mirror of https://github.com/llvm/torch-mlir
[Torch Dialect] canonicalize aten.sign to aten.sgn (#3112)
* `aten.sign` is a sub-set of `aten.sgn` (`aten.sgn` support complex type).pull/3116/head
parent
43d54efd14
commit
2c56ef9252
|
@ -391,51 +391,6 @@ def Torch_AtenSigmoid_Op : Torch_Op<"aten.sigmoid_", [
|
||||||
}];
|
}];
|
||||||
}
|
}
|
||||||
|
|
||||||
def Torch_AtenSignOp : Torch_Op<"aten.sign", [
|
|
||||||
AllowsTypeRefinement,
|
|
||||||
HasValueSemantics,
|
|
||||||
ReadOnly
|
|
||||||
]> {
|
|
||||||
let summary = "Generated op for `aten::sign : (Tensor) -> (Tensor)`";
|
|
||||||
let arguments = (ins
|
|
||||||
AnyTorchTensorType:$self
|
|
||||||
);
|
|
||||||
let results = (outs
|
|
||||||
AnyTorchOptionalTensorType:$result
|
|
||||||
);
|
|
||||||
let hasCustomAssemblyFormat = 1;
|
|
||||||
let extraClassDefinition = [{
|
|
||||||
ParseResult AtenSignOp::parse(OpAsmParser &parser, OperationState &result) {
|
|
||||||
return parseDefaultTorchOp(parser, result, 1, 1);
|
|
||||||
}
|
|
||||||
void AtenSignOp::print(OpAsmPrinter &printer) {
|
|
||||||
printDefaultTorchOp(printer, *this, 1, 1);
|
|
||||||
}
|
|
||||||
}];
|
|
||||||
}
|
|
||||||
|
|
||||||
def Torch_AtenSign_Op : Torch_Op<"aten.sign_", [
|
|
||||||
IsTrailingUnderscoreInplaceVariant,
|
|
||||||
AllowsTypeRefinement
|
|
||||||
]> {
|
|
||||||
let summary = "Generated op for `aten::sign_ : (Tensor) -> (Tensor)`";
|
|
||||||
let arguments = (ins
|
|
||||||
Torch_NonValueTensorType:$self
|
|
||||||
);
|
|
||||||
let results = (outs
|
|
||||||
AnyTorchOptionalNonValueTensorType:$result
|
|
||||||
);
|
|
||||||
let hasCustomAssemblyFormat = 1;
|
|
||||||
let extraClassDefinition = [{
|
|
||||||
ParseResult AtenSign_Op::parse(OpAsmParser &parser, OperationState &result) {
|
|
||||||
return parseDefaultTorchOp(parser, result, 1, 1);
|
|
||||||
}
|
|
||||||
void AtenSign_Op::print(OpAsmPrinter &printer) {
|
|
||||||
printDefaultTorchOp(printer, *this, 1, 1);
|
|
||||||
}
|
|
||||||
}];
|
|
||||||
}
|
|
||||||
|
|
||||||
def Torch_AtenSinhOp : Torch_Op<"aten.sinh", [
|
def Torch_AtenSinhOp : Torch_Op<"aten.sinh", [
|
||||||
AllowsTypeRefinement,
|
AllowsTypeRefinement,
|
||||||
HasValueSemantics,
|
HasValueSemantics,
|
||||||
|
@ -4218,6 +4173,52 @@ def Torch_AtenRound_Op : Torch_Op<"aten.round_", [
|
||||||
}];
|
}];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
def Torch_AtenSignOp : Torch_Op<"aten.sign", [
|
||||||
|
AllowsTypeRefinement,
|
||||||
|
HasValueSemantics,
|
||||||
|
ReadOnly
|
||||||
|
]> {
|
||||||
|
let summary = "Generated op for `aten::sign : (Tensor) -> (Tensor)`";
|
||||||
|
let arguments = (ins
|
||||||
|
AnyTorchTensorType:$self
|
||||||
|
);
|
||||||
|
let results = (outs
|
||||||
|
AnyTorchOptionalTensorType:$result
|
||||||
