Reference Lazy Backend (#1045)

* Changed Example MLIR backend to Reference MLIR backend

* Moved reference_ltc_backend into csrc

* Merged sys_utils.h

* Renamed reference_ltc_backend to reference_lazy_backend

* Addressed review comments

* Update docs with new library name

* Removed _REFERENCE_LAZY_BACKEND from .gitignore

* Added reference_lazy_backend to the TorchMLIRPythonModules dependency list

Fixed typo in `ltc_examples.md`

Missed instance where `ltc_backend` was used instead of `lazy_backend`.
pull/1125/head
Henry Tu 2022-07-12 15:56:52 -04:00 committed by Henry Tu
parent f5acad8512
commit 47bb38d180
28 changed files with 195 additions and 181 deletions

3
.gitignore vendored
View File

@ -26,6 +26,3 @@ bazel-*
# Autogenerated files
/python/torch_mlir/csrc/base_lazy_backend/generated
# Example backend
examples/ltc_backend/ltc_backend/_EXAMPLE_MLIR_BACKEND.cpython-37m-x86_64-linux-gnu.so

View File

@ -192,4 +192,3 @@ else()
endif()
add_subdirectory(test)
add_subdirectory(examples)

View File

@ -377,7 +377,7 @@ class GenTorchMlirLTC:
// for ops that dont have a corresponding structured kernel or shape definition
#include "shape_inference.h"
#include "../../utils/exception.h"
#include "../utils/exception.h"
namespace torch {{
namespace lazy {{
{}

