mirror of https://github.com/llvm/torch-mlir
Add Rsqrt
parent
3bd9d2a4c7
commit
2764e86f02
|
@ -445,3 +445,20 @@ class ElementwiseLog2Module(torch.nn.Module):
|
|||
@register_test_case(module_factory=lambda: ElementwiseLog2Module())
|
||||
def ElementwiseLog2Module_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(3, 4))
|
||||
|
||||
class ElementwiseRsqrtModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([-1, -1], torch.float32, True),
|
||||
])
|
||||
|
||||
def forward(self, a):
|
||||
return torch.rsqrt(a)
|
||||
|
||||
@register_test_case(module_factory=lambda: ElementwiseRsqrtModule())
|
||||
def ElementwiseRsqrtModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(3, 4))
|
||||
|
|
|
@ -878,6 +878,34 @@ def Torch_AtenLog2_Op : Torch_Op<"aten.log2_", [
|
|||
let assemblyFormat = "$self attr-dict `:` type($self) `->` type($result)";
|
||||
}
|
||||
|
||||
def Torch_AtenRsqrtOp : Torch_Op<"aten.rsqrt", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics
|
||||
]> {
|
||||
let summary = "Generated op for `aten::rsqrt : (Tensor) -> (Tensor)`";
|
||||
let arguments = (ins
|
||||
AnyTorchTensorType:$self
|
||||
);
|
||||
let results = (outs
|
||||
AnyTorchTensorType:$result
|
||||
);
|
||||
let assemblyFormat = "$self attr-dict `:` type($self) `->` type($result)";
|
||||
}
|
||||
|
||||
def Torch_AtenRsqrt_Op : Torch_Op<"aten.rsqrt_", [
|
||||
IsTrailingUnderscoreInplaceVariant,
|
||||
AllowsTypeRefinement
|
||||
]> {
|
||||
let summary = "Generated op for `aten::rsqrt_ : (Tensor) -> (Tensor)`";
|
||||
let arguments = (ins
|
||||
AnyTorchTensorType:$self
|
||||
);
|
||||
let results = (outs
|
||||
AnyTorchTensorType:$result
|
||||
);
|
||||
let assemblyFormat = "$self attr-dict `:` type($self) `->` type($result)";
|
||||
}
|
||||
|
||||
def Torch_AtenMaximumOp : Torch_Op<"aten.maximum", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics
|
||||
|
|
|
@ -1320,6 +1320,8 @@ static Value createLinalgPayloadCalculationForElementwiseOp(
|
|||
return b.create<math::LogOp>(loc, payloadArgs[0]);
|
||||
if (isa<AtenSqrtOp>(op))
|
||||
return b.create<math::SqrtOp>(loc, payloadArgs[0]);
|
||||
if (isa<AtenRsqrtOp>(op))
|
||||
return b.create<math::RsqrtOp>(loc, payloadArgs[0]);
|
||||
if (isa<AtenLog2Op>(op))
|
||||
return b.create<math::Log2Op>(loc, payloadArgs[0]);
|
||||
if (isa<AtenSigmoidOp>(op)) {
|
||||
|
@ -1724,7 +1726,8 @@ struct ConvertElementwiseOp : ConversionPattern {
|
|||
AtenMulTensorOp, AtenDivTensorOp, AtenSubTensorOp,
|
||||
AtenLerpTensorOp, AtenSigmoidOp, AtenExpOp, AtenMinimumOp,
|
||||
AtenMaximumOp, AtenToDtypeOp, AtenClampOp, AtenRsubScalarOp,
|
||||
AtenLogOp, AtenSqrtOp, AtenFloorOp, AtenPowTensorScalarOp, AtenLog2Op>(op))
|
||||
AtenLogOp, AtenSqrtOp, AtenFloorOp, AtenPowTensorScalarOp,
|
||||
AtenLog2Op, AtenRsqrtOp>(op))
|
||||
return rewriter.notifyMatchFailure(op, "not a supported elementwise op");
|
||||
|
||||
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
||||
|
@ -2885,7 +2888,7 @@ public:
|
|||
AtenLerpTensorOp, AtenSigmoidOp, AtenMinimumOp,
|
||||
AtenMaximumOp, AtenToDtypeOp, AtenClampOp,
|
||||
AtenRsubScalarOp, AtenLogOp, AtenSqrtOp, AtenFloorOp,
|
||||
AtenPowTensorScalarOp, AtenLog2Op>();
|
||||
AtenPowTensorScalarOp, AtenLog2Op, AtenRsqrtOp>();
|
||||
patterns.add<ConvertElementwiseOp>(typeConverter, context);
|
||||
target.addIllegalOp<AtenUnsqueezeOp>();
|
||||
patterns.add<ConvertAtenUnsqueezeOp>(typeConverter, context);
|
||||
|
|
|
@ -230,7 +230,7 @@ public:
|
|||
AtenToPrimDeviceOp, AtenCpuOp, AtenContiguousOp, AtenFill_ScalarOp,
|
||||
AtenDetachOp, AtenMaskedFill_ScalarOp, AtenCopy_Op, AtenIndexPut_Op,
|
||||
AtenCumsumOp, AtenLayerNormOp, AtenClampOp, AtenLogOp, AtenSqrtOp,
|
||||
AtenFloorOp, AtenLog2Op, Aten_SoftmaxBackwardDataOp>(op)) {
|
||||
AtenFloorOp, AtenLog2Op, Aten_SoftmaxBackwardDataOp, AtenRsqrtOp>(op)) {
|
||||
return getLatticeElement(op->getResult(0)).join(*operands[0]);
|
||||
}
|
||||
|
||||
|
|
|
@ -466,6 +466,7 @@ def emit_aten_ops(torch_ir_dir: str, registry: Registry):
|
|||
"aten::masked_fill.Scalar : (Tensor, Tensor, Scalar) -> (Tensor)",
|
||||
"aten::clamp : (Tensor, Scalar?, Scalar?) -> (Tensor)",
|
||||
"aten::log2 : (Tensor) -> (Tensor)",
|
||||
"aten::rsqrt : (Tensor) -> (Tensor)",
|
||||
]:
|
||||
emit_with_mutating_variants(key)
|
||||
# Elementwise tensor compute ops that don't have the standard mutating
|
||||
|
|
Loading…
Reference in New Issue