mirror of https://github.com/llvm/torch-mlir
Remove VerifyInvariantsBeforeBackendLowering
LowerToBackendContract now checks all this consistently.pull/1292/head
parent
b1fa7a2b9d
commit
0e3ddbac91
|
@ -41,9 +41,6 @@ void createTorchBackendToMhloBackendPipeline(
|
|||
const torch::Torch::TorchLoweringPipelineOptions &options);
|
||||
#endif
|
||||
|
||||
std::unique_ptr<OperationPass<ModuleOp>>
|
||||
createVerifyInvariantsBeforeBackendLoweringPass();
|
||||
|
||||
std::unique_ptr<OperationPass<ModuleOp>> createFuncBackendTypeConversionPass();
|
||||
|
||||
std::unique_ptr<OperationPass<func::FuncOp>>
|
||||
|
|
|
@ -12,27 +12,6 @@
|
|||
|
||||
include "mlir/Pass/PassBase.td"
|
||||
|
||||
def VerifyInvariantsBeforeBackendLowering
|
||||
: Pass<"torch-verify-invariants-before-backend-lowering", "ModuleOp"> {
|
||||
let summary = "Verify invariants required by backend lowering";
|
||||
let constructor =
|
||||
"mlir::torch::TorchConversion::createVerifyInvariantsBeforeBackendLoweringPass()";
|
||||
let description = [{
|
||||
This pass checks any invariants needed by the process of lowering the
|
||||
`torch` dialect to the linalg-on-tensors backend contract.
|
||||
|
||||
The most important invariant is that all tensors should be ranked and have
|
||||
a known dtype. It is useful to catch this early because it usually
|
||||
represents a simple bug in RefineTypes, but can manifest as many different
|
||||
kinds of obscure symptoms during lowering.
|
||||
|
||||
TODO: This pass should probably be phrased as checking the
|
||||
"torch backend contract" and moved to that dialect once we have more
|
||||
substantial definition definition around what that layer is from an
|
||||
"allowlist" perspective.
|
||||
}];
|
||||
}
|
||||
|
||||
def FuncBackendTypeConversion : Pass<"torch-func-backend-type-conversion", "ModuleOp"> {
|
||||
let summary = "Convert functions to operate on builtin tensors";
|
||||
let constructor = "mlir::torch::TorchConversion::createFuncBackendTypeConversionPass()";
|
||||
|
|
|
@ -18,7 +18,6 @@ add_mlir_library(TorchMLIRTorchConversionPasses
|
|||
BackendTypeConversion.cpp
|
||||
BackendTypeConversionPasses.cpp
|
||||
Passes.cpp
|
||||
VerifyInvariantsBeforeBackendLowering.cpp
|
||||
VerifyLinalgOnTensorsBackendContract.cpp
|
||||
VerifyTosaBackendContract.cpp
|
||||
|
||||
|
|
|
@ -63,10 +63,6 @@ void mlir::torch::registerTorchConversionPasses() {
|
|||
|
||||
void TorchConversion::createTorchBackendToLinalgOnTensorsBackendPipeline(
|
||||
OpPassManager &pm, const Torch::TorchLoweringPipelineOptions &options) {
|
||||
// Check some invariants to catch errors in a clear way.
|
||||
pm.addPass(
|
||||
TorchConversion::createVerifyInvariantsBeforeBackendLoweringPass());
|
||||
|
||||
// Lower to linalg + guards which is the input to codegen backends.
|
||||
// We do this first as it tends to involve pattern-matching against constants,
|
||||
// (e.g. dimensions which must be constant in a ranked programming model)
|
||||
|
@ -101,10 +97,6 @@ void TorchConversion::createTorchBackendToLinalgOnTensorsBackendPipeline(
|
|||
|
||||
void TorchConversion::createTorchBackendToTosaBackendPipeline(
|
||||
OpPassManager &pm, const Torch::TorchLoweringPipelineOptions &options) {
|
||||
// Check some invariants to catch errors in a clear way.