View File

@ -60,12 +60,15 @@ Generated files are created in this directory, which is ignored by version contr
- `shape_inference.cpp`
- Implementation of select shape inference functions (most functions are [implemented upstream](https://github.com/pytorch/pytorch/blob/master/torch/csrc/lazy/core/shape_inference.cpp))
### Reference Backend ([`python/torch_mlir/csrc/reference_lazy_backend`](../python/torch_mlir/csrc/reference_lazy_backend))
- `backend_impl.{cpp,h}`
- Reference Torch-MLIR LTC backend implementation, which simply stores the MLIR as a string and executes computation on CPU
- `reference_lazy_backend_pybind.cpp`
- pybind for reference Torch-MLIR LTC backend
### Examples ([`examples`](../examples))
- `examples/ltc_backend/ltc_backend/csrc/backend/backend_impl.{cpp,h}`
- Example Torch-MLIR LTC backend implementation, which simply stores the MLIR as a string and executes computation on CPU
- `examples/ltc_backend/ltc_backend/csrc/example_mlir_backend_pybind.cpp`
- pybind for example Torch-MLIR LTC backend
- `ltc_backend_bert.py`
- Example HuggingFace BERT model traced by LTC to MLIR
- `ltc_backend_mnist.py`
@ -77,7 +80,7 @@ Generated files are created in this directory, which is ignored by version contr
The journey begins with a tensor in PyTorch on the `lazy` device, which may undergo a number of operations during its lifetime.
```python
>>> ltc_backend._initialize()
>>> lazy_backend._initialize()
>>> x = torch.tensor(..., device='lazy')
>>> y = torch.tanh(x)
...
@ -116,17 +119,17 @@ Finally, the compiled computation is sent to `TorchMlirBackendImpl::ExecuteCompu
## Implementing a custom backend
An example implementation of a custom backend is available [here](../examples/ltc_backend/ltc_backend).
A reference implementation of a custom backend is available [here](../python/torch_mlir/csrc/reference_lazy_backend/).
All the work involved with generating MLIR is handled in the base LTC backend, so vendors only need to worry about implementing `Compile`, `ExecuteComputation`, and some other minor methods to interface with the device.
A pybind is needed to invoke C++ code to register the autogen PyTorch kernels and the custom backend itself.
Most of the code in the example implementation should be reusable, excluding some debug related function (e.g. `get_latest_computation`).
Most of the code in the reference implementation should be reusable, excluding some debug related function (e.g. `get_latest_computation`).
## Future Expansion
There are a number of areas for future improvement:
- Generate source information in `jit::Graph` so it can be embedded in the MLIR
- Currently the example backend implementation executes via the `jit::Graph` instead of the MLIR since we currently lack lowerings for many ops, which would make it difficult to run models such as HF BERT
- Currently the reference backend implementation executes via the `jit::Graph` instead of the MLIR since we currently lack lowerings for many ops, which would make it difficult to run models such as HF BERT
- In the future, we should change the implementation to lower the MLIR to linalg and execute on a reference backend
- As new models get tested, we will inevitably run into errors related to unimplemented shape inference functions.
This problem is simply solved by implementing the missing function, or adding a structured kernel to PyTorch.

View File

@ -6,10 +6,10 @@ Refer to the main documentation [here](ltc_backend.md).
```python
import torch
import torch._lazy
import ltc_backend.ltc_backend._EXAMPLE_MLIR_BACKEND as ltc_backend
import torch_mlir.reference_lazy_backend._REFERENCE_LAZY_BACKEND as lazy_backend
# Register the example LTC backend.
ltc_backend._initialize()
lazy_backend._initialize()
device = 'lazy'
@ -22,7 +22,7 @@ torch._lazy.mark_step()
print('Results:', outputs)
# Optionally dump MLIR graph generated from LTC trace.
computation = ltc_backend.get_latest_computation()
computation = lazy_backend.get_latest_computation()
if computation:
print(computation.debug_string())
```

View File

@ -1 +0,0 @@
add_subdirectory(ltc_backend)

View File

@ -1,26 +0,0 @@
//===- sys_utils.h --------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#pragma once
