mirror of https://github.com/llvm/torch-mlir
parent
03fdf56f21
commit
539511c19b
|
@ -738,3 +738,23 @@ class AddCDivModule(torch.nn.Module):
|
||||||
@register_test_case(module_factory=lambda: AddCDivModule())
|
@register_test_case(module_factory=lambda: AddCDivModule())
|
||||||
def AddCDivModule_basic(module, tu: TestUtils):
|
def AddCDivModule_basic(module, tu: TestUtils):
|
||||||
module.forward(tu.rand(1,3), tu.rand(1,3), tu.rand(1,3))
|
module.forward(tu.rand(1,3), tu.rand(1,3), tu.rand(1,3))
|
||||||
|
|
||||||
|
|
||||||
|
# ==============================================================================
|
||||||
|
|
||||||
|
class DropoutModule(torch.nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
@export
|
||||||
|
@annotate_args([
|
||||||
|
None,
|
||||||
|
([-1, -1], torch.float32, True),
|
||||||
|
])
|
||||||
|
def forward(self, x):
|
||||||
|
return torch.dropout(x, 0.0, False)
|
||||||
|
|
||||||
|
|
||||||
|
@register_test_case(module_factory=lambda: DropoutModule())
|
||||||
|
def DropoutModule_basic(module, tu: TestUtils):
|
||||||
|
module.forward(tu.rand(3, 4))
|
||||||
|
|
|
@ -2199,6 +2199,22 @@ def Torch_AtenIntTensorOp : Torch_Op<"aten.Int.Tensor", [
|
||||||
let assemblyFormat = "$a attr-dict `:` type($a) `->` type($result)";
|
let assemblyFormat = "$a attr-dict `:` type($a) `->` type($result)";
|
||||||
}
|
}
|
||||||
|
|
||||||
|
def Torch_AtenDropoutOp : Torch_Op<"aten.dropout", [
|
||||||
|
AllowsTypeRefinement,
|
||||||
|
HasValueSemantics
|
||||||
|
]> {
|
||||||
|
let summary = "Generated op for `aten::dropout : (Tensor, float, bool) -> (Tensor)`";
|
||||||
|
let arguments = (ins
|
||||||
|
AnyTorchTensorType:$input,
|
||||||
|
Torch_FloatType:$p,
|
||||||
|
Torch_BoolType:$train
|
||||||
|
);
|
||||||
|
let results = (outs
|
||||||
|
AnyTorchTensorType:$result
|
||||||
|
);
|
||||||
|
let assemblyFormat = "$input `,` $p `,` $train attr-dict `:` type($input) `,` type($p) `,` type($train) `->` type($result)";
|
||||||
|
}
|
||||||
|
|
||||||
def Torch_Aten__Contains__StrOp : Torch_Op<"aten.__contains__.str", [
|
def Torch_Aten__Contains__StrOp : Torch_Op<"aten.__contains__.str", [
|
||||||
AllowsTypeRefinement,
|
AllowsTypeRefinement,
|
||||||
HasValueSemantics
|
HasValueSemantics
|
||||||
|
|
|
@ -1132,6 +1132,33 @@ public:
|
||||||
};
|
};
|
||||||
} // namespace
|
} // namespace
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
class ConvertAtenDropoutOp : public OpConversionPattern<AtenDropoutOp> {
|
||||||
|
public:
|
||||||
|
using OpConversionPattern::OpConversionPattern;
|
||||||
|
LogicalResult
|
||||||
|
matchAndRewrite(AtenDropoutOp op, OpAdaptor adaptor,
|
||||||
|
ConversionPatternRewriter &rewriter) const override {
|
||||||
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
||||||
|
return failure();
|
||||||
|
|
||||||
|
bool train;
|
||||||
|
if (!matchPattern(op.train(), m_TorchConstantBool(&train)))
|
||||||
|
return rewriter.notifyMatchFailure(op,
|
||||||
|
"Expected train to be constant bool.");
|
||||||
|
|
||||||
|
if (train)
|
||||||
|
return failure();
|
||||||
|
auto resultType = getTypeConverter()
|
||||||
|
->convertType(op->getResult(0).getType())
|
||||||
|
.cast<RankedTensorType>();
|
||||||
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType,
|
||||||
|
adaptor.input());
|
||||||
|
return success();
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace
|
||||||
|
|
||||||
namespace {
|
namespace {
|
||||||
// See comments at in convertMmOp and the heading for this section for general
|
// See comments at in convertMmOp and the heading for this section for general
|
||||||
// considerations. This function needs to be auto-generated.
|
// considerations. This function needs to be auto-generated.
|
||||||
|
@ -3035,6 +3062,8 @@ public:
|
||||||
patterns.add<ConvertAtenIntTensorOp>(typeConverter, context);
|
patterns.add<ConvertAtenIntTensorOp>(typeConverter, context);
|
||||||
target.addIllegalOp<PrimNumToTensorScalarOp>();
|
target.addIllegalOp<PrimNumToTensorScalarOp>();
|
||||||
patterns.add<ConvertPrimNumToTensorScalarOp>(typeConverter, context);
|
patterns.add<ConvertPrimNumToTensorScalarOp>(typeConverter, context);
|
||||||
|
target.addIllegalOp<AtenDropoutOp>();
|
||||||
|
patterns.add<ConvertAtenDropoutOp>(typeConverter, context);
|
||||||
|
|
||||||
if (failed(applyPartialConversion(getOperation(), target,
|
if (failed(applyPartialConversion(getOperation(), target,
|
||||||
std::move(patterns))))
|
std::move(patterns))))
|
||||||
|
|
|
@ -231,7 +231,7 @@ public:
|
||||||
AtenContiguousOp, AtenFill_ScalarOp, AtenDetachOp,
|
AtenContiguousOp, AtenFill_ScalarOp, AtenDetachOp,
|
||||||
AtenMaskedFill_ScalarOp, AtenCopy_Op, AtenIndexPut_Op, AtenCumsumOp,
|
AtenMaskedFill_ScalarOp, AtenCopy_Op, AtenIndexPut_Op, AtenCumsumOp,
|
||||||
AtenLayerNormOp, AtenClampOp, AtenLogOp, AtenSqrtOp, AtenFloorOp,
|
AtenLayerNormOp, AtenClampOp, AtenLogOp, AtenSqrtOp, AtenFloorOp,
|
||||||
AtenLog2Op, Aten_SoftmaxBackwardDataOp, AtenRsqrtOp,
|
AtenLog2Op, Aten_SoftmaxBackwardDataOp, AtenRsqrtOp, AtenDropoutOp,
|
||||||
AtenTanhBackwardOp, Aten_LogSoftmaxBackwardDataOp, AtenAddIntOp>(
|
AtenTanhBackwardOp, Aten_LogSoftmaxBackwardDataOp, AtenAddIntOp>(
|
||||||
op)) {
|
op)) {
|
||||||
return getLatticeElement(op->getResult(0)).join(*operands[0]);
|
return getLatticeElement(op->getResult(0)).join(*operands[0]);
|
||||||
|
|
|
@ -569,6 +569,7 @@ def emit_aten_ops(torch_ir_dir: str, registry: Registry):
|
||||||
emit("aten::IntImplicit : (Tensor) -> (int)")
|
emit("aten::IntImplicit : (Tensor) -> (int)")
|
||||||
emit("aten::tensor.float : (float, int?, Device?, bool) -> (Tensor)")
|
emit("aten::tensor.float : (float, int?, Device?, bool) -> (Tensor)")
|
||||||
emit("aten::Int.Tensor : (Tensor) -> (int)")
|
emit("aten::Int.Tensor : (Tensor) -> (int)")
|
||||||
|
emit("aten::dropout : (Tensor, float, bool) -> (Tensor)")
|
||||||
|
|
||||||
# Dict ops.
|
# Dict ops.
|
||||||
emit("aten::__contains__.str : (Dict(str, t), str) -> (bool)", has_folder=True)
|
emit("aten::__contains__.str : (Dict(str, t), str) -> (bool)", has_folder=True)
|
||||||
|
|
Loading…
Reference in New Issue