torch.tensor<*,si32> // First-class support for unknown dtypes. !torch.tensor<[?,?,?],unk> // Standard MLIR representation of `?` for unknown dimensions. !torch.tensor<[?,2,?,4],unk> // Statically shaped / dtyped example. !torch.vtensor<[1,2,3,4],f32> ``` This required fairly significant changes throughout the compiler, but overall it is a big cleanup. We now have a much clearer layering of "the Torch frontend lowering" vs "lowering to std + linalg + etc.". At the C++ level, there is `ValueTensorType`, `NonValueTensorType`. We also have a helper `BaseTensorType` (kind of like ShapedType) which interoperates with those two. Included changes: - New `torch.tensor(dense<0.0> : tensor<5xf32>) : !torch.tensor` op for creating torch tensor literals in the frontend. - Consistently use signedness for the types (except i1 which I didn't touch -- we need to sort out the situation with !basicpy.BoolType there anyway so will be attending to that soon) - Frontend can annotate whether an argument to the function has value semantics. We currently require this, as our backend contract does not currently allow us to even model the non-value-semantic case. Before, the value-semantic assumption was randomly injected in the middle of the pass pipeline. - Move ArrayToTensor (now called MaximizeValueSemantics) and RefinePublicReturn passes to torch dialect. - The TorchToStd and TorchToLinalg passes are now type conversions from `!torch.vtensor` to `tensor` and use the dialect conversion infra. The overall conversion pipeline is set up following the best practices of the "Type Conversions the Not-So-Hard Way" talk. This required introducing `torch-func-builtin-tensorize` and `torch-finalizing-builtin-tensorize` passes analogous to the upstream bufferization passes with the corresponding names (mostly just copypasta from there). - Misc Torch-level canonicalizations -- we now cleanly layer the lowering to std later in the pipeline, so we are gradually lessening our reliance on random std constant folding before we get to that point. Recommended review order: - New types in TorchTypes.td/TorchTypes.h/TorchDialect.cpp - New ops in TorchOps.td / TorchOps.cpp - Less important / more mechanical stuff - Frontend changes. - Pass changes/additions in `Torch/Transforms` and `Conversion/`
2021-05-21 08:07:18 +08:00
ConversionTarget target(*context);
target.addLegalDialect<Torch::TorchDialect, func::FuncDialect,
arith::ArithDialect, tensor::TensorDialect,
cf::ControlFlowDialect, math::MathDialect>();
Introduce `!torch.tensor` / `!torch.vtensor` types. This removes our reliance on the numpy dialect and avoids our off-label use of the builtin tnesor type for modeling unknown dtypes. The `!torch.vtensor` (`ValueTensorType`) type is a value-semantic tensor. The `!torch.tensor` (`NonValueTensorType`) type is a non-value-semantic tensor. The new types look as follows syntactically: ``` // Least-static-information, non-value-semantic tensor. !torch.tensor // Explicit form of least-static-information variant. !torch.tensor<*,unk> // Least-static-information, value-semantic tensor. !torch.vtensor // Explicit form of least-static-information variant. !torch.vtensor<*,unk> // Fixed-set of allowable element types, with first-class support for // Torch's frontend signedness semantics. !torch.tensor<*,si32> // First-class support for unknown dtypes. !torch.tensor<[?,?,?],unk> // Standard MLIR representation of `?` for unknown dimensions. !torch.tensor<[?,2,?,4],unk> // Statically shaped / dtyped example. !torch.vtensor<[1,2,3,4],f32> ``` This required fairly significant changes throughout the compiler, but overall it is a big cleanup. We now have a much clearer layering of "the Torch frontend lowering" vs "lowering to std + linalg + etc.". At the C++ level, there is `ValueTensorType`, `NonValueTensorType`. We also have a helper `BaseTensorType` (kind of like ShapedType) which interoperates with those two. Included changes: - New `torch.tensor(dense<0.0> : tensor<5xf32>) : !torch.tensor` op for creating torch tensor literals in the frontend. - Consistently