#include <cstdlib>
#include <string>
namespace sys_util {
template <typename T>
T GetEnv(const std::string &name, const T &default_value = T(0)) {
const char *env = std::getenv(name.c_str());
if (!env) {
return default_value;
}
return T(std::atoi(env));
}
} // namespace sys_util

View File

@ -113,8 +113,8 @@ def main(device='lazy', full_size=False):
losses = train(model, num_epochs, num_training_steps, train_dataloader, device)
# Get debug information from LTC
if 'ltc_backend' in sys.modules:
computation = ltc_backend.get_latest_computation()
if 'torch_mlir.reference_lazy_backend._REFERENCE_LAZY_BACKEND' in sys.modules:
computation = lazy_backend.get_latest_computation()
if computation:
print(computation.debug_string())
@ -148,9 +148,9 @@ if __name__ == "__main__":
torch._lazy.ts_backend.init()
elif args.device == "MLIR_EXAMPLE":
import ltc_backend.ltc_backend._EXAMPLE_MLIR_BACKEND as ltc_backend
import torch_mlir.reference_lazy_backend._REFERENCE_LAZY_BACKEND as lazy_backend
ltc_backend._initialize()
lazy_backend._initialize()
device = "lazy"
print("Initialized backend")

View File

@ -65,8 +65,8 @@ def main(device='lazy'):
torch._lazy.mark_step()
# Get debug information from LTC
if 'ltc_backend' in sys.modules:
computation = ltc_backend.get_latest_computation()
if 'torch_mlir.reference_lazy_backend._REFERENCE_LAZY_BACKEND' in sys.modules:
computation = lazy_backend.get_latest_computation()
if computation:
print(computation.debug_string())
@ -93,9 +93,9 @@ if __name__ == "__main__":
torch._lazy.ts_backend.init()
elif args.device == "MLIR_EXAMPLE":
import ltc_backend.ltc_backend._EXAMPLE_MLIR_BACKEND as ltc_backend
import torch_mlir.reference_lazy_backend._REFERENCE_LAZY_BACKEND as lazy_backend
ltc_backend._initialize()
lazy_backend._initialize()
device = "lazy"
print("Initialized backend")

View File

@ -60,7 +60,8 @@ declare_mlir_python_extension(TorchMLIRPythonExtensions.Main
# Lazy Tensor Core
################################################################################
add_subdirectory(torch_mlir/csrc)
add_subdirectory(torch_mlir/csrc/base_lazy_backend)
add_subdirectory(torch_mlir/csrc/reference_lazy_backend)
################################################################################
# Optionally handle JIT IR importer.
@ -155,6 +156,6 @@ endif()
# Add Torch-MLIR LTC backend as dependency
add_dependencies(TorchMLIRPythonModules torch_mlir_ltc_backend)
add_dependencies(TorchMLIRPythonModules reference_lazy_backend)
add_subdirectory(test)

View File

@ -20,15 +20,15 @@ include_directories(BEFORE
link_directories("${TORCH_INSTALL_PREFIX}/lib")
set(LTC_GENERATED
base_lazy_backend/generated/LazyNativeFunctions.cpp
base_lazy_backend/generated/RegisterLazy.cpp
base_lazy_backend/generated/shape_inference.cpp
generated/LazyNativeFunctions.cpp
generated/RegisterLazy.cpp
generated/shape_inference.cpp
)
set(LTC_BACKEND_DEPENDS
base_lazy_backend/mlir_lowering_context.cpp
base_lazy_backend/mlir_native_functions.cpp
base_lazy_backend/mlir_node_lowering.cpp
base_lazy_backend/shape_inference.cpp
mlir_lowering_context.cpp
mlir_native_functions.cpp
mlir_node_lowering.cpp
shape_inference.cpp
)
# Generate Lazy IR Nodes
@ -57,10 +57,10 @@ add_custom_target(
add_library(torch_mlir_ltc_backend SHARED
${LTC_GENERATED}
${LTC_BACKEND_DEPENDS}
base_lazy_backend/backend_impl.cpp
base_lazy_backend/mlir_node.cpp
base_lazy_backend/ops/device_data.cpp
base_lazy_backend/ops/generic.cpp
backend_impl.cpp
mlir_node.cpp
ops/device_data.cpp
ops/generic.cpp
)
target_compile_features(torch_mlir_ltc_backend PRIVATE cxx_std_17)

View File

@ -15,12 +15,12 @@
#include <torch/csrc/lazy/backend/lowering_context.h>
#include <torch/csrc/lazy/core/shape.h>
#include "../utils/debug.h"
#include "../utils/exception.h"
#include "backend_impl.h"
#include "ir_builder.h"
#include "mlir_lowering_context.h"
#include "ops/device_data.h"
#include "utils/debug.h"
#include "utils/exception.h"
namespace torch {
namespace lazy {

View File

@ -22,7 +22,7 @@
#include "mlir_node.h"
#include "ops/device_data.h"
#include "ops/generic.h"
#include "../utils/exception.h"
#include "utils/exception.h"
// This file contains the TorchMlir IrBuilder

