Add More Scalarize Shapes Patterns (#3810)

### new patterns:

1. Propagates `aten.broadcast_to` ops of a single value to an
`aten.full` op
2. Propagates arithmetic operations through a templated class which
associates some tensor arithmetic ops to their integer-scalar
counterparts. These are a major blocker right now, since some models
have a bunch of rank 0 arithmetic being done with tensor ops. See the
lit test for an interesting example that pads an input to the smallest
shape which will become divisible by twelve in `dim0`. If you think this
is convoluted, you haven't been staring at ONNX generated IR long
enough.
3. Adds a stronger folder for `aten.eq.int` to fold `size.int == 0` to
`false`. See the comment in that conversion pattern for more
justification as to why it is acceptable to make this assumption here.
This is another major blocker for models, since this lack of folding
propagates to lack of folding for subsequent `where.self` operations.
4. Add `AtenSqueezeDim` to the existing `FoldAtenSqueezeOpPattern`

### other changes:
 
1. Add two new anchor ops: `AtenArangeStartStepOp` and
`Torch::RuntimeAssertOp`. I've checked all possible sources of the
runtime assert ops and it is always shape related. The Arange op only
takes int inputs, and these are all shape related. Adds a size check to
getting a list from literal ops.
2. Improved folders for int arithmetic ops to fold some common patterns.
3. adds the ability to get some values from scalar-tensor ops to
getListFromTensor.
4. further cleans up getListFromTensor for readability.

### points to scrutinize:

1. I made the choice to scalarize `div.Tensor` (int dtype result) to
`floordiv.int`. This is because our shape computations involving this
kind of arithmetic are never negative in practice, and we don't have a
"round towards zero" scalar int divide counterpart.
2. Anchoring on `RuntimeAssertOp` sounds really suspicious, and if
someone happens to add a runtime assert in the future that doesn't boil
down to shapes, then it would add to the worklist considerably. We might
be able to get around this by adding "NoMemoryEffect" to ops which are
"ReadOnly" so that the inputs for the runtime asserts get cse'd with
existing elements of the worklist before we even get to this pass.
pull/3811/head
zjgarvey 2024-10-21 19:42:39 -05:00 committed by GitHub
parent a83e106f92
commit 140cad5659
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 330 additions and 24 deletions

View File

@ -3700,6 +3700,12 @@ OpFoldResult AtenRemainderScalarOp::fold(FoldAdaptor adaptor) {
//===----------------------------------------------------------------------===//
OpFoldResult AtenAddIntOp::fold(FoldAdaptor adaptor) {
auto intLhs = dyn_cast_or_null<IntegerAttr>(adaptor.getA());
auto intRhs = dyn_cast_or_null<IntegerAttr>(adaptor.getB());
if (intRhs && intRhs.getValue().getSExtValue() == 0)
return getA();
if (intLhs && intLhs.getValue().getSExtValue() == 0)
return getB();
return atenBinaryIntOperatorFoldHelper(
adaptor.getOperands(), [](int64_t a, int64_t b) { return a + b; });
}
@ -3709,6 +3715,9 @@ OpFoldResult AtenAddIntOp::fold(FoldAdaptor adaptor) {
//===----------------------------------------------------------------------===//
OpFoldResult AtenSubIntOp::fold(FoldAdaptor adaptor) {
if (getA() == getB())
return IntegerAttr::get(
IntegerType::get(getContext(), 64, IntegerType::Signless), 0);
return atenBinaryIntOperatorFoldHelper(
adaptor.getOperands(), [](int64_t a, int64_t b) { return a - b; });
}

