mirror of https://github.com/llvm/torch-mlir
build: manually update PyTorch version and fix CI failure (#3830)
This commit sets the PyTorch and TorchVision version to nightly release 2024-10-29. This commit also fixes the CI failure after this commitpull/3837/head54d9e24013
got merged. The issue was that the CI checks in the PR were run before the previous roll pytorch update but the PR was actually merged after the roll pytorch update. Hence, the failure was not caught before merging the PR. While exporting the fx_graph through fx_importer for `rrelu` and `rrelu_with_noise` op for train mode, it decomposes the `aten.rrelu_with_noise` op based on the PyTorch decomposition which is the default behavior. However, the decomposition contains an input mutation specifically here9bbe4a67ad/torch/_decomp/decompositions.py (L325)
, resulting in the runtime failure. This issue would probably be fixed by https://github.com/pytorch/pytorch/pull/138503. Until then, the failing tests are added to the xfail set. Also, after the roll pytorch update following tests started passing for fx_importer, and fx_importer_stablehlo config. - "ElementwiseRreluTrainModule_basic" - "ElementwiseRreluTrainStaticModule_basic" - "ElementwiseRreluWithNoiseTrainModule_basic" - "ElementwiseRreluWithNoiseTrainStaticModule_basic" This commit also updates the dtype check for the `aten.linear` op since the op now expects both the input tensors to have the same dtype. Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
parent
9ab2a150f2
commit
16b3bd6e6c
|
@ -420,7 +420,6 @@ FX_IMPORTER_XFAIL_SET = {
|
||||||
"DeformConv2D_basic",
|
"DeformConv2D_basic",
|
||||||
"DivFloatModule_basic",
|
"DivFloatModule_basic",
|
||||||
"DivIntModule_basic",
|
"DivIntModule_basic",
|
||||||
"ElementwiseAddScalar_NumToTensorFloat_Module_basic",
|
|
||||||
"ElementwiseDequantizePerChannelModule_basic",
|
"ElementwiseDequantizePerChannelModule_basic",
|
||||||
"ElementwiseDequantizePerTensorModule_basic",
|
"ElementwiseDequantizePerTensorModule_basic",
|
||||||
"ElementwiseQuantizePerTensorModule_basic",
|
"ElementwiseQuantizePerTensorModule_basic",
|
||||||
|
@ -446,8 +445,6 @@ FX_IMPORTER_XFAIL_SET = {
|
||||||
"NllLossModuleBackward1DSum_basic",
|
"NllLossModuleBackward1DSum_basic",
|
||||||
"NllLossModuleBackward1DWeight_basic",
|
"NllLossModuleBackward1DWeight_basic",
|
||||||
"NllLossModuleBackward1D_basic",
|
"NllLossModuleBackward1D_basic",
|
||||||
"NumToTensorFloatModule_basic",
|
|
||||||
"NumToTensorIntModule_basic",
|
|
||||||
"NumelModule_basic",
|
"NumelModule_basic",
|
||||||
"NumelZeroRankModule_basic",
|
"NumelZeroRankModule_basic",
|
||||||
"PowIntFloatModule_basic",
|
"PowIntFloatModule_basic",
|
||||||
|
@ -464,7 +461,6 @@ FX_IMPORTER_XFAIL_SET = {
|
||||||
"QuantizedSingleLayer_basic",
|
"QuantizedSingleLayer_basic",
|
||||||
"ReduceMaxAlongDimUnsignedInt_basic",
|
"ReduceMaxAlongDimUnsignedInt_basic",
|
||||||
"ReduceMinAlongDimUnsignedInt_basic",
|
"ReduceMinAlongDimUnsignedInt_basic",
|
||||||
"RsubInt0d_NumToTensor_Module_basic",
|
|
||||||
"ScalarImplicitFloatModule_basic",
|
"ScalarImplicitFloatModule_basic",
|
||||||
"SortIntListReverse_basic",
|
"SortIntListReverse_basic",
|
||||||
"SortIntList_basic",
|
"SortIntList_basic",
|
||||||
|
@ -523,6 +519,11 @@ FX_IMPORTER_XFAIL_SET = {
|
||||||
"MeshgridIndexingXY_basic",
|
"MeshgridIndexingXY_basic",
|
||||||
"Meshgrid_basic",
|
"Meshgrid_basic",
|
||||||
"OneHotModule_basic",
|
"OneHotModule_basic",
|
||||||
|
# RuntimeError: cannot mutate tensors with frozen storage
|
||||||
|
"ElementwiseRreluTrainModule_basic",
|
||||||
|
"ElementwiseRreluTrainStaticModule_basic",
|
||||||
|
"ElementwiseRreluWithNoiseTrainModule_basic",
|
||||||
|
"ElementwiseRreluWithNoiseTrainStaticModule_basic",
|
||||||
}
|
}
|
||||||
|
|
||||||
FX_IMPORTER_CRASHING_SET = LINALG_CRASHING_SET | {
|
FX_IMPORTER_CRASHING_SET = LINALG_CRASHING_SET | {
|
||||||
|
@ -690,7 +691,6 @@ FX_IMPORTER_STABLEHLO_XFAIL_SET = {
|
||||||
"DiagonalModule_with_offset",
|
"DiagonalModule_with_offset",
|
||||||
"DivFloatModule_basic",
|
"DivFloatModule_basic",
|
||||||
"DivIntModule_basic",
|
"DivIntModule_basic",
|
||||||
"ElementwiseAddScalar_NumToTensorFloat_Module_basic",
|
|
||||||
"ElementwiseDequantizePerChannelModule_basic",
|
"ElementwiseDequantizePerChannelModule_basic",
|
||||||
"ElementwiseDequantizePerTensorModule_basic",
|
"ElementwiseDequantizePerTensorModule_basic",
|
||||||
"ElementwiseErfIntModule_basic",
|
"ElementwiseErfIntModule_basic",
|
||||||
|
@ -792,8 +792,6 @@ FX_IMPORTER_STABLEHLO_XFAIL_SET = {
|
||||||
"NormScalarComplexModule_basic",
|
"NormScalarComplexModule_basic",
|
||||||
"NormScalarModule_basic",
|
"NormScalarModule_basic",
|
||||||
"NormalFunctionalModule_basic",
|
"NormalFunctionalModule_basic",
|
||||||
"NumToTensorFloatModule_basic",
|
|
||||||
"NumToTensorIntModule_basic",
|
|
||||||
"NumelModule_basic",
|
"NumelModule_basic",
|
||||||
"NumelZeroRankModule_basic",
|
"NumelZeroRankModule_basic",
|
||||||
"PowIntFloatModule_basic",
|
"PowIntFloatModule_basic",
|
||||||
|
@ -829,7 +827,6 @@ FX_IMPORTER_STABLEHLO_XFAIL_SET = {
|
||||||
"ReplicationPad2dModule_left0",
|
"ReplicationPad2dModule_left0",
|
||||||
"ReplicationPad2dModule_right0",
|
"ReplicationPad2dModule_right0",
|
||||||
"ReplicationPad2dModule_top0",
|
"ReplicationPad2dModule_top0",
|
||||||
"RsubInt0d_NumToTensor_Module_basic",
|
|
||||||
"ScalarImplicitFloatModule_basic",
|
"ScalarImplicitFloatModule_basic",
|
||||||
# REMOVE WHEN ENABLE_GQA IS ADDED
|
# REMOVE WHEN ENABLE_GQA IS ADDED
|
||||||
"ScatterReduceFloatMaxModule",
|
"ScatterReduceFloatMaxModule",
|
||||||
|
@ -964,6 +961,11 @@ FX_IMPORTER_STABLEHLO_XFAIL_SET = {
|
||||||
"UpSampleNearest2dStaticFactor_basic",
|
"UpSampleNearest2dStaticFactor_basic",
|
||||||
"UpSampleNearest2dStaticSize_basic",
|
"UpSampleNearest2dStaticSize_basic",
|
||||||
"UpSampleNearest2d_basic",
|
"UpSampleNearest2d_basic",
|
||||||
|
# RuntimeError: cannot mutate tensors with frozen storage
|
||||||
|
"ElementwiseRreluTrainModule_basic",
|
||||||
|
"ElementwiseRreluTrainStaticModule_basic",
|
||||||
|
"ElementwiseRreluWithNoiseTrainModule_basic",
|
||||||
|
"ElementwiseRreluWithNoiseTrainStaticModule_basic",
|
||||||
}
|
}
|
||||||
|
|
||||||
FX_IMPORTER_STABLEHLO_CRASHING_SET = {
|
FX_IMPORTER_STABLEHLO_CRASHING_SET = {
|
||||||
|
|
|
@ -5371,7 +5371,7 @@ def aten〇atanh〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
|
||||||
return torch.float32
|
return torch.float32
|
||||||
return self_dtype
|
return self_dtype
|
||||||
|
|
||||||
@check_dtype_function(_check_two_tensor_op())
|
@check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=2))
|
||||||
def aten〇linear〡dtype(input_rank_dtype: Tuple[int, int], weight_rank_dtype: Tuple[int, int], bias_rank_dtype: Optional[Tuple[int, int]] = None) -> int:
|
def aten〇linear〡dtype(input_rank_dtype: Tuple[int, int], weight_rank_dtype: Tuple[int, int], bias_rank_dtype: Optional[Tuple[int, int]] = None) -> int:
|
||||||
input_rank, input_dtype = input_rank_dtype
|
input_rank, input_dtype = input_rank_dtype
|
||||||
weight_rank, weight_dtype = weight_rank_dtype
|
weight_rank, weight_dtype = weight_rank_dtype
|
||||||
|
|
|
@ -1 +1 @@
|
||||||
160d421a40e934ac8183e47f9cbc8618a4bd97dd
|
c787213d413e85c66bdad0d8c9cde1c5ced34b1b
|
||||||
|
|
|
@ -1,3 +1,3 @@
|
||||||
-f https://download.pytorch.org/whl/nightly/cpu/torch/
|
-f https://download.pytorch.org/whl/nightly/cpu/torch/
|
||||||
--pre
|
--pre
|
||||||
torch==2.6.0.dev20241020
|
torch==2.6.0.dev20241029
|
||||||
|
|
|
@ -1,3 +1,3 @@
|
||||||
-f https://download.pytorch.org/whl/nightly/cpu/torchvision/
|
-f https://download.pytorch.org/whl/nightly/cpu/torchvision/
|
||||||
--pre
|
--pre
|
||||||
torchvision==0.20.0.dev20241020
|
torchvision==0.20.0.dev20241029
|
||||||
|
|
Loading…
Reference in New Issue