use signedness for the types (except i1 which I didn't touch -- we need to sort out the situation with !basicpy.BoolType there anyway so will be attending to that soon) - Frontend can annotate whether an argument to the function has value semantics. We currently require this, as our backend contract does not currently allow us to even model the non-value-semantic case. Before, the value-semantic assumption was randomly injected in the middle of the pass pipeline. - Move ArrayToTensor (now called MaximizeValueSemantics) and RefinePublicReturn passes to torch dialect. - The TorchToStd and TorchToLinalg passes are now type conversions from `!torch.vtensor` to `tensor` and use the dialect conversion infra. The overall conversion pipeline is set up following the best practices of the "Type Conversions the Not-So-Hard Way" talk. This required introducing `torch-func-builtin-tensorize` and `torch-finalizing-builtin-tensorize` passes analogous to the upstream bufferization passes with the corresponding names (mostly just copypasta from there). - Misc Torch-level canonicalizations -- we now cleanly layer the lowering to std later in the pipeline, so we are gradually lessening our reliance on random std constant folding before we get to that point. Recommended review order: - New types in TorchTypes.td/TorchTypes.h/TorchDialect.cpp - New ops in TorchOps.td / TorchOps.cpp - Less important / more mechanical stuff - Frontend changes. - Pass changes/additions in `Torch/Transforms` and `Conversion/`
2021-05-21 08:07:18 +08:00
TypeConverter typeConverter;
typeConverter.addConversion([](Type type) { return type; });
Add TorchToIREE and factor out TorchConversion dialect. This converts a basic list op (torch.prim.ListConstruct) to the IREE dialect. ``` def forward(self, x: float): return [x, x] ``` turns into: ``` builtin.func @forward(%arg0: !torch.float) -> !torch.list<!torch.float> { %0 = torch.prim.ListConstruct %arg0, %arg0 : (!torch.float, !torch.float) -> !torch.list<!torch.float> return %0 : !torch.list<!torch.float> } ``` which turns into: ``` builtin.func @forward(%arg0: f64) -> !iree.list<f64> { %c1 = constant 1 : index %c0 = constant 0 : index %c2 = constant 2 : index %0 = iree.list.create %c2 : !iree.list<f64> iree.list.set %0[%c0], %arg0 : !iree.list<f64>, f64 iree.list.set %0[%c1], %arg0 : !iree.list<f64>, f64 return %0 : !iree.list<f64> } ``` As part of doing this, I realized that it was time to formalize the IR form that we reach right before running TorchTo{Linalg,Std,...}. We now call it the "Torch backend contract". We then lower the "Torch backend contract" to the "npcomp backend contract", which involves the new TorchConversion (`torch_c`) dialect, which holds ops that need to operate on both the npcomp backend types (e.g. builtin tensors, i1, IREE list, etc.) and the `!torch` types. This made more sense, as I realized that if I didn't factor out `torch_c` then the Torch dialect would have a dependency on IREE dialect (we previously didn't notice this was an issue because we only depended on `builtin` types), which seemed wrong to me. Recommended review order: - TorchToIREE.cpp / `TorchToIREE/basic.mlir` - Look at the new structure of createTorchScriptToNpcompBackendPipeline. It now lives in TorchConversion/Transforms/Passes.cpp and cleanly calls into `Torch::createTorchScriptToTorchBackendPipeline` for the frontend lowering to the Torch backend contract. - Mechanical change extracting `torch_c.{to,from}_{i1,i64,f64,builtin_tensor,iree_list}` into a new TorchConversion dialect, and a few passes specific to the lowering from the Torch backend contract to the npcomp backend contract. - Minor fixes to TorchToLinalg.cpp to use unconverted operands (now that we convert lists as part of operand materialization, we need to use the original operands). Also added test for AtenMaxPool2dOp and fixed m_TorchConstantIntList. - TmpDeleteDeadIREELists pass. Temporary pass for deleting dead IREE lists that are created as part of operand materialization for conv/max pool/avg pool ops in TorchToLinalg.
