[linalg] Implement strict mode lowering for aten.view. (#3319)

* Enables assume_strict_symbolic_shapes on fx_importer imported
programs, indicating strict shape semantics.
* Reworks the view->reshape lowering to take advantage of strict mode
and do one of:
  * Collapse to 0D
  * Flatten/Unflatten when there is an inferred dim.
  * Fallback to tensor.reshape
* Splits some test cases up and adds an attribute to control the old
pattern (so new corners can be tested in strict mode in isolation).
* Dynamic inferred mode needs upstream work to generalize expand_shape
(so that case is suppressed here).
* Deletes the assert from the existing tensor.reshape lowering if strict
shape mode is enabled (since the condition it is dynamically asserting
cannot happen).
pull/3328/head
Stella Laurenzo 2024-05-10 13:45:50 -07:00 committed by GitHub
parent adafd51823
commit 00efec0b73
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 395 additions and 32 deletions

View File

@ -940,6 +940,9 @@ public:
LogicalResult
matchAndRewrite(AtenViewOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (op->getParentOp()->hasAttr("torch.disable_legacy_view"))
return rewriter.notifyMatchFailure(op.getLoc(),
"legacy view lowering diabled");
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
Location loc = op.getLoc();
@ -1284,6 +1287,9 @@ public:
LogicalResult
matchAndRewrite(AtenViewOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (op->getParentOp()->hasAttr("torch.disable_legacy_view"))
return rewriter.notifyMatchFailure(op.getLoc(),
"legacy view lowering diabled");
SmallVector<Value> sizes;
if (!getListConstructElements(op.getSize(), sizes))
return op.emitError(
@ -1319,12 +1325,16 @@ public:
size = convert;
}
// Check we are only inferring one dimension:
// Check we are only inferring one dimension if not in strict mode. In
// strict mode, there will only ever statically be one inferred dim.
if (!isAssumingStrictSymbolicShapes(rewriter)) {
Value countPred =
b.create<arith::CmpIOp>(arith::CmpIPredicate::sle, count, one);
b.create<cf::AssertOp>(
loc, countPred,
b.getStringAttr("must have at most one inferred (negative) dimension"));
b.getStringAttr(
"must have at most one inferred (negative) dimension"));
}
// Determine the total size of the inferred dimension and update the
// inferred dimension:
@ -1356,6 +1366,165 @@ public:
};
} // namespace
namespace {
class ConvertAtenViewOpStrict : public OpConversionPattern<AtenViewOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenViewOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (!isAssumingStrictSymbolicShapes(rewriter))
return rewriter.notifyMatchFailure(op.getLoc(),
"not strict symbolic shapes");
SmallVector<Value> sizeValues;
if (!getListConstructElements(op.getSize(), sizeValues))
return op.emitError(
"unimplemented: the tensor size list is not from list construct");
auto loc = op.getLoc();
auto resultType =
cast<RankedTensorType>(typeConverter->convertType(op.getType()));
auto self = adaptor.getSelf();
auto selfTy = cast<RankedTensorType>(self.getType());
// Handle collapse to 0D.
if (sizeValues.empty()) {
rewriter.replaceOpWithNewOp<tensor::CollapseShapeOp>(
op, resultType, adaptor.getSelf(), ArrayRef<ReassociationIndices>{});
return success();
}
// If there is a static inferred dimension (-1), then we emit a
// flatten/unflatten and let that proceed through its lowering.
// Otherwise, emit a tensor.reshape. Note that this relies on the fact that
// Torch does not allow such an op to have a symbolic inferred dim.
int inferredDim = -1;
bool staticSizes = true;
for (int i = 0, e = sizeValues.size(); i < e; ++i) {
int64_t dim;
if (!matchPattern(sizeValues[i], m_TorchConstantInt(&dim))) {
staticSizes = false;
continue;
}
if (dim == -1) {
inferredDim = i;
break;
}
}
// While it should be illegal to have a view op with fully known sizes
// and a dynamic shape, in reality, torch IR is a bit loosey and
// progressively resolves to this state. There are delicate invariants
// on the ops we produce that require this, so we enforce.
if (staticSizes && !resultType.hasStaticShape()) {
return rewriter.notifyMatchFailure(loc,
"view cannot be converted with static "
"sizes and a dynamic result type");
}
// Handle inferred dim case.
// TODO: Remove the restriction on staticSizes once flatten/unflatten
// reliably work with multiple dynamic dimensions.
if (inferredDim >= 0 && staticSizes) {
if (!staticSizes) {
return rewriter.notifyMatchFailure(
loc, "view to flatten/unflatten only supported for static sizes");
}
// This is a torch-torch conversion, so only non adapted types are
// involved.
auto selfTy = dyn_cast<ValueTensorType>(op.getSelf().getType());
if (!selfTy || !selfTy.hasSizes())
return failure();
// Work out the 1D flattened type.
int64_t flatDim = 1;
auto selfSizes = selfTy.getSizes();
for (int64_t dim : selfSizes) {
if (dim == kUnknownSize) {
flatDim = kUnknownSize;
break;
}
flatDim *= dim;
}
// Flatten to 1D.