|
);
|
||||||
|
let hasCustomAssemblyFormat = 1;
|
||||||
|
let extraClassDefinition = [{
|
||||||
|
ParseResult AtenSignOp::parse(OpAsmParser &parser, OperationState &result) {
|
||||||
|
return parseDefaultTorchOp(parser, result, 1, 1);
|
||||||
|
}
|
||||||
|
void AtenSignOp::print(OpAsmPrinter &printer) {
|
||||||
|
printDefaultTorchOp(printer, *this, 1, 1);
|
||||||
|
}
|
||||||
|
}];
|
||||||
|
let hasCanonicalizer = 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
def Torch_AtenSign_Op : Torch_Op<"aten.sign_", [
|
||||||
|
IsTrailingUnderscoreInplaceVariant,
|
||||||
|
AllowsTypeRefinement
|
||||||
|
]> {
|
||||||
|
let summary = "Generated op for `aten::sign_ : (Tensor) -> (Tensor)`";
|
||||||
|
let arguments = (ins
|
||||||
|
Torch_NonValueTensorType:$self
|
||||||
|
);
|
||||||
|
let results = (outs
|
||||||
|
AnyTorchOptionalNonValueTensorType:$result
|
||||||
|
);
|
||||||
|
let hasCustomAssemblyFormat = 1;
|
||||||
|
let extraClassDefinition = [{
|
||||||
|
ParseResult AtenSign_Op::parse(OpAsmParser &parser, OperationState &result) {
|
||||||
|
return parseDefaultTorchOp(parser, result, 1, 1);
|
||||||
|
}
|
||||||
|
void AtenSign_Op::print(OpAsmPrinter &printer) {
|
||||||
|
printDefaultTorchOp(printer, *this, 1, 1);
|
||||||
|
}
|
||||||
|
}];
|
||||||
|
}
|
||||||
|
|
||||||
def Torch_AtenMaskedFillTensorOp : Torch_Op<"aten.masked_fill.Tensor", [
|
def Torch_AtenMaskedFillTensorOp : Torch_Op<"aten.masked_fill.Tensor", [
|
||||||
AllowsTypeRefinement,
|
AllowsTypeRefinement,
|
||||||
HasValueSemantics,
|
HasValueSemantics,
|
||||||
|
|
|
@ -1793,6 +1793,17 @@ OpFoldResult AtenRoundOp::fold(FoldAdaptor adaptor) {
|
||||||
return {};
|
return {};
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//===----------------------------------------------------------------------===//
|
||||||
|
// AtenSignOp
|
||||||
|
//===----------------------------------------------------------------------===//
|
||||||
|
void AtenSignOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
||||||
|
MLIRContext *context) {
|
||||||
|
patterns.add(+[](AtenSignOp op, PatternRewriter &rewriter) {
|
||||||
|
rewriter.replaceOpWithNewOp<AtenSgnOp>(op, op.getType(), op.getSelf());
|
||||||
|
return success();
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
//===----------------------------------------------------------------------===//
|
//===----------------------------------------------------------------------===//
|
||||||
// AtenMulScalarOp
|
// AtenMulScalarOp
|
||||||
//===----------------------------------------------------------------------===//
|
//===----------------------------------------------------------------------===//
|
||||||
|
|
|
@ -6442,6 +6442,10 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