2021-08-12 05:40:08 +08:00
TorchConversion::setupBackendTypeConversion(target, typeConverter);
Introduce `!torch.tensor` / `!torch.vtensor` types. This removes our reliance on the numpy dialect and avoids our off-label use of the builtin tnesor type for modeling unknown dtypes. The `!torch.vtensor` (`ValueTensorType`) type is a value-semantic tensor. The `!torch.tensor` (`NonValueTensorType`) type is a non-value-semantic tensor. The new types look as follows syntactically: ``` // Least-static-information, non-value-semantic tensor. !torch.tensor // Explicit form of least-static-information variant. !torch.tensor<*,unk> // Least-static-information, value-semantic tensor. !torch.vtensor // Explicit form of least-static-information variant. !torch.vtensor<*,unk> // Fixed-set of allowable element types, with first-class support for // Torch's frontend signedness semantics. !torch.tensor<*,si32> // First-class support for unknown dtypes. !torch.tensor<[?,?,?],unk> // Standard MLIR representation of `?` for unknown dimensions. !torch.tensor<[?,2,?,4],unk> // Statically shaped / dtyped example. !torch.vtensor<[1,2,3,4],f32> ``` This required fairly significant changes throughout the compiler, but overall it is a big cleanup. We now have a much clearer layering of "the Torch frontend lowering" vs "lowering to std + linalg + etc.". At the C++ level, there is `ValueTensorType`, `NonValueTensorType`. We also have a helper `BaseTensorType` (kind of like ShapedType) which interoperates with those two. Included changes: - New `torch.tensor(dense<0.0> : tensor<5xf32>) : !torch.tensor` op for creating torch tensor literals in the frontend. - Consistently use signedness for the types (except i1 which I didn't touch -- we need to sort out the situation with !basicpy.BoolType there anyway so will be attending to that soon) - Frontend can annotate whether an argument to the function has value semantics. We currently require this, as our backend contract does not currently allow us to even model the non-value-semantic case. Before, the value-semantic assumption was randomly injected in the middle of the pass pipeline. - Move ArrayToTensor (now called MaximizeValueSemantics) and RefinePublicReturn passes to torch dialect. - The TorchToStd and TorchToLinalg passes are now type conversions from `!torch.vtensor` to `tensor` and use the dialect conversion infra. The overall conversion pipeline is set up following the best practices of the "Type Conversions the Not-So-Hard Way" talk. This required introducing `torch-func-builtin-tensorize` and `torch-finalizing-builtin-tensorize` passes analogous to the upstream bufferization passes with the corresponding names (mostly just copypasta from there). - Misc Torch-level canonicalizations -- we now cleanly layer the lowering to std later in the pipeline, so we are gradually lessening our reliance on random std constant folding before we get to that point. Recommended review order: - New types in TorchTypes.td/TorchTypes.h/TorchDialect.cpp - New ops in TorchOps.td / TorchOps.cpp - Less important / more mechanical stuff - Frontend changes. - Pass changes/additions in `Torch/Transforms` and `Conversion/`
2021-05-21 08:07:18 +08:00
RewritePatternSet patterns(context);
Introduce `!torch.tensor` / `!torch.vtensor` types. This removes our reliance on the numpy dialect and avoids our off-label use of the builtin tnesor type for modeling unknown dtypes. The `!torch.vtensor` (`ValueTensorType`) type is a value-semantic tensor. The `!torch.tensor` (`NonValueTensorType`) type is a non-value-semantic tensor. The new types look as follows syntactically: ``` // Least-static-information, non-value-semantic tensor. !torch.tensor // Explicit form of least-static-information variant. !torch.tensor<*,unk> // Least-static-information, value-semantic tensor. !torch.vtensor // Explicit form of least-static-information variant. !torch.vtensor<*,unk> // Fixed-set of allowable element types, with first-class support for // Torch's frontend signedness semantics. !torch.tensor<*,si32> // First-class support for unknown dtypes. !torch.tensor<[?,?,?],unk> // Standard MLIR representation of `?