View File

@ -17,13 +17,13 @@
#include <torch/csrc/lazy/core/lazy_graph_executor.h>
#include "../../dialects/torch/importer/jit_ir/csrc/function_importer.h"
#include "../utils/debug.h"
#include "../utils/exception.h"
#include "backend_impl.h"
#include "mlir-c/Registration.h"
#include "mlir_lowering_context.h"
#include "mlir_node.h"
#include "torch-mlir-c/Registration.h"
#include "utils/debug.h"
#include "utils/exception.h"
namespace torch {
namespace lazy {

View File

@ -10,11 +10,11 @@
// https://github.com/pytorch/pytorch/blob/master/torch/csrc/lazy/ts_backend/ts_native_functions.cpp
//===----------------------------------------------------------------------===//
#include <ATen/InferSize.h>
#include <ATen/Operators.h>
#include <ATen/FunctionalTensorWrapper.h>
#include <ATen/InferSize.h>
#include <ATen/MetaFunctions.h>
#include <ATen/NativeFunctions.h>
#include <ATen/Operators.h>
#include <ATen/native/BinaryOps.h>
#include <ATen/native/CPUFallback.h>
#include <ATen/ops/empty.h>
@ -28,12 +28,11 @@
#include <torch/csrc/lazy/core/tensor_util.h>
#include <torch/library.h>
#include "../utils/exception.h"
#include "../utils/sys_utils.h"
#include "generated/shape_inference.h"
#include "generated/LazyNativeFunctions.h"
#include "generated/shape_inference.h"
#include "ops/to_copy.h"
#include "utils/exception.h"
#include "utils/sys_utils.h"
namespace torch {
namespace lazy {
@ -174,7 +173,6 @@ at::Tensor LazyNativeFunctions::cat(at::TensorList tensors, int64_t dim) {
// return result;
}
// clone is special in LT because we make it a no-op.
// This should be safe to do, because every operator in the LT is functional.
at::Tensor LazyNativeFunctions::clone(
@ -294,8 +292,12 @@ at::Tensor LazyNativeFunctions::_to_copy(
// See Note [Lazy Tensor Functionalization]
// Invariant: if the functionalization key is in the exclude set, then we're expected
// to return an ordinary tensor, which will be "lifted" into a functional wrapper later.
bool functionalize_output = !c10::impl::tls_local_dispatch_key_set().excluded_.has(c10::DispatchKey::Functionalize);
return torch::lazy::to_lazy_tensor(self, options, *device, /*non_blocking=*/non_blocking, /*functionalize_output=*/functionalize_output);
bool functionalize_output =
!c10::impl::tls_local_dispatch_key_set().excluded_.has(
c10::DispatchKey::Functionalize);
return torch::lazy::to_lazy_tensor(
self, options, *device, /*non_blocking=*/non_blocking,
/*functionalize_output=*/functionalize_output);
} else if (device && device->type() != c10::kLazy) {
// Case 2: lazy->eager (forces a graph break since we are materializing a tensor)
@ -368,7 +370,8 @@ at::Tensor LazyNativeFunctions::empty(
auto x_result = at::empty(size, options, memory_format);
auto tensor = CreateLtcTensor(x_result, GetLtcDevice(device));
// See Note [Lazy Tensor Functionalization]
if (c10::impl::tls_local_dispatch_key_set().excluded_.has(c10::DispatchKey::Functionalize)) {
if (c10::impl::tls_local_dispatch_key_set().excluded_.has(
c10::DispatchKey::Functionalize)) {
// Invariant: if the functionalization key is in the exclude set, then we're expected
// to return an ordinary tensor, which will be "lifted" into a functional wrapper later.
return tensor;
@ -409,7 +412,8 @@ at::Tensor LazyNativeFunctions::_unsafe_view(
// LazyTensor always opts into functionalization.
// "lifting" a tensor for functionalization means wrapping it in a FunctionalTensorWrapper object.
at::Tensor LazyNativeFunctions::lift(const at::Tensor& tensor) {
TORCH_INTERNAL_ASSERT(!at::functionalization::impl::isFunctionalTensor(tensor));
TORCH_INTERNAL_ASSERT(
!at::functionalization::impl::isFunctionalTensor(tensor));
return at::functionalization::impl::to_functional_tensor(tensor);
}
@ -418,43 +422,75 @@ at::Tensor LazyNativeFunctions::lift(const at::Tensor& tensor) {
// These are all composite ops that LTC can technically re-use / get for free,
// but we need to "functionalize" them to remove the view ops before we can use them.
at::Tensor LazyNativeFunctions::block_diag(at::TensorList tensors) {
return at::functionalization::functionalize_aten_op<ATEN_OP(block_diag)>::call(tensors);
return at::functionalization::functionalize_aten_op<ATEN_OP(
