mirror of https://github.com/llvm/torch-mlir
Bump LLVM to llvm/llvm-project@0cb024b (#2753)
- Add fixes forpull/2758/headaf78e5daf0
- Add fixes forbb6d5c2200
parent
dc37616d67
commit
10acea71be
|
@ -1 +1 @@
|
|||
Subproject commit 6b65d79fbb4682468333cea42b62f15c2dffd8f3
|
||||
Subproject commit 0cb024b357aff294b1ba0f9d3de8f48ab684962b
|
|
@ -33,8 +33,9 @@ Value buildRescale(PatternRewriter &rewriter, Operation *op,
|
|||
rewriter.getI32IntegerAttr(static_cast<int32_t>(input_zp)),
|
||||
rewriter.getI32IntegerAttr(static_cast<int32_t>(output_zp)),
|
||||
rewriter.getDenseI32ArrayAttr({multiplier}),
|
||||
rewriter.getDenseI32ArrayAttr({shift}), rewriter.getBoolAttr(scale32),
|
||||
rewriter.getBoolAttr(double_round), rewriter.getBoolAttr(false));
|
||||
rewriter.getDenseI8ArrayAttr({static_cast<int8_t>(shift)}),
|
||||
rewriter.getBoolAttr(scale32), rewriter.getBoolAttr(double_round),
|
||||
rewriter.getBoolAttr(false));
|
||||
|
||||
return rescale_op.getResult();
|
||||
}
|
||||
|
@ -86,8 +87,9 @@ Value buildRescaleOpConvOutput(PatternRewriter &rewriter, Operation *op,
|
|||
rewriter, op->getLoc(), output_type, conv_val,
|
||||
rewriter.getI32IntegerAttr(0), rewriter.getI32IntegerAttr(output_zp),
|
||||
rewriter.getDenseI32ArrayAttr({multiplier}),
|
||||
rewriter.getDenseI32ArrayAttr({shift}), rewriter.getBoolAttr(scale32),
|
||||
rewriter.getBoolAttr(true), rewriter.getBoolAttr(false));
|
||||
rewriter.getDenseI8ArrayAttr({static_cast<int8_t>(shift)}),
|
||||
rewriter.getBoolAttr(scale32), rewriter.getBoolAttr(true),
|
||||
rewriter.getBoolAttr(false));
|
||||
|
||||
return rescale_op.getResult();
|
||||
|
||||
|
@ -96,7 +98,7 @@ Value buildRescaleOpConvOutput(PatternRewriter &rewriter, Operation *op,
|
|||
.dyn_cast<mlir::quant::UniformQuantizedPerAxisType>()) {
|
||||
// Per-channel quantization
|
||||
SmallVector<int32_t> multiplier_arr;
|
||||
SmallVector<int32_t> shift_arr;
|
||||
SmallVector<int8_t> shift_arr;
|
||||
|
||||
SmallVector<double> weight_scale_arr(
|
||||
weight_per_channel_qtype.getScales().begin(),
|
||||
|
@ -115,14 +117,14 @@ Value buildRescaleOpConvOutput(PatternRewriter &rewriter, Operation *op,
|
|||
scale_width);
|
||||
|
||||
multiplier_arr.push_back(multiplier);
|
||||
shift_arr.push_back(shift);
|
||||
shift_arr.push_back(static_cast<int8_t>(shift));
|
||||
}
|
||||
|
||||
auto rescale_op = CreateOpAndInfer<tosa::RescaleOp>(
|
||||
rewriter, op->getLoc(), output_type, conv_val,
|
||||
rewriter.getI32IntegerAttr(0), rewriter.getI32IntegerAttr(output_zp),
|
||||
rewriter.getDenseI32ArrayAttr(multiplier_arr),
|
||||
rewriter.getDenseI32ArrayAttr(shift_arr), rewriter.getBoolAttr(scale32),
|
||||
rewriter.getDenseI8ArrayAttr(shift_arr), rewriter.getBoolAttr(scale32),
|
||||
rewriter.getBoolAttr(true), rewriter.getBoolAttr(true));
|
||||
|
||||
return rescale_op.getResult();
|
||||
|
|
|
@ -1,10 +1,10 @@
|
|||
// RUN: torch-mlir-opt %s -canonicalize | FileCheck %s
|
||||
|
||||
// CHECK-LABEL: func.func @torch.aten.__range_length$fold() -> (!torch.int, !torch.int, !torch.int, !torch.int) {
|
||||
// CHECK: %[[INT1:.*]] = torch.constant.int 1
|
||||
// CHECK: %[[INT2:.*]] = torch.constant.int 2
|
||||
// CHECK: %[[INT3:.*]] = torch.constant.int 3
|
||||
// CHECK: %[[INTM1:.*]] = torch.constant.int -1
|
||||
// CHECK-DAG: %[[INT1:.*]] = torch.constant.int 1
|
||||
// CHECK-DAG: %[[INT2:.*]] = torch.constant.int 2
|
||||
// CHECK-DAG: %[[INT3:.*]] = torch.constant.int 3
|
||||
// CHECK-DAG: %[[INTM1:.*]] = torch.constant.int -1
|
||||
// CHECK: %[[NEG_STEP:.*]] = torch.aten.__range_length %[[INT1]], %[[INT3]], %[[INTM1]] : !torch.int, !torch.int, !torch.int -> !torch.int
|
||||
// CHECK: return %[[INT2]], %[[INT2]], %[[INT1]], %[[NEG_STEP]] : !torch.int, !torch.int, !torch.int, !torch.int
|
||||
func.func @torch.aten.__range_length$fold() -> (!torch.int, !torch.int, !torch.int, !torch.int) {
|
||||
|
|
|
@ -84,8 +84,8 @@ func.func @torch.aten.adaptive_avg_pool2d$unit_output_size(%arg0: !torch.vtensor
|
|||
|
||||
// CHECK-LABEL: func.func @torch.aten.type_as$basic(
|
||||
// CHECK-SAME: %[[ARG_0:.*]]: !torch.tensor, %[[ARG_1:.*]]: !torch.tensor) -> !torch.tensor {
|
||||
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
|
||||
// CHECK: %[[NONE:.*]] = torch.constant.none
|
||||
// CHECK-DAG: %[[FALSE:.*]] = torch.constant.bool false
|
||||
// CHECK-DAG: %[[NONE:.*]] = torch.constant.none
|
||||
// CHECK: %[[DTYPE:.*]] = torch.prim.dtype %[[ARG_1]] : !torch.tensor -> !torch.int
|
||||
// CHECK: %[[VAR:.*]] = torch.aten.to.dtype %[[ARG_0]], %[[DTYPE]], %[[FALSE]], %[[FALSE]], %[[NONE]] : !torch.tensor, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.tensor
|
||||
// CHECK: return %[[VAR]] : !torch.tensor
|
||||
|
|
|
@ -105,9 +105,9 @@ func.func @refine_shape_calculate_result$user_allows_type_refinement(%arg0: !tor
|
|||
// CHECK-LABEL: func.func @fully_unroll_prim_loop$unroll(
|
||||
// CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor,
|
||||
// CHECK-SAME: %[[ARG1:.*]]: !torch.list<int>) -> !torch.vtensor {
|
||||
// CHECK: %[[INT1:.*]] = torch.constant.int 1
|
||||
// CHECK: %[[INT2:.*]] = torch.constant.int 2
|
||||
// CHECK: %[[INT0:.*]] = torch.constant.int 0
|
||||
// CHECK-DAG: %[[INT1:.*]] = torch.constant.int 1
|
||||
// CHECK-DAG: %[[INT2:.*]] = torch.constant.int 2
|
||||
// CHECK-DAG: %[[INT0:.*]] = torch.constant.int 0
|
||||
// CHECK: %[[RESULT:.*]] = torch.shape.calculate {
|
||||
// CHECK: torch.shape.calculate.yield %[[ARG0]] : !torch.vtensor
|
||||
// CHECK: } shapes {
|
||||
|
@ -375,8 +375,8 @@ func.func @abstractly_interpret_list_ops$miscompile$list_identity(%arg0: !torch.
|
|||
// missing.
|
||||
// CHECK-LABEL: func.func @basic_integration(
|
||||
// CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[?,?],unk>) -> !torch.vtensor {
|
||||
// CHECK: %[[INT0:.*]] = torch.constant.int 0
|
||||
// CHECK: %[[INT1:.*]] = torch.constant.int 1
|
||||
// CHECK-DAG: %[[INT0:.*]] = torch.constant.int 0
|
||||
// CHECK-DAG: %[[INT1:.*]] = torch.constant.int 1
|
||||
// CHECK: %[[RESULT:.*]] = torch.shape.calculate {
|
||||
// CHECK: %[[TANH:.*]] = torch.aten.tanh %[[ARG0]] : !torch.vtensor<[?,?],unk> -> !torch.vtensor<[?,?],unk>
|
||||
// CHECK: torch.shape.calculate.yield %[[TANH]] : !torch.vtensor<[?,?],unk>
|
||||
|
@ -410,8 +410,8 @@ func.func @basic_integration(%arg0: !torch.vtensor<[?,?],unk>) -> !torch.vtensor
|
|||
// CHECK-LABEL: func.func @fold_prim_unchecked_cast_op(
|
||||
// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor,
|
||||
// CHECK-SAME: %[[VAL_1:.*]]: !torch.vtensor<[?,?],si64>) -> !torch.vtensor {
|
||||
// CHECK: %[[VAL_2:.*]] = torch.constant.int 0
|
||||
// CHECK: %[[VAL_3:.*]] = torch.constant.int 1
|
||||
// CHECK-DAG: %[[VAL_2:.*]] = torch.constant.int 0
|
||||
// CHECK-DAG: %[[VAL_3:.*]] = torch.constant.int 1
|
||||
// CHECK: %[[VAL_4:.*]] = torch.shape.calculate {
|
||||
// CHECK: %[[VAL_5:.*]] = torch.tensor_static_info_cast %[[VAL_0]] : !torch.vtensor to !torch.vtensor<[?,?],unk>
|
||||
// CHECK: torch.shape.calculate.yield %[[VAL_5]] : !torch.vtensor<[?,?],unk>
|
||||
|
|
Loading…
Reference in New Issue