[ONNX] Add OnnxToTorch lowering for Onnx.Upsample Op (#3371)

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
pull/3408/head
Vivek Khandelwal 2024-06-25 12:58:31 +05:30 committed by GitHub
parent 09f502667b
commit 3c3fbe4680
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 136 additions and 52 deletions

View File

@ -152,6 +152,55 @@ LogicalResult reducedSumImpl(OpBinder binder,
} }
return success(); return success();
} }
Value getValueList(OpBinder binder, ConversionPatternRewriter &rewriter,
Value operand) {
SmallVector<Value> itemList;
auto sizes = dyn_cast<Torch::ValueTensorType>(operand.getType()).getSizes();
Torch::BaseTensorType operandType =
cast<Torch::BaseTensorType>(operand.getType());
SmallVector<int64_t> selectSizes;
selectSizes.push_back(1);
Type selectResultType = operandType.getWithSizesAndDtype(
llvm::ArrayRef(selectSizes), operandType.getOptionalDtype());
auto extract = [&rewriter, &binder](Value x, Value v) {
auto xTy = cast<Torch::ValueTensorType>(x.getType());
Type extractTy = rewriter.getType<Torch::FloatType>();
if (isa<IntegerType>(xTy.getDtype()))
extractTy = rewriter.getType<Torch::IntType>();
return rewriter.create<Torch::AtenItemOp>(binder.getLoc(), extractTy, v);
};
Value zero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
MLIRContext *context = binder.op->getContext();
for (int i = 2; i < sizes[0]; i++) {
Value selectIndex = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), i));
Value ext = rewriter.create<Torch::AtenSelectIntOp>(
binder.getLoc(), selectResultType, operand, zero, selectIndex);
Value item = extract(operand, ext);
itemList.push_back(item);
}
auto xTy = cast<Torch::ValueTensorType>(operand.getType());
Value ValueList;
if (isa<IntegerType>(xTy.getDtype())) {
ValueList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(), Torch::ListType::get(Torch::IntType::get(context)),
itemList);
} else {
ValueList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(), Torch::ListType::get(Torch::FloatType::get(context)),
itemList);
}
return ValueList;
}
} // namespace } // namespace
void mlir::torch::onnx_c::populateDefaultDomainQtoZ( void mlir::torch::onnx_c::populateDefaultDomainQtoZ(
@ -2830,62 +2879,12 @@ void mlir::torch::onnx_c::populateDefaultDomainQtoZ(
.getSizes() .getSizes()
.size(); .size();
Value zero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
Value cstFalse = Value cstFalse =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false); rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
Value cstTrue = Value cstTrue =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), true); rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), true);
Value modeStrValue; Value modeStrValue;
auto extract = [&rewriter, &binder](Value x, Value v) {
auto xTy = cast<Torch::ValueTensorType>(x.getType());
Type extractTy = rewriter.getType<Torch::FloatType>();
if (isa<IntegerType>(xTy.getDtype()))
extractTy = rewriter.getType<Torch::IntType>();
return rewriter.create<Torch::AtenItemOp>(binder.getLoc(), extractTy,
v);
};
auto getValueList = [&](Value operand) {
SmallVector<Value> itemList;
auto sizes =
dyn_cast<Torch::ValueTensorType>(operand.getType()).getSizes();
Torch::BaseTensorType operandType =
cast<Torch::BaseTensorType>(operand.getType());
SmallVector<int64_t> selectSizes;
selectSizes.push_back(1);