block_diag)>::call(tensors);
}
at::Tensor LazyNativeFunctions::new_empty_strided(const at::Tensor& self, at::IntArrayRef size, at::IntArrayRef stride, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory) {
return at::functionalization::functionalize_aten_op<ATEN_OP(new_empty_strided)>::call(self, size, stride, dtype, layout, device, pin_memory);
at::Tensor LazyNativeFunctions::new_empty_strided(
const at::Tensor& self, at::IntArrayRef size, at::IntArrayRef stride,
c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout,
c10::optional<at::Device> device, c10::optional<bool> pin_memory) {
return at::functionalization::
functionalize_aten_op<ATEN_OP(new_empty_strided)>::call(
self, size, stride, dtype, layout, device, pin_memory);
}
at::Tensor LazyNativeFunctions::narrow_copy(const at::Tensor& self, int64_t dim, int64_t start, int64_t length) {
return at::functionalization::functionalize_aten_op<ATEN_OP(narrow_copy)>::call(self, dim, start, length);
at::Tensor LazyNativeFunctions::narrow_copy(
const at::Tensor& self, int64_t dim, int64_t start, int64_t length) {
return at::functionalization::functionalize_aten_op<ATEN_OP(
narrow_copy)>::call(self, dim, start, length);
}
at::Tensor LazyNativeFunctions::pixel_shuffle(const at::Tensor & self, int64_t upscale_factor) {
return at::functionalization::functionalize_aten_op<ATEN_OP(pixel_shuffle)>::call(self, upscale_factor);
at::Tensor LazyNativeFunctions::pixel_shuffle(
const at::Tensor& self, int64_t upscale_factor) {
return at::functionalization::functionalize_aten_op<ATEN_OP(
pixel_shuffle)>::call(self, upscale_factor);
}
at::Tensor LazyNativeFunctions::pixel_unshuffle(const at::Tensor & self, int64_t downscale_factor) {
return at::functionalization::functionalize_aten_op<ATEN_OP(pixel_unshuffle)>::call(self, downscale_factor);
at::Tensor LazyNativeFunctions::pixel_unshuffle(
const at::Tensor& self, int64_t downscale_factor) {
return at::functionalization::functionalize_aten_op<ATEN_OP(
pixel_unshuffle)>::call(self, downscale_factor);
}
at::Tensor LazyNativeFunctions::select_backward(const at::Tensor & grad_output, at::IntArrayRef input_sizes, int64_t dim, int64_t index) {
return at::functionalization::functionalize_aten_op<ATEN_OP(select_backward)>::call(grad_output, input_sizes, dim, index);
at::Tensor LazyNativeFunctions::select_backward(
const at::Tensor& grad_output, at::IntArrayRef input_sizes, int64_t dim,
int64_t index) {
return at::functionalization::functionalize_aten_op<ATEN_OP(
select_backward)>::call(grad_output, input_sizes, dim, index);
}
at::Tensor LazyNativeFunctions::slice_backward(const at::Tensor & grad_output, at::IntArrayRef input_sizes, int64_t dim, int64_t start, int64_t end, int64_t step) {
return at::functionalization::functionalize_aten_op<ATEN_OP(slice_backward)>::call(grad_output, input_sizes, dim, start, end, step);
at::Tensor LazyNativeFunctions::slice_backward(
const at::Tensor& grad_output, at::IntArrayRef input_sizes, int64_t dim,
int64_t start, int64_t end, int64_t step) {
return at::functionalization::functionalize_aten_op<ATEN_OP(
slice_backward)>::call(grad_output, input_sizes, dim, start, end, step);
}
at::Tensor LazyNativeFunctions::diagonal_backward(const at::Tensor & grad_output, at::IntArrayRef input_sizes, int64_t offset, int64_t dim1, int64_t dim2) {
return at::functionalization::functionalize_aten_op<ATEN_OP(diagonal_backward)>::call(grad_output, input_sizes, offset, dim1, dim2);
at::Tensor LazyNativeFunctions::diagonal_backward(
const at::Tensor& grad_output, at::IntArrayRef input_sizes, int64_t offset,
int64_t dim1, int64_t dim2) {
return at::functionalization::functionalize_aten_op<ATEN_OP(
diagonal_backward)>::call(grad_output, input_sizes, offset, dim1, dim2);
}
at::Tensor LazyNativeFunctions::_trilinear(const at::Tensor & i1, const at::Tensor & i2, const at::Tensor & i3, at::IntArrayRef expand1, at::IntArrayRef expand2, at::IntArrayRef expand3, at::IntArrayRef sumdim, int64_t unroll_dim) {
return at::functionalization::functionalize_aten_op<ATEN_OP(_trilinear)>::call(i1, i2, i3, expand1, expand2, expand3, sumdim, unroll_dim);
at::Tensor LazyNativeFunctions::_trilinear(
