build: manually update PyTorch version (#3627)

Set PyTorch and TorchVision version to nightly release 2024-08-18.
This commit also updates the `scaled_dot_product_attention` op. 
A new attribute `enable_gqa` has been added. As of now, only the
default value for the same is supported.

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
pull/3646/head
Vivek Khandelwal 2024-08-19 12:03:56 +05:30 committed by GitHub
parent 56a663690c
commit 0a86deb59a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
11 changed files with 30 additions and 13 deletions

View File

@ -13734,7 +13734,7 @@ def Torch_AtenScaledDotProductAttentionOp : Torch_Op<"aten.scaled_dot_product_at
HasValueSemantics, HasValueSemantics,
ReadOnly ReadOnly
]> { ]> {
let summary = "Generated op for `aten::scaled_dot_product_attention : (Tensor, Tensor, Tensor, Tensor?, float, bool, float?) -> (Tensor)`"; let summary = "Generated op for `aten::scaled_dot_product_attention : (Tensor, Tensor, Tensor, Tensor?, float, bool, float?, bool) -> (Tensor)`";
let arguments = (ins let arguments = (ins
AnyTorchTensorType:$query, AnyTorchTensorType:$query,
AnyTorchTensorType:$key, AnyTorchTensorType:$key,
@ -13742,7 +13742,8 @@ def Torch_AtenScaledDotProductAttentionOp : Torch_Op<"aten.scaled_dot_product_at
AnyTorchOptionalTensorType:$attn_mask, AnyTorchOptionalTensorType:$attn_mask,
Torch_FloatType:$dropout_p, Torch_FloatType:$dropout_p,
Torch_BoolType:$is_causal, Torch_BoolType:$is_causal,
AnyTorchOptionalFloatType:$scale AnyTorchOptionalFloatType:$scale,
Torch_BoolType:$enable_gqa
); );
let results = (outs let results = (outs
AnyTorchOptionalTensorType:$result AnyTorchOptionalTensorType:$result
@ -13750,10 +13751,10 @@ def Torch_AtenScaledDotProductAttentionOp : Torch_Op<"aten.scaled_dot_product_at
let hasCustomAssemblyFormat = 1; let hasCustomAssemblyFormat = 1;
let extraClassDefinition = [{ let extraClassDefinition = [{
ParseResult AtenScaledDotProductAttentionOp::parse(OpAsmParser &parser, OperationState &result) { ParseResult AtenScaledDotProductAttentionOp::parse(OpAsmParser &parser, OperationState &result) {
return parseDefaultTorchOp(parser, result, 7, 1); return parseDefaultTorchOp(parser, result, 8, 1);
} }
void AtenScaledDotProductAttentionOp::print(OpAsmPrinter &printer) { void AtenScaledDotProductAttentionOp::print(OpAsmPrinter &printer) {
printDefaultTorchOp(printer, *this, 7, 1); printDefaultTorchOp(printer, *this, 8, 1);
} }
}]; }];
} }

View File

@ -1582,6 +1582,7 @@ public:
Value dropoutP = op.getDropoutP(); Value dropoutP = op.getDropoutP();
Value isCausal = op.getIsCausal(); Value isCausal = op.getIsCausal();
Value scale = op.getScale(); Value scale = op.getScale();
Value enableGQA = op.getEnableGqa();
Type elementType = Type elementType =
cast<ShapedType>(adaptor.getQuery().getType()).getElementType(); cast<ShapedType>(adaptor.getQuery().getType()).getElementType();
@ -1604,6 +1605,11 @@ public:
return rewriter.notifyMatchFailure(op.getLoc(), return rewriter.notifyMatchFailure(op.getLoc(),
"only default scale supported"); "only default scale supported");
} }
bool isGQAEnabled;
if (!matchPattern(enableGQA, m_TorchConstantBool(&isGQAEnabled)) ||
isGQAEnabled)
return rewriter.notifyMatchFailure(
op.getLoc(), "grouped query attention not supported");
auto opTy = cast<ValueTensorType>(op.getType()).toBuiltinTensor(); auto opTy = cast<ValueTensorType>(op.getType()).toBuiltinTensor();
auto query = adaptor.getQuery(); auto query = adaptor.getQuery();

