mirror of https://github.com/llvm/torch-mlir
[MLIR][TORCH] Add OnnxToTorch support for BlackmanWindow function (#3181)
Implements OnnxToTorch lowering for the BlackmanWindow Function.pull/3269/head
parent
f32ada993d
commit
05f8b69bf6
|
@ -38,6 +38,13 @@ Value createConstantIntList(OpBinder binder,
|
||||||
|
|
||||||
Type getQTorchTypeFromTorchIntType(Type ty);
|
Type getQTorchTypeFromTorchIntType(Type ty);
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
Value getItemOp(OpBinder binder, ConversionPatternRewriter &rewriter,
|
||||||
|
Value &ofItem) {
|
||||||
|
return rewriter.create<Torch::AtenItemOp>(binder.getLoc(),
|
||||||
|
rewriter.getType<T>(), ofItem);
|
||||||
|
}
|
||||||
|
|
||||||
LogicalResult OnnxLstmExpander(OpBinder binder,
|
LogicalResult OnnxLstmExpander(OpBinder binder,
|
||||||
ConversionPatternRewriter &rewriter);
|
ConversionPatternRewriter &rewriter);
|
||||||
|
|
||||||
|
|
|
@ -2240,4 +2240,126 @@ void mlir::torch::onnx_c::populateDefaultDomainAtoF(
|
||||||
binder.op, resultType, cstEquation, tensorList, /*path=*/cstNone);
|
binder.op, resultType, cstEquation, tensorList, /*path=*/cstNone);
|
||||||
return success();
|
return success();
|
||||||
});
|
});
|
||||||
|
patterns.onOp(
|
||||||
|
"BlackmanWindow", 17,
|
||||||
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
||||||
|
Value size;
|
||||||
|
Torch::ValueTensorType resultType;
|
||||||
|
int64_t periodic, output_datatype;
|
||||||
|
if (binder.tensorOperand(size) ||
|
||||||
|
binder.s64IntegerAttr(output_datatype, "output_datatype", 1) ||
|
||||||
|
binder.s64IntegerAttr(periodic, "periodic", 1) ||
|
||||||
|
binder.tensorResultType(resultType)) {
|
||||||
|
return failure();
|
||||||
|
}
|
||||||
|
double isPeriodicFp = static_cast<double>(periodic);
|
||||||
|
Value a0 = rewriter.create<Torch::ConstantFloatOp>(
|
||||||
|
binder.getLoc(),
|
||||||
|
rewriter.getFloatAttr(rewriter.getF64Type(), 0.42));
|
||||||
|
Value a1 = rewriter.create<Torch::ConstantFloatOp>(
|
||||||
|
binder.getLoc(),
|
||||||
|
rewriter.getFloatAttr(rewriter.getF64Type(), -0.5));
|
||||||
|
Value a2 = rewriter.create<Torch::ConstantFloatOp>(
|
||||||
|
binder.getLoc(),
|
||||||
|
rewriter.getFloatAttr(rewriter.getF64Type(), 0.08));
|
||||||
|
Value zero = rewriter.create<Torch::ConstantFloatOp>(
|
||||||
|
binder.getLoc(), rewriter.getF64FloatAttr(0.0));
|
||||||
|
Value one = rewriter.create<Torch::ConstantFloatOp>(
|
||||||
|
binder.getLoc(), rewriter.getF64FloatAttr(1.0));
|
||||||
|
Value two = rewriter.create<Torch::ConstantFloatOp>(
|
||||||
|
binder.getLoc(), rewriter.getF64FloatAttr(2.0));
|
||||||
|
|
||||||
|
constexpr double pi = llvm::numbers::pi;
|
||||||
|
Value tau = rewriter.create<Torch::ConstantFloatOp>(
|
||||||
|
binder.getLoc(),
|
||||||
|
rewriter.getFloatAttr(rewriter.getF64Type(), 2.0 * pi));
|
||||||
|
|
||||||
|
Value noneVal = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
|
||||||
|
Value cstFalse =
|
||||||
|
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
|
||||||
|
Value float32Type = rewriter.create<Torch::ConstantIntOp>(
|
||||||
|
binder.getLoc(), rewriter.getI64IntegerAttr(/*float32Type*/ 6));
|
||||||
|
|
||||||
|
// Create an f32 ValueTensorType with thse same size as size, the
|
||||||