const at::Tensor& i1, const at::Tensor& i2, const at::Tensor& i3,
at::IntArrayRef expand1, at::IntArrayRef expand2, at::IntArrayRef expand3,
at::IntArrayRef sumdim, int64_t unroll_dim) {
return at::functionalization::functionalize_aten_op<ATEN_OP(_trilinear)>::
call(i1, i2, i3, expand1, expand2, expand3, sumdim, unroll_dim);
}
::std::tuple<at::Tensor,at::Tensor> LazyNativeFunctions::linalg_inv_ex(const at::Tensor & self, bool check_errors) {
return at::functionalization::functionalize_aten_op<ATEN_OP(linalg_inv_ex)>::call(self, check_errors);
::std::tuple<at::Tensor, at::Tensor>
LazyNativeFunctions::linalg_inv_ex(const at::Tensor& self, bool check_errors) {
return at::functionalization::functionalize_aten_op<ATEN_OP(
linalg_inv_ex)>::call(self, check_errors);
}
at::Tensor LazyNativeFunctions::linalg_pinv(const at::Tensor & self, const c10::optional<at::Tensor> & atol, const c10::optional<at::Tensor> & rtol, bool hermitian) {
return at::functionalization::functionalize_aten_op<ATEN_OP2(linalg_pinv, atol_rtol_tensor)>::call(self, atol, rtol, hermitian);
at::Tensor LazyNativeFunctions::linalg_pinv(
const at::Tensor& self, const c10::optional<at::Tensor>& atol,
const c10::optional<at::Tensor>& rtol, bool hermitian) {
return at::functionalization::functionalize_aten_op<ATEN_OP2(
linalg_pinv, atol_rtol_tensor)>::call(self, atol, rtol, hermitian);
}
// functionalize_aten_op can't handle out= ops directly.
// Instead, we can call the composite kernel from core, and copy and mutations back to the inputs.
at::Tensor & LazyNativeFunctions::logsumexp_out(const at::Tensor & self, at::IntArrayRef dim, bool keepdim, at::Tensor& out) {
at::Tensor& LazyNativeFunctions::logsumexp_out(
const at::Tensor& self, at::IntArrayRef dim, bool keepdim,
at::Tensor& out) {
auto self_wrapped = at::functionalization::impl::to_functional_tensor(self);
auto out_wrapped = at::functionalization::impl::to_functional_tensor(out);
// directly call the composite kernel from core.

View File

@ -11,7 +11,7 @@
//===----------------------------------------------------------------------===//
#include "mlir_node.h"
#include "../utils/exception.h"
#include "utils/exception.h"
namespace torch {
namespace lazy {
@ -74,7 +74,8 @@ hash_t TorchMlirNode::shapeHash() const { return shape_hash_; }
OpKind TorchMlirTensorList::ClassOpKind() {
// Note: this OpKind is separate from ltc_ops.h since it would be a circular
// import otherwise
static const OpKind tensor_list_opkind = OpKind::Get("lazy_tensors::tensor_list");
static const OpKind tensor_list_opkind =
OpKind::Get("lazy_tensors::tensor_list");
return tensor_list_opkind;
}

View File

@ -18,9 +18,9 @@
#include <torch/csrc/lazy/core/ir.h>
#include <torch/csrc/lazy/core/shape.h>
#include "../utils/debug.h"
#include "../utils/exception.h"
#include "mlir_lowering_context.h"
#include "utils/debug.h"
#include "utils/exception.h"
namespace torch {
namespace lazy {
@ -60,7 +60,6 @@ private:
hash_t dag_hash_;
};
// TensorList represents an at::TensorList which is a vector[Tensor] but is also
// a first-class IValue and can be fed as a single input to a TS program. It is
// much easier to handle TensorLists in Lazy Tensor code if they are represented

View File

@ -209,17 +209,17 @@ GenerateClone(torch::jit::Value* val, TorchMlirFunction function) {
return cloned.front();
}
void GenerateCopy(torch::jit::Value* destination, torch::jit::Value* source, TorchMlirFunction function) {
void GenerateCopy(
torch::jit::Value* destination, torch::jit::Value* source,
TorchMlirFunction function) {
std::vector<torch::jit::NamedValue> arguments;
arguments.emplace_back(destination);
arguments.emplace_back(source);
LowerBuiltin(
at::aten::copy_,
c10::ArrayRef<Shape>(compute_shape_copy(source->type())), function, arguments);
at::aten::copy_, c10::ArrayRef<Shape>(compute_shape_copy(source->type())),
function, arguments);
}
torch::jit::Value* GenerateSlice(
torch::jit::Value* base, int64_t dim, int64_t start, int64_t end,
int64_t step, TorchMlirFunction function) {
@ -234,8 +234,7 @@ torch::jit::Value* GenerateSlice(
at::aten::slice,
c10::ArrayRef<Shape>(
compute_shape_slice(base->type(), dim, start, end, step)),
function,
arguments);
function, arguments);
CHECK_EQ(selected.size(), 1);
return selected.front();
}

View File

@ -11,8 +11,8 @@
#include <c10/util/Optional.h>
#include <cmath>
#include "../utils/exception.h"
#include "generated/shape_inference.h"
#include "utils/exception.h"
namespace torch {
namespace lazy {

View File

@ -5,6 +5,15 @@
namespace sys_util {
template <typename T>
static T GetEnv(const std::string& name, const T& default_value = T(0)) {
const char* env = std::getenv(name.c_str());
if (!env) {
return default_value;
}
return T(std::atoi(env));
}
static bool GetEnvBool(const char* name, bool defval) {
const char* env = std::getenv(name);
if (env == nullptr) {

View File

@ -30,22 +30,18 @@ include_directories(BEFORE
${PROJECT_SOURCE_DIR}/python
)
link_directories("${TORCH_INSTALL_PREFIX}/lib")
link_directories(${CMAKE_CURRENT_SOURCE_DIR}/ltc_backend/lib)
add_link_options(-Wl,-rpath,$ORIGIN/ltc_backend/lib)
link_directories(${CMAKE_CURRENT_SOURCE_DIR}/lib)
add_link_options(-Wl,-rpath,$ORIGIN/lib)
file(GLOB LTC_BACKEND_CSRC CONFIGURE_DEPENDS
"ltc_backend/csrc/*.h"
"ltc_backend/csrc/*.cc"
"ltc_backend/csrc/*.cpp"
"ltc_backend/csrc/*/*.h"
"ltc_backend/csrc/*/*.cc"
"ltc_backend/csrc/*/*.cpp"
set(REFERENCE_LAZY_BACKEND_CSRC
backend_impl.cpp
reference_lazy_backend_pybind.cpp
)
add_library(example_mlir_ltc_backend SHARED ${LTC_BACKEND_CSRC})
add_dependencies(example_mlir_ltc_backend
add_library(reference_lazy_backend SHARED ${REFERENCE_LAZY_BACKEND_CSRC})
add_dependencies(reference_lazy_backend
torch_mlir_ltc_backend
)
target_link_libraries(example_mlir_ltc_backend
target_link_libraries(reference_lazy_backend
${TORCH_LIBRARIES}
${Python3_LIBRARIES}
torch_python
@ -53,9 +49,9 @@ target_link_libraries(example_mlir_ltc_backend
)
message(STATUS "TORCH_CXXFLAGS=${TORCH_CXXFLAGS} -Wno-pedantic")
set_target_properties(example_mlir_ltc_backend PROPERTIES
LIBRARY_OUTPUT_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}/ltc_backend/"
OUTPUT_NAME _EXAMPLE_MLIR_BACKEND
set_target_properties(reference_lazy_backend PROPERTIES
LIBRARY_OUTPUT_DIRECTORY "${TORCH_MLIR_PYTHON_PACKAGES_DIR}/torch_mlir/torch_mlir/reference_lazy_backend"
OUTPUT_NAME _REFERENCE_LAZY_BACKEND
PREFIX "${PYTHON_MODULE_PREFIX}"
SUFFIX "${PYTHON_MODULE_EXTENSION}"
CXX_VISIBILITY_PRESET "hidden"

View File

@ -15,8 +15,8 @@
#include <torch_mlir/csrc/base_lazy_backend/backend_impl.h>
#include <torch_mlir/csrc/base_lazy_backend/generated/LazyNativeFunctions.h>
#include <torch_mlir/csrc/base_lazy_backend/mlir_lowering_context.h>
#include <torch_mlir/csrc/utils/debug.h>
#include <torch_mlir/csrc/utils/exception.h>
#include <torch_mlir/csrc/base_lazy_backend/utils/debug.h>
#include <torch_mlir/csrc/base_lazy_backend/utils/exception.h>
#include "backend_impl.h"
@ -25,8 +25,8 @@ using namespace torch::lazy;
namespace torch {
namespace lazy {
struct ExampleMlirBackendDeviceType : public BackendDeviceType {
ExampleMlirBackendDeviceType(std::string device_type)
struct ReferenceLazyBackendDeviceType : public BackendDeviceType {
ReferenceLazyBackendDeviceType(std::string device_type)
: device_type_(device_type) {}
std::string toString() const override { return device_type_; }
@ -34,9 +34,9 @@ struct ExampleMlirBackendDeviceType : public BackendDeviceType {
std::string device_type_;
};
class ExampleMlirBackendImpl : public torch::lazy::TorchMlirBackendImpl {
class ReferenceLazyBackendImpl : public torch::lazy::TorchMlirBackendImpl {
public:
ExampleMlirBackendImpl() : default_device_type_("Magic") {}
ReferenceLazyBackendImpl() : default_device_type_("Magic") {}
/**
* Configuration
@ -48,8 +48,8 @@ public:
/**
* Lowering, Compilation, Execution
* */
std::vector<std::string>
GetCompilationDevices(const std::string &device,
std::vector<std::string> GetCompilationDevices(
const std::string& device,
c10::ArrayRef<std::string> devices) const override {
return std::vector<std::string>(devices.begin(), devices.end());
};
@ -70,8 +70,8 @@ public:
return instances;
}
std::vector<BackendDataPtr>
ExecuteComputation(torch::lazy::ComputationPtr computation,
std::vector<BackendDataPtr> ExecuteComputation(
torch::lazy::ComputationPtr computation,
c10::ArrayRef<BackendDataPtr> arguments,
const BackendDevice& device) const override {
PRINT_FUNCTION();
@ -80,7 +80,8 @@ public:
// function, we will generate a list of BackendData that corresponds to the
// return values in the MLIR.
auto mlir_computation = static_cast<TorchMlirComputation *>(computation.get());
auto mlir_computation =
static_cast<TorchMlirComputation*>(computation.get());
// Vendor backend specific execution can be inserted here.
//
@ -128,7 +129,7 @@ public:
}
void SetDefaultDeviceType(std::string device_type) {
default_device_type_ = ExampleMlirBackendDeviceType(device_type);
default_device_type_ = ReferenceLazyBackendDeviceType(device_type);
}
/**
@ -146,19 +147,19 @@ public:
}
private:
ExampleMlirBackendDeviceType default_device_type_;
ReferenceLazyBackendDeviceType default_device_type_;
};
BackendImplInterface *GetExampleMlirBackendImpl() {
static ExampleMlirBackendImpl *example_mlir_backend_impl =
new ExampleMlirBackendImpl();
return example_mlir_backend_impl;
BackendImplInterface* GetReferenceLazyBackendImpl() {
static ReferenceLazyBackendImpl* reference_lazy_backend_impl =
new ReferenceLazyBackendImpl();
return reference_lazy_backend_impl;
}
void InitExampleMlirBackend() {
void InitReferenceLazyBackend() {
at::RegisterTorchMlirLazyNativeFunctions();
static std::unique_ptr<BackendRegistrar> g_registrar;
g_registrar.reset(new BackendRegistrar(GetExampleMlirBackendImpl()));
g_registrar.reset(new BackendRegistrar(GetReferenceLazyBackendImpl()));
}
ComputationPtr& GetLatestComputation() {

View File

@ -19,9 +19,9 @@ TORCH_API void RegisterTorchMlirLazyNativeFunctions();
namespace torch {
namespace lazy {
torch::lazy::BackendImplInterface *GetExampleMlirBackendImpl();
torch::lazy::BackendImplInterface* GetReferenceLazyBackendImpl();
void InitExampleMlirBackend();
void InitReferenceLazyBackend();
ComputationPtr& GetLatestComputation();

View File

@ -1,4 +1,4 @@
//===- example_mlir_backend_pybind.cpp ------------------------------------===//
//===- reference_lazy_backend_pybind.cpp ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
@ -11,13 +11,13 @@
#include "torch/csrc/lazy/backend/backend_interface.h"
#include <torch_mlir/csrc/base_lazy_backend/mlir_lowering_context.h>
#include <torch_mlir/csrc/base_lazy_backend/utils/sys_utils.h>
#include <exception>
#include <iostream>
#include <string>
#include "backend/backend_impl.h"
#include "utils/sys_utils.h"
#include "backend_impl.h"
namespace py = pybind11;
@ -34,12 +34,12 @@ struct NoGilSection {
* @brief Install the plugin
*/
void Initialize() {
// Initialize the Example MLIR LTC Backend
torch::lazy::InitExampleMlirBackend();
// Initialize the Reference Lazy Backend
torch::lazy::InitReferenceLazyBackend();
// sanity check
const torch::lazy::BackendImplInterface* mlir_backend =
torch::lazy::GetExampleMlirBackendImpl();
torch::lazy::GetReferenceLazyBackendImpl();
const torch::lazy::BackendImplInterface* lazy_backend =
torch::lazy::getBackend();
if (lazy_backend != mlir_backend) {
@ -62,12 +62,12 @@ void Shutdown() {
}
} // anonymous namespace
PYBIND11_MODULE(_EXAMPLE_MLIR_BACKEND, m) {
PYBIND11_MODULE(_REFERENCE_LAZY_BACKEND, m) {
py::class_<torch::lazy::TorchMlirComputation>(m, "TorchMlirComputation")
.def("to_string", &torch::lazy::TorchMlirComputation::to_string)
.def("debug_string", &torch::lazy::TorchMlirComputation::debug_string);
m.doc() = ("pybind11 for example MLIR LTC backend.");
m.doc() = ("pybind11 for the Reference Lazy backend.");
m.def("get_latest_computation", []() {
auto computation = static_cast<torch::lazy::TorchMlirComputation*>(
torch::lazy::GetLatestComputation().get());

View File

@ -3,7 +3,7 @@
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
# Also available under a BSD-style license. See LICENSE.
import ltc_backend.ltc_backend._EXAMPLE_MLIR_BACKEND as ltc_backend
import torch_mlir.reference_lazy_backend._REFERENCE_LAZY_BACKEND as lazy_backend
import torch
from torch.utils._pytree import tree_map
@ -20,7 +20,7 @@ class LazyTensorCoreTestConfig(TestConfig):
def __init__(self):
super().__init__()
ltc_backend._initialize()
lazy_backend._initialize()
def compile(self, program: torch.nn.Module) -> torch.nn.Module:
return program.to('lazy')