[ONNX] Conv op adds support for asymmetric padding. (#3426)

Supports asymmetric padding by performing a torch.nn.functional.pad on
the input before performing the convolution.

Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
pull/3425/head
Suraj Sudhir 2024-06-07 09:54:39 -07:00 committed by GitHub
parent 94838ca44d
commit 1c2778dd56
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 85 additions and 19 deletions

View File

@ -951,7 +951,6 @@ void mlir::torch::onnx_c::populateDefaultDomainAtoF(
return rewriter.notifyMatchFailure( return rewriter.notifyMatchFailure(
binder.op, "unsupported conversion: auto_pad != NOTSET"); binder.op, "unsupported conversion: auto_pad != NOTSET");
} }
Torch::ValueTensorType resultType; Torch::ValueTensorType resultType;
Value input, weight; Value input, weight;
int64_t group; int64_t group;
@ -1034,24 +1033,95 @@ void mlir::torch::onnx_c::populateDefaultDomainAtoF(
SmallVector<Value> cstPadding, cstStrides, cstDilations, SmallVector<Value> cstPadding, cstStrides, cstDilations,
cstOutputPadding; cstOutputPadding;
Value paddedInput = input;
Value paddingList;
if (padding.size() != 2 * (rank - 2)) { if (padding.size() != 2 * (rank - 2)) {
for (int64_t i : padding) { for (int64_t i : padding) {
cstPadding.push_back(rewriter.create<Torch::ConstantIntOp>( cstPadding.push_back(rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(i))); binder.getLoc(), rewriter.getI64IntegerAttr(i)));
} }
paddingList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(
Torch::IntType::get(binder.op->getContext())),
cstPadding);
} else { } else {
// ONNX offers pads in the format listing all starting dims, then all
// ending dims, e.g. {t, l, b, r} for conv2d. Torch by default accepts
// only starting dims, e.g. {t, l}. However, we can support padding at
// the beginning and end of each dimension by first performing
// torch.nn.functional.pad on the input. But this requires the pad
// values to be rearranged since torch pad() takes pads in the order
// rightmost dim start and end, then next to last, and so on, e.g. {l,
// r, t, b}.
bool matchedPads = true;
for (unsigned i = 0; i < padding.size() / 2; i++) { for (unsigned i = 0; i < padding.size() / 2; i++) {
if (padding[i] != padding[i + (padding.size() / 2)]) { if (padding[i] != padding[i + (padding.size() / 2)]) {
// TODO: Add support for different padding values for the matchedPads = false;
// beginning and ending along each spatial axis break;
return rewriter.notifyMatchFailure(
binder.op,
"unsupported conversion: padding values for the beginning "
"and ending along each spatial axis must be equal");
} }
}
if (matchedPads) {
for (unsigned i = 0; i < padding.size() / 2; i++) {
cstPadding.push_back(rewriter.create<Torch::ConstantIntOp>( cstPadding.push_back(rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(padding[i]))); binder.getLoc(), rewriter.getI64IntegerAttr(padding[i])));
} }
paddingList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(
Torch::IntType::get(binder.op->getContext())),
cstPadding);
} else {
SmallVector<Value> padsRearrange;
SmallVector<Value> inputPaddingList;
for (uint32_t i = 0; i < padding.size() / 2; i++) {
padsRearrange.emplace_back(rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(padding[i])));
padsRearrange.emplace_back(rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(
padding[(padding.size() / 2) + i])));
inputPaddingList.emplace_back(
rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(0)));
}
// The conv op itself will have no padding since the actual padding
// is performed using the torch.pad preceding it.
