mirror of https://github.com/llvm/torch-mlir
Add `aten.gt.Tensor` op
`aten.gt.Tensor` op has been added in torch dialect and the lowering of the op has been done to the linalg dialect. Signed-off-by: Prashant Kumar <prashant@nod-labs.com>pull/474/head snapshot-20211212.140
parent
a778f990e9
commit
528354de84
|
@ -343,6 +343,42 @@ class ElementwiseGtScalarModule(torch.nn.Module):
|
||||||
def ElementwiseGtScalarModule_basic(module, tu: TestUtils):
|
def ElementwiseGtScalarModule_basic(module, tu: TestUtils):
|
||||||
module.forward(tu.rand(3, 5))
|
module.forward(tu.rand(3, 5))
|
||||||
|
|
||||||
|
class ElementwiseGtFloatTensorModule(torch.nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
@export
|
||||||
|
@annotate_args([
|
||||||
|
None,
|
||||||
|
([-1, -1], torch.float32, True),
|
||||||
|
([-1], torch.float32, True),
|
||||||
|
])
|
||||||
|
def forward(self, x, y):
|
||||||
|
return torch.gt(x, y)
|
||||||
|
|
||||||
|
|
||||||
|
@register_test_case(module_factory=lambda: ElementwiseGtFloatTensorModule())
|
||||||
|
def ElementwiseGtFloatTensorModule_basic(module, tu: TestUtils):
|
||||||
|
module.forward(tu.rand(3, 5), tu.rand(5))
|
||||||
|
|
||||||
|
class ElementwiseGtIntTensorModule(torch.nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
@export
|
||||||
|
@annotate_args([
|
||||||
|
None,
|
||||||
|
([-1, -1], torch.int64, True),
|
||||||
|
([-1], torch.int64, True),
|
||||||
|
])
|
||||||
|
def forward(self, x, y):
|
||||||
|
return torch.gt(x, y)
|
||||||
|
|
||||||
|
|
||||||
|
@register_test_case(module_factory=lambda: ElementwiseGtIntTensorModule())
|
||||||
|
def ElementwiseGtIntTensorModule_basic(module, tu: TestUtils):
|
||||||
|
module.forward(torch.randint(10, (3, 5)), torch.randint(10, (5,)))
|
||||||
|
|
||||||
# ==============================================================================
|
# ==============================================================================
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1669,6 +1669,32 @@ static Value createLinalgPayloadCalculationForElementwiseOp(
|
||||||
return b.create<arith::MulIOp>(loc, lhs, rhs);
|
return b.create<arith::MulIOp>(loc, lhs, rhs);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
if (auto gtTensor = dyn_cast<AtenGtTensorOp>(op)) {
|
||||||
|
AtenGtTensorOp::Adaptor adaptor(operands);
|
||||||
|
Type lhsDtype = payloadArgs[0].getType();
|
||||||
|
Type rhsDtype = payloadArgs[1].getType();
|
||||||
|
|
||||||
|
// TODO: Type promotion in case of different `lhsDtype` and `rhsDtype` needs
|
||||||
|
// to be handled.