ValueTensorType flatType = rewriter.getType<ValueTensorType>(
ArrayRef<int64_t>{flatDim}, selfTy.getOptionalDtype());
Value dimStart = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(0));
Value dimEnd = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(selfSizes.size() - 1));
Value flatSelf = rewriter.create<Torch::AtenFlattenUsingIntsOp>(
loc, flatType, op.getSelf(), dimStart, dimEnd);
// Unflatten to requested size.
rewriter.replaceOpWithNewOp<AtenUnflattenIntOp>(
op, op.getResult().getType(), flatSelf, dimStart, op.getSize());
return success();
}
// Generate output dims, either based on whether there is an inferred dim
// present or all dims are specified.
auto sizeTy = cast<IntegerType>(
typeConverter->convertType(sizeValues.front().getType()));
SmallVector<Value> outputDimValues;
assert(sizeTy && "Type converter did not handle size");
if (inferredDim >= 0) {
// Inferred dim. If the above flatten/unflatten logic ever catches
// everything, this branch can go away entirely.
Value one = rewriter.create<arith::ConstantOp>(
loc, sizeTy, rewriter.getIntegerAttr(sizeTy, 1));
Value sizeProduct = one;
// Multiply the non-inferred target sizes.
for (int i = 0, e = sizeValues.size(); i < e; ++i) {
if (i == inferredDim)
continue;
Value size = sizeValues[i];
Value convertedSize = typeConverter->materializeTargetConversion(
rewriter, loc, sizeTy, size);
assert(convertedSize && "Type converter did not handle size");
sizeProduct =
rewriter.create<arith::MulIOp>(loc, sizeProduct, convertedSize);
}
// Multiply the self tensor sizes.
Value selfProduct = one;
for (int i = 0, e = selfTy.getRank(); i < e; ++i) {
Value index = rewriter.create<arith::ConstantIndexOp>(loc, i);
Value dim = rewriter.create<tensor::DimOp>(loc, self, index);
dim = rewriter.create<arith::IndexCastOp>(loc, sizeTy, dim);
selfProduct = rewriter.create<arith::MulIOp>(loc, selfProduct, dim);
}
Value inferredSize =
rewriter.create<arith::DivUIOp>(loc, selfProduct, sizeProduct);
for (int i = 0, e = sizeValues.size(); i < e; ++i) {
if (i == inferredDim) {
outputDimValues.push_back(inferredSize);
} else {
outputDimValues.push_back(typeConverter->materializeTargetConversion(
rewriter, loc, sizeTy, sizeValues[i]));
}
}
} else {
// No inferred dim. So output dims are just pass through.
for (Value torchSize : sizeValues) {
outputDimValues.push_back(typeConverter->materializeTargetConversion(
rewriter, loc, sizeTy, torchSize));
}
}
// Normal lowering to reshape with fully computed sizes.
auto outputDimsTy = RankedTensorType::get(
outputDimValues.size(), outputDimValues.front().getType());
auto outputDims = rewriter.create<tensor::FromElementsOp>(loc, outputDimsTy,
outputDimValues);
rewriter.replaceOpWithNewOp<tensor::ReshapeOp>(
op, resultType, adaptor.getSelf(), outputDims);
return success();
}
};
} // namespace
namespace {
class ConvertAtenSqueezeOp : public OpConversionPattern<AtenSqueezeOp> {
public:
@ -2459,6 +2628,9 @@ SmallVector<StringRef> ConvertSparseOperatorOp::legalizedNames = {
void mlir::torch::torch_to_linalg::populateDataMovementPatternsAndLegality(
TypeConverter &typeConverter, RewritePatternSet &patterns,
ConversionTarget &target) {
// Add some legal ops for torch-torch lowering.
target.addLegalOp<ConstantIntOp>();
MLIRContext *context = patterns.getContext();
target.addIllegalOp<AtenReflectionPad1dOp>();
patterns.add<ConvertAtenReflectionPad1dOp>(typeConverter, context);
@ -2468,10 +2640,23 @@ void mlir::torch::torch_to_linalg::populateDataMovementPatternsAndLegality(
patterns.add<ConvertAtenFlattenUsingIntsOp>(typeConverter, context);
patterns.add<ConvertAtenUnflattenIntOp>(typeConverter, context);
target.addIllegalOp<AtenUnflattenIntOp>();
// View op sadness: In the future, we only want ConvertAtenViewOpStrict,
// but this requires work upstream to fully generalize reshape handling.
// In the meantime, the analysis based ConvertAtenViewOp tries hard to
// produce expand/collapse shapes, the ConvertAtenViewOpStrict does the
// right thing but cannot be fully supported for dynamic shapes, and
// ConvertAtenViewOpToReshape overly pessimizes and generates a lot of IR
// due to not statically switching between inferred and non-inferred view
// cases. They are ordered by optimiality of the lowerings they generate
// when they are able.
target.addIllegalOp<AtenViewOp>();
patterns.add<ConvertAtenViewOp>(typeConverter, context, /*benefit=*/200);
patterns.add<ConvertAtenViewOp>(typeConverter, context, /*benefit=*/300);
patterns.add<ConvertAtenViewOpStrict>(typeConverter, context,
/*benefit=*/200);
patterns.add<ConvertAtenViewOpToReshape>(typeConverter, context,
/*benefit=*/100);
target.addIllegalOp<AtenSqueezeOp>();
patterns.add<ConvertAtenSqueezeOp>(typeConverter, context);
target.addIllegalOp<AtenSqueezeDimOp>();

View File

@ -103,6 +103,7 @@ from ..ir import (
StringAttr,
SymbolTable,
Type as IrType,
UnitAttr,
Value,
)
@ -642,6 +643,10 @@ class FxImporter:
func_op = func_dialect.FuncOp(
func_name, ftype, ip=self._m_ip, visibility=func_visibility
)