paddingList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(
Torch::IntType::get(binder.op->getContext())),
inputPaddingList);
Value padsSizeList =
rewriter
.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(
rewriter.getType<Torch::IntType>()),
padsRearrange)
.getResult();
Value modeVal = rewriter.create<Torch::ConstantStrOp>(
binder.getLoc(), rewriter.getStringAttr("constant"));
Value constantValue;
auto inputTensorType =
cast<Torch::ValueTensorType>(input.getType());
if (isa<IntegerType>(inputTensorType.getDtype()))
constantValue = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(0));
if (isa<FloatType>(inputTensorType.getDtype()))
constantValue = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getF64FloatAttr(0.0f));
// Pad output shape must be computed explicitly from the pad values
SmallVector<int64_t> newInputShape(inputTensorType.getSizes());
for (uint32_t i = 0; i < padding.size() / 2; i++) {
newInputShape[2 + i] +=
padding[i] + padding[(padding.size() / 2) + i];
}
auto padTy = rewriter.getType<Torch::ValueTensorType>(
newInputShape, inputTensorType.getDtype());
paddedInput = rewriter.create<Torch::AtenPadOp>(
binder.getLoc(), padTy, input, padsSizeList, modeVal,
constantValue);
}
} }
for (int64_t i : dilations) { for (int64_t i : dilations) {
cstDilations.push_back(rewriter.create<Torch::ConstantIntOp>( cstDilations.push_back(rewriter.create<Torch::ConstantIntOp>(
@ -1065,10 +1135,6 @@ void mlir::torch::onnx_c::populateDefaultDomainAtoF(
binder.getLoc(), rewriter.getI64IntegerAttr(0)); binder.getLoc(), rewriter.getI64IntegerAttr(0));
cstOutputPadding = {cstZero, cstZero}; cstOutputPadding = {cstZero, cstZero};
Value paddingList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
cstPadding);
Value dilationsList = rewriter.create<Torch::PrimListConstructOp>( Value dilationsList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(), binder.getLoc(),
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())), Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
@ -1095,7 +1161,7 @@ void mlir::torch::onnx_c::populateDefaultDomainAtoF(
binder.getLoc(), rewriter.getI64IntegerAttr(group)); binder.getLoc(), rewriter.getI64IntegerAttr(group));
rewriter.replaceOpWithNewOp<Torch::AtenConvolutionOp>( rewriter.replaceOpWithNewOp<Torch::AtenConvolutionOp>(
binder.op, resultType, input, weight, bias, stridesList, binder.op, resultType, paddedInput, weight, bias, stridesList,
paddingList, dilationsList, transposed, outputPaddingList, paddingList, dilationsList, transposed, outputPaddingList,
cstGroup); cstGroup);
return success(); return success();

View File

@ -946,12 +946,12 @@ func.func @test_averagepool_with_padding(%arg0: !torch.vtensor<[1,20,64,48],f32>
func.func @test_conv_with_strides_no_padding(%arg0: !torch.vtensor<[1,1,7,5],f32>, %arg1: !torch.vtensor<[1,1,3,3],f32>) -> !torch.vtensor<[1,1,3,2],f32> attributes {torch.onnx_meta.ir_version = 6 : si64, torch.onnx_meta.opset_version = 11 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} { func.func @test_conv_with_strides_no_padding(%arg0: !torch.vtensor<[1,1,7,5],f32>, %arg1: !torch.vtensor<[1,1,3,3],f32>) -> !torch.vtensor<[1,1,3,2],f32> attributes {torch.onnx_meta.ir_version = 6 : si64, torch.onnx_meta.opset_version = 11 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