|
||||||
|
if (lhsDtype != rhsDtype)
|
||||||
|
gtTensor.emitError("unimplemented: different lhs and rhs dtype");
|
||||||
|
|
||||||
|
Type elementalType =
|
||||||
|
gtTensor.self().getType().cast<BaseTensorType>().getDtype();
|
||||||
|
|
||||||
|
if (elementalType.isa<mlir::FloatType>())
|
||||||
|
return b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UGT,
|
||||||
|
payloadArgs[0], payloadArgs[1]);
|
||||||
|
if (IntegerType intType = elementalType.dyn_cast<mlir::IntegerType>()) {
|
||||||
|
if (intType.isUnsigned())
|
||||||
|
return b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ugt,
|
||||||
|
payloadArgs[0], payloadArgs[1]);
|
||||||
|
if (intType.isSigned())
|
||||||
|
return b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sgt,
|
||||||
|
payloadArgs[0], payloadArgs[1]);
|
||||||
|
}
|
||||||
|
gtTensor.emitError("unimplemented: dtype isn't supported.");
|
||||||
|
}
|
||||||
if (auto div = dyn_cast<AtenDivTensorOp>(op)) {
|
if (auto div = dyn_cast<AtenDivTensorOp>(op)) {
|
||||||
AtenDivTensorOp::Adaptor adaptor(operands);
|
AtenDivTensorOp::Adaptor adaptor(operands);
|
||||||
Type dtype = converter->convertType(div.getType())
|
Type dtype = converter->convertType(div.getType())
|
||||||
|
@ -2070,7 +2096,7 @@ struct ConvertElementwiseOp : ConversionPattern {
|
||||||
AtenSqrtOp, AtenFloorOp, AtenPowTensorScalarOp, AtenLog2Op,
|
AtenSqrtOp, AtenFloorOp, AtenPowTensorScalarOp, AtenLog2Op,
|
||||||
AtenRsqrtOp, AtenDivScalarOp, AtenAbsOp, AtenReciprocalOp,
|
AtenRsqrtOp, AtenDivScalarOp, AtenAbsOp, AtenReciprocalOp,
|
||||||
AtenBitwiseAndTensorOp, AtenGtScalarOp, AtenWhereSelfOp,
|
AtenBitwiseAndTensorOp, AtenGtScalarOp, AtenWhereSelfOp,
|
||||||
AtenCeilOp>(op))
|
AtenCeilOp, AtenGtTensorOp>(op))
|
||||||
return rewriter.notifyMatchFailure(op, "not a supported elementwise op");
|
return rewriter.notifyMatchFailure(op, "not a supported elementwise op");
|
||||||
|
|
||||||
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
||||||
|
@ -3640,7 +3666,7 @@ public:
|
||||||
AtenToDtypeOp, AtenClampOp, AtenRsubScalarOp, AtenLogOp, AtenSqrtOp,
|
AtenToDtypeOp, AtenClampOp, AtenRsubScalarOp, AtenLogOp, AtenSqrtOp,
|
||||||
AtenFloorOp, AtenCeilOp, AtenPowTensorScalarOp, AtenLog2Op, AtenRsqrtOp,
|
AtenFloorOp, AtenCeilOp, AtenPowTensorScalarOp, AtenLog2Op, AtenRsqrtOp,
|
||||||
AtenAbsOp, AtenReciprocalOp, AtenBitwiseAndTensorOp, AtenGtScalarOp,
|
AtenAbsOp, AtenReciprocalOp, AtenBitwiseAndTensorOp, AtenGtScalarOp,
|
||||||
AtenWhereSelfOp>();
|
AtenWhereSelfOp, AtenGtTensorOp>();
|
||||||
patterns.add<ConvertElementwiseOp>(typeConverter, context);
|
patterns.add<ConvertElementwiseOp>(typeConverter, context);
|
||||||
target.addIllegalOp<AtenSqueezeOp>();
|
target.addIllegalOp<AtenSqueezeOp>();
|
||||||
patterns.add<ConvertAtenSqueezeOp>(typeConverter, context);
|
patterns.add<ConvertAtenSqueezeOp>(typeConverter, context);
|
||||||
|
|
|
@ -320,6 +320,8 @@ public:
|
||||||
AtenDivTensorOp, Aten__And__TensorOp, AtenEqTensorOp,
|
AtenDivTensorOp, Aten__And__TensorOp, AtenEqTensorOp,
|
||||||
AtenMinimumOp, AtenMaximumOp, AtenBitwiseAndTensorOp>(op)) {
|
AtenMinimumOp, AtenMaximumOp, AtenBitwiseAndTensorOp>(op)) {
|
||||||
return visitBinaryBroadcastingOp(op, operands);
|
return visitBinaryBroadcastingOp(op, operands);
|
||||||
|
} else if (isa<AtenGtTensorOp>(op)) {
|
||||||
|
return visitBinaryBroadcastingComparisonOp(op, operands);
|
||||||
} else if (auto whereSelf = llvm::dyn_cast<AtenWhereSelfOp>(op)) {
|
} else if (auto whereSelf = llvm::dyn_cast<AtenWhereSelfOp>(op)) {
|
||||||
return visitAtenWhereSelfOp(whereSelf, operands);
|
return visitAtenWhereSelfOp(whereSelf, operands);
|
||||||
} else if (auto lerpTensor = llvm::dyn_cast<AtenLerpTensorOp>(op)) {
|
} else if (auto lerpTensor = llvm::dyn_cast<AtenLerpTensorOp>(op)) {
|
||||||
|
@ -505,6 +507,8 @@ private:
|
||||||
Operation *op, ArrayRef<LatticeElement<ValueKnowledge> *> operands);
|
Operation *op, ArrayRef<LatticeElement<ValueKnowledge> *> operands);
|
||||||
ChangeResult visitBinaryBroadcastingOp(
|
ChangeResult visitBinaryBroadcastingOp(
|
||||||
Operation *op, ArrayRef<LatticeElement<ValueKnowledge> *> operands);
|
Operation *op, ArrayRef<LatticeElement<ValueKnowledge> *> operands);
|
||||||
|
ChangeResult visitBinaryBroadcastingComparisonOp(
|
||||||
|
Operation *op, ArrayRef<LatticeElement<ValueKnowledge> *> operands);
|
||||||
ChangeResult
|
ChangeResult
|
||||||
visitAtenWhereSelfOp(AtenWhereSelfOp op,
|
visitAtenWhereSelfOp(AtenWhereSelfOp op,
|
||||||
ArrayRef<LatticeElement<ValueKnowledge> *> operands);
|
ArrayRef<LatticeElement<ValueKnowledge> *> operands);
|
||||||
|
@ -884,6 +888,21 @@ ChangeResult TypeAnalyzer::visitBinaryBroadcastingOp(
|
||||||
return getLatticeElement(op->getResult(0)).join(knowledge);
|
return getLatticeElement(op->getResult(0)).join(knowledge);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
ChangeResult TypeAnalyzer::visitBinaryBroadcastingComparisonOp(
|
||||||
|
Operation *op, ArrayRef<LatticeElement<ValueKnowledge> *> operands) {
|
||||||
|
auto lhs = operands[0]->getValue();
|
||||||
|
auto rhs = operands[1]->getValue();
|
||||||
|
auto knowledge =
|
||||||
|
ValueKnowledge::getNotNonePessimisticValueState(getContext());
|
||||||
|
if (lhs.hasSizes && rhs.hasSizes) {
|
||||||
|
knowledge.hasSizes = true;
|
||||||
|
knowledge.sizes.resize(std::max(lhs.sizes.size(), rhs.sizes.size()),
|
||||||
|
kUnknownSize);
|
||||||
|
}
|
||||||
|
knowledge.dtype = IntegerType::get(op->getContext(), 1);
|
||||||
|
return getLatticeElement(op->getResult(0)).join(knowledge);
|
||||||
|
}
|
||||||
|
|
||||||
ChangeResult TypeAnalyzer::visitAtenWhereSelfOp(
|
ChangeResult TypeAnalyzer::visitAtenWhereSelfOp(
|
||||||
AtenWhereSelfOp op, ArrayRef<LatticeElement<ValueKnowledge> *> operands) {
|
AtenWhereSelfOp op, ArrayRef<LatticeElement<ValueKnowledge> *> operands) {
|
||||||
auto condition = operands[0]->getValue();
|
auto condition = operands[0]->getValue();
|
||||||
|
|
Loading…
Reference in New Issue