Type selectResultType = operandType.getWithSizesAndDtype(
llvm::ArrayRef(selectSizes), operandType.getOptionalDtype());
MLIRContext *context = binder.op->getContext();
for (int i = 2; i < sizes[0]; i++) {
Value selectIndex = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), i));
Value ext = rewriter.create<Torch::AtenSelectIntOp>(
binder.getLoc(), selectResultType, operand, zero, selectIndex);
Value item = extract(operand, ext);
itemList.push_back(item);
}
auto xTy = cast<Torch::ValueTensorType>(operand.getType());
Value ValueList;
if (isa<IntegerType>(xTy.getDtype())) {
ValueList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(Torch::IntType::get(context)), itemList);
} else {
ValueList = rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(Torch::FloatType::get(context)), itemList);
}
return ValueList;
};
Value scalesValueList = noneVal; Value scalesValueList = noneVal;
Value sizesValueList = noneVal; Value sizesValueList = noneVal;
Value alignCorners = Value alignCorners =
@ -2934,12 +2933,12 @@ void mlir::torch::onnx_c::populateDefaultDomainQtoZ(
} }
if (operands.size() < 4) { if (operands.size() < 4) {
Value scaleOperand = operands[2]; Value scaleOperand = operands[2];
scalesValueList = getValueList(scaleOperand); scalesValueList = getValueList(binder, rewriter, scaleOperand);
sizesValueList = noneVal; sizesValueList = noneVal;
} else { } else {
Value sizeOperand = operands[3]; Value sizeOperand = operands[3];
scalesValueList = noneVal; scalesValueList = noneVal;
sizesValueList = getValueList(sizeOperand); sizesValueList = getValueList(binder, rewriter, sizeOperand);
} }
if (isa<Torch::NoneType>(scalesValueList.getType()) && if (isa<Torch::NoneType>(scalesValueList.getType()) &&
isa<Torch::NoneType>(sizesValueList.getType())) { isa<Torch::NoneType>(sizesValueList.getType())) {
@ -3258,4 +3257,47 @@ void mlir::torch::onnx_c::populateDefaultDomainQtoZ(
rewriter.replaceOp(binder.op, inputSequence); rewriter.replaceOp(binder.op, inputSequence);
return success(); return success();
}); });
patterns.onOp(
"Upsample", 9, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
std::string mode;
Value input, scales;
if (binder.tensorOperands(input, scales) ||
binder.customOpNameStringAttr(mode, "mode", "nearest") ||
binder.tensorResultType(resultType)) {
return failure();
}
if (mode != "nearest" && mode != "linear")
return rewriter.notifyMatchFailure(
binder.op, "unsupported interpolation mode other than nearest, "
"linear");
int64_t resultRank = resultType.getSizes().size();
if (resultRank > 5)
return rewriter.notifyMatchFailure(
binder.op, "supports upto 3d upsampling only");
Value scalesValueList = getValueList(binder, rewriter, scales);
if (mode == "linear") {
if (resultRank == 4)
mode = "bilinear";
if (resultRank == 5)
mode = "trilinear";
}
Value modeStrValue =
rewriter.create<Torch::ConstantStrOp>(binder.getLoc(), mode);
Value cstNone = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(
binder.getLoc(), rewriter.getBoolAttr(false));
rewriter
.replaceOpWithNewOp<Torch::Aten__InterpolateSizeListScaleListOp>(
binder.op, resultType, input, /*size=*/cstNone, scalesValueList,
modeStrValue,
/* AnyTorchOptionalBoolType:$align_corners */ cstNone,
/* AnyTorchOptionalBoolType:$recompute_scale_factor */ cstNone,
/*Torch_BoolType:$antialias*/ cstFalse);
return success();
});
} }