|
||||
pm.addPass(
|
||||
TorchConversion::createVerifyInvariantsBeforeBackendLoweringPass());
|
||||
|
||||
pm.addNestedPass<func::FuncOp>(createConvertTorchToTosaPass());
|
||||
// Perform rank broadcasting so TosaToLinalg pass works
|
||||
pm.addNestedPass<func::FuncOp>(createTosaMakeBroadcastablePass());
|
||||
|
@ -130,10 +122,6 @@ void TorchConversion::createTorchBackendToTosaBackendPipeline(
|
|||
#ifdef TORCH_MLIR_ENABLE_MHLO
|
||||
void TorchConversion::createTorchBackendToMhloBackendPipeline(
|
||||
OpPassManager &pm, const Torch::TorchLoweringPipelineOptions &options) {
|
||||
// Check some invariants to catch errors in a clear way.
|
||||
pm.addPass(
|
||||
TorchConversion::createVerifyInvariantsBeforeBackendLoweringPass());
|
||||
|
||||
pm.addNestedPass<func::FuncOp>(createConvertTorchToMhloPass());
|
||||
|
||||
// Clean up any non-canonical code introduced above..
|
||||
|
|
|
@ -1,86 +0,0 @@
|
|||
//===- VerifyInvariantsBeforeBackendLowering.cpp -----------------*- C++-*-===//
|
||||
//
|
||||
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
// Also available under a BSD-style license. See LICENSE.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "PassDetail.h"
|
||||
|
||||
#include "mlir/IR/Builders.h"
|
||||
#include "mlir/IR/BuiltinOps.h"
|
||||
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
||||
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionOps.h"
|
||||
#include "torch-mlir/Dialect/TorchConversion/Transforms/Passes.h"
|
||||
|
||||
using namespace mlir;
|
||||
using namespace mlir::torch;
|
||||
using namespace mlir::torch::TorchConversion;
|
||||
using namespace mlir::torch;
|
||||
|
||||
static LogicalResult checkValueInvariants(Operation *errorReportOp, Value v) {
|
||||
// TODO: Make this an allowlist instead of a denylist.
|
||||
// TODO: Make this stricter.
|
||||
auto type = v.getType();
|
||||
if (auto valueTensorType = type.dyn_cast<Torch::ValueTensorType>()) {
|
||||
if (!valueTensorType.hasDtype() || !valueTensorType.hasSizes())
|
||||
return errorReportOp->emitError()
|
||||
.append("unsupported by backend lowering: tensor with unknown rank "
|
||||
"or dtype")
|
||||
.attachNote()
|
||||
.append("this is likely due to a missing shape transfer function in "
|
||||
"shape_lib_gen.py or missing case in RefineTypes");
|
||||
}
|
||||
return success();
|
||||
}
|
||||
|
||||
namespace {
|
||||
|
||||
class VerifyInvariantsBeforeBackendLoweringPass
|
||||
: public VerifyInvariantsBeforeBackendLoweringBase<
|
||||
VerifyInvariantsBeforeBackendLoweringPass> {
|
||||
void runOnOperation() override {
|
||||
if (getOperation()
|
||||
.walk([](Torch::GlobalSlotModuleInitializerOp op) {
|
||||
op.emitError()
|
||||
<< "unsupported by backend lowering: module initializers";
|
||||
return WalkResult::interrupt();
|
||||
})
|
||||
.wasInterrupted())
|
||||
return signalPassFailure();
|
||||
auto walkResult = getOperation().walk([&](Block *block) {
|
||||
// Check invariants on all the Value's in the program.
|
||||
// That is, check all BlockArgument's and OpResult's.
|
||||
for (BlockArgument arg : block->getArguments())
|
||||
if (failed(checkValueInvariants(block->getParentOp(), arg)))
|
||||
return WalkResult::interrupt();
|
||||
|
||||
for (Operation &op : *block) {
|
||||
if (isa<Torch::OperatorOp>(op)) {
|
||||
op.emitError()
|
||||
.append("unsupported by backend lowering: `torch.operator` op")
|
||||
.attachNote()
|
||||
.append("this is likely due to a missing op that needs to be "
|
||||
"generated by torch_ods_gen.py");
|
||||
return WalkResult::interrupt();
|
||||
}
|
||||
|
||||
for (OpResult result : op.getResults())
|
||||
if (failed(checkValueInvariants(&op, result)))
|
||||
return WalkResult::interrupt();
|
||||
}
|
||||
return WalkResult::advance();
|
||||
});
|
||||
if (walkResult.wasInterrupted())
|
||||
return signalPassFailure();
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
std::unique_ptr<OperationPass<ModuleOp>> mlir::torch::TorchConversion::
|
||||
createVerifyInvariantsBeforeBackendLoweringPass() {
|
||||
return std::make_unique<VerifyInvariantsBeforeBackendLoweringPass>();
|
||||
}
|
|
@ -1,36 +0,0 @@
|
|||
// RUN: torch-mlir-opt -split-input-file -verify-diagnostics %s -torch-verify-invariants-before-backend-lowering
|
||||
|
||||
// -----
|
||||
|
||||
func.func @unknown_rank(%arg0: !torch.vtensor<[],f32>) {
|
||||
// expected-error@+2 {{unsupported by backend lowering: tensor with unknown rank or dtype}}
|
||||
// expected-note@+1 {{this is likely due to a missing shape transfer function in shape_lib_gen.py}}
|
||||
%0 = torch.aten.mul.Tensor %arg0, %arg0 : !torch.vtensor<[],f32>, !torch.vtensor<[],f32> -> !torch.vtensor<*,f32>
|
||||
return
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
func.func @unknown_dtype(%arg0: !torch.vtensor<[],f32>) {
|
||||
// expected-error@+2 {{unsupported by backend lowering: tensor with unknown rank or dtype}}
|
||||
// expected-note@+1 {{this is likely due to a missing shape transfer function in shape_lib_gen.py}}
|
||||
%0 = torch.aten.mul.Tensor %arg0, %arg0 : !torch.vtensor<[],f32>, !torch.vtensor<[],f32> -> !torch.vtensor<[],unk>
|
||||
return
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
func.func @unresolved_operator(%arg0: !torch.vtensor<[],f32>, %arg1: !torch.int) {
|
||||
// expected-error@+2 {{unsupported by backend lowering: `torch.operator` op}}
|
||||
// expected-note@+1 {{this is likely due to a missing op that needs to be generated by torch_ods_gen.py}}
|
||||
torch.operator "aten.mul.Scalar"(%arg0, %arg1) : (!torch.vtensor<[],f32>, !torch.int) -> !torch.vtensor<[],f32>
|
||||
return
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// expected-error@+1 {{unsupported by backend lowering: module initializers}}
|
||||
torch.global_slot.module_initializer {
|
||||
torch.initialize.global_slots [
|
||||
]
|
||||
}
|
|
@ -500,7 +500,6 @@ cc_library(
|
|||
"lib/Dialect/TorchConversion/Transforms/BackendTypeConversionPasses.cpp",
|
||||
"lib/Dialect/TorchConversion/Transforms/PassDetail.h",
|
||||
"lib/Dialect/TorchConversion/Transforms/Passes.cpp",
|
||||
"lib/Dialect/TorchConversion/Transforms/VerifyInvariantsBeforeBackendLowering.cpp",
|
||||
"lib/Dialect/TorchConversion/Transforms/VerifyLinalgOnTensorsBackendContract.cpp",
|
||||
"lib/Dialect/TorchConversion/Transforms/VerifyTosaBackendContract.cpp",
|
||||
],
|
||||
|
|
Loading…
Reference in New Issue