||||||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||||
" return %0 : !torch.list<int>\n"
|
" return %0 : !torch.list<int>\n"
|
||||||
" }\n"
|
" }\n"
|
||||||
|
" func.func @\"__torch_mlir_shape_fn.aten.sgn\"(%arg0: !torch.list<int>) -> !torch.list<int> {\n"
|
||||||
|
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||||
|
" return %0 : !torch.list<int>\n"
|
||||||
|
" }\n"
|
||||||
" func.func @\"__torch_mlir_shape_fn.aten.detach\"(%arg0: !torch.list<int>) -> !torch.list<int> {\n"
|
" func.func @\"__torch_mlir_shape_fn.aten.detach\"(%arg0: !torch.list<int>) -> !torch.list<int> {\n"
|
||||||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||||
" return %0 : !torch.list<int>\n"
|
" return %0 : !torch.list<int>\n"
|
||||||
|
@ -10129,6 +10133,10 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
||||||
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||||
" return %0#1 : !torch.int\n"
|
" return %0#1 : !torch.int\n"
|
||||||
" }\n"
|
" }\n"
|
||||||
|
" func.func @\"__torch_mlir_dtype_fn.aten.sgn\"(%arg0: !torch.tuple<int, int>) -> !torch.int {\n"
|
||||||
|
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||||
|
" return %0#1 : !torch.int\n"
|
||||||
|
" }\n"
|
||||||
" func.func @\"__torch_mlir_dtype_fn.aten.floor\"(%arg0: !torch.tuple<int, int>) -> !torch.int {\n"
|
" func.func @\"__torch_mlir_dtype_fn.aten.floor\"(%arg0: !torch.tuple<int, int>) -> !torch.int {\n"
|
||||||
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||||
" return %0#1 : !torch.int\n"
|
" return %0#1 : !torch.int\n"
|
||||||
|
|
|
@ -6971,46 +6971,54 @@ public:
|
||||||
} // namespace
|
} // namespace
|
||||||
|
|
||||||
namespace {
|
namespace {
|
||||||
// Decompose `aten.sign` op into comparisons and aten.where.
|
// Decompose `aten.sgn` op into comparisons and aten.where.
|
||||||
class DecomposeAtenSignOp : public OpRewritePattern<AtenSignOp> {
|
class DecomposeAtenSgnOp : public OpRewritePattern<AtenSgnOp> {
|
||||||
public:
|
public:
|
||||||
using OpRewritePattern::OpRewritePattern;
|
using OpRewritePattern::OpRewritePattern;
|
||||||
LogicalResult matchAndRewrite(AtenSignOp op,
|
LogicalResult matchAndRewrite(AtenSgnOp op,
|
||||||
PatternRewriter &rewriter) const override {
|
PatternRewriter &rewriter) const override {
|
||||||
Location loc = op.getLoc();
|
Location loc = op.getLoc();
|
||||||
auto outType = op.getType().dyn_cast<BaseTensorType>();
|
auto outType = op.getType().cast<BaseTensorType>();
|
||||||
if (!outType)
|
if (!outType.hasDtype()) {
|
||||||
return rewriter.notifyMatchFailure(
|
return rewriter.notifyMatchFailure(op,
|
||||||
op, "Only tensor types input are currently supported");
|
"expected result type to have dtype");
|
||||||
|
}
|
||||||
|
// TODO: support complex type in future.
