Folder and Canonicalizer for PrimsConvertElementTypeOp and AtenMaxPool2dWithIndicesOp (#3272)

While playing with TorchDynamo on ResNet18. I notice following issues:

- `prims.convert_element_type` can’t be canonicalized even if the input
and the output share the same type

- `aten.max_pool2d_with_indices` is always used instead of
`aten.max_pool2d`, even if the second returned output (indices) has no
user

This PR fixes above issues by adding a folder to the
PrimsConvertElementTypeOp and a canonicalizer to the
AtenMaxPool2dWithIndicesOp


Lit test:

`cmake --build build --target check-torch-mlir-all`

---------

Co-authored-by: Ze Zhang <ze.zhang@getcruise.com>
pull/3275/head
Ze Zhang 2024-05-02 00:03:41 -07:00 committed by GitHub
parent 8c48135a42
commit 11cd7cd9e7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 85 additions and 7 deletions

View File

@ -6720,6 +6720,7 @@ def Torch_AtenMaxPool2dWithIndicesOp : Torch_Op<"aten.max_pool2d_with_indices",
printDefaultTorchOp(printer, *this, 6, 2);
}
}];
let hasCanonicalizer = 1;
}
def Torch_AtenMaxPool2dWithIndicesBackwardOp : Torch_Op<"aten.max_pool2d_with_indices_backward", [
@ -15982,6 +15983,7 @@ def Torch_PrimsConvertElementTypeOp : Torch_Op<"prims.convert_element_type", [
printDefaultTorchOp(printer, *this, 2, 1);
}
}];
let hasFolder = 1;
}
def Torch_PrimsVarOp : Torch_Op<"prims.var", [

View File

@ -4715,6 +4715,45 @@ LogicalResult AtenPermuteOp::verify() {
return success();
}
//===----------------------------------------------------------------------===//
// PrimsConvertElementTypeOp
//===----------------------------------------------------------------------===//
OpFoldResult PrimsConvertElementTypeOp::fold(FoldAdaptor adaptor) {
auto inputType = cast<BaseTensorType>(getA().getType());
auto outputType = cast<BaseTensorType>(getResult().getType());
if (inputType != outputType)
return nullptr;
if (!inputType.hasDtype() || !outputType.hasDtype())
return nullptr;
if (inputType.getDtype() != outputType.getDtype())
return nullptr;
return getA();
}
//===----------------------------------------------------------------------===//
// AtenMaxPool2dWithIndicesOp
//===----------------------------------------------------------------------===//
void AtenMaxPool2dWithIndicesOp::getCanonicalizationPatterns(
RewritePatternSet &patterns, MLIRContext *context) {
patterns.add(+[](AtenMaxPool2dWithIndicesOp op, PatternRewriter &rewriter) {
if (!op.getResult1().use_empty()) {
return rewriter.notifyMatchFailure(
op, "result1 of MaxPool2dWithIndices should be unused");
}
Value result = rewriter.create<Torch::AtenMaxPool2dOp>(
op->getLoc(), op.getResult0().getType(), op.getSelf(),
op.getKernelSize(), op.getStride(), op.getPadding(), op.getDilation(),
op.getCeilMode());
op.getResult0().replaceAllUsesWith(result);
rewriter.eraseOp(op);
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenLinalgCrossOp
//===----------------------------------------------------------------------===//

View File

@ -1924,11 +1924,6 @@ MAKE_FX_TOSA_PASS_SET = (
# Dynamic shape, has extra unsupported broadcast ops
"Matmul_3d",
"MatmulStaticBroadcast_basic",
# failed to legalize operation 'torch.aten.max_pool2d_with_indices
"MaxPool2dEmptyStrideStaticModule_basic",
"MaxPool2dStaticCeilModeTrueModule_basic",
"MaxPool2dStaticModule_basic",
"ResNet18StaticModule_basic",
# Unimplemented operator 'aten._index_put_impl_.hacked_twin'
"IndexPutImpl1DFloatNonAccumulateModule_basic",
"IndexPutImpl1DIntNonAccumulateModule_basic",

View File

@ -594,7 +594,8 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
emit("aten::max_pool1d : (Tensor, int[], int[], int[], int[], bool) -> (Tensor)")
emit("aten::max_pool2d : (Tensor, int[], int[], int[], int[], bool) -> (Tensor)")
emit(
"aten::max_pool2d_with_indices : (Tensor, int[], int[], int[], int[], bool) -> (Tensor, Tensor)"
"aten::max_pool2d_with_indices : (Tensor, int[], int[], int[], int[], bool) -> (Tensor, Tensor)",
has_canonicalizer=True,
)
emit(
"aten::max_pool2d_with_indices_backward : (Tensor, Tensor, int[], int[], int[], int[], bool, Tensor) -> (Tensor)"
@ -1104,7 +1105,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
# `prims::` namespace.
# ==========================================================================
emit("prims::convert_element_type : (Tensor, int) -> (Tensor)")
emit("prims::convert_element_type : (Tensor, int) -> (Tensor)", has_folder=True)
emit("prims::var : (Tensor, int[]?, float, int?) -> (Tensor)")
emit("prims::sqrt : (Tensor) -> (Tensor)")
emit("prims::collapse : (Tensor, int, int) -> (Tensor)")

View File

@ -2974,3 +2974,44 @@ func.func @aten_log$fold_splat_f32() -> !torch.vtensor<[4], f32> {
%result = torch.aten.log %cst : !torch.vtensor<[4], f32> -> !torch.vtensor<[4], f32>
return %result : !torch.vtensor<[4], f32>
}
// -----
// CHECK-LABEL: func.func @torch.prims.convert_element_type$fold(
// CHECK: %[[ARG:.*]]: !torch.vtensor<[64],f32>) -> !torch.vtensor<[64],f32> {
// CHECK: return %[[ARG]] : !torch.vtensor<[64],f32>
func.func @torch.prims.convert_element_type$fold(%arg0: !torch.vtensor<[64],f32>) -> !torch.vtensor<[64],f32> {
%int6 = torch.constant.int 6
%0 = torch.prims.convert_element_type %arg0, %int6 : !torch.vtensor<[64],f32>, !torch.int -> !torch.vtensor<[64],f32>
return %0 : !torch.vtensor<[64],f32>
}
// -----
// CHECK-LABEL: func.func @torch.prims.convert_element_type$no_fold(
// CHECK: %[[ARG:.*]]: !torch.vtensor<[64],f32>) -> !torch.vtensor<[64],si32> {
// CHECK: %[[RET:.*]] = torch.prims.convert_element_type %[[ARG]], %{{.*}} : !torch.vtensor<[64],f32>, !torch.int -> !torch.vtensor<[64],si32>
// CHECK: return %[[RET]] : !torch.vtensor<[64],si32>
func.func @torch.prims.convert_element_type$no_fold(%arg0: !torch.vtensor<[64],f32>) -> !torch.vtensor<[64],si32> {
%int6 = torch.constant.int 6
%0 = torch.prims.convert_element_type %arg0, %int6 : !torch.vtensor<[64],f32>, !torch.int -> !torch.vtensor<[64],si32>
return %0 : !torch.vtensor<[64],si32>
}
// -----
// CHECK-LABEL: @torch.aten.max_pool2d_with_indices$canonicalize(
// CHECK: %[[ARG:.*]]: !torch.vtensor<[10,64,112,112],f32>) -> !torch.vtensor<[10,64,56,56],f32> {
// CHECK: %[[RET:.*]] = torch.aten.max_pool2d %[[ARG]]
// CHECK: return %[[RET]] : !torch.vtensor<[10,64,56,56],f32>
func.func @torch.aten.max_pool2d_with_indices$canonicalize(%arg0: !torch.vtensor<[10,64,112,112],f32>) -> !torch.vtensor<[10,64,56,56],f32> {
%false = torch.constant.bool false
%int1 = torch.constant.int 1
%int2 = torch.constant.int 2
%int3 = torch.constant.int 3
%29 = torch.prim.ListConstruct %int3, %int3 : (!torch.int, !torch.int) -> !torch.list<int>
%30 = torch.prim.ListConstruct %int2, %int2 : (!torch.int, !torch.int) -> !torch.list<int>
%31 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<int>
%result0, %result1 = torch.aten.max_pool2d_with_indices %arg0, %29, %30, %31, %31, %false : !torch.vtensor<[10,64,112,112],f32>, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.bool -> !torch.vtensor<[10,64,56,56],f32>, !torch.vtensor<[10,64,56,56],si64>
return %result0 : !torch.vtensor<[10,64,56,56],f32>
}