|
// operand
|
||||||
|
auto shapeOfOperand = size.getType()
|
||||||
|
.dyn_cast<Torch::ValueTensorType>()
|
||||||
|
.getOptionalSizes();
|
||||||
|
auto f32ResultType = rewriter.getType<Torch::ValueTensorType>(
|
||||||
|
shapeOfOperand, rewriter.getF32Type());
|
||||||
|
Value periodicSizeFloat = rewriter.create<Torch::AtenToDtypeOp>(
|
||||||
|
binder.getLoc(), f32ResultType, size, float32Type, cstFalse,
|
||||||
|
cstFalse, noneVal);
|
||||||
|
Value symmetricSizeFloat = rewriter.create<Torch::AtenSubScalarOp>(
|
||||||
|
binder.getLoc(), periodicSizeFloat.getType(), periodicSizeFloat,
|
||||||
|
one, one);
|
||||||
|
|
||||||
|
Value isPeriodic = rewriter.create<Torch::ConstantFloatOp>(
|
||||||
|
binder.getLoc(), rewriter.getF64FloatAttr(isPeriodicFp));
|
||||||
|
Value isSymmetricFloat = rewriter.create<Torch::ConstantFloatOp>(
|
||||||
|
binder.getLoc(), rewriter.getF64FloatAttr(1.0 - isPeriodicFp));
|
||||||
|
|
||||||
|
Value periodicComponent = rewriter.create<Torch::AtenMulScalarOp>(
|
||||||
|
binder.getLoc(), periodicSizeFloat.getType(), periodicSizeFloat,
|
||||||
|
isPeriodic);
|
||||||
|
Value symmetricComponent = rewriter.create<Torch::AtenMulScalarOp>(
|
||||||
|
binder.getLoc(), symmetricSizeFloat.getType(), symmetricSizeFloat,
|
||||||
|
isSymmetricFloat);
|
||||||
|
Value sizeFloat = rewriter.create<Torch::AtenAddTensorOp>(
|
||||||
|
binder.getLoc(), symmetricComponent.getType(), symmetricComponent,
|
||||||
|
periodicComponent, one);
|
||||||
|
|
||||||
|
// Here, size can be used in the place of periodicSizeFloat, as the
|
||||||
|
// latter is just a float representation of the former.
|
||||||
|
Value scalarLimit = getItemOp<Torch::IntType>(binder, rewriter, size);
|
||||||
|
|
||||||
|
Value rangeArr = rewriter.create<Torch::AtenArangeStartStepOp>(
|
||||||
|
binder.getLoc(), resultType, zero, scalarLimit, one, noneVal,
|
||||||
|
noneVal, noneVal, noneVal);
|
||||||
|
|
||||||
|
Value rangeTimesTau = rewriter.create<Torch::AtenMulScalarOp>(
|
||||||
|
binder.getLoc(), resultType, rangeArr, tau);
|
||||||
|
Value rangeAngular = rewriter.create<Torch::AtenDivTensorOp>(
|
||||||
|
binder.getLoc(), resultType, rangeTimesTau, sizeFloat);
|
||||||
|
Value twoRangeAngular = rewriter.create<Torch::AtenMulScalarOp>(
|
||||||
|
binder.getLoc(), resultType, rangeAngular, two);
|
||||||
|
|
||||||
|
Value cosRangeAngular = rewriter.create<Torch::AtenCosOp>(
|
||||||
|
binder.getLoc(), resultType, rangeAngular);
|
||||||
|
Value cosTwoRangeAngular = rewriter.create<Torch::AtenCosOp>(
|
||||||
|
binder.getLoc(), resultType, twoRangeAngular);
|
||||||
|
|
||||||
|
Value a1Component = rewriter.create<Torch::AtenMulScalarOp>(
|
||||||
|
binder.getLoc(), resultType, cosRangeAngular, a1);
|
||||||
|
Value a2Component = rewriter.create<Torch::AtenMulScalarOp>(
|
||||||
|
binder.getLoc(), resultType, cosTwoRangeAngular, a2);
|
||||||
|
|
||||||
|
// AtenSubScalarOp actually requires a tensor operand as the LHS, that
|
||||||
|
// is, operand #1. Therefore, to avoid errors, the onnx implementation
|
||||||
|
// has been modified. a1 has been changed to negative half, and the
|
||||||
|
// AtenSubScalarOp has been replaced with AtenAddScalarOp, as the add
|
||||||
|
// operation is commutative.