View File

@ -86,42 +86,62 @@ LogicalResult getListFromTensor(Value value, SmallVector<OpFoldResult> &vals) {
getAsOpFoldResult(full.getFillValue()));
return success();
}
// TODO: Add a case for unsqueeze of a primnumtotensorscalarop?
if (auto unsqueeze = value.getDefiningOp<Torch::AtenUnsqueezeOp>()) {
Value usqSelf = unsqueeze.getSelf();
if (auto numToTensor =
usqSelf.getDefiningOp<Torch::PrimNumToTensorScalarOp>()) {
vals.push_back(getAsOpFoldResult(numToTensor.getA()));
return success();
}
}
// A common rank 0 tensor producer
if (auto numToTensor =
value.getDefiningOp<Torch::PrimNumToTensorScalarOp>()) {
vals.push_back(getAsOpFoldResult(numToTensor.getA()));
return success();
}
// Last supported case: ValueTensorLiteralOp
auto literalOp = value.getDefiningOp<Torch::ValueTensorLiteralOp>();
if (!literalOp)
return failure();
// Check the type. We make sure the type is not unsigned here before trying to
// materialize
// Check the type.
auto ty = cast<ValueTensorType>(literalOp.getType());
if (!ty.hasSizes() || ty.getSizes().size() > 1)
return failure();
int64_t listSize = ty.getSizes().size() == 1 ? ty.getSizes().front() : 1;
// make sure the type is not unsigned here before trying to materialize
auto intTy = dyn_cast_or_null<IntegerType>(ty.getDtype());
if (!intTy || intTy.isUnsigned())
return failure();
// if we have a rank 0 literal, we will be adding one element to the list
int64_t listSize = ty.getSizes().size() == 1 ? ty.getSizes().front() : 1;
if (listSize > kMaxFold)
return failure();
// check for a splat or dense attr
auto splattr = dyn_cast_or_null<SplatElementsAttr>(literalOp.getValue());
auto denseAttr = dyn_cast_or_null<DenseIntElementsAttr>(literalOp.getValue());
if (!splattr && !denseAttr)
return failure();
// These are not mutually exclusive, so try splat first.
if (splattr) {
auto attr = splattr.getSplatValue<Attribute>();
vals.resize((int64_t)vals.size() + listSize, attr);
return success();
}
if (denseAttr && !splattr) {
for (auto e : denseAttr.getValues<Attribute>())
vals.push_back(e);
}
if ((int64_t)vals.size() != listSize)
// remaining case: denseAttr
if ((int64_t)denseAttr.getValues<Attribute>().size() != listSize)
return failure();
for (auto e : denseAttr.getValues<Attribute>())
vals.push_back(e);
return success();
}
@ -143,6 +163,45 @@ Value constructAtenTensorOpFromList(ImplicitLocOpBuilder b, mlir::Type resultTy,
// [scalarOpsA -> ListA -> TensorA] -> OpB. Then OpB will be able to
// getListFromTensor(A), and further propagate scalarization.
namespace {
class PropagateAtenBroadcastToPattern
: public OpRewritePattern<AtenBroadcastToOp> {
public:
using OpRewritePattern<AtenBroadcastToOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AtenBroadcastToOp op,
PatternRewriter &rewriter) const override {
constexpr int64_t kMaxFold = 16;
// for tensor<si64>, or tensor<1xsi64>, broadcasted to tensor<nxsi64>, grab
// the element and convert to a full op.
auto ty = cast<ValueTensorType>(op.getType());
if (!ty.areAllSizesKnown() || ty.getSizes().size() != 1)
return failure();
if (ty.getSizes()[0] > kMaxFold)
return failure();
SmallVector<OpFoldResult> fillFold;
if (failed(getListFromTensor(op.getSelf(), fillFold)) ||
fillFold.size() != 1)
return failure();
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
SmallVector<Value, 1> fillVals;
if (failed(materializeFolds(b, fillFold, fillVals)))
return failure();
Value size = b.create<Torch::ConstantIntOp>(ty.getSizes().front());
Value sizeList = b.create<Torch::PrimListConstructOp>(
rewriter.getType<Torch::ListType>(rewriter.getType<Torch::IntType>()),
size);
Value none = b.create<Torch::ConstantNoneOp>();
Value cstFalse = b.create<Torch::ConstantBoolOp>(false);
rewriter.replaceOpWithNewOp<AtenFullOp>(op, ty, sizeList, fillVals.front(),
none, none, none, cstFalse);
return success();
}
};
} // namespace
namespace {
class PropagateAtenShapeToTensorPattern