|
||||||
|
if (outType.getDtype().isa<mlir::ComplexType>()) {
|
||||||
|
return rewriter.notifyMatchFailure(op,
|
||||||
|
"doesn't support complex type now");
|
||||||
|
}
|
||||||
|
|
||||||
auto zero =
|
auto zero =
|
||||||
rewriter.create<ConstantFloatOp>(loc, rewriter.getF64FloatAttr(0.0));
|
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(0));
|
||||||
auto one =
|
auto one =
|
||||||
rewriter.create<ConstantFloatOp>(loc, rewriter.getF64FloatAttr(1.0));
|
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(1));
|
||||||
auto minusOne =
|
auto minusOne =
|
||||||
rewriter.create<ConstantFloatOp>(loc, rewriter.getF64FloatAttr(-1.0));
|
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(-1));
|
||||||
|
|
||||||
auto compTy = outType.getWithSizesAndDtype(outType.getOptionalSizes(),
|
auto compTy = outType.getWithSizesAndDtype(outType.getOptionalSizes(),
|
||||||
rewriter.getI1Type());
|
rewriter.getI1Type());
|
||||||
|
|
||||||
auto greater =
|
auto greater =
|
||||||
rewriter.create<AtenGtScalarOp>(loc, compTy, op.getSelf(), zero);
|
rewriter.create<AtenGtScalarOp>(loc, compTy, op.getSelf(), zero);
|
||||||
auto greaterEqual =
|
auto less =
|
||||||
rewriter.create<AtenGeScalarOp>(loc, compTy, op.getSelf(), zero);
|
rewriter.create<AtenLtScalarOp>(loc, compTy, op.getSelf(), zero);
|
||||||
|
|
||||||
// Pseudo code:
|
// Pseudo code:
|
||||||
// if (in >= 0)
|
// if (in > 0)
|
||||||
// if (in > 0)
|
|
||||||
// return 1
|
// return 1
|
||||||
// else
|
// else if (in < 0)
|
||||||
// return 0
|
|
||||||
// else
|
|
||||||
// return -1
|
// return -1
|
||||||
|
// else
|
||||||
|
// return 0
|
||||||
|
// note: return 0 if nan/0.0/-0.0
|
||||||
|
// return 1 if inf
|
||||||
|
// return -1 if -inf
|
||||||
auto selectGreater =
|
auto selectGreater =
|
||||||
rewriter.create<AtenWhereScalarOp>(loc, outType, greater, one, zero);
|
rewriter.create<AtenWhereScalarOp>(loc, outType, greater, one, zero);
|
||||||
|
|
||||||
rewriter.replaceOpWithNewOp<AtenWhereScalarOtherOp>(
|
rewriter.replaceOpWithNewOp<AtenWhereScalarSelfOp>(op, outType, less,
|
||||||
op, outType, greaterEqual, selectGreater, minusOne);
|
minusOne, selectGreater);
|
||||||
return success();
|
return success();
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
@ -7606,7 +7614,7 @@ public:
|
||||||
addPatternIfTargetOpIsIllegal<DecomposeAtenTopkOp>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposeAtenTopkOp>(patterns);
|
||||||
addPatternIfTargetOpIsIllegal<DecomposeAtenScalarTensor>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposeAtenScalarTensor>(patterns);
|
||||||
addPatternIfTargetOpIsIllegal<DecomposeAtenScatterValueOp>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposeAtenScatterValueOp>(patterns);
|
||||||
addPatternIfTargetOpIsIllegal<DecomposeAtenSignOp>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposeAtenSgnOp>(patterns);
|
||||||
addPatternIfTargetOpIsIllegal<DecomposeAtenTypeAsOp>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposeAtenTypeAsOp>(patterns);
|
||||||
addPatternIfTargetOpIsIllegal<DecomposeAtenTileOp>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposeAtenTileOp>(patterns);
|
||||||
addPatternIfTargetOpIsIllegal<DecomposeAtenReshapeAsOp>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposeAtenReshapeAsOp>(patterns);
|
||||||
|
|
|
@ -888,6 +888,8 @@ STABLEHLO_PASS_SET = {
|
||||||
"ViewTwoFiveThreeStaticModule_basic",
|
"ViewTwoFiveThreeStaticModule_basic",
|
||||||
"ViewTwoToThreeStaticModule_basic",
|
"ViewTwoToThreeStaticModule_basic",
|
||||||
"ElementwiseLog1pModule_basic",
|
"ElementwiseLog1pModule_basic",
|
||||||
|
"ElementwiseSgnModule_basic",
|
||||||
|
"ElementwiseSignIntModule_basic",
|
||||||
}
|
}
|
||||||
|
|
||||||
STABLEHLO_CRASHING_SET = {
|
STABLEHLO_CRASHING_SET = {
|
||||||
|
@ -897,6 +899,8 @@ STABLEHLO_CRASHING_SET = {
|
||||||
# Write the TOSA set as a "passing" set as it is very early in development
|
# Write the TOSA set as a "passing" set as it is very early in development
|
||||||
# and very few tests work yet.
|
# and very few tests work yet.
|
||||||
TOSA_PASS_SET = {
|
TOSA_PASS_SET = {
|
||||||
|
"ElementwiseSgnModule_basic",
|
||||||
|
"ElementwiseSignIntModule_basic",
|
||||||
"AdaptiveAvgPool2dNonUnitOutputSizeStaticModule_basic",
|
"AdaptiveAvgPool2dNonUnitOutputSizeStaticModule_basic",
|
||||||
"AdaptiveAvgPool2dUnitOutputSizeStaticModule_basic",
|
"AdaptiveAvgPool2dUnitOutputSizeStaticModule_basic",
|
||||||
"AddCDivModule_basic",
|
"AddCDivModule_basic",
|
||||||
|
@ -1567,6 +1571,7 @@ ONNX_XFAIL_SET = {
|
||||||
"ViewSizeFromOtherTensor_basic",
|
"ViewSizeFromOtherTensor_basic",
|
||||||
|
|
||||||
# Failure - onnx_export
|
# Failure - onnx_export
|
||||||
|
"ElementwiseSgnModule_basic",
|
||||||
"AdaptiveAvgPool1dGeneralDynamic_basic",
|
"AdaptiveAvgPool1dGeneralDynamic_basic",
|
||||||
"AdaptiveAvgPool1dNonUnitOutputSizeDynamicModule_basic",
|
"AdaptiveAvgPool1dNonUnitOutputSizeDynamicModule_basic",
|
||||||
"AdaptiveAvgPool1dStaticLargerOutput_basic",
|
"AdaptiveAvgPool1dStaticLargerOutput_basic",
|
||||||
|
|
|
@ -200,6 +200,9 @@ def aten〇floor〡shape(self: List[int]) -> List[int]:
|
||||||
def aten〇sign〡shape(self: List[int]) -> List[int]:
|
def aten〇sign〡shape(self: List[int]) -> List[int]:
|
||||||
return upstream_shape_functions.unary(self)
|
return upstream_shape_functions.unary(self)
|
||||||
|
|
||||||
|
def aten〇sgn〡shape(self: List[int]) -> List[int]:
|
||||||
|
return upstream_shape_functions.unary(self)
|
||||||
|
|
||||||
def aten〇detach〡shape(self: List[int]) -> List[int]:
|
def aten〇detach〡shape(self: List[int]) -> List[int]:
|
||||||
return upstream_shape_functions.unary(self)
|
return upstream_shape_functions.unary(self)
|
||||||
|
|
||||||
|
@ -2346,6 +2349,11 @@ def aten〇sign〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
|
||||||
self_rank, self_dtype = self_rank_dtype
|
self_rank, self_dtype = self_rank_dtype
|
||||||
return self_dtype
|
return self_dtype
|
||||||
|
|
||||||
|
@check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1))
|
||||||
|
def aten〇sgn〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
|
||||||
|
self_rank, self_dtype = self_rank_dtype
|
||||||
|
return self_dtype
|
||||||
|
|
||||||
@check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1))
|
@check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1))
|
||||||
def aten〇floor〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
|
def aten〇floor〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
|
||||||
self_rank, self_dtype = self_rank_dtype
|
self_rank, self_dtype = self_rank_dtype
|
||||||
|
|
|
@ -269,7 +269,6 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
|
||||||
"aten::log : (Tensor) -> (Tensor)",
|
"aten::log : (Tensor) -> (Tensor)",
|
||||||
"aten::selu : (Tensor) -> (Tensor)",
|
"aten::selu : (Tensor) -> (Tensor)",
|
||||||
"aten::sigmoid : (Tensor) -> (Tensor)",
|
"aten::sigmoid : (Tensor) -> (Tensor)",
|
||||||
"aten::sign : (Tensor) -> (Tensor)",
|
|
||||||
"aten::sinh : (Tensor) -> (Tensor)",
|
"aten::sinh : (Tensor) -> (Tensor)",
|
||||||
"aten::sgn : (Tensor) -> (Tensor)",
|
"aten::sgn : (Tensor) -> (Tensor)",
|
||||||
"aten::hardsigmoid : (Tensor) -> (Tensor)",
|
"aten::hardsigmoid : (Tensor) -> (Tensor)",
|
||||||
|
@ -357,6 +356,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
|
||||||
emit_with_mutating_variants("aten::floor : (Tensor) -> (Tensor)", has_folder=True)
|
emit_with_mutating_variants("aten::floor : (Tensor) -> (Tensor)", has_folder=True)
|
||||||
emit_with_mutating_variants("aten::ceil : (Tensor) -> (Tensor)", has_folder=True)
|
emit_with_mutating_variants("aten::ceil : (Tensor) -> (Tensor)", has_folder=True)
|
||||||
emit_with_mutating_variants("aten::round : (Tensor) -> (Tensor)", has_folder=True)
|
emit_with_mutating_variants("aten::round : (Tensor) -> (Tensor)", has_folder=True)
|
||||||
|
emit_with_mutating_variants("aten::sign : (Tensor) -> (Tensor)", has_canonicalizer=True)
|
||||||
emit_with_mutating_variants("aten::masked_fill.Tensor : (Tensor, Tensor, Tensor) -> (Tensor)", has_canonicalizer=True)
|
emit_with_mutating_variants("aten::masked_fill.Tensor : (Tensor, Tensor, Tensor) -> (Tensor)", has_canonicalizer=True)
|
||||||
|
|
||||||
emit_with_mutating_variants("aten::addcmul : (Tensor, Tensor, Tensor, Scalar) -> (Tensor)")
|
emit_with_mutating_variants("aten::addcmul : (Tensor, Tensor, Tensor, Scalar) -> (Tensor)")
|
||||||
|
|
|
@ -1986,6 +1986,51 @@ class ElementwiseSignModule(torch.nn.Module):
|
||||||
|
|
||||||
@register_test_case(module_factory=lambda: ElementwiseSignModule())
|
@register_test_case(module_factory=lambda: ElementwiseSignModule())
|
||||||
def ElementwiseSignModule_basic(module, tu: TestUtils):
|
def ElementwiseSignModule_basic(module, tu: TestUtils):
|
||||||
|
module.forward(torch.tensor([[-2.0, 0.0, 1.1, 2.0],
|
||||||
|
[6.0, -0.0, torch.inf, -torch.inf]]))
|
||||||
|
|
||||||
|
|
||||||
|
# ==============================================================================
|
||||||
|
|
||||||
|
|
||||||
|
class ElementwiseSignIntModule(torch.nn.Module):
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
@export
|
||||||
|
@annotate_args([
|
||||||
|
None,
|
||||||
|
([3, 4], torch.int64, True),
|
||||||
|
])
|
||||||
|
def forward(self, a):
|
||||||
|
return torch.ops.aten.sign(a)
|
||||||
|
|
||||||
|
|
||||||
|
@register_test_case(module_factory=lambda: ElementwiseSignIntModule())
|
||||||
|
def ElementwiseSignIntModule_basic(module, tu: TestUtils):
|
||||||
|
module.forward(tu.randint(3, 4, low=-100, high=100))
|
||||||
|
|
||||||
|
|
||||||
|
# ==============================================================================
|
||||||
|
|
||||||
|
|
||||||
|
class ElementwiseSgnModule(torch.nn.Module):
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
@export
|
||||||
|
@annotate_args([
|
||||||
|
None,
|
||||||
|
([3, 4], torch.float32, True),
|
||||||
|
])
|
||||||
|
def forward(self, a):
|
||||||
|
return torch.ops.aten.sgn(a)
|
||||||
|
|
||||||
|
|
||||||
|
@register_test_case(module_factory=lambda: ElementwiseSgnModule())
|
||||||
|
def ElementwiseSgnModule_basic(module, tu: TestUtils):
|
||||||
module.forward(tu.rand(3, 4))
|
module.forward(tu.rand(3, 4))
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue