Create MLIR functions for ONNX operators that are functions (#3409)

Resolves #3384.

Many ONNX operators are defined by functions and therefore could be
expanded into simpler ONNX operations during importing, avoiding the
need for tools downstream to support these operators directly.

This commit adds this capability to onnx_importer.py. When importing a
node, the schema for the node's operator is retrieved. If the schema
provides a function for the operator, a specialized version for the
node's types and attributes will be created and imported as an MLIR
function with private visibility. An MLIR function call will then be
emitted, instead of a normal operator node. Caching is used to avoid
generating redundant functions within the same module.

In order to avoid a disruptive change to the importer output for a
large number of operators that already have TorchOnnxToTorch support,
an allowlist strategy is used by default. With this commit, only one
operator is allowlisted for expansion, MeanVarianceNormalization.
However, many other operators can be correctly expanded by the current
code, so hopefully the allowlist can be gradually extended. It is
possible to disable the allowlist in the configuration, in which case
all functions are expanded (useful for testing).

Tools downstream of the importer may now need to do inlining when
consuming the output of the importer, e.g.:

  cat imported.mlir | torch-mlir-opt --inline --convert-onnx-to-torch

Explanations for subtle code changes:

- Looking up the correct schema and function for an operator requires
  knowing the opset version. NodeImporter retrieves this from the
  opset imports on the ModelProto retained by the GraphInfo. Previously,
  the model_proto field on GraphInfo was None when importing a subgraph
  in import_regions, but this conflicts with the new need for opset
  version info. Since the apparent purpose of setting it to None was to
  control how GraphInfo generates its input map, a new flag is added to
  GraphInfo (is_subgraph) to control this behavior, so that the actual
  ModelProto can now be provided without breaking this. This also turned
  out to be useful for getting the Config via ModelInfo via GraphInfo.
- Some operators' functions are context-dependent, which means the
  function definition depends on the types of the inputs. Therefore node
  importing now needs to look up the types of a node's inputs, not just
  its outputs as was the case previously. Consequently the operand to
  find_type_proto_for_name() may now be a graph input or initializer in
  some cases, so it has to be updated.
pull/3461/merge
Andrea 🦈 2024-06-14 19:11:26 +02:00 committed by GitHub
parent d2b663ece7
commit 51902ec2dc
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 545 additions and 28 deletions

View File

@ -97,7 +97,10 @@ def _module_lowering(
# Lower from ONNX to Torch # Lower from ONNX to Torch
run_pipeline_with_repro_report( run_pipeline_with_repro_report(
torch_mod, torch_mod,
f"builtin.module(func.func({ONNX_TO_TORCH_FUNC_PIPELINE}))", # The importer may produce additional MLIR functions corresponding to
# ONNX operators that are functions. In some cases they need to be
# inlined to avoid the backend choking on them.
f"builtin.module(inline, func.func({ONNX_TO_TORCH_FUNC_PIPELINE}))",
"Lowering Onnx backend contract to Linalg-on-Tensors backend contract", "Lowering Onnx backend contract to Linalg-on-Tensors backend contract",
) )

View File

@ -36,7 +36,7 @@ except ModuleNotFoundError as e:
from typing import Optional, List, Dict, Tuple from typing import Optional, List, Dict, Tuple
import warnings import warnings
from dataclasses import dataclass from dataclasses import dataclass, field
import numpy as np import numpy as np
import re import re
@ -91,6 +91,45 @@ class Config:
# making an assumption. # making an assumption.
elide_initialized_inputs: bool = True elide_initialized_inputs: bool = True
# Some ONNX operators are defined by ONNX functions and will be
# automatically expanded (see get_operator_function() below) to MLIR
# functions by the importer. This option allows allowlisting functions that
# should be expanded. If this is None, then allowlisting is not used (all
# functions not explicitly denylisted will be expanded).
#
# Since function expansion has not always been supported, the default should
# be to use allowlisting, to avoid disruption.
function_expansion_allowlists_by_domain: Optional[Dict[str, set[str]]] = field(
default_factory=lambda: {
# Default domain (ONNX built-in ops)
"": {
"MeanVarianceNormalization",
}
}
)
# Some ONNX operators are defined by ONNX functions and will be
# automatically expanded (see get_operator_function() below) to MLIR
# functions by the importer. This option allows denylisting functions that
# should not be expanded.
function_expansion_denylists_by_domain: Dict[str, set[str]] = field(
default_factory=lambda: {
# Default domain (ONNX built-in ops)
"": {
# CastLike's second input `target_type` is used only for its
# type (T2), from which its output's type is inferred, but
# because its value is unused, ONNX's shape inference doesn't
# annotate the input value with a type, so looking up the
# function by the provided input types will fail.
"CastLike",
# ONNX errors when trying to infer the type of the Loop op
# within this function: "[ShapeInferenceError] Inferred shape
# and existing shape differ in rank: (1) vs (0)"
"Range",
}
}
)
class ModelInfo: class ModelInfo:
"""Top-level accounting and accessors for an ONNX model.""" """Top-level accounting and accessors for an ONNX model."""
@ -112,7 +151,12 @@ class ModelInfo:
class GraphInfo: class GraphInfo:
"""Information about a Graph within a model.""" """Information about a Graph within a model."""
def __init__(self, model_info: ModelInfo, graph_proto: onnx.GraphProto): def __init__(
self,
model_info: ModelInfo,
graph_proto: onnx.GraphProto,
is_subgraph: bool = False,
):
self.model_info = model_info self.model_info = model_info
self.graph_proto = graph_proto self.graph_proto = graph_proto
self.initializer_map: Dict[str, onnx.TensorProto] = { self.initializer_map: Dict[str, onnx.TensorProto] = {
@ -130,7 +174,11 @@ class GraphInfo:
# Generate the effective input map, which for old models can be a # Generate the effective input map, which for old models can be a
# subset of the input map. # subset of the input map.
if model_info and model_info.config.elide_initialized_inputs: if (
not is_subgraph
and model_info
and model_info.config.elide_initialized_inputs
):
self.input_map = { self.input_map = {
k: v k: v
for k, v in self.declared_input_map.items() for k, v in self.declared_input_map.items()
@ -150,9 +198,20 @@ class GraphInfo:
# Node outputs don't typically have type information, but shape inference # Node outputs don't typically have type information, but shape inference
# will associate them in the value_info. If not there, it may be a # will associate them in the value_info. If not there, it may be a
# graph output, which must have type information. # graph output, which must have type information.
value_info = self.value_info_map.get(name) or self.output_map.get(name) value_info = (
self.value_info_map.get(name)
or self.output_map.get(name)
or self.declared_input_map.get(name)
)
if value_info is not None: if value_info is not None:
return value_info.type return value_info.type
tensor_proto = self.initializer_map.get(name)
if tensor_proto is not None:
return onnx.helper.make_tensor_type_proto(
tensor_proto.data_type, tensor_proto.dims
)
# No type information is associated, this can occur when the value is unused: # No type information is associated, this can occur when the value is unused:
return "" return ""
@ -173,6 +232,8 @@ class NodeImporter:
__slots__ = [ __slots__ = [
"_c", "_c",
"_cc", "_cc",
"_m",
"_mc",
"_gi", "_gi",
"_p", "_p",
"_b", "_b",
@ -186,9 +247,13 @@ class NodeImporter:
parent_op: Operation, parent_op: Operation,
block: Block, block: Block,
context_cache: "ContextCache", context_cache: "ContextCache",
module_op: Operation,
module_cache: "ModuleCache",
): ):
self._c = parent_op.context self._c = parent_op.context
self._cc = context_cache self._cc = context_cache
self._m = module_op
self._mc = module_cache
self._gi = graph_info self._gi = graph_info
self._p = parent_op self._p = parent_op
self._b = block self._b = block
@ -196,9 +261,19 @@ class NodeImporter:
@classmethod @classmethod
def define_function( def define_function(
cls, graph_info: GraphInfo, module_op: Operation cls,
graph_info: GraphInfo,
module_op: Operation,
context_cache: Optional["ContextCache"] = None,
module_cache: Optional["ModuleCache"] = None,
private: bool = False,
) -> "NodeImporter": ) -> "NodeImporter":
cc = ContextCache(module_op.context) cc = (
context_cache
if context_cache is not None
else ContextCache(module_op.context)
)
mc = module_cache if module_cache is not None else ModuleCache(module_op, cc)
with module_op.context, Location.name(f"graph:{graph_info.graph_proto.name}"): with module_op.context, Location.name(f"graph:{graph_info.graph_proto.name}"):
body = module_op.regions[0].blocks[0] body = module_op.regions[0].blocks[0]
func_name = graph_info.graph_proto.name func_name = graph_info.graph_proto.name
@ -210,11 +285,23 @@ class NodeImporter:
for out in graph_info.output_map.values() for out in graph_info.output_map.values()
] ]
ftype = FunctionType.get(input_types, output_types) ftype = FunctionType.get(input_types, output_types)
func_op = func_dialect.FuncOp(func_name, ftype, ip=InsertionPoint(body)) func_op = func_dialect.FuncOp(
func_name,
ftype,
ip=InsertionPoint(body),
visibility="private" if private else None,
)
block = func_op.add_entry_block( block = func_op.add_entry_block(
[Location.name(k) for k in graph_info.input_map.keys()] [Location.name(k) for k in graph_info.input_map.keys()]
) )
imp = NodeImporter(graph_info, parent_op=func_op, block=block, context_cache=cc) imp = NodeImporter(
graph_info,
parent_op=func_op,
block=block,
context_cache=cc,
module_op=module_op,
module_cache=mc,
)
for node_name, input_value in zip(graph_info.input_map.keys(), block.arguments): for node_name, input_value in zip(graph_info.input_map.keys(), block.arguments):
imp._nv_map[node_name] = input_value imp._nv_map[node_name] = input_value
imp._populate_graph_attrs(func_op) imp._populate_graph_attrs(func_op)
@ -294,6 +381,8 @@ class NodeImporter:
def import_node(self, node: onnx.NodeProto): def import_node(self, node: onnx.NodeProto):
with InsertionPoint(self._b), Location.name(node.name): with InsertionPoint(self._b), Location.name(node.name):
op_type = node.op_type op_type = node.op_type
op_domain = node.domain
# Handle special op types that materialize to non-op IR constructs. # Handle special op types that materialize to non-op IR constructs.
# Handlers return True if the op was handled, else this function # Handlers return True if the op was handled, else this function
# should process it as a general node. # should process it as a general node.
@ -304,33 +393,58 @@ class NodeImporter:
return return
# General node import. # General node import.
input_values = [] input_values = []
input_type_protos = []
for input_name in node.input: for input_name in node.input:
try: try:
input_values.append(self._nv_map[input_name]) input_values.append(self._nv_map[input_name])
# Missing optional arguments will have empty types
input_type_protos.append(
self._gi.find_type_proto_for_name(input_name)
or onnx.TypeProto()
)
except KeyError: except KeyError:
raise OnnxImportError( raise OnnxImportError(
f"Non topologically produced ONNX node input '{input_name}': {node}" f"Non topologically produced ONNX node input '{input_name}': {node}"
) )
output_names = list(node.output) output_names = []
output_types = [ output_type_protos = []
self._cc.type_proto_to_type(self._gi.find_type_proto_for_name(n)) output_types = []
for n in output_names for output_name in node.output:
] output_names.append(output_name)
type_proto = self._gi.find_type_proto_for_name(output_name)
output_type_protos.append(type_proto)
output_types.append(self._cc.type_proto_to_type(type_proto))
attrs = self.import_attributes(node.attribute) for opset_import in self._gi.model_info.model_proto.opset_import:
attrs["name"] = StringAttr.get(f"onnx.{op_type}") if opset_import.domain == op_domain:
regions = self.count_regions(node.attribute) opset_version = opset_import.version
break
custom_op = Operation.create( operator_func_op = self._mc.get_operator_function(
name="torch.operator", op_type,
results=output_types, op_domain,
operands=input_values, opset_version,
attributes=attrs, input_type_protos,
regions=regions, output_type_protos,
node,
self._gi.model_info.config,
) )
self.import_regions(node.attribute, custom_op) if operator_func_op is not None:
custom_op = func_dialect.CallOp(operator_func_op, input_values)
else:
attrs = self.import_attributes(node.attribute)
attrs["name"] = StringAttr.get(f"onnx.{op_type}")
regions = self.count_regions(node.attribute)
custom_op = Operation.create(
name="torch.operator",
results=output_types,
operands=input_values,
attributes=attrs,
regions=regions,
)
self.import_regions(node.attribute, custom_op)
for output_name, output_value in zip(output_names, custom_op.results): for output_name, output_value in zip(output_names, custom_op.results):
self._nv_map[output_name] = output_value self._nv_map[output_name] = output_value
@ -388,9 +502,14 @@ class NodeImporter:
*block_types, arg_locs=[op.location] * len(block_types) *block_types, arg_locs=[op.location] * len(block_types)
) )
block = region.blocks[0] block = region.blocks[0]
graph_info = GraphInfo(None, attr.g) graph_info = GraphInfo(self._gi.model_info, attr.g, is_subgraph=True)
imp = NodeImporter( imp = NodeImporter(
graph_info, parent_op=op, block=block, context_cache=self._cc graph_info,
parent_op=op,
block=block,
context_cache=self._cc,
module_op=self._m,
module_cache=self._mc,
) )
for node_name, input_value in zip(block_names, block.arguments): for node_name, input_value in zip(block_names, block.arguments):
@ -608,6 +727,11 @@ class ContextCache:
element_type = self.get_optional_element_type(ot.elem_type) element_type = self.get_optional_element_type(ot.elem_type)
return self.get_optional_type(element_type) return self.get_optional_type(element_type)
# Check if TypeProto is empty (sometimes happens for unused function
# arguments)
if tp.WhichOneof("value") is None:
return self.get_none_type()
# TODO: Others if ever needed. Or we consider ourselves DNN-only. # TODO: Others if ever needed. Or we consider ourselves DNN-only.
# See TypeProto: sequence_type, map_type, optional_type, sparse_tensor_type. # See TypeProto: sequence_type, map_type, optional_type, sparse_tensor_type.
raise OnnxImportError(f"Unsupported ONNX TypeProto: {tp}") raise OnnxImportError(f"Unsupported ONNX TypeProto: {tp}")
@ -636,6 +760,323 @@ class ContextCache:
return handler(tp) return handler(tp)
def _shallow_copy_and_clear_protobuf_list(protobuf_list) -> list:
"""
Workaround for .clear() not being available on protobuf lists for some
reason.
"""
copy = list(protobuf_list)
while len(protobuf_list) > 0:
protobuf_list.pop()
return copy
def _bind_attributes_on_node(
interior_node: onnx.NodeProto,
caller_node: onnx.NodeProto,
op_schema: onnx.defs.OpSchema,
) -> onnx.NodeProto:
"""
Helper for _specialize_function_and_create_model() that binds concrete
values to an attributes on a node in the interior of a function.
This should behave the same as ONNX's C++ attribute binder, please use it as
a reference: https://github.com/onnx/onnx/blob/88f8ef15cfaa3138d336f3502aed5018d802bf43/onnx/shape_inference/attribute_binder.h#L15-L64
"""
def _bind_attributes_in_subgraph(
old_subgraph: onnx.GraphProto,
caller_node: onnx.NodeProto,
op_schema: onnx.defs.OpSchema,
) -> onnx.GraphProto:
"""
Recurse to bind attributes in a subgraph.
"""
new_subgraph.CopyFrom(old_subgraph)
old_nodes = _shallow_copy_and_clear_protobuf_list(new_subgraph.node)
for old_node in old_nodes:
new_subgraph.node.append(
_bind_attributes_on_node(old_node, caller_node, op_schema)
)
return new_subgraph
def _bind_attribute(
old_attribute: onnx.AttributeProto,
caller_node: onnx.NodeProto,
op_schema: onnx.defs.OpSchema,
) -> Optional[onnx.AttributeProto]:
"""
Bind a single attribute.
Bound values either come from attributes on the node calling the
function, or from default values. If the attribute is optional and has
no default value, and no value was provided by the caller, None is
returned and the attribute should be removed.
"""
ref_name = old_attribute.ref_attr_name
if not ref_name:
if not old_attribute.g or len(old_attribute.graphs) == 0:
return old_attribute
# Recurse to bind attributes on subgraphs. ONNX's implementation of
# attribute binding only does this for subgraphs that didn't come
# from a referenced attribute value, so this code doesn't either.
new_attribute = onnx.AttributeProto()
new_attribute.CopyFrom(old_attribute)
if new_attribute.g:
new_attribute.g = _bind_attributes_in_subgraph(
new_attribute.g, caller_node, op_schema
)
if new_attribute.graphs:
old_subgraphs = _shallow_copy_and_clear_protobuf_list(
new_attribute.graphs
)
for old_subgraph in old_subgraphs:
new_attribute.graphs.append(
_bind_attributes_in_subgraph(
old_subgraph, caller_node, op_schema
)
)
return new_attribute
for call_attribute in caller_node.attribute:
if call_attribute.name == ref_name:
new_attribute = onnx.AttributeProto()
new_attribute.CopyFrom(call_attribute)
new_attribute.name = old_attribute.name
return new_attribute
# The default value is sometimes empty for optional attributes
# that don't have a default, in which case it is dropped.
default_value = op_schema.attributes[ref_name].default_value
if default_value and default_value.type:
new_attribute = onnx.AttributeProto()
new_attribute.CopyFrom(default_value)
new_attribute.name = old_attribute.name
return new_attribute
return None
new_node = onnx.NodeProto()
new_node.CopyFrom(interior_node)
old_attributes = _shallow_copy_and_clear_protobuf_list(new_node.attribute)
for node_attribute in old_attributes:
new_attribute = _bind_attribute(node_attribute, caller_node, op_schema)
if new_attribute is not None:
new_node.attribute.append(new_attribute)
continue
return new_node
def _specialize_function_and_create_model(
function_proto: onnx.FunctionProto,
op_schema: onnx.defs.OpSchema,
name_to_give_model: str,
input_type_protos: list[onnx.TypeProto],
output_type_protos: list[onnx.TypeProto],
caller_node: onnx.NodeProto,
) -> onnx.ModelProto:
"""
Helper for ModuleCache::get_operator_function() that specializes a function
and coverts it to a model.
An ONNX function may be polymorphic, parameterized over the types of its
inputs and values of its attributes (~= compile-time constants). We need to
monomorphize it for importing into MLIR. It seems like the only practical
way to do this is by turning it into a model:
- models can have types on their inputs and outputs, unlike functions
- ONNX provides a function to do shape inference (providing concrete
types for everything in the body) for models, but not for functions
- the rest of the code in this importer can only handle models, not
functions
"""
graph_proto = onnx.GraphProto()
for input_name, input_type_proto in zip(function_proto.input, input_type_protos):
input_proto = onnx.ValueInfoProto()
input_proto.name = input_name
input_proto.type.CopyFrom(input_type_proto)
graph_proto.input.append(input_proto)
output_proto = onnx.ValueInfoProto()
for output_name, output_type_proto in zip(
function_proto.output, output_type_protos
):
output_proto.name = output_name
output_proto.type.CopyFrom(output_type_proto)
graph_proto.output.append(output_proto)
for node in function_proto.node:
# Import referenced attributes from call-site or default values
graph_proto.node.append(_bind_attributes_on_node(node, caller_node, op_schema))
graph_proto.name = name_to_give_model
model_proto = onnx.ModelProto()
model_proto.opset_import.extend(function_proto.opset_import)
# FIXME: is this the correct IR version, or should it be the latest, or the
# one used by the actual model, or something else?
model_proto.ir_version = onnx.helper.find_min_ir_version_for(
function_proto.opset_import
)
model_proto.graph.CopyFrom(graph_proto)
model_proto = onnx.shape_inference.infer_shapes(
model_proto, check_type=True, strict_mode=True, data_prop=True
)
graph_proto = model_proto.graph
# Useful for debugging.
# onnx.checker.check_model(model_proto, full_check=True)
return model_proto
class ModuleCache:
"""Caches per-module lookups of various things."""
__slots__ = [
"_m",
"_cc",
"_operator_function_map",
]
def __init__(self, module_op: Operation, context_cache: ContextCache):
self._m = module_op
self._cc = context_cache
self._operator_function_map: Dict[str, func_dialect.FuncOp] = {}
def get_operator_function(
self,
op_name: str,
op_domain: str,
opset_version: int,
input_type_protos: list[onnx.TypeProto],
output_type_protos: list[onnx.TypeProto],
caller_node: onnx.NodeProto,
config: Config,
) -> Optional[func_dialect.FuncOp]:
"""
Get or create MLIR function corresponding to an ONNX operator.
Returns None for ONNX operators that aren't functions.
"""
allowlists = config.function_expansion_allowlists_by_domain
denylists = config.function_expansion_denylists_by_domain
if allowlists is not None and not (
op_domain in allowlists and op_name in allowlists[op_domain]
):
return None
if op_domain in denylists and op_name in denylists[op_domain]:
return None
op_schema = onnx.defs.get_schema(
op_name, domain=op_domain, max_inclusive_version=opset_version
)
# The get_schema() lookup above should get the right version of the
# operator definition, but the function body can change slightly
# within a single operator version, as explained in
# https://github.com/onnx/onnx/blob/093a8d335a66ea136eb1f16b3a1ce6237ee353ab/onnx/defs/schema.h#L1070-L1086
# There also seem to be cases where a function goes from being not
# context-dependent to context-dependent.
f = lambda ver: ver <= opset_version
ncd_function_version = max(
filter(f, op_schema.function_opset_versions),
default=None,
)
cd_function_version = max(
filter(f, op_schema.context_dependent_function_opset_versions),
default=None,
)
if ncd_function_version is None and cd_function_version is None:
# No relevant function definition
return None
if ncd_function_version is not None and (
cd_function_version is None or cd_function_version < ncd_function_version
):
specific_version = ncd_function_version
is_context_dependent = False
else:
specific_version = cd_function_version
is_context_dependent = True
# This is both a key for memoization of function importing and also a
# name mangling scheme, so it must include all information needed to
# uniquely identify a function and anything it might be parameterized
# over.
key = repr(
(
op_name,
op_domain,
opset_version,
input_type_protos,
# Though output types can be inferred from input types, it does
# not seem to be the case that there's only one legal set of
# outputs for a given set of inputs. When attemtping to always
# use onnx.shape_inference.infer_function_output_types instead
# of the caller-provided types, sometimes IR verification fails
output_type_protos,
# Avoid including the attributes twice (once on their own and
# once as part of the node) for context-dependent functions,
# avoid including unused parts of the node for other functions.
caller_node if is_context_dependent else caller_node.attribute,
)
)
existing = self._operator_function_map.get(key)
if existing is not None:
return existing
if is_context_dependent:
function_proto_str = (
op_schema.get_context_dependent_function_with_opset_version(
specific_version,
caller_node.SerializeToString(),
[
t.SerializeToString() if not isinstance(t, bytes) else t
for t in input_type_protos
],
)
)
else:
function_proto_str = op_schema.get_function_with_opset_version(
specific_version
)
if not function_proto_str:
raise OnnxImportError(
f"Function lookup for {op_name}/{op_domain}/{specific_version}/{is_context_dependent} failed unexpectedly. This probably indicates a bug."
)
function_proto = onnx.onnx_pb.FunctionProto()
function_proto.ParseFromString(function_proto_str)
tmp_model_proto = _specialize_function_and_create_model(
function_proto,
op_schema,
key,
input_type_protos,
output_type_protos,
caller_node,
)
tmp_model_info = ModelInfo(tmp_model_proto)
tmp_graph_info = GraphInfo(tmp_model_info, tmp_model_proto.graph)
# Mark function as private so it will be thrown away after inlining
imp = NodeImporter.define_function(
tmp_graph_info, self._m, self._cc, self, private=True
)
imp.import_all()
func_op = imp._p
self._operator_function_map[key] = func_op
return func_op
ELEM_TYPE_TO_IR_TYPE_CB = { ELEM_TYPE_TO_IR_TYPE_CB = {
onnx.TensorProto.DataType.FLOAT: lambda: F32Type.get(), onnx.TensorProto.DataType.FLOAT: lambda: F32Type.get(),
onnx.TensorProto.DataType.UINT8: lambda: IntegerType.get_unsigned(8), onnx.TensorProto.DataType.UINT8: lambda: IntegerType.get_unsigned(8),

View File

@ -31,10 +31,14 @@ from ...ir import (
def main(args: argparse.Namespace): def main(args: argparse.Namespace):
config = onnx_importer.Config()
if args.disable_function_expansion_allowlist:
config.function_expansion_allowlists_by_domain = None
model_proto = load_onnx_model(args) model_proto = load_onnx_model(args)
context = Context() context = Context()
torch_d.register_dialect(context) torch_d.register_dialect(context)
model_info = onnx_importer.ModelInfo(model_proto) model_info = onnx_importer.ModelInfo(model_proto, config=config)
m = model_info.create_module(context=context).operation m = model_info.create_module(context=context).operation
imp = onnx_importer.NodeImporter.define_function(model_info.main_graph, m) imp = onnx_importer.NodeImporter.define_function(model_info.main_graph, m)
imp.import_all() imp.import_all()
@ -195,6 +199,12 @@ def parse_arguments(argv=None) -> argparse.Namespace:
" to before importing to MLIR. This can sometime assist with shape inference.", " to before importing to MLIR. This can sometime assist with shape inference.",
type=int, type=int,
) )
parser.add_argument(
"--disable-function-expansion-allowlist",
action="store_true",
help="Disable the allowlist for ONNX function expansion,"
" allowing non-allowlisted functions to be expanded.",
)
args = parser.parse_args(argv) args = parser.parse_args(argv)
return args return args

View File

@ -0,0 +1,18 @@
# Test that expansion of ONNX operators that are functions works for a simple
# example. The exact name mangling scheme used is not matched against, all that
# matters is that it has the name of the operator (GreaterOrEqual here) in it.
# Attributes are also not checked here. What we are interested in is the types
# and operations.
#
# The model comes from an upstream ONNX test: backend/test/data/node/test_greater_equal/model.onnx
# RUN: %PYTHON -m torch_mlir.tools.import_onnx --disable-function-expansion-allowlist %s.onnx | FileCheck %s
# CHECK-LABEL: func.func @test_greater_equal(%arg0: !torch.vtensor<[3,4,5],f32>, %arg1: !torch.vtensor<[3,4,5],f32>) -> !torch.vtensor<[3,4,5],i1>
# CHECK: %0 = call @"{{.*}}GreaterOrEqual{{.*}}"(%arg0, %arg1) : (!torch.vtensor<[3,4,5],f32>, !torch.vtensor<[3,4,5],f32>) -> !torch.vtensor<[3,4,5],i1>
# CHECK-LABEL: func.func private @"{{.*}}GreaterOrEqual{{.*}}"(%arg0: !torch.vtensor<[3,4,5],f32>, %arg1: !torch.vtensor<[3,4,5],f32>) -> !torch.vtensor<[3,4,5],i1>
# CHECK: %0 = torch.operator "onnx.Greater"(%arg0, %arg1) : (!torch.vtensor<[3,4,5],f32>, !torch.vtensor<[3,4,5],f32>) -> !torch.vtensor<[3,4,5],i1>
# CHECK: %1 = torch.operator "onnx.Equal"(%arg0, %arg1) : (!torch.vtensor<[3,4,5],f32>, !torch.vtensor<[3,4,5],f32>) -> !torch.vtensor<[3,4,5],i1>
# CHECK: %2 = torch.operator "onnx.Or"(%0, %1) : (!torch.vtensor<[3,4,5],i1>, !torch.vtensor<[3,4,5],i1>) -> !torch.vtensor<[3,4,5],i1>
# CHECK: return %2 : !torch.vtensor<[3,4,5],i1>

View File

@ -0,0 +1,22 @@
# Test the expansion of ONNX operators that are functions, specifically the
# propagation of attribute values from the call-site to nodes within the
# expanded function.
#
# In this case, the model has a ReduceSumSquare node with the attribute
# 'keepdims' set to 0, and the definition of this version of ReduceSumSquare
# contains a ReduceSum node that references the value of 'keepdims', so we
# expect to see this value propagated to the ReduceSum node in the expansion.
#
# This also tests that the absence of 'axes' (as an optional attribute with no
# default value) is propagated in the same way.
#
# The model comes from an upstream ONNX test: backend/test/data/node/test_reduce_sum_square_do_not_keepdims_example/model.onnx
# RUN: %PYTHON -m torch_mlir.tools.import_onnx --disable-function-expansion-allowlist %s.onnx | FileCheck %s
#
# CHECK-LABEL: func.func @test_reduce_sum_square_do_not_keepdims_example
# CHECK: %0 = call @"{{.*}}ReduceSumSquare{{.*}}"
#
# CHECK-LABEL: func.func private @"{{.*}}ReduceSumSquare{{.*}}"
# CHECK: %0 = torch.operator "onnx.Mul"
# CHECK: %1 = torch.operator "onnx.ReduceSum"{{.*}}{torch.onnx.keepdims = 0 : si64}

View File

@ -0,0 +1,23 @@
# Test the expansion of ONNX operators that are functions, specifically the
# propagation of attribute values from the call-site to nodes within the
# expanded function.
#
# In this case, the model has a ReduceSumSquare node with no attributes, but the
# definition of this version of ReduceSumSquare contains a ReduceSum node that
# references the value of 'keepdims', and the definition says its default value
# is 1, so we expect to see this value propagated to the ReduceSum node in the
# expansion.
#
# This also tests that the absence of 'axes' (as an optional attribute with no
# default value) is propagated in the same way.
#
# The model comes from an upstream ONNX test: backend/test/data/node/test_reduce_sum_square_empty_set/model.onnx
# RUN: %PYTHON -m torch_mlir.tools.import_onnx --disable-function-expansion-allowlist %s.onnx | FileCheck %s
#
# CHECK-LABEL: func.func @test_reduce_sum_square_empty_set
# CHECK: %0 = call @"{{.*}}ReduceSumSquare{{.*}}"
#
# CHECK-LABEL: func.func private @"{{.*}}ReduceSumSquare{{.*}}"
# CHECK: %0 = torch.operator "onnx.Mul"
# CHECK: %1 = torch.operator "onnx.ReduceSum"{{.*}}{torch.onnx.keepdims = 1 : si64}