: public OpRewritePattern<Aten_ShapeAsTensorOp> {
@ -541,9 +600,128 @@ public:
};
} // namespace
namespace {
template <typename OpTy> struct ArithmeticHelper {
static LogicalResult getAlphaAndVerify(OpTy &op, int64_t &alpha) {
alpha = 1;
return success();
}
};
template <> struct ArithmeticHelper<AtenAddTensorOp> {
static LogicalResult getAlphaAndVerify(AtenAddTensorOp &op, int64_t &alpha) {
if (!matchPattern(op.getAlpha(), m_TorchConstantInt(&alpha)) || alpha != 1)
return failure();
return success();
}
};
template <> struct ArithmeticHelper<AtenSubTensorOp> {
static LogicalResult getAlphaAndVerify(AtenSubTensorOp &op, int64_t &alpha) {
if (!matchPattern(op.getAlpha(), m_TorchConstantInt(&alpha)) || alpha != 1)
return failure();
return success();
}
};
template <typename OpTy, typename ScalarOpTy>
class PropagateAtenArithmeticPattern : public OpRewritePattern<OpTy> {
public:
using OpRewritePattern<OpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(OpTy op,
PatternRewriter &rewriter) const override {
// Check type
auto resultTy = cast<ValueTensorType>(op.getType());
if (resultTy.getSizes().size() > 1)
return rewriter.notifyMatchFailure(op, "unsupported: rank > 1");
if (!resultTy.hasDtype() || !isa<mlir::IntegerType>(resultTy.getDtype()))
return rewriter.notifyMatchFailure(op, "not an int type");
int64_t alpha;
if (failed(ArithmeticHelper<OpTy>::getAlphaAndVerify(op, alpha)))
return rewriter.notifyMatchFailure(op, "alpha must be 1");
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
SmallVector<OpFoldResult> selfFold, otherFold;
if (failed(getListFromTensor(op.getSelf(), selfFold)) ||
failed(getListFromTensor(op.getOther(), otherFold)) ||
selfFold.size() != otherFold.size())
return failure();
SmallVector<Value> selfVals, otherVals;
if (failed(materializeFolds(b, selfFold, selfVals)) ||
failed(materializeFolds(b, otherFold, otherVals)))
return failure();
SmallVector<OpFoldResult> resultFolds;
for (uint64_t i = 0; i < selfVals.size(); i++) {
resultFolds.push_back(b.createOrFold<ScalarOpTy>(
selfVals[i].getType(), selfVals[i], otherVals[i]));
}
SmallVector<Value> resultVals;
if (failed(materializeFolds(b, resultFolds, resultVals)))
return failure();
if (resultTy.getSizes().size() == 0) {
rewriter.replaceOpWithNewOp<Torch::PrimNumToTensorScalarOp>(
op, resultTy, resultVals.front());
return success();
}
Value result = constructAtenTensorOpFromList(b, resultTy, resultVals);
rewriter.replaceOp(op, result);
return success();
}
};
} // namespace
/// ------ Fold Patterns ------ ///
// These are shape-specific folding patterns
namespace {
class FoldAtenEqIntPattern : public OpRewritePattern<AtenEqIntOp> {
public:
using OpRewritePattern<AtenEqIntOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AtenEqIntOp op,
PatternRewriter &rewriter) const override {
// replaces (size.int == 0) with false and adds an assert
// these comparisons are getting generated because onnx.Reshape considers 0
// to mean "don't change this dim". However, if the size we are passing to
// onnx.Reshape is a tensor dim, this is definitely never supposed to be
// interpreted as "don't change this dim".
int64_t otherInt;
if (!matchPattern(op.getB(), m_TorchConstantInt(&otherInt)) ||
otherInt != 0)
return failure();
// in case the shape is a product of two ints, check each
if (auto mulOp = op.getA().getDefiningOp<AtenMulIntOp>()) {
Value self = mulOp.getA();
Value other = mulOp.getB();
Value selfEq = rewriter.create<AtenEqIntOp>(op.getLoc(), self, op.getB());
Value otherEq =
rewriter.create<AtenEqIntOp>(op.getLoc(), other, op.getB());
rewriter.replaceOpWithNewOp<Aten__Or__BoolOp>(op, selfEq, otherEq);
return success();
}
// if lhs is size.int op, assert size > 0 and replace with false.
if (auto sizeOp = op.getA().getDefiningOp<AtenSizeIntOp>()) {
Value selfGtOther = rewriter.create<AtenGtIntOp>(
op.getLoc(), op.getType(), op.getA(), op.getB());