` for unknown dimensions. !torch.tensor<[?,2,?,4],unk> // Statically shaped / dtyped example. !torch.vtensor<[1,2,3,4],f32> ``` This required fairly significant changes throughout the compiler, but overall it is a big cleanup. We now have a much clearer layering of "the Torch frontend lowering" vs "lowering to std + linalg + etc.". At the C++ level, there is `ValueTensorType`, `NonValueTensorType`. We also have a helper `BaseTensorType` (kind of like ShapedType) which interoperates with those two. Included changes: - New `torch.tensor(dense<0.0> : tensor<5xf32>) : !torch.tensor` op for creating torch tensor literals in the frontend. - Consistently use signedness for the types (except i1 which I didn't touch -- we need to sort out the situation with !basicpy.BoolType there anyway so will be attending to that soon) - Frontend can annotate whether an argument to the function has value semantics. We currently require this, as our backend contract does not currently allow us to even model the non-value-semantic case. Before, the value-semantic assumption was randomly injected in the middle of the pass pipeline. - Move ArrayToTensor (now called MaximizeValueSemantics) and RefinePublicReturn passes to torch dialect. - The TorchToStd and TorchToLinalg passes are now type conversions from `!torch.vtensor` to `tensor` and use the dialect conversion infra. The overall conversion pipeline is set up following the best practices of the "Type Conversions the Not-So-Hard Way" talk. This required introducing `torch-func-builtin-tensorize` and `torch-finalizing-builtin-tensorize` passes analogous to the upstream bufferization passes with the corresponding names (mostly just copypasta from there). - Misc Torch-level canonicalizations -- we now cleanly layer the lowering to std later in the pipeline, so we are gradually lessening our reliance on random std constant folding before we get to that point. Recommended review order: - New types in TorchTypes.td/TorchTypes.h/TorchDialect.cpp - New ops in TorchOps.td / TorchOps.cpp - Less important / more mechanical stuff - Frontend changes. - Pass changes/additions in `Torch/Transforms` and `Conversion/`
2021-05-21 08:07:18 +08:00
target.addIllegalOp<AtenDimOp>();
patterns.add<ConvertAtenDimOp>(typeConverter, context);
target.addIllegalOp<AtenIsFloatingPointOp>();
patterns.add<ConvertAtenIsFloatingPointOp>(typeConverter, context);
target.addIllegalOp<RuntimeAssertOp>();
patterns.add<ConvertRuntimeAssertOp>(typeConverter, context);
target.addIllegalOp<AtenNeIntOp, AtenEqIntOp, AtenGtIntOp, AtenGeIntOp>();
patterns
.add<ConvertAtenIntComparisonOp<AtenNeIntOp, arith::CmpIPredicate::ne>>(
typeConverter, context);
patterns
.add<ConvertAtenIntComparisonOp<AtenEqIntOp, arith::CmpIPredicate::eq>>(
typeConverter, context);
patterns.add<
ConvertAtenIntComparisonOp<AtenGtIntOp, arith::CmpIPredicate::sgt>>(
typeConverter, context);
patterns.add<
ConvertAtenIntComparisonOp<AtenGeIntOp, arith::CmpIPredicate::sge>>(
typeConverter, context);
target.addIllegalOp<AtenGeFloatOp, AtenGeFloatIntOp, AtenNeFloatIntOp,
AtenGtFloatIntOp>();
patterns.add<
ConvertAtenFloatComparisonOp<AtenGeFloatOp, arith::CmpFPredicate::UGE>>(
typeConverter, context);
patterns.add<ConvertAtenFloatComparisonOp<AtenGeFloatIntOp,
arith::CmpFPredicate::UGE>>(
typeConverter, context);
patterns.add<ConvertAtenFloatComparisonOp<AtenNeFloatIntOp,
arith::CmpFPredicate::UNE>>(
typeConverter, context);
patterns.add<ConvertAtenFloatComparisonOp<AtenGtFloatIntOp,
arith::CmpFPredicate::UGT>>(
typeConverter, context);
target.addIllegalOp<ValueTensorLiteralOp>();
patterns.add<ConvertTorchTensorLiteralOp>(typeConverter, context);
target.addIllegalOp<ConstantBoolOp>();
patterns.add<ConvertTorchConstantOp<ConstantBoolOp>>(typeConverter,
context);
target.addIllegalOp<Torch::ConstantFloatOp>();
patterns.add<ConvertTorchConstantOp<Torch::ConstantFloatOp>>(typeConverter,
context);
target.addIllegalOp<Torch::ConstantIntOp>();
patterns.add<ConvertTorchConstantIntOp>(typeConverter, context);
target.addIllegalOp<AtenFloatScalarOp>();
patterns.add<ConvertAtenFloatScalarOp>(typeConverter, context);
target.addIllegalOp<AtenAddOp>();
patterns.add<ConvertAtenAddOp>(typeConverter, context);
target.addIllegalOp<AtenAddIntOp, AtenSubIntOp, AtenMulIntOp>();
patterns.add<ConvertAtenBinaryOp<AtenAddIntOp, arith::AddIOp>>(
typeConverter, context);
patterns.add<ConvertAtenBinaryOp<AtenSubIntOp, arith::SubIOp>>(
typeConverter, context);
patterns.add<ConvertAtenBinaryOp<AtenMulIntOp, arith::MulIOp>>(
typeConverter, context);
target.addIllegalOp<AtenSubFloatOp>();
patterns.add<ConvertAtenBinaryOp<AtenSubFloatOp, arith::SubFOp>>(
typeConverter, context);
target.addIllegalOp<AtenDivIntOp>();
patterns.add<ConvertAtenDivIntOp>(typeConverter, context);
target.addIllegalOp<AtenDivFloatOp>();