# Programs imported from FX have strong guarantees. Setting this attribute
# causes various lowerings to be able to emit more efficient code or
# handle more cases. See isAssumingStrictSymbolicShapes().
func_op.attributes["torch.assume_strict_symbolic_shapes"] = UnitAttr.get()
entry_block = Block.create_at_start(func_op.body, ftype.inputs)
node_importer = GraphNodeImporter(

View File

@ -1,16 +1,17 @@
// RUN: torch-mlir-opt <%s -convert-torch-to-linalg -split-input-file -verify-diagnostics | FileCheck %s
// -----
// CHECK-LABEL: func.func @torch.aten.view$twotothree(
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[3,2],f32>) -> !torch.vtensor<[2,3],f32> {
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[3,2],f32>) -> !torch.vtensor<[2,3],f32>
// CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[3,2],f32> -> tensor<3x2xf32>
// CHECK: %[[COLLAPSED:.*]] = tensor.collapse_shape %[[BUILTIN_TENSOR]] {{\[\[}}0, 1]] : tensor<3x2xf32> into tensor<6xf32>
// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[COLLAPSED]] {{\[\[}}0, 1]] output_shape [2, 3] : tensor<6xf32> into tensor<2x3xf32>
// CHECK: %[[BUILTIN_TENSOR_CAST:.*]] = torch_c.from_builtin_tensor %[[EXPANDED]] : tensor<2x3xf32> -> !torch.vtensor<[2,3],f32>
// CHECK: return %[[BUILTIN_TENSOR_CAST]] : !torch.vtensor<[2,3],f32>
func.func @torch.aten.view$twotothree(%arg0: !torch.vtensor<[3,2],f32>) -> !torch.vtensor<[2,3],f32> {
func.func @torch.aten.view$twotothree(%arg0: !torch.vtensor<[3,2],f32>) -> !torch.vtensor<[2,3],f32>
attributes {torch.assume_strict_symbolic_shapes}
{
%int3 = torch.constant.int 3
%int2 = torch.constant.int 2
%0 = torch.prim.ListConstruct %int2, %int3 : (!torch.int, !torch.int) -> !torch.list<int>
@ -21,13 +22,15 @@ func.func @torch.aten.view$twotothree(%arg0: !torch.vtensor<[3,2],f32>) -> !torc
// -----
// CHECK-LABEL: func.func @torch.aten.view$dynamictest(
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32>
// CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[?,?],f32> -> tensor<?x?xf32>
// CHECK: %[[RESHAPE:.*]] = tensor.reshape %[[BUILTIN_TENSOR]]
// CHECK: %[[BUILTIN_TENSOR_CAST:.*]] = torch_c.from_builtin_tensor %[[RESHAPE]] : tensor<?x?xf32> -> !torch.vtensor<[?,?],f32>
// CHECK: return %[[BUILTIN_TENSOR_CAST]] : !torch.vtensor<[?,?],f32>
func.func @torch.aten.view$dynamictest(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
func.func @torch.aten.view$dynamictest(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32>
attributes {torch.assume_strict_symbolic_shapes}
{
%int1 = torch.constant.int 1
%int0 = torch.constant.int 0
%0 = torch.aten.size.int %arg0, %int0 : !torch.vtensor<[?,?],f32>, !torch.int -> !torch.int
@ -40,13 +43,15 @@ func.func @torch.aten.view$dynamictest(%arg0: !torch.vtensor<[?,?],f32>) -> !tor
// -----
// CHECK-LABEL: func.func @torch.aten.view$dynamictest2(
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[?,6,?],f32>) -> !torch.vtensor<[?,2,3,?],f32> {
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[?,6,?],f32>) -> !torch.vtensor<[?,2,3,?],f32>
// CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[?,6,?],f32> -> tensor<?x6x?xf32>
// CHECK: %[[EXPAND:.*]] = tensor.reshape %[[BUILTIN_TENSOR]]
// CHECK: %[[BUILTIN_TENSOR_CAST:.*]] = torch_c.from_builtin_tensor %[[EXPAND]] : tensor<?x2x3x?xf32> -> !torch.vtensor<[?,2,3,?],f32>
// CHECK: return %[[BUILTIN_TENSOR_CAST]] : !torch.vtensor<[?,2,3,?],f32>
func.func @torch.aten.view$dynamictest2(%arg0: !torch.vtensor<[?,6,?],f32>) -> !torch.vtensor<[?,2,3,?],f32> {
func.func @torch.aten.view$dynamictest2(%arg0: !torch.vtensor<[?,6,?],f32>) -> !torch.vtensor<[?,2,3,?],f32>
attributes {torch.assume_strict_symbolic_shapes}
{
%int3 = torch.constant.int 3
%int2 = torch.constant.int 2
%int0 = torch.constant.int 0
@ -60,7 +65,7 @@ func.func @torch.aten.view$dynamictest2(%arg0: !torch.vtensor<[?,6,?],f32>) -> !
// -----
// CHECK-LABEL: func.func @torch.aten.view$dynamicVal(
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[1,?,128],f32>) -> !torch.vtensor<[16,1,128],f32> {
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[1,?,128],f32>) -> !torch.vtensor<[16,1,128],f32>
// CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[1,?,128],f32> -> tensor<1x?x128xf32>
// CHECK: %[[CASTED:.*]] = tensor.cast %[[BUILTIN_TENSOR]] : tensor<1x?x128xf32> to tensor<1x16x128xf32>
// CHECK: %[[COLLAPSED:.*]] = tensor.collapse_shape %[[CASTED]] {{\[\[}}0, 1], [2]] : tensor<1x16x128xf32> into tensor<16x128xf32>
@ -68,7 +73,9 @@ func.func @torch.aten.view$dynamictest2(%arg0: !torch.vtensor<[?,6,?],f32>) -> !