View File

@ -8832,7 +8832,7 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
" %0 = call @__torch__.torch.jit._shape_functions.linear(%arg0, %arg1, %arg2) : (!torch.list<int>, !torch.list<int>, !torch.optional<list<int>>) -> !torch.list<int>\n" " %0 = call @__torch__.torch.jit._shape_functions.linear(%arg0, %arg1, %arg2) : (!torch.list<int>, !torch.list<int>, !torch.optional<list<int>>) -> !torch.list<int>\n"
" return %0 : !torch.list<int>\n" " return %0 : !torch.list<int>\n"
" }\n" " }\n"
" func.func @\"__torch_mlir_shape_fn.aten.scaled_dot_product_attention\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>, %arg2: !torch.list<int>, %arg3: !torch.optional<list<int>>, %arg4: !torch.float, %arg5: !torch.bool, %arg6: !torch.optional<float>) -> !torch.list<int> {\n" " func.func @\"__torch_mlir_shape_fn.aten.scaled_dot_product_attention\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>, %arg2: !torch.list<int>, %arg3: !torch.optional<list<int>>, %arg4: !torch.float, %arg5: !torch.bool, %arg6: !torch.optional<float>, %arg7: !torch.bool) -> !torch.list<int> {\n"
" %int-1 = torch.constant.int -1\n" " %int-1 = torch.constant.int -1\n"
" %0 = torch.aten.__getitem__.t %arg2, %int-1 : !torch.list<int>, !torch.int -> !torch.int\n" " %0 = torch.aten.__getitem__.t %arg2, %int-1 : !torch.list<int>, !torch.int -> !torch.int\n"
" %1 = torch.aten._set_item.t %arg0, %int-1, %0 : !torch.list<int>, !torch.int, !torch.int -> !torch.list<int>\n" " %1 = torch.aten._set_item.t %arg0, %int-1, %0 : !torch.list<int>, !torch.int, !torch.int -> !torch.list<int>\n"
@ -12446,7 +12446,7 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
" %int11 = torch.constant.int 11\n" " %int11 = torch.constant.int 11\n"
" return %int11 : !torch.int\n" " return %int11 : !torch.int\n"
" }\n" " }\n"
" func.func @\"__torch_mlir_dtype_fn.aten.scaled_dot_product_attention\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.tuple<int, int>, %arg2: !torch.tuple<int, int>, %arg3: !torch.optional<tuple<int, int>>, %arg4: !torch.float, %arg5: !torch.bool, %arg6: !torch.optional<float>) -> !torch.int {\n" " func.func @\"__torch_mlir_dtype_fn.aten.scaled_dot_product_attention\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.tuple<int, int>, %arg2: !torch.tuple<int, int>, %arg3: !torch.optional<tuple<int, int>>, %arg4: !torch.float, %arg5: !torch.bool, %arg6: !torch.optional<float>, %arg7: !torch.bool) -> !torch.int {\n"
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n" " %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
" return %0#1 : !torch.int\n" " return %0#1 : !torch.int\n"
" }\n" " }\n"

View File

@ -246,6 +246,9 @@ void TorchMatchSpecializedBackendOp::populateSpecializedConversions(
llvm::SmallVector<Value> newOperands{ llvm::SmallVector<Value> newOperands{
oldOperands[0], oldOperands[1], oldOperands[2], oldOperands[5], oldOperands[0], oldOperands[1], oldOperands[2], oldOperands[5],
oldOperands[3], oldOperands[4], oldOperands[6]}; oldOperands[3], oldOperands[4], oldOperands[6]};
Value enableGQA =
rewriter.create<ConstantBoolOp>(op->getLoc(), false);
newOperands.push_back(enableGQA);
auto newOp = rewriter.create<Torch::AtenScaledDotProductAttentionOp>( auto newOp = rewriter.create<Torch::AtenScaledDotProductAttentionOp>(
op.getLoc(), op->getResultTypes()[0], newOperands, op.getLoc(), op->getResultTypes()[0], newOperands,