// CHECK: %[[C0:.*]] = torch.constant.int 0 // CHECK: %[[C0:.*]] = torch.constant.int 0
// CHECK: %[[C0_0:.*]] = torch.constant.int 0 // CHECK: %[[C0_0:.*]] = torch.constant.int 0
// CHECK: %[[PADDING:.*]] = torch.prim.ListConstruct %[[C0]], %[[C0_0]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[C1:.*]] = torch.constant.int 1 // CHECK: %[[C1:.*]] = torch.constant.int 1
// CHECK: %[[C1_0:.*]] = torch.constant.int 1 // CHECK: %[[C1_0:.*]] = torch.constant.int 1
// CHECK: %[[C2:.*]] = torch.constant.int 2 // CHECK: %[[C2:.*]] = torch.constant.int 2
// CHECK: %[[C2_0:.*]] = torch.constant.int 2 // CHECK: %[[C2_0:.*]] = torch.constant.int 2
// CHECK: %[[C0_1:.*]] = torch.constant.int 0 // CHECK: %[[C0_1:.*]] = torch.constant.int 0
// CHECK: %[[PADDING:.*]] = torch.prim.ListConstruct %[[C0]], %[[C0_0]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[DILATIONS:.*]] = torch.prim.ListConstruct %[[C1]], %[[C1_0]] : (!torch.int, !torch.int) -> !torch.list<int> // CHECK: %[[DILATIONS:.*]] = torch.prim.ListConstruct %[[C1]], %[[C1_0]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[STRIDE:.*]] = torch.prim.ListConstruct %[[C2]], %[[C2_0]] : (!torch.int, !torch.int) -> !torch.list<int> // CHECK: %[[STRIDE:.*]] = torch.prim.ListConstruct %[[C2]], %[[C2_0]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[OUTPUT_PADDING:.*]] = torch.prim.ListConstruct %[[C0_1]], %[[C0_1]] : (!torch.int, !torch.int) -> !torch.list<int> // CHECK: %[[OUTPUT_PADDING:.*]] = torch.prim.ListConstruct %[[C0_1]], %[[C0_1]] : (!torch.int, !torch.int) -> !torch.list<int>
@ -969,12 +969,12 @@ func.func @test_conv_with_strides_no_padding(%arg0: !torch.vtensor<[1,1,7,5],f32
func.func @test_conv_with_strides_padding(%arg0: !torch.vtensor<[1,1,7,5],f32>, %arg1: !torch.vtensor<[1,1,3,3],f32>) -> !torch.vtensor<[1,1,4,3],f32> attributes {torch.onnx_meta.ir_version = 6 : si64, torch.onnx_meta.opset_version = 11 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} { func.func @test_conv_with_strides_padding(%arg0: !torch.vtensor<[1,1,7,5],f32>, %arg1: !torch.vtensor<[1,1,3,3],f32>) -> !torch.vtensor<[1,1,4,3],f32> attributes {torch.onnx_meta.ir_version = 6 : si64, torch.onnx_meta.opset_version = 11 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
// CHECK: %[[C1:.*]] = torch.constant.int 1 // CHECK: %[[C1:.*]] = torch.constant.int 1
// CHECK: %[[C1_0:.*]] = torch.constant.int 1 // CHECK: %[[C1_0:.*]] = torch.constant.int 1
// CHECK: %[[PADDING:.*]] = torch.prim.ListConstruct %[[C1]], %[[C1_0]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[C1_1:.*]] = torch.constant.int 1 // CHECK: %[[C1_1:.*]] = torch.constant.int 1
// CHECK: %[[C1_2:.*]] = torch.constant.int 1 // CHECK: %[[C1_2:.*]] = torch.constant.int 1
// CHECK: %[[C2:.*]] = torch.constant.int 2 // CHECK: %[[C2:.*]] = torch.constant.int 2
// CHECK: %[[C2_0:.*]] = torch.constant.int 2 // CHECK: %[[C2_0:.*]] = torch.constant.int 2
// CHECK: %[[C0:.*]] = torch.constant.int 0 // CHECK: %[[C0:.*]] = torch.constant.int 0
// CHECK: %[[PADDING:.*]] = torch.prim.ListConstruct %[[C1]], %[[C1_0]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[DILATIONS:.*]] = torch.prim.ListConstruct %[[C1_1]], %[[C1_2]] : (!torch.int, !torch.int) -> !torch.list<int> // CHECK: %[[DILATIONS:.*]] = torch.prim.ListConstruct %[[C1_1]], %[[C1_2]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[STRIDE:.*]] = torch.prim.ListConstruct %[[C2]], %[[C2_0]] : (!torch.int, !torch.int) -> !torch.list<int> // CHECK: %[[STRIDE:.*]] = torch.prim.ListConstruct %[[C2]], %[[C2_0]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[OUTPUT_PADDING:.*]] = torch.prim.ListConstruct %[[C0]], %[[C0]] : (!torch.int, !torch.int) -> !torch.list<int> // CHECK: %[[OUTPUT_PADDING:.*]] = torch.prim.ListConstruct %[[C0]], %[[C0]] : (!torch.int, !torch.int) -> !torch.list<int>
@ -992,12 +992,12 @@ func.func @test_conv_with_strides_padding(%arg0: !torch.vtensor<[1,1,7,5],f32>,
func.func @test_conv_with_bias_strides_padding(%arg0: !torch.vtensor<[?,?,224,224],f32>, %arg1: !torch.vtensor<[64,3,7,7],f32>, %arg2: !torch.vtensor<[64],f32>) -> !torch.vtensor<[?,64,112,112],f32> attributes {torch.onnx_meta.ir_version = 6 : si64, torch.onnx_meta.opset_version = 11 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} { func.func @test_conv_with_bias_strides_padding(%arg0: !torch.vtensor<[?,?,224,224],f32>, %arg1: !torch.vtensor<[64,3,7,7],f32>, %arg2: !torch.vtensor<[64],f32>) -> !torch.vtensor<[?,64,112,112],f32> attributes {torch.onnx_meta.ir_version = 6 : si64, torch.onnx_meta.opset_version = 11 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
// CHECK: %[[C3:.*]] = torch.constant.int 3 // CHECK: %[[C3:.*]] = torch.constant.int 3
// CHECK: %[[C3_0:.*]] = torch.constant.int 3 // CHECK: %[[C3_0:.*]] = torch.constant.int 3
// CHECK: %[[PADDING:.*]] = torch.prim.ListConstruct %[[C3]], %[[C3_0]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[C1:.*]] = torch.constant.int 1 // CHECK: %[[C1:.*]] = torch.constant.int 1
// CHECK: %[[C1_0:.*]] = torch.constant.int 1 // CHECK: %[[C1_0:.*]] = torch.constant.int 1
// CHECK: %[[C2:.*]] = torch.constant.int 2 // CHECK: %[[C2:.*]] = torch.constant.int 2
// CHECK: %[[C2_0:.*]] = torch.constant.int 2 // CHECK: %[[C2_0:.*]] = torch.constant.int 2
// CHECK: %[[C0:.*]] = torch.constant.int 0 // CHECK: %[[C0:.*]] = torch.constant.int 0
// CHECK: %[[PADDING:.*]] = torch.prim.ListConstruct %[[C3]], %[[C3_0]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[DILATIONS:.*]] = torch.prim.ListConstruct %[[C1]], %[[C1_0]] : (!torch.int, !torch.int) -> !torch.list<int> // CHECK: %[[DILATIONS:.*]] = torch.prim.ListConstruct %[[C1]], %[[C1_0]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[STRIDE:.*]] = torch.prim.ListConstruct %[[C2]], %[[C2_0]] : (!torch.int, !torch.int) -> !torch.list<int> // CHECK: %[[STRIDE:.*]] = torch.prim.ListConstruct %[[C2]], %[[C2_0]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[OUTPUT_PADDING:.*]] = torch.prim.ListConstruct %[[C0]], %[[C0]] : (!torch.int, !torch.int) -> !torch.list<int> // CHECK: %[[OUTPUT_PADDING:.*]] = torch.prim.ListConstruct %[[C0]], %[[C0]] : (!torch.int, !torch.int) -> !torch.list<int>

View File

@ -60,12 +60,12 @@ func.func @test_qlinearconv_nobias(%arg0: !torch.vtensor<[1,1,7,7],ui8>, %arg1:
// CHECK: %[[B:.+]] = torch.aten._make_per_tensor_quantized_tensor %arg3, %[[bScale]], %[[bZp]] : !torch.vtensor<[1,1,1,1],ui8>, !torch.float, !torch.int -> !torch.vtensor<[1,1,1,1],!torch.quint8> // CHECK: %[[B:.+]] = torch.aten._make_per_tensor_quantized_tensor %arg3, %[[bScale]], %[[bZp]] : !torch.vtensor<[1,1,1,1],ui8>, !torch.float, !torch.int -> !torch.vtensor<[1,1,1,1],!torch.quint8>
// CHECK: %[[INT0_0:.+]] = torch.constant.int 0 // CHECK: %[[INT0_0:.+]] = torch.constant.int 0
// CHECK: %[[INT0_1:.+]] = torch.constant.int 0 // CHECK: %[[INT0_1:.+]] = torch.constant.int 0
// CHECK: %[[PAD:.+]] = torch.prim.ListConstruct %[[INT0_0]], %[[INT0_1]]
// CHECK: %[[INT1_0:.+]] = torch.constant.int 1 // CHECK: %[[INT1_0:.+]] = torch.constant.int 1
// CHECK: %[[INT1_1:.+]] = torch.constant.int 1 // CHECK: %[[INT1_1:.+]] = torch.constant.int 1
// CHECK: %[[INT1_2:.+]] = torch.constant.int 1 // CHECK: %[[INT1_2:.+]] = torch.constant.int 1
// CHECK: %[[INT1_3:.+]] = torch.constant.int 1 // CHECK: %[[INT1_3:.+]] = torch.constant.int 1
// CHECK: %[[INT0_2:.+]] = torch.constant.int 0 // CHECK: %[[INT0_2:.+]] = torch.constant.int 0
// CHECK: %[[PAD:.+]] = torch.prim.ListConstruct %[[INT0_0]], %[[INT0_1]]
// CHECK: %[[KERNEL:.+]] = torch.prim.ListConstruct %[[INT1_0]], %[[INT1_1]] // CHECK: %[[KERNEL:.+]] = torch.prim.ListConstruct %[[INT1_0]], %[[INT1_1]]
// CHECK: %[[DILATION:.+]] = torch.prim.ListConstruct %[[INT1_2]], %[[INT1_3]] // CHECK: %[[DILATION:.+]] = torch.prim.ListConstruct %[[INT1_2]], %[[INT1_3]]
// CHECK: %[[STRIDE:.+]] = torch.prim.ListConstruct %[[INT0_2]], %[[INT0_2]] // CHECK: %[[STRIDE:.+]] = torch.prim.ListConstruct %[[INT0_2]], %[[INT0_2]]
@ -99,12 +99,12 @@ func.func @test_qlinearconv_bias(%arg0: !torch.vtensor<[1,1,7,7],ui8>, %arg1: !t
// CHECK: %[[B:.+]] = torch.aten._make_per_tensor_quantized_tensor %arg3, %[[bScale]], %[[bZp]] : !torch.vtensor<[1,1,1,1],ui8>, !torch.float, !torch.int -> !torch.vtensor<[1,1,1,1],!torch.quint8> // CHECK: %[[B:.+]] = torch.aten._make_per_tensor_quantized_tensor %arg3, %[[bScale]], %[[bZp]] : !torch.vtensor<[1,1,1,1],ui8>, !torch.float, !torch.int -> !torch.vtensor<[1,1,1,1],!torch.quint8>
// CHECK: %[[INT0_0:.+]] = torch.constant.int 0 // CHECK: %[[INT0_0:.+]] = torch.constant.int 0
// CHECK: %[[INT0_1:.+]] = torch.constant.int 0 // CHECK: %[[INT0_1:.+]] = torch.constant.int 0
// CHECK: %[[PAD:.+]] = torch.prim.ListConstruct %[[INT0_0]], %[[INT0_1]]
// CHECK: %[[INT1_0:.+]] = torch.constant.int 1 // CHECK: %[[INT1_0:.+]] = torch.constant.int 1
// CHECK: %[[INT1_1:.+]] = torch.constant.int 1 // CHECK: %[[INT1_1:.+]] = torch.constant.int 1
// CHECK: %[[INT1_2:.+]] = torch.constant.int 1 // CHECK: %[[INT1_2:.+]] = torch.constant.int 1
// CHECK: %[[INT1_3:.+]] = torch.constant.int 1 // CHECK: %[[INT1_3:.+]] = torch.constant.int 1
// CHECK: %[[INT0_2:.+]] = torch.constant.int 0 // CHECK: %[[INT0_2:.+]] = torch.constant.int 0
// CHECK: %[[PAD:.+]] = torch.prim.ListConstruct %[[INT0_0]], %[[INT0_1]]
// CHECK: %[[KERNEL:.+]] = torch.prim.ListConstruct %[[INT1_0]], %[[INT1_1]] // CHECK: %[[KERNEL:.+]] = torch.prim.ListConstruct %[[INT1_0]], %[[INT1_1]]
// CHECK: %[[DILATION:.+]] = torch.prim.ListConstruct %[[INT1_2]], %[[INT1_3]] // CHECK: %[[DILATION:.+]] = torch.prim.ListConstruct %[[INT1_2]], %[[INT1_3]]
// CHECK: %[[STRIDE:.+]] = torch.prim.ListConstruct %[[INT0_2]], %[[INT0_2]] // CHECK: %[[STRIDE:.+]] = torch.prim.ListConstruct %[[INT0_2]], %[[INT0_2]]