|
||||||
|
Value subA1Component = rewriter.create<Torch::AtenAddScalarOp>(
|
||||||
|
binder.getLoc(), resultType, a1Component, a0, one);
|
||||||
|
Value result = rewriter.create<Torch::AtenAddTensorOp>(
|
||||||
|
binder.getLoc(), resultType, subA1Component, a2Component, one);
|
||||||
|
|
||||||
|
std::optional<int64_t> dtypeIntTorch =
|
||||||
|
onnxDtypeIntToTorchDtypeInt(output_datatype);
|
||||||
|
if (!dtypeIntTorch.has_value()) {
|
||||||
|
return rewriter.notifyMatchFailure(
|
||||||
|
binder.op,
|
||||||
|
"unimplemented support for the given dtype conversion");
|
||||||
|
}
|
||||||
|
Value outputDtype = rewriter.create<Torch::ConstantIntOp>(
|
||||||
|
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
||||||
|
rewriter.getIntegerAttr(rewriter.getIntegerType(64),
|
||||||
|
dtypeIntTorch.value()));
|
||||||
|
|
||||||
|
rewriter.replaceOpWithNewOp<Torch::AtenToDtypeOp>(
|
||||||
|
binder.op, resultType, result, outputDtype,
|
||||||
|
/*non_blocking=*/cstFalse, /*copy=*/cstFalse,
|
||||||
|
/*memory_format=*/noneVal);
|
||||||
|
return success();
|
||||||
|
});
|
||||||
}
|
}
|
||||||
|
|
|
@ -31,15 +31,7 @@ using namespace mlir::torch::onnx_c;
|
||||||
// thing here, so we simplify.
|
// thing here, so we simplify.
|
||||||
|
|
||||||
// utilities
|
// utilities
|
||||||
// Templatized function to get an item op of a type
|
|
||||||
namespace {
|
namespace {
|
||||||
template <typename T>
|
|
||||||
Value getItemOp(OpBinder binder, ConversionPatternRewriter &rewriter,
|
|
||||||
Value &ofItem) {
|
|
||||||
return rewriter.create<Torch::AtenItemOp>(binder.getLoc(),
|
|
||||||
rewriter.getType<T>(), ofItem);
|
|
||||||
}
|
|
||||||
|
|
||||||
// In case the ReduceSum Op was not the first operation performed on the data,
|
// In case the ReduceSum Op was not the first operation performed on the data,
|
||||||
// we provide the original operand through storeResult, which will be modified
|
// we provide the original operand through storeResult, which will be modified
|
||||||
// if the result will be passed onto another operation, and will be used for
|
// if the result will be passed onto another operation, and will be used for
|
||||||
|
|
|
@ -2035,3 +2035,81 @@ func.func @test_eyelike_dynamic(%arg0: !torch.vtensor<[3,?],f32>) -> !torch.vten
|
||||||
%0 = torch.operator "onnx.EyeLike"(%arg0) {torch.onnx.k = -1 : si64} : (!torch.vtensor<[3,?],f32>) -> !torch.vtensor<[3,?],f32>
|
%0 = torch.operator "onnx.EyeLike"(%arg0) {torch.onnx.k = -1 : si64} : (!torch.vtensor<[3,?],f32>) -> !torch.vtensor<[3,?],f32>
|
||||||
return %0 : !torch.vtensor<[3,?],f32>
|
return %0 : !torch.vtensor<[3,?],f32>
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// -----
|
||||||
|
|
||||||
|
// CHECK-LABEL: func.func @test_blackmanwindow_symmetric
|
||||||
|
func.func @test_blackmanwindow_symmetric(%arg0: !torch.vtensor<[],si32>) -> !torch.vtensor<[10],f32> attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 17 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
|
||||||
|
// CHECK-DAG: %[[A0:.+]] = torch.constant.float 4.200000e-01
|
||||||
|
// CHECK-DAG: %[[A1:.+]] = torch.constant.float -5.000000e-01
|
||||||
|
// CHECK-DAG: %[[A2:.+]] = torch.constant.float 8.000000e-02
|
||||||
|
// CHECK-DAG: %[[FLOAT0_0:.+]] = torch.constant.float 0.000000e+00
|
||||||
|
// CHECK-DAG: %[[FLOAT1:.+]] = torch.constant.float 1.000000e+00
|
||||||
|
// CHECK-DAG: %[[FLOAT2:.+]] = torch.constant.float 2.000000e+00
|
||||||
|
// CHECK-DAG: %[[TWOPI:.+]] = torch.constant.float 6.2831853071795862
|
||||||
|
// CHECK-DAG: %[[NONE:.+]] = torch.constant.none
|
||||||
|
// CHECK-DAG: %[[FALSE:.+]] = torch.constant.bool false
|
||||||
|
// CHECK-DAG: %[[INT6:.+]] = torch.constant.int 6
|
||||||
|
// CHECK-DAG: %[[CAST_0:.+]] = torch.aten.to.dtype %arg0, %[[INT6]], %[[FALSE]], %[[FALSE]], %[[NONE]] : !torch.vtensor<[],si32>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[],f32>
|
||||||
|
// CHECK-DAG: %[[SYMMSIZE:.+]] = torch.aten.sub.Scalar %[[CAST_0]], %[[FLOAT1]], %[[FLOAT1]] : !torch.vtensor<[],f32>, !torch.float, !torch.float -> !torch.vtensor<[],f32>
|
||||||
|
// CHECK-DAG: %[[PERIODIC:.+]] = torch.constant.float 0.000000e+00
|
||||||
|
// CHECK-DAG: %[[SYMMETRIC:.+]] = torch.constant.float 1.000000e+00
|
||||||
|
// CHECK-DAG: %[[PERIODICCOMP:.+]] = torch.aten.mul.Scalar %[[CAST_0]], %[[PERIODIC]] : !torch.vtensor<[],f32>, !torch.float -> !torch.vtensor<[],f32>
|
||||||
|
// CHECK-DAG: %[[SYMMETRICCOMP:.+]] = torch.aten.mul.Scalar %[[SYMMSIZE]], %[[SYMMETRIC]] : !torch.vtensor<[],f32>, !torch.float -> !torch.vtensor<[],f32>
|
||||||
|
// CHECK-DAG: %[[SIZEFP:.+]] = torch.aten.add.Tensor %[[SYMMETRICCOMP]], %[[PERIODICCOMP]], %[[FLOAT1]] : !torch.vtensor<[],f32>, !torch.vtensor<[],f32>, !torch.float -> !torch.vtensor<[],f32>
|
||||||
|
// CHECK-DAG: %[[RANGELIM:.+]] = torch.aten.item %arg0 : !torch.vtensor<[],si32> -> !torch.int
|
||||||
|
// CHECK-DAG: %[[ARANGE:.+]] = torch.aten.arange.start_step %[[FLOAT0_0]], %[[RANGELIM]], %[[FLOAT1]], %[[NONE]], %[[NONE]], %[[NONE]], %[[NONE]] : !torch.float, !torch.int, !torch.float, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[10],f32>
|
||||||
|
// CHECK-DAG: %[[RANGETIMESTAU:.+]] = torch.aten.mul.Scalar %[[ARANGE]], %[[TWOPI]] : !torch.vtensor<[10],f32>, !torch.float -> !torch.vtensor<[10],f32>
|
||||||
|
// CHECK-DAG: %[[RANGEANGULAR:.+]] = torch.aten.div.Tensor %[[RANGETIMESTAU]], %[[SIZEFP]] : !torch.vtensor<[10],f32>, !torch.vtensor<[],f32> -> !torch.vtensor<[10],f32>
|
||||||
|
// CHECK-DAG: %[[TWORANGEANGULAR:.+]] = torch.aten.mul.Scalar %[[RANGEANGULAR]], %[[FLOAT2]] : !torch.vtensor<[10],f32>, !torch.float -> !torch.vtensor<[10],f32>
|
||||||
|
// CHECK-DAG: %[[COSRANGEANGULAR:.+]] = torch.aten.cos %[[RANGEANGULAR]] : !torch.vtensor<[10],f32> -> !torch.vtensor<[10],f32>
|
||||||
|