// CHECK: %[[BUILTIN_TENSOR_CAST:.*]] = torch_c.from_builtin_tensor %[[EXPANDED]] : tensor<16x1x128xf32> -> !torch.vtensor<[16,1,128],f32>
// CHECK: return %[[BUILTIN_TENSOR_CAST]] : !torch.vtensor<[16,1,128],f32>
func.func @torch.aten.view$dynamicVal(%arg0: !torch.vtensor<[1,?,128],f32>) -> !torch.vtensor<[16,1,128],f32> {
func.func @torch.aten.view$dynamicVal(%arg0: !torch.vtensor<[1,?,128],f32>) -> !torch.vtensor<[16,1,128],f32>
attributes {torch.assume_strict_symbolic_shapes}
{
%int128 = torch.constant.int 128
%int1 = torch.constant.int 1
%int16 = torch.constant.int 16
@ -80,7 +87,7 @@ func.func @torch.aten.view$dynamicVal(%arg0: !torch.vtensor<[1,?,128],f32>) -> !
// -----
// CHECK-LABEL: func.func @torch.aten$dynamicValOutput(
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[4,5,6],f32>) -> !torch.vtensor<[8,1,?,1],f32> {
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[4,5,6],f32>) -> !torch.vtensor<[8,1,?,1],f32>
// CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[4,5,6],f32> -> tensor<4x5x6xf32>
// CHECK: %[[COLLAPSED:.*]] = tensor.collapse_shape %[[BUILTIN_TENSOR]] {{\[\[}}0, 1, 2]] : tensor<4x5x6xf32> into tensor<120xf32>
// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[COLLAPSED]] {{\[\[}}0, 1, 2, 3]] output_shape [8, 1, 15, 1] : tensor<120xf32> into tensor<8x1x15x1xf32>
@ -88,7 +95,9 @@ func.func @torch.aten.view$dynamicVal(%arg0: !torch.vtensor<[1,?,128],f32>) -> !
// CHECK: %[[BUILTIN_TENSOR_CAST:.*]] = torch_c.from_builtin_tensor %[[CAST]] : tensor<8x1x?x1xf32> -> !torch.vtensor<[8,1,?,1],f32>
// CHECK: return %[[BUILTIN_TENSOR_CAST]] : !torch.vtensor<[8,1,?,1],f32>
func.func @torch.aten$dynamicValOutput(%arg0: !torch.vtensor<[4,5,6],f32>) -> !torch.vtensor<[8,1,?,1],f32> {
func.func @torch.aten$dynamicValOutput(%arg0: !torch.vtensor<[4,5,6],f32>) -> !torch.vtensor<[8,1,?,1],f32>
attributes {torch.assume_strict_symbolic_shapes}
{
%int8 = torch.constant.int 8
%int1 = torch.constant.int 1
%int-1 = torch.constant.int -1
@ -100,7 +109,7 @@ func.func @torch.aten$dynamicValOutput(%arg0: !torch.vtensor<[4,5,6],f32>) -> !t
// -----
// CHECK-LABEL: func.func @torch.aten$dynamicValOutput2(
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[4,5,6],f32>) -> !torch.vtensor<[2,1,2,3,?],f32> {
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[4,5,6],f32>) -> !torch.vtensor<[2,1,2,3,?],f32>
// CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[4,5,6],f32> -> tensor<4x5x6xf32>
// CHECK: %[[COLLAPSED:.*]] = tensor.collapse_shape %[[BUILTIN_TENSOR]] {{\[\[}}0], [1, 2]] : tensor<4x5x6xf32> into tensor<4x30xf32>
// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[COLLAPSED]] {{\[\[}}0, 1, 2], [3, 4]] output_shape [2, 1, 2, 3, 10] : tensor<4x30xf32> into tensor<2x1x2x3x10xf32>
@ -109,7 +118,9 @@ func.func @torch.aten$dynamicValOutput(%arg0: !torch.vtensor<[4,5,6],f32>) -> !t
// CHECK: return %[[BUILTIN_TENSOR_CAST]] : !torch.vtensor<[2,1,2,3,?],f32>
// 4 -> [2,1,2] [5,6] -> [3,10].
func.func @torch.aten$dynamicValOutput2(%arg0: !torch.vtensor<[4,5,6],f32>) -> !torch.vtensor<[2,1,2,3,?],f32> {
func.func @torch.aten$dynamicValOutput2(%arg0: !torch.vtensor<[4,5,6],f32>) -> !torch.vtensor<[2,1,2,3,?],f32>
attributes {torch.assume_strict_symbolic_shapes}
{
%int2 = torch.constant.int 2
%int1 = torch.constant.int 1
%int3 = torch.constant.int 3
@ -122,14 +133,16 @@ func.func @torch.aten$dynamicValOutput2(%arg0: !torch.vtensor<[4,5,6],f32>) -> !
// -----
// CHECK-LABEL: func.func @torch.aten.view$expandInferredDim(
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[2,6],f32>) -> !torch.vtensor<[3,2,2],f32> {
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[2,6],f32>) -> !torch.vtensor<[3,2,2],f32>
// CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[2,6],f32> -> tensor<2x6xf32>
// CHECK: %[[COLLAPSED:.*]] = tensor.collapse_shape %[[BUILTIN_TENSOR]] {{\[\[}}0, 1]] : tensor<2x6xf32> into tensor<12xf32>
// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[COLLAPSED]] {{\[\[}}0, 1, 2]] output_shape [3, 2, 2] : tensor<12xf32> into tensor<3x2x2xf32>
// CHECK: %[[BUILTIN_TENSOR_CAST:.*]] = torch_c.from_builtin_tensor %[[EXPANDED]] : tensor<3x2x2xf32> -> !torch.vtensor<[3,2,2],f32>
// CHECK: return %[[BUILTIN_TENSOR_CAST]] : !torch.vtensor<[3,2,2],f32>
func.func @torch.aten.view$expandInferredDim(%arg0: !torch.vtensor<[2,6],f32>) -> !torch.vtensor<[3,2,2],f32> {
func.func @torch.aten.view$expandInferredDim(%arg0: !torch.vtensor<[2,6],f32>) -> !torch.vtensor<[3,2,2],f32>
attributes {torch.assume_strict_symbolic_shapes}
{
%int2 = torch.constant.int 2
%int3 = torch.constant.int 3
%int-1 = torch.constant.int -1
@ -141,7 +154,7 @@ func.func @torch.aten.view$expandInferredDim(%arg0: !torch.vtensor<[2,6],f32>) -
// -----
// CHECK-LABEL: func.func @torch.aten.view$singleUnknownMatches0(
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[10,3,?,2,3],f32>) -> !torch.vtensor<[2,3,5,?,6],f32> {
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[10,3,?,2,3],f32>) -> !torch.vtensor<[2,3,5,?,6],f32>
// CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[10,3,?,2,3],f32> -> tensor<10x3x?x2x3xf32>
// CHECK: %[[COLLAPSE:.*]] = tensor.collapse_shape %[[BUILTIN_TENSOR]] {{\[\[}}0, 1], [2], [3, 4]] : tensor<10x3x?x2x3xf32> into tensor<30x?x6xf32>
// CHECK: %[[C1:.*]] = arith.constant 1 : index
@ -154,7 +167,9 @@ func.func @torch.aten.view$expandInferredDim(%arg0: !torch.vtensor<[2,6],f32>) -
// Associations are,
// -- for collapse, [0,1], [2], [3,4] and
// -- for expand [0,1,2], [3], [4].
func.func @torch.aten.view$singleUnknownMatches0(%arg0: !torch.vtensor<[10,3,?,2,3],f32>) -> !torch.vtensor<[2,3,5,?,6],f32> {
func.func @torch.aten.view$singleUnknownMatches0(%arg0: !torch.vtensor<[10,3,?,2,3],f32>) -> !torch.vtensor<[2,3,5,?,6],f32>
attributes {torch.assume_strict_symbolic_shapes}
{
%int3 = torch.constant.int 3
%int2 = torch.constant.int 2
%int6 = torch.constant.int 6
@ -175,13 +190,15 @@ func.func @torch.aten.view$singleUnknownMatches0(%arg0: !torch.vtensor<[10,3,?,2
// but one which matches between the input and the output
// CHECK: func.func @torch.aten.view$combineConcepts(
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[8,?,?,?,2,1,3],f32>) -> !torch.vtensor<[2,2,2,?,?,?,6],f32> {
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[8,?,?,?,2,1,3],f32>) -> !torch.vtensor<[2,2,2,?,?,?,6],f32>
// CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[8,?,?,?,2,1,3],f32> -> tensor<8x?x?x?x2x1x3xf32>
// CHECK: %[[RESHAPE:.*]] = tensor.reshape %[[BUILTIN_TENSOR]]
// CHECK: %[[BUILTIN_TENSOR_CAST:.*]] = torch_c.from_builtin_tensor %[[RESHAPE]] : tensor<2x2x2x?x?x?x6xf32> -> !torch.vtensor<[2,2,2,?,?,?,6],f32>
// CHECK: return %[[BUILTIN_TENSOR_CAST]] : !torch.vtensor<[2,2,2,?,?,?,6],f32>
func.func @torch.aten.view$combineConcepts(%arg0 : !torch.vtensor<[8,?,?,?,2,1,3], f32>) -> !torch.vtensor<[2,2,2,?,?,?,6], f32> {
func.func @torch.aten.view$combineConcepts(%arg0 : !torch.vtensor<[8,?,?,?,2,1,3], f32>) -> !torch.vtensor<[2,2,2,?,?,?,6], f32>
attributes {torch.assume_strict_symbolic_shapes}
{
%int1 = torch.constant.int 1
%size1 = torch.aten.size.int %arg0, %int1 : !torch.vtensor<[8,?,?,?,2,1,3], f32>, !torch.int -> !torch.int
@ -200,12 +217,14 @@ func.func @torch.aten.view$combineConcepts(%arg0 : !torch.vtensor<[8,?,?,?,2,1,3
// -----
// CHECK-LABEL: func.func @torch.aten.view$multiDynamicsInSourceOfCollapse
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[?,2,?,4,?],f32>) -> !torch.vtensor<[?],f32> {
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[?,2,?,4,?],f32>) -> !torch.vtensor<[?],f32>
// CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[?,2,?,4,?],f32> -> tensor<?x2x?x4x?xf32>
// CHECK: %[[COLLAPSE:.*]] = tensor.collapse_shape %[[BUILTIN_TENSOR]] {{\[\[}}0, 1, 2, 3, 4]] : tensor<?x2x?x4x?xf32> into tensor<?xf32>
// CHECK: %[[BUILTIN_TENSOR_CAST:.*]] = torch_c.from_builtin_tensor %[[COLLAPSE]] : tensor<?xf32> -> !torch.vtensor<[?],f32>
// CHECK: return %[[BUILTIN_TENSOR_CAST]] : !torch.vtensor<[?],f32>
func.func @torch.aten.view$multiDynamicsInSourceOfCollapse (%arg0 : !torch.vtensor<[?,2,?,4,?], f32>) -> !torch.vtensor<[?], f32> {
func.func @torch.aten.view$multiDynamicsInSourceOfCollapse (%arg0 : !torch.vtensor<[?,2,?,4,?], f32>) -> !torch.vtensor<[?], f32>
attributes {torch.assume_strict_symbolic_shapes}
{
%int-1 = torch.constant.int -1
%0 = torch.prim.ListConstruct %int-1 : (!torch.int) -> !torch.list<int>
%1 = torch.aten.view %arg0, %0 : !torch.vtensor<[?,2,?,4,?], f32>, !torch.list<int> -> !torch.vtensor<[?], f32>
@ -215,7 +234,7 @@ func.func @torch.aten.view$multiDynamicsInSourceOfCollapse (%arg0 : !torch.vtens
// -----
// CHECK-LABEL: func.func @torch.aten.view$castingView
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[?,?,?],f32>) -> !torch.vtensor<[3,4,5],f32> {
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[?,?,?],f32>) -> !torch.vtensor<[3,4,5],f32>
// The current lowring only succeeds if the input (arg0) has shape [3,4,5],
// determined at runtime. This is a bit limiting, and we'll probably want to
@ -225,7 +244,9 @@ func.func @torch.aten.view$multiDynamicsInSourceOfCollapse (%arg0 : !torch.vtens
// CHECK-COUNT-2: cf.assert {{.*}} "mismatching contracting dimension
// CHECK: return {{.*}} : !torch.vtensor<[3,4,5],f32>
func.func @torch.aten.view$castingView (%arg0 : !torch.vtensor<[?,?,?], f32>) -> !torch.vtensor<[3,4,5], f32> {
func.func @torch.aten.view$castingView (%arg0 : !torch.vtensor<[?,?,?], f32>) -> !torch.vtensor<[3,4,5], f32>
attributes {torch.assume_strict_symbolic_shapes}
{
%int3 = torch.constant.int 3
%int4 = torch.constant.int 4
%int5 = torch.constant.int 5
@ -240,7 +261,7 @@ func.func @torch.aten.view$castingView (%arg0 : !torch.vtensor<[?,?,?], f32>) ->
// We expect this to lower to a collapse with [0], [1], [2,3] followed by
// an expand with [0,1], [2], [3]:
// CHECK: func.func @torch.aten.view$dynamicInferredSame(
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[10,?,2,3],f32>) -> !torch.vtensor<[2,5,?,6],f32> {
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[10,?,2,3],f32>) -> !torch.vtensor<[2,5,?,6],f32>
// CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[10,?,2,3],f32> -> tensor<10x?x2x3xf32>
// CHECK: %[[COLLAPSE:.*]] = tensor.collapse_shape %[[BUILTIN_TENSOR]] {{\[\[}}0], [1], [2, 3]] : tensor<10x?x2x3xf32> into tensor<10x?x6xf32>
// CHECK: %[[C1:.*]] = arith.constant 1 : index
@ -249,7 +270,9 @@ func.func @torch.aten.view$castingView (%arg0 : !torch.vtensor<[?,?,?], f32>) ->
// CHECK: %[[BUILTIN_TENSOR_CAST:.*]] = torch_c.from_builtin_tensor %[[EXPAND]] : tensor<2x5x?x6xf32> -> !torch.vtensor<[2,5,?,6],f32>
// CHECK: return %[[BUILTIN_TENSOR_CAST]] : !torch.vtensor<[2,5,?,6],f32>
func.func @torch.aten.view$dynamicInferredSame(%arg0: !torch.vtensor<[10,?,2,3],f32>) -> !torch.vtensor<[2,5,?,6],f32> {
func.func @torch.aten.view$dynamicInferredSame(%arg0: !torch.vtensor<[10,?,2,3],f32>) -> !torch.vtensor<[2,5,?,6],f32>
attributes {torch.assume_strict_symbolic_shapes}
{
%int2 = torch.constant.int 2
%int5 = torch.constant.int 5
%int6 = torch.constant.int 6

View File

@ -0,0 +1,150 @@
// RUN: torch-mlir-opt <%s -convert-torch-to-linalg -split-input-file -verify-diagnostics | FileCheck %s
// Since we want to migrate to the strict view op lowering, these test cases
// verify this one pattern specifically via attributes on the functions that
// disable the legacy behavior.
// -----
// CHECK-LABEL: func.func @torch.aten.view$twotothree
// CHECK: %[[ARG0:.*]] = torch_c.to_builtin_tensor %arg0 : !torch.vtensor<[3,2],f32> -> tensor<3x2xf32>
// CHECK: %[[T3:.*]] = torch.constant.int 3
// CHECK: %[[T2:.*]] = torch.constant.int 2
// CHECK: %[[N2:.*]] = torch_c.to_i64 %[[T2]]
// CHECK: %[[N3:.*]] = torch_c.to_i64 %[[T3]]
// CHECK: %[[ELEMENTS:.*]] = tensor.from_elements %[[N2]], %[[N3]] : tensor<2xi64>
// CHECK: %[[RESHAPE:.*]] = tensor.reshape %[[ARG0]](%[[ELEMENTS]]) : (tensor<3x2xf32>, tensor<2xi64>) -> tensor<2x3xf32>
func.func @torch.aten.view$twotothree(%arg0: !torch.vtensor<[3,2],f32>) -> !torch.vtensor<[2,3],f32>
attributes {torch.assume_strict_symbolic_shapes, torch.disable_legacy_view}
{
%int3 = torch.constant.int 3
%int2 = torch.constant.int 2
%0 = torch.prim.ListConstruct %int2, %int3 : (!torch.int, !torch.int) -> !torch.list<int>
%1 = torch.aten.view %arg0, %0 : !torch.vtensor<[3,2],f32>, !torch.list<int> -> !torch.vtensor<[2,3],f32>
return %1 : !torch.vtensor<[2,3],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.view$zerod
// CHECK: %[[ARG0:.*]] = torch_c.to_builtin_tensor %arg0
// CHECK: tensor.collapse_shape %0 [] : tensor<?x?xf32> into tensor<f32>
func.func @torch.aten.view$zerod(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[],f32>
attributes {torch.assume_strict_symbolic_shapes, torch.disable_legacy_view}
{
%0 = torch.prim.ListConstruct : () -> !torch.list<int>
%1 = torch.aten.view %arg0, %0 : !torch.vtensor<[?,?],f32>, !torch.list<int> -> !torch.vtensor<[],f32>
return %1 : !torch.vtensor<[],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.view$dynamictest
// CHECK: %[[ARG0:.*]] = torch_c.to_builtin_tensor %arg0
// CHECK: %[[ARG1:.*]] = torch_c.to_i64 %arg1
// CHECK: %[[ARG2:.*]] = torch_c.to_i64 %arg2
// CHECK: %[[ELTS:.*]] = tensor.from_elements %[[ARG1]], %[[ARG2]] : tensor<2xi64>
// CHECK: tensor.reshape %[[ARG0]](%[[ELTS]]) : (tensor<?x?xf32>, tensor<2xi64>) -> tensor<?x?xf32>
func.func @torch.aten.view$dynamictest(%arg0: !torch.vtensor<[?,?],f32>, %arg1: !torch.int, %arg2: !torch.int) -> !torch.vtensor<[?,?],f32>
attributes {torch.assume_strict_symbolic_shapes, torch.disable_legacy_view}
{
%2 = torch.prim.ListConstruct %arg1, %arg2 : (!torch.int, !torch.int) -> !torch.list<int>
%3 = torch.aten.view %arg0, %2 : !torch.vtensor<[?,?],f32>, !torch.list<int> -> !torch.vtensor<[?,?],f32>
return %3 : !torch.vtensor<[?,?],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.view$dynamictest2(
// CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[?,6,?],f32>) -> !torch.vtensor<[?,2,3,?],f32>
// CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[?,6,?],f32> -> tensor<?x6x?xf32>
// CHECK: %[[EXPAND:.*]] = tensor.reshape %[[BUILTIN_TENSOR]]
// CHECK: %[[BUILTIN_TENSOR_CAST:.*]] = torch_c.from_builtin_tensor %[[EXPAND]] : tensor<?x2x3x?xf32> -> !torch.vtensor<[?,2,3,?],f32>
// CHECK: return %[[BUILTIN_TENSOR_CAST]] : !torch.vtensor<[?,2,3,?],f32>
func.func @torch.aten.view$dynamictest2(%arg0: !torch.vtensor<[?,6,?],f32>) -> !torch.vtensor<[?,2,3,?],f32>
attributes {torch.assume_strict_symbolic_shapes, torch.disable_legacy_view}
{
%int3 = torch.constant.int 3
%int2 = torch.constant.int 2
%int0 = torch.constant.int 0
%2 = torch.aten.size.int %arg0, %int2 : !torch.vtensor<[?,6,?],f32>, !torch.int -> !torch.int
%0 = torch.aten.size.int %arg0, %int0 : !torch.vtensor<[?,6,?],f32>, !torch.int -> !torch.int
%1 = torch.prim.ListConstruct %0, %int2, %int3, %2 : (!torch.int, !torch.int, !torch.int, !torch.int) -> !torch.list<int>
%3 = torch.aten.view %arg0, %1 : !torch.vtensor<[?,6,?],f32>, !torch.list<int> -> !torch.vtensor<[?,2,3,?], f32>
return %3 : !torch.vtensor<[?,2,3,?], f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.view$dynamicVal(
// CHECK: tensor.reshape {{.*}} : (tensor<1x?x128xf32>, tensor<3xi64>) -> tensor<16x1x128xf32>
func.func @torch.aten.view$dynamicVal(%arg0: !torch.vtensor<[1,?,128],f32>) -> !torch.vtensor<[16,1,128],f32>
attributes {torch.assume_strict_symbolic_shapes, torch.disable_legacy_view}
{
%int128 = torch.constant.int 128
%int1 = torch.constant.int 1
%int16 = torch.constant.int 16
%0 = torch.prim.ListConstruct %int16, %int1, %int128 : (!torch.int, !torch.int, !torch.int) -> !torch.list<int>
%1 = torch.aten.view %arg0, %0 : !torch.vtensor<[1,?,128],f32>, !torch.list<int> -> !torch.vtensor<[16,1,128],f32>
return %1 : !torch.vtensor<[16,1,128],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.view$expandInferredDim
// CHECK: %[[ARG0:.*]] = torch_c.to_builtin_tensor %arg0
// CHECK: %[[COLLAPSED:.*]] = tensor.collapse_shape %[[ARG0]] {{\[\[}}0, 1]] : tensor<2x6xf32> into tensor<12xf32>
// CHECK: %[[CAST1:.*]] = tensor.cast %[[COLLAPSED]] : tensor<12xf32> to tensor<12xf32>
// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[CAST1]] {{\[\[}}0, 1, 2]] output_shape [3, 2, 2] : tensor<12xf32> into tensor<3x2x2xf32>
func.func @torch.aten.view$expandInferredDim(%arg0: !torch.vtensor<[2,6],f32>) -> !torch.vtensor<[3,2,2],f32>
attributes {torch.assume_strict_symbolic_shapes, torch.disable_legacy_view}
{
%int2 = torch.constant.int 2
%int3 = torch.constant.int 3
%int-1 = torch.constant.int -1
%0 = torch.prim.ListConstruct %int3, %int2, %int-1 : (!torch.int, !torch.int, !torch.int) -> !torch.list<int>
%1 = torch.aten.view %arg0, %0 : !torch.vtensor<[2,6],f32>, !torch.list<int> -> !torch.vtensor<[3,2,2],f32>
return %1 : !torch.vtensor<[3,2,2],f32>
}
// -----
// Note that this is presently going down a fallback path as an explicit
// reshape. Someday, this should generate flatten/unflatten.
// CHECK-LABEL: func.func @torch.aten$dynamicValOutput
// CHECK: %[[SELF:.*]] = torch_c.to_builtin_tensor %arg0
// CHECK: %[[CONSTANT1:.*]] = torch.constant.int 1
// CHECK-DAG: %[[PROD1:.*]] = arith.constant 1
// CHECK-DAG: %[[ARG1_CVT:.*]] = torch_c.to_i64 %arg1
// CHECK-DAG: %[[PROD2:.*]] = arith.muli %[[PROD1]], %[[ARG1_CVT]]
// CHECK-DAG: %[[ONEI64:.*]] = torch_c.to_i64 %[[CONSTANT1]]
// CHECK-DAG: %[[PROD3:.*]] = arith.muli %[[PROD2]], %[[ONEI64]]
// CHECK-DAG: %[[ONEI64_0:.*]] = torch_c.to_i64 %[[CONSTANT1]]
// CHECK-DAG: %[[PROD4:.*]] = arith.muli %[[PROD3]], %[[ONEI64_0]]
// CHECK-DAG: %[[INDEX0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[DIM0_INDEX:.*]] = tensor.dim %[[SELF]], %[[INDEX0]] : tensor<?x?x?xf32>
// CHECK-DAG: %[[DIM0:.*]] = arith.index_cast %[[DIM0_INDEX]] : index to i64
// CHECK-DAG: %[[KNOWN0:.*]] = arith.muli %[[PROD1]], %[[DIM0]] : i64
// CHECK-DAG: %[[INDEX1:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[DIM1_INDEX:.*]] = tensor.dim %[[SELF]], %[[INDEX1]] : tensor<?x?x?xf32>
// CHECK-DAG: %[[DIM1:.*]] = arith.index_cast %[[DIM1_INDEX]] : index to i64
// CHECK-DAG: %[[KNOWN1:.*]] = arith.muli %[[KNOWN0]], %[[DIM1]] : i64
// CHECK-DAG: %[[INDEX2:.*]] = arith.constant 2 : index
// CHECK-DAG: %[[DIM2_INDEX:.*]] = tensor.dim %[[SELF]], %[[INDEX2]] : tensor<?x?x?xf32>
// CHECK-DAG: %[[DIM2:.*]] = arith.index_cast %[[DIM2_INDEX]] : index to i64
// CHECK-DAG: %[[KNOWN2:.*]] = arith.muli %[[KNOWN1]], %[[DIM2]] : i64
// CHECK-DAG: %[[DIMINFER:.*]] = arith.divui %[[KNOWN2]], %[[PROD4]] : i64
// CHECK: %[[DIM0:.*]] = torch_c.to_i64 %arg1
// CHECK: %[[DIM1:.*]] = torch_c.to_i64 %[[CONSTANT1]]
// CHECK: %[[DIM3:.*]] = torch_c.to_i64 %[[CONSTANT1]]
// CHECK: %[[OUTPUT_DIMS:.*]] = tensor.from_elements %[[DIM0]], %[[DIM1]], %[[DIMINFER]], %[[DIM3]] : tensor<4xi64>
// CHECK: tensor.reshape %[[SELF]](%[[OUTPUT_DIMS]]) : (tensor<?x?x?xf32>, tensor<4xi64>) -> tensor<?x1x?x1xf32>
//
func.func @torch.aten$dynamicValOutput(%arg0: !torch.vtensor<[?, ?, ?],f32>, %arg1: !torch.int) -> !torch.vtensor<[?,1,?,1],f32>
attributes {torch.assume_strict_symbolic_shapes, torch.disable_legacy_view}
{
%int1 = torch.constant.int 1
%int-1 = torch.constant.int -1
%0 = torch.prim.ListConstruct %arg1, %int1, %int-1, %int1 : (!torch.int, !torch.int, !torch.int, !torch.int) -> !torch.list<int>
%1 = torch.aten.view %arg0, %0 : !torch.vtensor<[?, ?, ?],f32>, !torch.list<int> -> !torch.vtensor<[?,1,?,1],f32>
return %1 : !torch.vtensor<[?,1,?,1],f32>
}