mirror of https://github.com/llvm/torch-mlir
[MLIR][TORCH] Add e2e support for aten.randint
-- This commit adds e2e support for aten.randint by decomposing it into an aten.randint.low by setting low=0. Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>pull/2003/head
parent
0497f0b08d
commit
5337944ddb
|
@ -3742,6 +3742,34 @@ def Torch_AtenRandintLowOp : Torch_Op<"aten.randint.low", [
|
|||
}];
|
||||
}
|
||||
|
||||
def Torch_AtenRandintOp : Torch_Op<"aten.randint", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics,
|
||||
ReadOnly
|
||||
]> {
|
||||
let summary = "Generated op for `aten::randint : (int, int[], int?, int?, Device?, bool?) -> (Tensor)`";
|
||||
let arguments = (ins
|
||||
Torch_IntType:$high,
|
||||
AnyTorchListOfTorchIntType:$size,
|
||||
AnyTorchOptionalIntType:$dtype,
|
||||
AnyTorchOptionalIntType:$layout,
|
||||
AnyTorchOptionalDeviceType:$device,
|
||||
AnyTorchOptionalBoolType:$pin_memory
|
||||
);
|
||||
let results = (outs
|
||||
AnyTorchTensorType:$result
|
||||
);
|
||||
let hasCustomAssemblyFormat = 1;
|
||||
let extraClassDefinition = [{
|
||||
ParseResult AtenRandintOp::parse(OpAsmParser &parser, OperationState &result) {
|
||||
return parseDefaultTorchOp(parser, result, 6, 1);
|
||||
}
|
||||
void AtenRandintOp::print(OpAsmPrinter &printer) {
|
||||
printDefaultTorchOp(printer, *this, 6, 1);
|
||||
}
|
||||
}];
|
||||
}
|
||||
|
||||
def Torch_AtenBernoulliTensorOp : Torch_Op<"aten.bernoulli.Tensor", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics,
|
||||
|
|
|
@ -6881,6 +6881,9 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
|||
" func.func @\"__torch_mlir_shape_fn.aten.randint.low\"(%arg0: !torch.int, %arg1: !torch.int, %arg2: !torch.list<int>, %arg3: !torch.optional<int>, %arg4: !torch.optional<int>, %arg5: !torch.optional<Device>, %arg6: !torch.optional<bool>) -> !torch.list<int> {\n"
|
||||
" return %arg2 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.aten.randint\"(%arg0: !torch.int, %arg1: !torch.list<int>, %arg2: !torch.optional<int>, %arg3: !torch.optional<int>, %arg4: !torch.optional<Device>, %arg5: !torch.optional<bool>) -> !torch.list<int> {\n"
|
||||
" return %arg1 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.aten.randn\"(%arg0: !torch.list<int>, %arg1: !torch.optional<int>, %arg2: !torch.optional<int>, %arg3: !torch.optional<Device>, %arg4: !torch.optional<bool>) -> !torch.list<int> {\n"
|
||||
" return %arg0 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
|
|
|
@ -3814,6 +3814,28 @@ public:
|
|||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
class DecomposeAtenRandintOp : public OpRewritePattern<AtenRandintOp> {
|
||||
public:
|
||||
using OpRewritePattern::OpRewritePattern;
|
||||
LogicalResult matchAndRewrite(AtenRandintOp op,
|
||||
PatternRewriter &rewriter) const override {
|
||||
|
||||
Location loc = op.getLoc();
|
||||
Type resultType = op.getType();
|
||||
|
||||
Value low = rewriter.create<Torch::ConstantIntOp>(
|
||||
loc, rewriter.getI64IntegerAttr(0));
|
||||
|
||||
rewriter.replaceOpWithNewOp<AtenRandintLowOp>(
|
||||
op, resultType, low, op.getHigh(), op.getSize(), op.getDtype(), op.getLayout(),
|
||||
op.getDevice(), op.getPinMemory());
|
||||
|
||||
return success();
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
// Decompose `aten.varMean.correction` op into `aten.var.correction` and
|
||||
// `aten.mean.dim` op.
|
||||
|
@ -4287,6 +4309,7 @@ public:
|
|||
patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenMseLossOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenNormScalarOptDimOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenRandintOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenRandintLowOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenVarMeanCorrectionOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposePrimsConvertElementTypeOp>(patterns);
|
||||
|
|
|
@ -461,6 +461,7 @@ static void markDecomposedOpsAsIllegal(MLIRContext *context,
|
|||
target.addIllegalOp<AtenIndexTensorHackedTwinOp>();
|
||||
target.addIllegalOp<AtenMseLossOp>();
|
||||
target.addIllegalOp<AtenRandintLowOp>();
|
||||
target.addIllegalOp<AtenRandintOp>();
|
||||
target.addIllegalOp<AtenVarMeanCorrectionOp>();
|
||||
target.addIllegalOp<PrimsConvertElementTypeOp>();
|
||||
target.addIllegalOp<PrimsVarOp>();
|
||||
|
|
|
@ -1157,6 +1157,17 @@ void TypeAnalysis::visitOperation(Operation *op,
|
|||
return;
|
||||
}
|
||||
|
||||
if (auto randInt = dyn_cast<AtenRandintOp>(op)) {
|
||||
auto knowledge =
|
||||
ValueKnowledge::getTensorPessimisticValueState(op->getContext());
|
||||
Type defaultDtype =
|
||||
IntegerType::get(op->getContext(), 64, IntegerType::Signed);
|
||||
knowledge.dtype =
|
||||
getDtypeOrDefault(op->getContext(), randInt.getDtype(), defaultDtype);
|
||||
incorporateKnowledge(randInt.getResult(), knowledge);
|
||||
return;
|
||||
}
|
||||
|
||||
if (isa<AtenVarMeanCorrectionOp, AtenVarMeanOp>(op)) {
|
||||
auto input = operands[0]->getValue();
|
||||
auto knowledge =
|
||||
|
|
|
@ -625,6 +625,9 @@ def aten〇randn_like〡shape(self: List[int], dtype: Optional[int] = None, layo
|
|||
def aten〇randint〇low〡shape(low: int, high: int, size: List[int], dtype: Optional[int] = 4, layout: Optional[int] = None, device: Optional[device] = None, pin_memory: Optional[bool] = None) -> List[int]:
|
||||
return size
|
||||
|
||||
def aten〇randint〡shape(high: int, size: List[int], dtype: Optional[int] = 4, layout: Optional[int] = None, device: Optional[device] = None, pin_memory: Optional[bool] = None) -> List[int]:
|
||||
return size
|
||||
|
||||
def aten〇randn〡shape(size: List[int], dtype: Optional[int] = None, layout: Optional[int] = None, device: Optional[device] = None, pin_memory: Optional[bool] = None) -> List[int]:
|
||||
return size
|
||||
|
||||
|
|
|
@ -334,6 +334,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
|
|||
emit("aten::bernoulli_.float : (Tensor, float, Generator?) -> (Tensor)")
|
||||
emit("aten::bernoulli.p : (Tensor, float, Generator?) -> (Tensor)")
|
||||
emit("aten::randint.low : (int, int, int[], int?, int?, Device?, bool?) -> (Tensor)")
|
||||
emit("aten::randint : (int, int[], int?, int?, Device?, bool?) -> (Tensor)")
|
||||
emit_with_mutating_variants("aten::bernoulli.Tensor : (Tensor, Tensor, Generator?) -> (Tensor)")
|
||||
emit("aten::randn : (int[], int?, int?, Device?, bool?) -> (Tensor)")
|
||||
emit("aten::randn.generator : (int[], Generator?, int?, int?, Device?, bool?) -> (Tensor)")
|
||||
|
|
|
@ -329,6 +329,65 @@ def RandIntLowDtypeModule_basic(module, tu: TestUtils):
|
|||
|
||||
# ==============================================================================
|
||||
|
||||
class RandIntModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
])
|
||||
def forward(self):
|
||||
a = torch.ops.aten.randint(high=1000, size=[1024, 1024])
|
||||
mean = torch.mean(a.to(torch.float32))
|
||||
return mean
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: RandIntModule())
|
||||
def RandIntModule_basic(module, tu: TestUtils):
|
||||
module.forward()
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
class RandIntDtypeModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
])
|
||||
def forward(self):
|
||||
a = torch.ops.aten.randint(high=1000, size=[128, 256, 512], dtype=torch.float64)
|
||||
mean = torch.mean(a.to(torch.float32))
|
||||
return mean
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: RandIntDtypeModule())
|
||||
def RandIntDtypeModule_basic(module, tu: TestUtils):
|
||||
module.forward()
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
class RandIntPinMemoryModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
])
|
||||
def forward(self):
|
||||
a = torch.ops.aten.randint(high=1000, size=[128, 256, 512], pin_memory=False)
|
||||
mean = torch.mean(a.to(torch.float32))
|
||||
return mean
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: RandIntPinMemoryModule())
|
||||
def RandIntPinMemoryModule_basic(module, tu: TestUtils):
|
||||
module.forward()
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
class RandnModule(torch.nn.Module):
|
||||
|
||||
|
|
Loading…
Reference in New Issue