mirror of https://github.com/llvm/torch-mlir
parent
7301aa80fd
commit
54ef18c556
|
@ -1620,6 +1620,55 @@ def Torch_AtenLerp_TensorOp : Torch_Op<"aten.lerp_.Tensor", [
|
|||
}];
|
||||
}
|
||||
|
||||
def Torch_AtenLerpScalarOp : Torch_Op<"aten.lerp.Scalar", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics,
|
||||
ReadOnly
|
||||
]> {
|
||||
let summary = "Generated op for `aten::lerp.Scalar : (Tensor, Tensor, Scalar) -> (Tensor)`";
|
||||
let arguments = (ins
|
||||
AnyTorchTensorType:$self,
|
||||
AnyTorchTensorType:$end,
|
||||
AnyTorchScalarType:$weight
|
||||
);
|
||||
let results = (outs
|
||||
AnyTorchTensorType:$result
|
||||
);
|
||||
let hasCustomAssemblyFormat = 1;
|
||||
let extraClassDefinition = [{
|
||||
ParseResult AtenLerpScalarOp::parse(OpAsmParser &parser, OperationState &result) {
|
||||
return parseDefaultTorchOp(parser, result, 3, 1);
|
||||
}
|
||||
void AtenLerpScalarOp::print(OpAsmPrinter &printer) {
|
||||
printDefaultTorchOp(printer, *this, 3, 1);
|
||||
}
|
||||
}];
|
||||
}
|
||||
|
||||
def Torch_AtenLerp_ScalarOp : Torch_Op<"aten.lerp_.Scalar", [
|
||||
IsTrailingUnderscoreInplaceVariant,
|
||||
AllowsTypeRefinement
|
||||
]> {
|
||||
let summary = "Generated op for `aten::lerp_.Scalar : (Tensor, Tensor, Scalar) -> (Tensor)`";
|
||||
let arguments = (ins
|
||||
Torch_NonValueTensorType:$self,
|
||||
Torch_NonValueTensorType:$end,
|
||||
AnyTorchScalarType:$weight
|
||||
);
|
||||
let results = (outs
|
||||
Torch_NonValueTensorType:$result
|
||||
);
|
||||
let hasCustomAssemblyFormat = 1;
|
||||
let extraClassDefinition = [{
|
||||
ParseResult AtenLerp_ScalarOp::parse(OpAsmParser &parser, OperationState &result) {
|
||||
return parseDefaultTorchOp(parser, result, 3, 1);
|
||||
}
|
||||
void AtenLerp_ScalarOp::print(OpAsmPrinter &printer) {
|
||||
printDefaultTorchOp(printer, *this, 3, 1);
|
||||
}
|
||||
}];
|
||||
}
|
||||
|
||||
def Torch_AtenEqTensorOp : Torch_Op<"aten.eq.Tensor", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics,
|
||||
|
|
|
@ -8438,6 +8438,10 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
|||
" %1 = call @__torch__.torch.jit._shape_functions.broadcast(%arg0, %0) : (!torch.list<int>, !torch.list<int>) -> !torch.list<int>\n"
|
||||
" return %1 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.aten.lerp.Scalar\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>, %arg2: !torch.float) -> !torch.list<int> {\n"
|
||||
" %0 = call @__torch__.torch.jit._shape_functions.broadcast(%arg0, %arg1) : (!torch.list<int>, !torch.list<int>) -> !torch.list<int>\n"
|
||||
" return %0 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.aten.addcmul\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>, %arg2: !torch.list<int>, %arg3: !torch.float) -> !torch.list<int> {\n"
|
||||
" %0 = call @__torch__.torch.jit._shape_functions.broadcast(%arg1, %arg2) : (!torch.list<int>, !torch.list<int>) -> !torch.list<int>\n"
|
||||
" %1 = call @__torch__.torch.jit._shape_functions.broadcast(%arg0, %0) : (!torch.list<int>, !torch.list<int>) -> !torch.list<int>\n"
|
||||
|
@ -11198,6 +11202,16 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
|||
" %5 = call @__torch__.torch_mlir.jit_ir_importer.build_tools.library_generator.promote_dtypes(%3, %4) : (!torch.list<optional<int>>, !torch.list<int>) -> !torch.int\n"
|
||||
" return %5 : !torch.int\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_dtype_fn.aten.lerp.Scalar\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.tuple<int, int>, %arg2: !torch.number) -> !torch.int {\n"
|
||||
" %none = torch.constant.none\n"
|
||||
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||
" %1:2 = torch.prim.TupleUnpack %arg1 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||
" %2 = torch.prim.ListConstruct %0#0, %1#0, %none : (!torch.int, !torch.int, !torch.none) -> !torch.list<optional<int>>\n"
|
||||
" %3 = call @__torch__.torch_mlir.jit_ir_importer.build_tools.library_generator.get_dtype_of_scalar(%arg2) : (!torch.number) -> !torch.int\n"
|
||||
" %4 = torch.prim.ListConstruct %0#1, %1#1, %3 : (!torch.int, !torch.int, !torch.int) -> !torch.list<int>\n"
|
||||
" %5 = call @__torch__.torch_mlir.jit_ir_importer.build_tools.library_generator.promote_dtypes(%2, %4) : (!torch.list<optional<int>>, !torch.list<int>) -> !torch.int\n"
|
||||
" return %5 : !torch.int\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_dtype_fn.aten.addcmul\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.tuple<int, int>, %arg2: !torch.tuple<int, int>, %arg3: !torch.number) -> !torch.int {\n"
|
||||
" %none = torch.constant.none\n"
|
||||
" %str = torch.constant.str \"AssertionError: \"\n"
|
||||
|
|
|
@ -1895,6 +1895,35 @@ public:
|
|||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
class DecomposeAtenLerpScalarOp : public OpRewritePattern<AtenLerpScalarOp> {
|
||||
public:
|
||||
using OpRewritePattern::OpRewritePattern;
|
||||
LogicalResult matchAndRewrite(AtenLerpScalarOp op,
|
||||
PatternRewriter &rewriter) const override {
|
||||
Location loc = op.getLoc();
|
||||
auto resType = op.getType().cast<BaseTensorType>();
|
||||
if (!resType.hasDtype()) {
|
||||
return rewriter.notifyMatchFailure(op, "result should have dtype");
|
||||
}
|
||||
Value cstOne =
|
||||
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(1));
|
||||
auto start = op.getSelf();
|
||||
auto inputType = start.getType().cast<BaseTensorType>();
|
||||
|
||||
auto delta = rewriter.create<AtenSubTensorOp>(loc, inputType, op.getEnd(),
|
||||
start, cstOne);
|
||||
|
||||
auto weightedDelta =
|
||||
rewriter.create<AtenMulScalarOp>(loc, inputType, delta, op.getWeight());
|
||||
auto lerp = rewriter.create<AtenAddTensorOp>(loc, inputType, start,
|
||||
weightedDelta, cstOne);
|
||||
rewriter.replaceOp(op, lerp);
|
||||
return success();
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
// Elu = scale * max(0,x) + alpha * scale * (exp(min(0,x) * input_scale) - 1)
|
||||
namespace {
|
||||
class DecomposeAtenEluOp : public OpRewritePattern<AtenEluOp> {
|
||||
|
@ -6763,6 +6792,7 @@ public:
|
|||
addPatternIfTargetOpIsIllegal<DecomposeAtenSeluOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenLeakyReluOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenLeakyReluBackwardOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenLerpScalarOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenNewEmptyStridedOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenEmptyStridedOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenBucketizeTensorOp>(patterns);
|
||||
|
|
|
@ -488,6 +488,7 @@ static void markDecomposedOpsAsIllegal(MLIRContext *context,
|
|||
target.addIllegalOp<AtenNarrowTensorOp>();
|
||||
target.addIllegalOp<Aten_EmbeddingBagOp>();
|
||||
target.addIllegalOp<AtenLiftFreshCopyOp>();
|
||||
target.addIllegalOp<AtenLerpScalarOp>();
|
||||
target.addIllegalOp<AtenIndexTensorOp>();
|
||||
target.addIllegalOp<AtenMseLossOp>();
|
||||
target.addIllegalOp<AtenRandintLowOp>();
|
||||
|
|
|
@ -1116,6 +1116,8 @@ TOSA_PASS_SET = {
|
|||
"ElementwiseLeakyReluModule_basic",
|
||||
"ElementwiseLeakyReluModule_basic",
|
||||
"ElementwiseLeakyReluStaticModule_basic",
|
||||
"ElementwiseLerpScalarIntModule_basic",
|
||||
"ElementwiseLerpScalarFloatModule_basic",
|
||||
"ElementwiseLog2Module_basic",
|
||||
"ElementwiseLogModule_basic",
|
||||
"ElementwiseLtDiffWidthScalarModule_basic",
|
||||
|
@ -1496,6 +1498,8 @@ LTC_XFAIL_SET = {
|
|||
"ElementwiseLogitModule_basic",
|
||||
"ElementwiseRemainderScalarModule_Int_Float_basic",
|
||||
"ElementwiseRemainderScalarModule_Bool_basic",
|
||||
"ElementwiseLerpScalarIntModule_basic",
|
||||
"ElementwiseLerpScalarFloatModule_basic",
|
||||
"AtenIntTensorByteDtypeModule_basic",
|
||||
"AtenIntTensorCharDtypeModule_basic",
|
||||
"UpSampleNearest2dBackwardVec_basic",
|
||||
|
|
|
@ -1245,6 +1245,9 @@ def aten〇nan_to_num〡shape(self: List[int], nan: Optional[float] = None, posi
|
|||
def aten〇lerp〇Tensor〡shape(self: List[int], end: List[int], weight: List[int]) -> List[int]:
|
||||
return upstream_shape_functions.broadcast(self, upstream_shape_functions.broadcast(end, weight))
|
||||
|
||||
def aten〇lerp〇Scalar〡shape(self: List[int], end: List[int], weight: float) -> List[int]:
|
||||
return upstream_shape_functions.broadcast(self, end)
|
||||
|
||||
def aten〇addcmul〡shape(self: List[int], tensor1: List[int], tensor2: List[int], value: float = 1) -> List[int]:
|
||||
return upstream_shape_functions.broadcast(self, upstream_shape_functions.broadcast(tensor1, tensor2))
|
||||
|
||||
|
@ -3313,6 +3316,27 @@ def aten〇lerp〇Tensor〡dtype(self_rank_dtype: Tuple[int, int], end_rank_dtyp
|
|||
dtypes = [self_dtype, end_dtype, weight_dtype]
|
||||
return promote_dtypes(ranks, dtypes)
|
||||
|
||||
@check_dtype_function(
|
||||
_check_tensors_with_the_same_dtype(tensor_shapes=[(1, 1), (1, 1)], weight=0.5) +
|
||||
# Different width
|
||||
[Invocation(TensorOfShape(4, 3, dtype=torch.float32),
|
||||
TensorOfShape(4, 3, dtype=torch.float64),
|
||||
weight=0.5),
|
||||
# Different type
|
||||
Invocation(TensorOfShape(4, 3, dtype=torch.int32),
|
||||
TensorOfShape(4, 3, dtype=torch.float32),
|
||||
weight=0.5),
|
||||
Invocation(TensorOfShape(4, 3, dtype=torch.float32),
|
||||
TensorOfShape(4, 3, dtype=torch.float32),
|
||||
weight=2)])
|
||||
def aten〇lerp〇Scalar〡dtype(self_rank_dtype: Tuple[int, int], end_rank_dtype: Tuple[int, int], weight: Union[int, float, complex]) -> int:
|
||||
self_rank, self_dtype = self_rank_dtype
|
||||
end_rank, end_dtype = end_rank_dtype
|
||||
|
||||
ranks: List[Optional[int]] = [self_rank, end_rank, None]
|
||||
dtypes = [self_dtype, end_dtype, get_dtype_of_scalar(weight)]
|
||||
return promote_dtypes(ranks, dtypes)
|
||||
|
||||
@check_dtype_function(
|
||||
_check_tensors_with_the_same_dtype(tensor_shapes=[(1, 1), (1, 1), (1, 1)], error_types={torch.bool}) +
|
||||
# Different width
|
||||
|
|
|
@ -290,6 +290,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
|
|||
"aten::logical_xor : (Tensor, Tensor) -> (Tensor)",
|
||||
"aten::logical_not : (Tensor) -> (Tensor)",
|
||||
"aten::lerp.Tensor : (Tensor, Tensor, Tensor) -> (Tensor)",
|
||||
"aten::lerp.Scalar : (Tensor, Tensor, Scalar) -> (Tensor)",
|
||||
"aten::eq.Tensor : (Tensor, Tensor) -> (Tensor)",
|
||||
"aten::gt.Tensor : (Tensor, Tensor) -> (Tensor)",
|
||||
"aten::ge.Tensor : (Tensor, Tensor) -> (Tensor)",
|
||||
|
|
|
@ -545,6 +545,48 @@ class ElementwiseLeakyReluStaticModule(torch.nn.Module):
|
|||
def ElementwiseLeakyReluStaticModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(4, 5, 6, low=-1))
|
||||
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class ElementwiseLerpScalarIntModule(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([-1, -1], torch.float32, True),
|
||||
([-1, -1], torch.float32, True),
|
||||
])
|
||||
def forward(self, a, b):
|
||||
return torch.ops.aten.lerp(a, b, weight=2)
|
||||
|
||||
@register_test_case(module_factory=lambda: ElementwiseLerpScalarIntModule())
|
||||
def ElementwiseLerpScalarIntModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(5,3), tu.rand(5,3))
|
||||
|
||||
|
||||
class ElementwiseLerpScalarFloatModule(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([-1, -1], torch.float32, True),
|
||||
([-1, -1], torch.float32, True),
|
||||
])
|
||||
def forward(self, a, b):
|
||||
return torch.ops.aten.lerp(a, b, weight=0.5)
|
||||
|
||||
@register_test_case(module_factory=lambda: ElementwiseLerpScalarFloatModule())
|
||||
def ElementwiseLerpScalarFloatModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(5,3), tu.rand(5,3))
|
||||
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue