mirror of https://github.com/llvm/torch-mlir
Remove duplicate example + fix README typo
parent
05a01b10b3
commit
3aef3a9e30
|
@ -121,7 +121,7 @@ The `examples` folder includes the Python package `torchfx`, which is a function
|
|||
|
||||
#### Example usage of `torchfx`
|
||||
|
||||
The `examples` folder includes scripts `torchfx_*.py` showing how to use the TorchFX to MLIR pipeline. In order to run the examples, make sure you've setup your `PYTHONPATH` by following [these](#setup-your-python-environment) instructions.
|
||||
The `examples` folder includes scripts `torchfx_*.py` showing how to use the TorchFX to MLIR pipeline. In order to run the examples, make sure you've setup your `PYTHONPATH` by following the [Setup Python Environment](#setup-python-environment) instructions.
|
||||
|
||||
Then, run
|
||||
|
||||
|
@ -140,7 +140,7 @@ The `examples` folder includes the Python package `lazytensor`, which implements
|
|||
|
||||
The `examples` folder includes scripts `lazytensor_*.py` showing how to use the Lazy Tensor to MLIR pipeline. The examples depend on the Lazy Tensor Core (LTC) of PyTorch. For information on how to obtain LTC, see [here](https://github.com/pytorch/pytorch/blob/lazy_tensor_staging/lazy_tensor_core/QUICKSTART.md).
|
||||
|
||||
In order to run the examples, make sure you've setup your `PYTHONPATH` by following [these](#setup-your-python-environment) instructions, and also add `/path/to/pytorch/lazy_tensor_core` to your `PYTHONPATH` as shown below:
|
||||
In order to run the examples, make sure you've setup your `PYTHONPATH` by following the [Setup Python Environment](#setup-python-environment) instructions, and also add `/path/to/pytorch/lazy_tensor_core` to your `PYTHONPATH` as shown below:
|
||||
|
||||
```
|
||||
export PYTHONPATH=$PYTHONPATH:`/replace/with/path/to/pytorch/lazy_tensor_core`
|
||||
|
|
|
@ -1,57 +0,0 @@
|
|||
# -*- Python -*-
|
||||
# This file is licensed under a pytorch-style license
|
||||
# See frontends/pytorch/LICENSE for license information.
|
||||
|
||||
# From the torch-mlir root, run with:
|
||||
# `python -m examples.torchfx.examples.example_add_tanh_sigmoid`
|
||||
# (after setting up python environment with write_env_file.sh)
|
||||
|
||||
import torch
|
||||
from torch.fx.experimental.fx_acc import acc_tracer
|
||||
import torch_mlir
|
||||
from torch_mlir.dialects.torch import register_dialect
|
||||
from torch_mlir.passmanager import PassManager
|
||||
from torch_mlir_e2e_test.linalg_on_tensors_backends.refbackend import RefBackendLinalgOnTensorsBackend
|
||||
|
||||
from ..builder import build_module
|
||||
from ..annotator import annotate_forward_args
|
||||
from ..torch_mlir_types import TorchTensorType
|
||||
|
||||
|
||||
class MyModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x, y):
|
||||
return torch.tanh(x) + torch.sigmoid(y)
|
||||
|
||||
|
||||
module = MyModule()
|
||||
traced_module = acc_tracer.trace(module, [torch.Tensor(2,2),
|
||||
torch.Tensor(2,2)])
|
||||
|
||||
print("TRACE")
|
||||
arg_type = TorchTensorType(shape=[None, None], dtype=torch.float)
|
||||
traced_module = annotate_forward_args(traced_module, [arg_type, arg_type])
|
||||
print(traced_module.graph)
|
||||
torch_mlir_module = build_module(traced_module)
|
||||
|
||||
print("\n\nTORCH MLIR")
|
||||
torch_mlir_module.dump()
|
||||
print(torch_mlir_module.operation.verify())
|
||||
|
||||
with torch_mlir_module.context:
|
||||
pm = PassManager.parse('torchscript-module-to-linalg-on-tensors-backend-pipeline')
|
||||
pm.run(torch_mlir_module)
|
||||
|
||||
print("\n\nLOWERED MLIR")
|
||||
torch_mlir_module.dump()
|
||||
|
||||
backend = RefBackendLinalgOnTensorsBackend()
|
||||
compiled = backend.compile(torch_mlir_module)
|
||||
jit_module = backend.load(compiled)
|
||||
|
||||
print("\n\nRunning Forward Function")
|
||||
t = torch.rand((2, 2), dtype=torch.float)
|
||||
print("Compiled result:\n", jit_module.forward(t.numpy(), t.numpy()))
|
||||
print("\nExpected result:\n", module.forward(t, t))
|
Loading…
Reference in New Issue