mirror of https://github.com/llvm/torch-mlir
[MLIR][TORCH] Add aten.special.expm1 op lowering
This commit adds the support for torch.aten.special.expm1 op by decomposing it into torch.aten.expm1 op. Signed-off-by: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>pull/3878/head
parent
0a607a410d
commit
0be15605de
|
@ -4610,6 +4610,29 @@ def Torch_AtenTrunc_Op : Torch_Op<"aten.trunc_", [
|
|||
}];
|
||||
}
|
||||
|
||||
def Torch_AtenSpecialExpm1Op : Torch_Op<"aten.special_expm1", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics,
|
||||
ReadOnly
|
||||
]> {
|
||||
let summary = "Generated op for `aten::special_expm1 : (Tensor) -> (Tensor)`";
|
||||
let arguments = (ins
|
||||
AnyTorchTensorType:$self
|
||||
);
|
||||
let results = (outs
|
||||
AnyTorchOptionalTensorType:$result
|
||||
);
|
||||
let hasCustomAssemblyFormat = 1;
|
||||
let extraClassDefinition = [{
|
||||
ParseResult AtenSpecialExpm1Op::parse(OpAsmParser &parser, OperationState &result) {
|
||||
return parseDefaultTorchOp(parser, result, 1, 1);
|
||||
}
|
||||
void AtenSpecialExpm1Op::print(OpAsmPrinter &printer) {
|
||||
printDefaultTorchOp(printer, *this, 1, 1);
|
||||
}
|
||||
}];
|
||||
}
|
||||
|
||||
def Torch_AtenSignOp : Torch_Op<"aten.sign", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics,
|
||||
|
|
|
@ -6495,6 +6495,10 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
|||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||
" return %0 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.aten.special_expm1\"(%arg0: !torch.list<int>) -> !torch.list<int> {\n"
|
||||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||
" return %0 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.aten.isfinite\"(%arg0: !torch.list<int>) -> !torch.list<int> {\n"
|
||||
" return %arg0 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
|
@ -11435,6 +11439,11 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
|||
" %1 = call @__torch__._get_dtype_of_floating_point_op(%0#1) : (!torch.int) -> !torch.int\n"
|
||||
" return %1 : !torch.int\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_dtype_fn.aten.special_expm1\"(%arg0: !torch.tuple<int, int>) -> !torch.int {\n"
|
||||
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||
" %1 = call @__torch__._get_dtype_of_floating_point_op(%0#1) : (!torch.int) -> !torch.int\n"
|
||||
" return %1 : !torch.int\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_dtype_fn.aten.isfinite\"(%arg0: !torch.tuple<int, int>) -> !torch.int {\n"
|
||||
" %int11 = torch.constant.int 11\n"
|
||||
" return %int11 : !torch.int\n"
|
||||
|
|
|
@ -10501,6 +10501,19 @@ public:
|
|||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
class DecomposeAtenSpecialExpm1Op
|
||||
: public OpRewritePattern<AtenSpecialExpm1Op> {
|
||||
public:
|
||||
using OpRewritePattern<AtenSpecialExpm1Op>::OpRewritePattern;
|
||||
LogicalResult matchAndRewrite(AtenSpecialExpm1Op op,
|
||||
PatternRewriter &rewriter) const override {
|
||||
rewriter.replaceOpWithNewOp<AtenExpm1Op>(op, op.getType(), op.getSelf());
|
||||
return success();
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
class DecomposeComplexOpsPass
|
||||
: public DecomposeComplexOpsBase<DecomposeComplexOpsPass> {
|
||||
|
@ -10776,6 +10789,7 @@ public:
|
|||
addPatternIfTargetOpIsIllegal<DecomposeAtenThresholdOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenFloatPowerTensorTensorOp>(
|
||||
patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenSpecialExpm1Op>(patterns);
|
||||
|
||||
addPatternIfTargetOpIsIllegal<
|
||||
DecomposeAtenFMaxMinOp<AtenFmaxOp, AtenMaximumOp>>(patterns);
|
||||
|
|
|
@ -566,6 +566,7 @@ static void markDecomposedOpsAsIllegal(MLIRContext *context,
|
|||
target.addIllegalOp<AtenLinalgNormOp>();
|
||||
target.addIllegalOp<AtenFminOp>();
|
||||
target.addIllegalOp<AtenFmaxOp>();
|
||||
target.addIllegalOp<AtenSpecialExpm1Op>();
|
||||
|
||||
for (auto &opName : backendLegalOpsSet) {
|
||||
target.addLegalOp(
|
||||
|
|
|
@ -501,8 +501,6 @@ FX_IMPORTER_XFAIL_SET = {
|
|||
"AdaptiveMaxPool1dStatic_basic",
|
||||
"CrossEntropyLossModule_basic",
|
||||
"CrossEntropyLossNoReductionModule_basic",
|
||||
"ElementwiseExpm1IntModule_basic",
|
||||
"ElementwiseExpm1Module_basic",
|
||||
"IndexPutImpl1DFloatAccumulateModule_basic",
|
||||
"IndexPutImpl1DFloatNonAccumulateModule_basic",
|
||||
"IndexPutImpl1DIntAccumulateModule_basic",
|
||||
|
@ -928,8 +926,6 @@ FX_IMPORTER_STABLEHLO_XFAIL_SET = {
|
|||
"AtenItemIntOpModule_basic",
|
||||
"CrossEntropyLossModule_basic",
|
||||
"CrossEntropyLossNoReductionModule_basic",
|
||||
"ElementwiseExpm1IntModule_basic",
|
||||
"ElementwiseExpm1Module_basic",
|
||||
"InterpolateDynamicModule_sizes_nearest",
|
||||
"IouOfModule_basic",
|
||||
"IscloseStaticModuleTrue_basic",
|
||||
|
@ -1226,6 +1222,8 @@ STABLEHLO_PASS_SET = {
|
|||
"ElementwiseRsqrtModule_basic",
|
||||
"ElementwiseSigmoidModule_basic",
|
||||
"ElementwiseSinModule_basic",
|
||||
"ElementwiseSpecialExpm1IntModule_basic",
|
||||
"ElementwiseSpecialExpm1Module_basic",
|
||||
"ElementwiseSqrtModule_basic",
|
||||
"ElementwiseTanIntModule_basic",
|
||||
"ElementwiseTanModule_basic",
|
||||
|
@ -2913,6 +2911,8 @@ ONNX_XFAIL_SET = {
|
|||
"ElementwiseEluNonDefaultModule_basic",
|
||||
"ElementwiseExpm1IntModule_basic",
|
||||
"ElementwiseExpm1Module_basic",
|
||||
"ElementwiseSpecialExpm1IntModule_basic",
|
||||
"ElementwiseSpecialExpm1Module_basic",
|
||||
"ElementwiseFmodTensor_Int_basic",
|
||||
"ElementwiseCreateComplexModule_basic",
|
||||
"ElementwiseMulTensorComplexModule_basic",
|
||||
|
@ -3630,6 +3630,8 @@ FX_IMPORTER_TOSA_XFAIL_SET = {
|
|||
"ElementwiseSigmoidIntModule_basic",
|
||||
"ElementwiseSinhIntModule_basic",
|
||||
"ElementwiseSinhModule_basic",
|
||||
"ElementwiseSpecialExpm1IntModule_basic",
|
||||
"ElementwiseSpecialExpm1Module_basic",
|
||||
"ElementwiseTanIntModule_basic",
|
||||
"ElementwiseTanModule_basic",
|
||||
"ElementwiseToDtypeF32ToI64Module_basic",
|
||||
|
@ -4342,6 +4344,8 @@ ONNX_TOSA_XFAIL_SET = {
|
|||
"ElementwiseSinIntModule_basic",
|
||||
"ElementwiseSinhIntModule_basic",
|
||||
"ElementwiseSinhModule_basic",
|
||||
"ElementwiseSpecialExpm1IntModule_basic",
|
||||
"ElementwiseSpecialExpm1Module_basic",
|
||||
"ElementwiseSqrtIntModule_basic",
|
||||
"ElementwiseSubScalarIntModule_basic",
|
||||
"ElementwiseTanIntModule_basic",
|
||||
|
|
|
@ -222,6 +222,9 @@ def aten〇exp2〡shape(self: List[int]) -> List[int]:
|
|||
def aten〇expm1〡shape(self: List[int]) -> List[int]:
|
||||
return upstream_shape_functions.unary(self)
|
||||
|
||||
def aten〇special_expm1〡shape(self: List[int]) -> List[int]:
|
||||
return upstream_shape_functions.unary(self)
|
||||
|
||||
def aten〇isfinite〡shape(self: List[int]) -> List[int]:
|
||||
return self
|
||||
|
||||
|
@ -2656,6 +2659,11 @@ def aten〇expm1〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
|
|||
self_rank, self_dtype = self_rank_dtype
|
||||
return _get_dtype_of_floating_point_op(self_dtype)
|
||||
|
||||
@check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1))
|
||||
def aten〇special_expm1〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
|
||||
self_rank, self_dtype = self_rank_dtype
|
||||
return _get_dtype_of_floating_point_op(self_dtype)
|
||||
|
||||
def aten〇isfinite〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
|
||||
return torch.bool
|
||||
|
||||
|
|
|
@ -452,6 +452,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
|
|||
emit_with_mutating_variants("aten::ceil : (Tensor) -> (Tensor)", has_folder=True)
|
||||
emit_with_mutating_variants("aten::round : (Tensor) -> (Tensor)", has_folder=True)
|
||||
emit_with_mutating_variants("aten::trunc : (Tensor) -> (Tensor)", has_folder=True)
|
||||
emit("aten::special_expm1 : (Tensor) -> (Tensor)")
|
||||
emit_with_mutating_variants(
|
||||
"aten::sign : (Tensor) -> (Tensor)", has_canonicalizer=True
|
||||
)
|
||||
|
|
|
@ -5207,7 +5207,7 @@ class ElementwiseExpm1Module(torch.nn.Module):
|
|||
]
|
||||
)
|
||||
def forward(self, a):
|
||||
return torch.special.expm1(a)
|
||||
return torch.expm1(a)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: ElementwiseExpm1Module())
|
||||
|
@ -5230,7 +5230,7 @@ class ElementwiseExpm1IntModule(torch.nn.Module):
|
|||
]
|
||||
)
|
||||
def forward(self, a):
|
||||
return torch.special.expm1(a)
|
||||
return torch.expm1(a)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: ElementwiseExpm1IntModule())
|
||||
|
@ -5241,6 +5241,51 @@ def ElementwiseExpm1IntModule_basic(module, tu: TestUtils):
|
|||
# ==============================================================================
|
||||
|
||||
|
||||
class ElementwiseSpecialExpm1Module(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args(
|
||||
[
|
||||
None,
|
||||
([-1, -1], torch.float32, True),
|
||||
]
|
||||
)
|
||||
def forward(self, a):
|
||||
return torch.special.expm1(a)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: ElementwiseSpecialExpm1Module())
|
||||
def ElementwiseSpecialExpm1Module_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(3, 4))
|
||||
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class ElementwiseSpecialExpm1IntModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args(
|
||||
[
|
||||
None,
|
||||
([-1, -1], torch.int32, True),
|
||||
]
|
||||
)
|
||||
def forward(self, a):
|
||||
return torch.special.expm1(a)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: ElementwiseSpecialExpm1IntModule())
|
||||
def ElementwiseSpecialExpm1IntModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.randint(3, 4, low=1, high=10).to(torch.int32))
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class ElementwiseRad2DegModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
|
Loading…
Reference in New Issue