patterns.add<ConvertAtenBinaryOp<AtenDivFloatOp, arith::DivFOp>>(
typeConverter, context);
target.addIllegalOp<AtenFloordivIntOp>();
patterns.add<ConvertAtenBinaryOp<AtenFloordivIntOp, arith::FloorDivSIOp>>(
typeConverter, context);
target.addIllegalOp<PrimMaxIntOp>();
patterns.add<ConvertAtenBinaryOp<PrimMaxIntOp, arith::MaxSIOp>>(
typeConverter, context);
target.addIllegalOp<AtenCeilFloatOp>();
patterns
.add<ConvertAtenUnaryOpToFloatMathOp<AtenCeilFloatOp, math::CeilOp>>(
typeConverter, context);
target.addIllegalOp<AtenSqrtIntOp>();
patterns.add<ConvertAtenUnaryOpToFloatMathOp<AtenSqrtIntOp, math::SqrtOp>>(
typeConverter, context);
target.addIllegalOp<AtenAnyBoolOp, AtenAllBoolOp>();
patterns.add<ConvertAtenAnyOp>(typeConverter, context);
patterns.add<ConvertAtenAllOp>(typeConverter, context);
target.addIllegalOp<AtenBoolFloatOp, AtenBoolIntOp>();
patterns.add<
ConvertAtenBoolLikeOp<AtenBoolFloatOp, arith::CmpFOp,
arith::CmpFPredicate, arith::CmpFPredicate::UNE>>(
typeConverter, context);
patterns.add<
ConvertAtenBoolLikeOp<AtenBoolIntOp, arith::CmpIOp,
arith::CmpIPredicate, arith::CmpIPredicate::ne>>(
typeConverter, context);
Introduce `!torch.tensor` / `!torch.vtensor` types. This removes our reliance on the numpy dialect and avoids our off-label use of the builtin tnesor type for modeling unknown dtypes. The `!torch.vtensor` (`ValueTensorType`) type is a value-semantic tensor. The `!torch.tensor` (`NonValueTensorType`) type is a non-value-semantic tensor. The new types look as follows syntactically: ``` // Least-static-information, non-value-semantic tensor. !torch.tensor // Explicit form of least-static-information variant. !torch.tensor<*,unk> // Least-static-information, value-semantic tensor. !torch.vtensor // Explicit form of least-static-information variant. !torch.vtensor<*,unk> // Fixed-set of allowable element types, with first-class support for // Torch's frontend signedness semantics. !torch.tensor<*,si32> // First-class support for unknown dtypes. !torch.tensor<[?,?,?],unk> // Standard MLIR representation of `?` for unknown dimensions. !torch.tensor<[?,2,?,4],unk> // Statically shaped / dtyped example. !torch.vtensor<[1,2,3,4],f32> ``` This required fairly significant changes throughout the compiler, but overall it is a big cleanup. We now have a much clearer layering of "the Torch frontend lowering" vs "lowering to std + linalg + etc.". At the C++ level, there is `ValueTensorType`, `NonValueTensorType`. We also have a helper `BaseTensorType` (kind of like ShapedType) which interoperates with those two. Included changes: - New `torch.tensor(dense<0.0> : tensor<5xf32>) : !torch.tensor` op for creating torch tensor literals in the frontend. - Consistently use signedness for the types (except i1 which I didn't touch -- we need to sort out the situation with !basicpy.BoolType there anyway so will be attending to that soon) - Frontend can annotate whether an argument to the function has value semantics. We currently require this, as our backend contract does not currently allow us to even model the non-value-semantic case. Before, the value-semantic assumption was randomly injected in the middle of the pass pipeline. - Move ArrayToTensor (now called MaximizeValueSemantics) and RefinePublicReturn passes to torch dialect. - The TorchToStd and TorchToLinalg passes are now type conversions from `!torch.vtensor` to `tensor` and use the dialect conversion infra. The overall conversion pipeline is set up following the best practices of the "Type Conversions the Not-So-Hard Way" talk. This required introducing `torch-func-builtin-tensorize` and `torch-finalizing-builtin-tensorize` passes analogous to the upstream bufferization passes with the corresponding names (mostly just copypasta from there). - Misc Torch-level canonicalizations -- we now cleanly layer the lowering to std later in the pipeline, so we are gradually lessening our reliance on random std constant folding before we get to that point. Recommended review order: - New types in TorchTypes.td/TorchTypes.h/TorchDialect.cpp - New ops in TorchOps.td / TorchOps.cpp - Less important / more mechanical stuff - Frontend changes. - Pass changes/additions in `Torch/Transforms` and `Conversion/`
2021-05-21 08:07:18 +08:00
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
return signalPassFailure();
}
};
} // namespace
std::unique_ptr<OperationPass<func::FuncOp>>
mlir::torch::createConvertTorchToArithPass() {
return std::make_unique<ConvertTorchToArith>();
}