// CHECK-DAG: %[[COSTWORANGEANGULAR:.+]] = torch.aten.cos %[[TWORANGEANGULAR]] : !torch.vtensor<[10],f32> -> !torch.vtensor<[10],f32>
|
||||||
|
// CHECK-DAG: %[[A1COMP:.+]] = torch.aten.mul.Scalar %[[COSRANGEANGULAR]], %[[A1]] : !torch.vtensor<[10],f32>, !torch.float -> !torch.vtensor<[10],f32>
|
||||||
|
// CHECK-DAG: %[[A2COMP:.+]] = torch.aten.mul.Scalar %[[COSTWORANGEANGULAR]], %[[A2]] : !torch.vtensor<[10],f32>, !torch.float -> !torch.vtensor<[10],f32>
|
||||||
|
// CHECK-DAG: %[[RES:.+]] = torch.aten.add.Scalar %[[A1COMP]], %[[A0]], %[[FLOAT1]] : !torch.vtensor<[10],f32>, !torch.float, !torch.float -> !torch.vtensor<[10],f32>
|
||||||
|
// CHECK-DAG: %[[RESULT:.+]] = torch.aten.add.Tensor %[[RES]], %[[A2COMP]], %[[FLOAT1]] : !torch.vtensor<[10],f32>, !torch.vtensor<[10],f32>, !torch.float -> !torch.vtensor<[10],f32>
|
||||||
|
// CHECK-DAG: %[[INT6_1:.+]] = torch.constant.int 6
|
||||||
|
// CHECK: %[[CAST:.+]] = torch.aten.to.dtype %[[RESULT]], %[[INT6_1]], %[[FALSE]], %[[FALSE]], %[[NONE]] : !torch.vtensor<[10],f32>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[10],f32>
|
||||||
|
// CHECK: return %[[CAST]] : !torch.vtensor<[10],f32>
|
||||||
|
%0 = torch.operator "onnx.BlackmanWindow"(%arg0) {torch.onnx.periodic = 0 : si64} : (!torch.vtensor<[],si32>) -> !torch.vtensor<[10],f32>
|
||||||
|
return %0 : !torch.vtensor<[10],f32>
|
||||||
|
}
|
||||||
|
|
||||||
|
// -----
|
||||||
|
|
||||||
|
// CHECK-LABEL: func.func @test_blackmanwindow
|
||||||
|
func.func @test_blackmanwindow(%arg0: !torch.vtensor<[],si32>) -> !torch.vtensor<[10],f32> attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 17 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
|
||||||
|
// CHECK-DAG: %[[A0:.+]] = torch.constant.float 4.200000e-01
|
||||||
|
// CHECK-DAG: %[[A1:.+]] = torch.constant.float -5.000000e-01
|
||||||
|
// CHECK-DAG: %[[A2:.+]] = torch.constant.float 8.000000e-02
|
||||||
|
// CHECK-DAG: %[[FLOAT0_0:.+]] = torch.constant.float 0.000000e+00
|
||||||
|
// CHECK-DAG: %[[FLOAT1:.+]] = torch.constant.float 1.000000e+00
|
||||||
|
// CHECK-DAG: %[[FLOAT2:.+]] = torch.constant.float 2.000000e+00
|
||||||
|
// CHECK-DAG: %[[TWOPI:.+]] = torch.constant.float 6.2831853071795862
|
||||||
|
// CHECK-DAG: %[[NONE:.+]] = torch.constant.none
|
||||||
|
// CHECK-DAG: %[[FALSE:.+]] = torch.constant.bool false
|
||||||
|
// CHECK-DAG: %[[INT6:.+]] = torch.constant.int 6
|
||||||
|
// CHECK-DAG: %[[CAST_0:.+]] = torch.aten.to.dtype %arg0, %[[INT6]], %[[FALSE]], %[[FALSE]], %[[NONE]] : !torch.vtensor<[],si32>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[],f32>
|
||||||
|
// CHECK-DAG: %[[SYMMSIZE:.+]] = torch.aten.sub.Scalar %[[CAST_0]], %[[FLOAT1]], %[[FLOAT1]] : !torch.vtensor<[],f32>, !torch.float, !torch.float -> !torch.vtensor<[],f32>
|
||||||
|
// CHECK-DAG: %[[PERIODIC:.+]] = torch.constant.float 1.000000e+00
|
||||||
|
// CHECK-DAG: %[[SYMMETRIC:.+]] = torch.constant.float 0.000000e+00
|
||||||
|
// CHECK-DAG: %[[PERIODICCOMP:.+]] = torch.aten.mul.Scalar %[[CAST_0]], %[[PERIODIC]] : !torch.vtensor<[],f32>, !torch.float -> !torch.vtensor<[],f32>
|
||||||
|
// CHECK-DAG: %[[SYMMETRICCOMP:.+]] = torch.aten.mul.Scalar %[[SYMMSIZE]], %[[SYMMETRIC]] : !torch.vtensor<[],f32>, !torch.float -> !torch.vtensor<[],f32>
|
||||||
|
// CHECK-DAG: %[[SIZEFP:.+]] = torch.aten.add.Tensor %[[SYMMETRICCOMP]], %[[PERIODICCOMP]], %[[FLOAT1]] : !torch.vtensor<[],f32>, !torch.vtensor<[],f32>, !torch.float -> !torch.vtensor<[],f32>
|
||||||
|
// CHECK-DAG: %[[RANGELIM:.+]] = torch.aten.item %arg0 : !torch.vtensor<[],si32> -> !torch.int
|
||||||
|
// CHECK-DAG: %[[ARANGE:.+]] = torch.aten.arange.start_step %[[FLOAT0_0]], %[[RANGELIM]], %[[FLOAT1]], %[[NONE]], %[[NONE]], %[[NONE]], %[[NONE]] : !torch.float, !torch.int, !torch.float, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[10],f32>
|
||||||
|
// CHECK-DAG: %[[RANGETIMESTAU:.+]] = torch.aten.mul.Scalar %[[ARANGE]], %[[TWOPI]] : !torch.vtensor<[10],f32>, !torch.float -> !torch.vtensor<[10],f32>
|
||||||
|
// CHECK-DAG: %[[RANGEANGULAR:.+]] = torch.aten.div.Tensor %[[RANGETIMESTAU]], %[[SIZEFP]] : !torch.vtensor<[10],f32>, !torch.vtensor<[],f32> -> !torch.vtensor<[10],f32>
|
||||||
|
// CHECK-DAG: %[[TWORANGEANGULAR:.+]] = torch.aten.mul.Scalar %[[RANGEANGULAR]], %[[FLOAT2]] : !torch.vtensor<[10],f32>, !torch.float -> !torch.vtensor<[10],f32>
|
||||||
|
// CHECK-DAG: %[[COSRANGEANGULAR:.+]] = torch.aten.cos %[[RANGEANGULAR]] : !torch.vtensor<[10],f32> -> !torch.vtensor<[10],f32>
|
||||||
|
// CHECK-DAG: %[[COSTWORANGEANGULAR:.+]] = torch.aten.cos %[[TWORANGEANGULAR]] : !torch.vtensor<[10],f32> -> !torch.vtensor<[10],f32>
|
||||||
|
// CHECK-DAG: %[[A1COMP:.+]] = torch.aten.mul.Scalar %[[COSRANGEANGULAR]], %[[A1]] : !torch.vtensor<[10],f32>, !torch.float -> !torch.vtensor<[10],f32>
|
||||||
|
// CHECK-DAG: %[[A2COMP:.+]] = torch.aten.mul.Scalar %[[COSTWORANGEANGULAR]], %[[A2]] : !torch.vtensor<[10],f32>, !torch.float -> !torch.vtensor<[10],f32>
|
||||||
|
// CHECK-DAG: %[[RES:.+]] = torch.aten.add.Scalar %[[A1COMP]], %[[A0]], %[[FLOAT1]] : !torch.vtensor<[10],f32>, !torch.float, !torch.float -> !torch.vtensor<[10],f32>
|
||||||
|
// CHECK-DAG: %[[RESULT:.+]] = torch.aten.add.Tensor %[[RES]], %[[A2COMP]], %[[FLOAT1]] : !torch.vtensor<[10],f32>, !torch.vtensor<[10],f32>, !torch.float -> !torch.vtensor<[10],f32>
|
||||||
|
// CHECK-DAG: %[[INT6_1:.+]] = torch.constant.int 6
|
||||||
|
// CHECK: %[[CAST:.+]] = torch.aten.to.dtype %[[RESULT]], %[[INT6_1]], %[[FALSE]], %[[FALSE]], %[[NONE]] : !torch.vtensor<[10],f32>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[10],f32>
|
||||||
|
// CHECK: return %[[CAST]] : !torch.vtensor<[10],f32>
|
||||||
|
%0 = torch.operator "onnx.BlackmanWindow"(%arg0) {torch.onnx.periodic = 1 : si64} : (!torch.vtensor<[],si32>) -> !torch.vtensor<[10],f32>
|
||||||
|
return %0 : !torch.vtensor<[10],f32>
|
||||||
|
}
|
||||||
|
|
Loading…
Reference in New Issue