rewriter.create<Torch::RuntimeAssertOp>(
op.getLoc(), selfGtOther,
rewriter.getStringAttr("Expected dim size > 0."));
Value cstFalse =
rewriter.create<Torch::ConstantBoolOp>(op.getLoc(), false);
rewriter.replaceOp(op, cstFalse);
return success();
}
return failure();
}
};
} // namespace
namespace {
class FoldAtenTensorSplatPattern : public OpRewritePattern<AtenTensorOp> {
public:
@ -594,16 +772,24 @@ public:
} // namespace
namespace {
class FoldAtenSqueezePattern : public OpRewritePattern<AtenSqueezeOp> {
template <typename SqueezeOp>
class FoldAtenSqueezePattern : public OpRewritePattern<SqueezeOp> {
public:
using OpRewritePattern<AtenSqueezeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AtenSqueezeOp op,
using OpRewritePattern<SqueezeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(SqueezeOp op,
PatternRewriter &rewriter) const override {
auto resultTy = cast<ValueTensorType>(op.getType());
if (!resultTy.hasSizes() || !resultTy.areAllSizesKnown())
return rewriter.notifyMatchFailure(op, "Unknown result shape");
if (auto atenFull = op.getSelf().getDefiningOp<AtenFullOp>()) {
Value self = op.getSelf();
if (auto atenFull = self.getDefiningOp<AtenFullOp>()) {
// in the rank 0 case, just return the rank 0 scalar
if (resultTy.getSizes().size() == 0) {
rewriter.replaceOpWithNewOp<Torch::PrimNumToTensorScalarOp>(
op, resultTy, atenFull.getFillValue());
return success();
}
SmallVector<Value> sizes;
for (int i = 0, s = resultTy.getSizes().size(); i < s; ++i)
sizes.push_back(rewriter.create<Torch::ConstantIntOp>(
@ -874,9 +1060,16 @@ bool isPrimListOfInts(Operation *op) {
return llvm::isa<Torch::IntType>(listType.getContainedType());
}
bool isAnchorOp(Operation *op) {
return isa<Torch::RuntimeAssertOp>(op) || isa<AtenArangeStartStepOp>(op) ||
isPrimListOfInts(op);
}
void populateScalarizationFoldPatterns(RewritePatternSet &patterns) {
patterns.insert<FoldAtenSqueezePattern, FoldAtenUnsqueezePattern,
FoldAtenWhereSelf, FoldAtenTensorSplatPattern>(
patterns.insert<FoldAtenSqueezePattern<AtenSqueezeOp>,
FoldAtenSqueezePattern<AtenSqueezeDimOp>,
FoldAtenUnsqueezePattern, FoldAtenWhereSelf,
FoldAtenTensorSplatPattern, FoldAtenEqIntPattern>(
patterns.getContext());
}
@ -885,10 +1078,21 @@ void populateScalarizationCanonicalizePatterns(RewritePatternSet &patterns) {
}
void populateScalarizationPropagationPatterns(RewritePatternSet &patterns) {
patterns.insert<PropagateAtenCatPattern, PropagateAtenIndexSelectPattern,
PropagateAtenItemPattern, PropagateAtenShapeToTensorPattern,
PropagateAtenSliceTensorPattern, PropagateAtenEqTensorPattern,
PropagateAtenWhereSelfPattern>(patterns.getContext());
// A note on division: onnx.Div from int, int -> int types rounds towards
// zero. The torch DivTensorOp actually doesn't allow returning an int dtype,
// but this was artificially plummbed through. Unfortunately, there is no
// scalar trunc div op in torch; however, we can safely assume all operands
// are positive so floor divide should be a sufficient scalar replacement.
patterns.insert<
PropagateAtenCatPattern, PropagateAtenIndexSelectPattern,
PropagateAtenItemPattern, PropagateAtenShapeToTensorPattern,
PropagateAtenSliceTensorPattern, PropagateAtenEqTensorPattern,
PropagateAtenWhereSelfPattern, PropagateAtenBroadcastToPattern,
PropagateAtenArithmeticPattern<AtenAddTensorOp, AtenAddIntOp>,
PropagateAtenArithmeticPattern<AtenSubTensorOp, AtenSubIntOp>,
PropagateAtenArithmeticPattern<AtenMulTensorOp, AtenMulIntOp>,
PropagateAtenArithmeticPattern<AtenDivTensorOp, AtenFloordivIntOp>>(
patterns.getContext());
}
void populateScalarizationRemovePatterns(RewritePatternSet &patterns) {
@ -940,7 +1144,7 @@ public:
[&](Operation *op) {
// Walking bottom-up, start adding ops when we reach an anchor point
// (a prim list of ints)
if (isPrimListOfInts(op)) {
if (isAnchorOp(op)) {
shapeCalculationOps.insert(op);
return;
}

View File

@ -75,6 +75,99 @@ func.func @literal_item() -> !torch.int {
return %out : !torch.int
}
// -----
// CHECK-LABEL: @arith_prop
func.func @arith_prop(%arg0 : !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
// CHECK: %[[float0:.*]] = torch.constant.float 0.000000e+00
// CHECK: %[[int0:.*]] = torch.constant.int 0
// CHECK: %[[x0:.*]] = torch.aten.size.int %arg0, %[[int0]] : !torch.vtensor<[?,?],f32>, !torch.int -> !torch.int
// CHECK: %[[int1:.*]] = torch.constant.int 1
// CHECK: %[[x1:.*]] = torch.aten.size.int %arg0, %[[int1]] : !torch.vtensor<[?,?],f32>, !torch.int -> !torch.int
// CHECK: %[[int12:.*]] = torch.constant.int 12
// CHECK: %[[int1_0:.*]] = torch.constant.int 1
// CHECK: %[[x2:.*]] = torch.aten.floordiv.int %[[x0]], %[[int12]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[x3:.*]] = torch.aten.floordiv.int %[[x1]], %[[int1_0]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[int12_1:.*]] = torch.constant.int 12
// CHECK: %[[int1_2:.*]] = torch.constant.int 1
// CHECK: %[[x4:.*]] = torch.aten.mul.int %[[x2]], %[[int12_1]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[x5:.*]] = torch.aten.mul.int %[[x3]], %[[int1_2]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[x6:.*]] = torch.aten.sub.int %[[x0]], %[[x4]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[x7:.*]] = torch.aten.sub.int %[[x1]], %[[x5]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[x8:.*]] = torch.prim.ListConstruct %[[x7]], %[[x6]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[x9:.*]] = torch.aten.constant_pad_nd %arg0, %[[x8]], %[[float0]] : !torch.vtensor<[?,?],f32>, !torch.list<int>, !torch.float -> !torch.vtensor<[?,?],f32>
// CHECK: return %[[x9]] : !torch.vtensor<[?,?],f32>
%0 = torch.vtensor.literal(dense<1> : tensor<si64>) : !torch.vtensor<[],si64>
%1 = torch.vtensor.literal(dense<0> : tensor<si64>) : !torch.vtensor<[],si64>
%float0.000000e00 = torch.constant.float 0.000000e+00
%int1 = torch.constant.int 1
%2 = torch.vtensor.literal(dense<[12, 1]> : tensor<2xsi64>) : !torch.vtensor<[2],si64>
%int0 = torch.constant.int 0
%3 = torch.aten._shape_as_tensor %arg0 : !torch.vtensor<[?,?],f32> -> !torch.vtensor<[2],si64>
%4 = torch.aten.div.Tensor %3, %2 : !torch.vtensor<[2],si64>, !torch.vtensor<[2],si64> -> !torch.vtensor<[2],si64>
%5 = torch.aten.mul.Tensor %4, %2 : !torch.vtensor<[2],si64>, !torch.vtensor<[2],si64> -> !torch.vtensor<[2],si64>
%6 = torch.aten.sub.Tensor %3, %5, %int1 : !torch.vtensor<[2],si64>, !torch.vtensor<[2],si64>, !torch.int -> !torch.vtensor<[2],si64>
%7 = torch.aten.index_select %6, %int0, %1 : !torch.vtensor<[2],si64>, !torch.int, !torch.vtensor<[],si64> -> !torch.vtensor<[],si64>
%8 = torch.aten.index_select %6, %int0, %0 : !torch.vtensor<[2],si64>, !torch.int, !torch.vtensor<[],si64> -> !torch.vtensor<[],si64>
%9 = torch.aten.item %7 : !torch.vtensor<[],si64> -> !torch.int
%10 = torch.aten.item %8 : !torch.vtensor<[],si64> -> !torch.int
%11 = torch.prim.ListConstruct %10, %9 : (!torch.int, !torch.int) -> !torch.list<int>
%12 = torch.aten.constant_pad_nd %arg0, %11, %float0.000000e00 : !torch.vtensor<[?,?],f32>, !torch.list<int>, !torch.float -> !torch.vtensor<[?,?],f32>
return %12 : !torch.vtensor<[?,?],f32>
}
// -----
// CHECK-LABEL: @broadcast_prop
func.func @broadcast_prop(%arg0 : !torch.vtensor<[?,?],f32>) -> !torch.int {
// CHECK: %[[I0:.*]] = torch.constant.int 0
// CHECK: %[[SZE:.*]] = torch.aten.size.int %arg0, %[[I0]] : !torch.vtensor<[?,?],f32>, !torch.int -> !torch.int
// CHECK: return %[[SZE]] : !torch.int
%dim = torch.constant.int 0
%size = torch.aten.size.int %arg0, %dim : !torch.vtensor<[?,?],f32>, !torch.int -> !torch.int
%shape = torch.prim.NumToTensor.Scalar %size : !torch.int -> !torch.vtensor<[],si32>
%int3 = torch.constant.int 3
%idx = torch.vtensor.literal(dense<-1> : tensor<si32>) : !torch.vtensor<[],si32>
%bcastlist = torch.prim.ListConstruct %int3 : (!torch.int) -> !torch.list<int>
%bcast = torch.aten.broadcast_to %shape, %bcastlist : !torch.vtensor<[],si32>, !torch.list<int> -> !torch.vtensor<[3],si32>
%select = torch.aten.index_select %bcast, %dim, %idx : !torch.vtensor<[3],si32>, !torch.int, !torch.vtensor<[],si32> -> !torch.vtensor<[],si32>
%out = torch.aten.item %select : !torch.vtensor<[],si32> -> !torch.int
%list = torch.prim.ListConstruct %out : (!torch.int) -> !torch.list<int>
return %out : !torch.int
}
// -----
// CHECK-LABEL: @eq_int_fold
func.func @eq_int_fold(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,1],f32> {
// CHECK: %[[int1:.*]] = torch.constant.int 1
// CHECK: %[[int0:.*]] = torch.constant.int 0
// CHECK: %[[sze0:.*]] = torch.aten.size.int %arg0, %[[int0]] : !torch.vtensor<[?,?],f32>, !torch.int -> !torch.int
// CHECK: %[[sze1:.*]] = torch.aten.size.int %arg0, %[[int1]] : !torch.vtensor<[?,?],f32>, !torch.int -> !torch.int
// CHECK: %[[mul:.*]] = torch.aten.mul.int %[[sze0]], %[[sze1]] : !torch.int, !torch.int -> !torch.int
// CHECK: %[[gt0:.*]] = torch.aten.gt.int %[[sze0]], %[[int0]] : !torch.int, !torch.int -> !torch.bool
// CHECK: torch.runtime.assert %[[gt0]], "Expected dim size > 0."
// CHECK: %[[gt1:.*]] = torch.aten.gt.int %[[sze1]], %[[int0]] : !torch.int, !torch.int -> !torch.bool
// CHECK: torch.runtime.assert %[[gt1]], "Expected dim size > 0."
// CHECK: %[[list:.*]] = torch.prim.ListConstruct %[[mul]], %[[int1]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[view:.*]] = torch.aten.view %arg0, %[[list]] : !torch.vtensor<[?,?],f32>, !torch.list<int> -> !torch.vtensor<[?,1],f32>
// CHECK: return %[[view:.*]] : !torch.vtensor<[?,1],f32>
%int1 = torch.constant.int 1
%int0 = torch.constant.int 0
%0 = torch.aten.size.int %arg0, %int0 : !torch.vtensor<[?,?],f32>, !torch.int -> !torch.int
%1 = torch.aten.size.int %arg0, %int1 : !torch.vtensor<[?,?],f32>, !torch.int -> !torch.int
%2 = torch.aten.mul.int %0, %1 : !torch.int, !torch.int -> !torch.int
%3 = torch.aten.eq.int %2, %int0 : !torch.int, !torch.int -> !torch.bool
%4 = torch.aten.Int.bool %3 : !torch.bool -> !torch.int
%5 = torch.prim.NumToTensor.Scalar %4 : !torch.int -> !torch.vtensor<[],i1>
%6 = torch.prim.NumToTensor.Scalar %0 : !torch.int -> !torch.vtensor<[],si64>
%7 = torch.prim.NumToTensor.Scalar %2 : !torch.int -> !torch.vtensor<[],si64>
%8 = torch.aten.where.self %5, %6, %7 : !torch.vtensor<[],i1>, !torch.vtensor<[],si64>, !torch.vtensor<[],si64> -> !torch.vtensor<[],si64>
%9 = torch.aten.item %8 : !torch.vtensor<[],si64> -> !torch.int
%10 = torch.prim.ListConstruct %9, %int1 : (!torch.int, !torch.int) -> !torch.list<int>
%11 = torch.aten.view %arg0, %10 : !torch.vtensor<[?,?],f32>, !torch.list<int> -> !torch.vtensor<[?,1],f32>
return %11 : !torch.vtensor<[?,1],f32>
}
// -----

View File

@ -36,8 +36,8 @@ func.func @test_triu_decompose(%arg0: !torch.vtensor<[4,5],si64>) -> !torch.vten
module {
// CHECK-LABEL: func.func @test_scalarize
func.func @test_scalarize(%arg0: !torch.vtensor<[?,?,16,64],f32>) -> !torch.vtensor<[?,?,?],f32> attributes {torch.onnx_meta.ir_version = 7 : si64, torch.onnx_meta.opset_version = 21 : si64, torch.onnx_meta.producer_name = "pytorch", torch.onnx_meta.producer_version = "1.11.0"} {
// CHECK: %[[INT2:.+]] = torch.constant.int 2
// CHECK: %[[INT3:.+]] = torch.constant.int 3
// CHECK-DAG: %[[INT2:.+]] = torch.constant.int 2
// CHECK-DAG: %[[INT3:.+]] = torch.constant.int 3
// CHECK: %[[ADD:.+]] = torch.aten.flatten.using_ints %arg0, %[[INT2]], %[[INT3]] : !torch.vtensor<[?,?,16,64],f32>, !torch.int, !torch.int -> !torch.vtensor<[?,?,1024],f32>
%0 = torch.operator "onnx.Shape"(%arg0) : (!torch.vtensor<[?,?,16,64],f32>) -> !torch.vtensor<[4],si64>
%1 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__21> : tensor<si64>} : () -> !torch.vtensor<[],si64>