View File

@ -33,6 +33,13 @@ LINALG_XFAIL_SET = COMMON_TORCH_MLIR_LOWERING_XFAILS | {
"UnfoldModule_basic", "UnfoldModule_basic",
} }
if torch_version_for_comparison() < version.parse("2.5.0.dev"):
LINALG_XFAIL_SET = LINALG_XFAIL_SET | {
# Error: 'torch.aten.scaled_dot_product_attention' op expected 8 operands, but found 7
"ScaledDotProductAttentionDifferentModule_basic",
"ScaledDotProductAttentionSameModule_basic",
}
LINALG_CRASHING_SET = { LINALG_CRASHING_SET = {
# Runtime op verification: Out of bounds access # Runtime op verification: Out of bounds access
"AtenDiagEmbedNegOffsetDiag_basic", "AtenDiagEmbedNegOffsetDiag_basic",

View File

@ -1277,7 +1277,7 @@ def atenlinear〡shape(input: List[int], weight: List[int], bias: Optional[Li
Invocation(TensorOfShape(3, 2, 8, 4), TensorOfShape(3, 2, 8, 4), TensorOfShape(3, 2, 8, 4)), # Same shape Invocation(TensorOfShape(3, 2, 8, 4), TensorOfShape(3, 2, 8, 4), TensorOfShape(3, 2, 8, 4)), # Same shape
Invocation(TensorOfShape(3, 2, 16, 8), TensorOfShape(3, 2, 8, 8), TensorOfShape(3, 2, 8, 4)), # Different shape Invocation(TensorOfShape(3, 2, 16, 8), TensorOfShape(3, 2, 8, 8), TensorOfShape(3, 2, 8, 4)), # Different shape
]) ])
def atenscaled_dot_product_attention〡shape(query: List[int], key: List[int], value: List[int], attn_mask: Optional[List[int]] = None, dropout_p: float = 0., is_causal: bool = False, scale: Optional[float] = None) -> List[int]: def atenscaled_dot_product_attention〡shape(query: List[int], key: List[int], value: List[int], attn_mask: Optional[List[int]] = None, dropout_p: float = 0., is_causal: bool = False, scale: Optional[float] = None, enable_gqa: bool = False) -> List[int]:
outshape = query outshape = query
outshape[-1] = value[-1] outshape[-1] = value[-1]
return outshape return outshape
@ -3558,7 +3558,7 @@ def atenisclose〡dtype(self_rank_dtype: Tuple[int, int], other_rank_dtype: T
return torch.bool return torch.bool
@check_dtype_function(_check_tensors_with_the_same_dtype(tensor_shapes=[(3, 4, 32, 16), (3, 4, 32, 16), (3, 4, 32, 16)])) @check_dtype_function(_check_tensors_with_the_same_dtype(tensor_shapes=[(3, 4, 32, 16), (3, 4, 32, 16), (3, 4, 32, 16)]))
def atenscaled_dot_product_attention〡dtype(query_rank_dtype: Tuple[int, int], key_rank_dtype: Tuple[int, int], value_rank_dtype: Tuple[int, int], attn_mask_rank_dtype: Optional[Tuple[int, int]] = None, dropout_p: float = 0., is_causal: bool = False, scale: Optional[float] = None) -> int: def atenscaled_dot_product_attention〡dtype(query_rank_dtype: Tuple[int, int], key_rank_dtype: Tuple[int, int], value_rank_dtype: Tuple[int, int], attn_mask_rank_dtype: Optional[Tuple[int, int]] = None, dropout_p: float = 0., is_causal: bool = False, scale: Optional[float] = None, enable_gqa: bool = False) -> int:
_, query_dtype = query_rank_dtype _, query_dtype = query_rank_dtype
return query_dtype return query_dtype

View File

@ -988,7 +988,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
emit("aten::upsample_nearest2d : (Tensor, int[], float?, float?) -> (Tensor)") emit("aten::upsample_nearest2d : (Tensor, int[], float?, float?) -> (Tensor)")
emit("aten::upsample_nearest2d.vec : (Tensor, int[]?, float[]?) -> (Tensor)") emit("aten::upsample_nearest2d.vec : (Tensor, int[]?, float[]?) -> (Tensor)")
emit( emit(
"aten::scaled_dot_product_attention : (Tensor, Tensor, Tensor, Tensor?, float, bool, float?) -> (Tensor)" "aten::scaled_dot_product_attention : (Tensor, Tensor, Tensor, Tensor?, float, bool, float?, bool) -> (Tensor)"
) )
emit("aten::grid_sampler : (Tensor, Tensor, int, int, bool) -> (Tensor)") emit("aten::grid_sampler : (Tensor, Tensor, int, int, bool) -> (Tensor)")

View File

@ -1 +1 @@
d6ea1eb2bc8ba770fd5a689a30e234837df27384 748db193d71a1c29471a87c7841da6a5a0a0dbae

View File

@ -1,3 +1,3 @@
-f https://download.pytorch.org/whl/nightly/cpu/torch/ -f https://download.pytorch.org/whl/nightly/cpu/torch/
--pre --pre
torch==2.5.0.dev20240804 torch==2.5.0.dev20240818

View File

@ -193,7 +193,7 @@ func.func @torch.aten.bernoulli_.float(%t: !torch.tensor) -> !torch.tensor {
// CHECK: %[[FALSE:.+]] = torch.constant.bool false // CHECK: %[[FALSE:.+]] = torch.constant.bool false
// CHECK: %[[NONE0:.+]] = torch.constant.none // CHECK: %[[NONE0:.+]] = torch.constant.none
// CHECK: %[[NONE1:.+]] = torch.constant.none // CHECK: %[[NONE1:.+]] = torch.constant.none
// CHECK: %[[ATTEN:.+]] = torch.aten.scaled_dot_product_attention %[[ARG0]], %[[ARG1]], %[[ARG2]], %[[NONE0]], %[[ZERO]], %[[FALSE]], %[[NONE1]] // CHECK: %[[ATTEN:.+]] = torch.aten.scaled_dot_product_attention %[[ARG0]], %[[ARG1]], %[[ARG2]], %[[NONE0]], %[[ZERO]], %[[FALSE]], %[[NONE1]], %[[FALSE]]
// CHECK: return %[[ATTEN]] // CHECK: return %[[ATTEN]]
func.func @scaled_dot_product_flash_attention_for_cpu(%arg0: !torch.vtensor<[1,1,5,5],f32>, %arg1: !torch.vtensor<[1,1,5,5],f32>, %arg2: !torch.vtensor<[1,1,5,5],f32>) -> !torch.vtensor<[1,1,5,5],f32> { func.func @scaled_dot_product_flash_attention_for_cpu(%arg0: !torch.vtensor<[1,1,5,5],f32>, %arg1: !torch.vtensor<[1,1,5,5],f32>, %arg2: !torch.vtensor<[1,1,5,5],f32>) -> !torch.vtensor<[1,1,5,5],f32> {
%float0.000000e00 = torch.constant.float 0.000000e+00 %float0.000000e00 = torch.constant.float 0.000000e+00

View File

@ -1,3 +1,3 @@
-f https://download.pytorch.org/whl/nightly/cpu/torchvision/ -f https://download.pytorch.org/whl/nightly/cpu/torchvision/
--pre --pre
torchvision==0.20.0.dev20240804 torchvision==0.20.0.dev20240818