View File

@ -2541,3 +2541,45 @@ func.func @test_sequence_empty() -> !torch.list<vtensor<[],f32>> attributes {tor
%0 = torch.operator "onnx.SequenceEmpty"() : () -> !torch.list<vtensor<[],f32>> %0 = torch.operator "onnx.SequenceEmpty"() : () -> !torch.list<vtensor<[],f32>>
return %0 : !torch.list<vtensor<[],f32>> return %0 : !torch.list<vtensor<[],f32>>
} }
// -----
// CHECK-LABEL: func.func @test_upsample_nearest
func.func @test_upsample_nearest(%arg0: !torch.vtensor<[1,1,2,2],f32>, %arg1: !torch.vtensor<[4],f32>) -> !torch.vtensor<[1,1,4,6],f32> attributes {torch.onnx_meta.ir_version = 4 : si64, torch.onnx_meta.opset_version = 9 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
// CHECK: %[[INT0:.*]] = torch.constant.int 0
// CHECK: %[[INT2:.*]] = torch.constant.int 2
// CHECK: %[[SELECT:.*]] = torch.aten.select.int %arg1, %[[INT0]], %[[INT2]] : !torch.vtensor<[4],f32>, !torch.int, !torch.int -> !torch.vtensor<[1],f32>
// CHECK: %[[SCALE:.*]] = torch.aten.item %[[SELECT]] : !torch.vtensor<[1],f32> -> !torch.float
// CHECK: %[[INT3:.*]] = torch.constant.int 3
// CHECK: %[[SELECT_0:.*]] = torch.aten.select.int %arg1, %[[INT0]], %[[INT3]] : !torch.vtensor<[4],f32>, !torch.int, !torch.int -> !torch.vtensor<[1],f32>
// CHECK: %[[SCALE_0:.*]] = torch.aten.item %[[SELECT_0]] : !torch.vtensor<[1],f32> -> !torch.float
// CHECK: %[[SCALE_LIST:.*]] = torch.prim.ListConstruct %[[SCALE]], %[[SCALE_0]] : (!torch.float, !torch.float) -> !torch.list<float>
// CHECK: %[[MODE:.*]] = torch.constant.str "nearest"
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: %[[UPSAMPLE:.*]] = torch.aten.__interpolate.size_list_scale_list %arg0, %[[NONE]], %[[SCALE_LIST:.*]], %[[MODE]], %[[NONE]], %[[NONE]], %[[FALSE]] : !torch.vtensor<[1,1,2,2],f32>, !torch.none, !torch.list<float>, !torch.str, !torch.none, !torch.none, !torch.bool -> !torch.vtensor<[1,1,4,6],f32>
// CHECK: return %[[UPSAMPLE]] : !torch.vtensor<[1,1,4,6],f32>
%0 = torch.operator "onnx.Upsample"(%arg0, %arg1) {torch.onnx.mode = "nearest"} : (!torch.vtensor<[1,1,2,2],f32>, !torch.vtensor<[4],f32>) -> !torch.vtensor<[1,1,4,6],f32>
return %0 : !torch.vtensor<[1,1,4,6],f32>
}
// -----
// CHECK-LABEL: func.func @test_upsample_bilinear
func.func @test_upsample_bilinear(%arg0: !torch.vtensor<[1,1,2,2],f32>, %arg1: !torch.vtensor<[4],f32>) -> !torch.vtensor<[1,1,4,6],f32> attributes {torch.onnx_meta.ir_version = 4 : si64, torch.onnx_meta.opset_version = 9 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
// CHECK: %[[INT0:.*]] = torch.constant.int 0
// CHECK: %[[INT2:.*]] = torch.constant.int 2
// CHECK: %[[SELECT:.*]] = torch.aten.select.int %arg1, %[[INT0]], %[[INT2]] : !torch.vtensor<[4],f32>, !torch.int, !torch.int -> !torch.vtensor<[1],f32>
// CHECK: %[[SCALE:.*]] = torch.aten.item %[[SELECT]] : !torch.vtensor<[1],f32> -> !torch.float
// CHECK: %[[INT3:.*]] = torch.constant.int 3
// CHECK: %[[SELECT_0:.*]] = torch.aten.select.int %arg1, %[[INT0]], %[[INT3]] : !torch.vtensor<[4],f32>, !torch.int, !torch.int -> !torch.vtensor<[1],f32>
// CHECK: %[[SCALE_0:.*]] = torch.aten.item %[[SELECT_0]] : !torch.vtensor<[1],f32> -> !torch.float
// CHECK: %[[SCALE_LIST:.*]] = torch.prim.ListConstruct %[[SCALE]], %[[SCALE_0]] : (!torch.float, !torch.float) -> !torch.list<float>
// CHECK: %[[MODE:.*]] = torch.constant.str "bilinear"
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: %[[UPSAMPLE:.*]] = torch.aten.__interpolate.size_list_scale_list %arg0, %[[NONE]], %[[SCALE_LIST:.*]], %[[MODE]], %[[NONE]], %[[NONE]], %[[FALSE]] : !torch.vtensor<[1,1,2,2],f32>, !torch.none, !torch.list<float>, !torch.str, !torch.none, !torch.none, !torch.bool -> !torch.vtensor<[1,1,4,6],f32>
// CHECK: return %[[UPSAMPLE]] : !torch.vtensor<[1,1,4,6],f32>
%0 = torch.operator "onnx.Upsample"(%arg0, %arg1) {torch.onnx.mode = "linear"} : (!torch.vtensor<[1,1,2,2],f32>, !torch.vtensor<[4],f32>) -> !torch.vtensor<[1,1,4,6],f32>
return %0 : !torch.vtensor<[1,1,4,6],f32>
}