mirror of https://github.com/llvm/torch-mlir
Torch-MLIR LTC Backend Lowering Codegen (#621)
* Codegen and build LTC lowering * Add LazyShapeInference headerpull/1125/head
parent
2f22e2ef40
commit
58338f79a1
|
@ -22,3 +22,16 @@ __pycache__
|
|||
|
||||
# Bazel
|
||||
bazel-*
|
||||
|
||||
# Autogenerated files
|
||||
/generated_native_functions.yaml
|
||||
/generated_backend.hash
|
||||
/python/torch_mlir/csrc/backend/LazyLazyIr.h
|
||||
/python/torch_mlir/csrc/backend/LazyNativeFunctions.cpp
|
||||
/python/torch_mlir/csrc/backend/LazyNativeFunctions.h
|
||||
/python/torch_mlir/csrc/backend/LazyShapeInference.cpp
|
||||
/python/torch_mlir/csrc/backend/RegisterLazy.cpp
|
||||
|
||||
# Libraries
|
||||
*.so
|
||||
*.a
|
||||
|
|
|
@ -20,9 +20,14 @@ link_directories("${TORCH_INSTALL_PREFIX}/lib")
|
|||
|
||||
|
||||
add_library(torch_mlir_ltc_backend SHARED
|
||||
backend/backend_impl.cc
|
||||
backend/mlir_lowering_context.cc
|
||||
backend/mlir_node.cc
|
||||
backend/aten_eager_fallback.cpp
|
||||
backend/aten_ltc_mlir_type.cpp
|
||||
backend/backend_impl.cpp
|
||||
backend/LazyNativeFunctions.cpp
|
||||
backend/LazyShapeInference.cpp
|
||||
backend/mlir_lowering_context.cpp
|
||||
backend/mlir_node.cpp
|
||||
backend/RegisterLazy.cpp
|
||||
)
|
||||
|
||||
target_link_libraries(torch_mlir_ltc_backend
|
||||
|
@ -32,12 +37,13 @@ target_link_libraries(torch_mlir_ltc_backend
|
|||
torch_python
|
||||
)
|
||||
|
||||
message(STATUS "TORCH_CXXFLAGS=${TORCH_CXXFLAGS} -Wpedantic")
|
||||
message(STATUS "TORCH_CXXFLAGS=${TORCH_CXXFLAGS} -Wno-pedantic")
|
||||
set_target_properties(torch_mlir_ltc_backend PROPERTIES
|
||||
LIBRARY_OUTPUT_DIRECTORY "${TORCH_MLIR_PYTHON_PACKAGES_DIR}/torch_mlir/"
|
||||
OUTPUT_NAME _MLIR_LTC
|
||||
PREFIX "${PYTHON_MODULE_PREFIX}"
|
||||
SUFFIX "${PYTHON_MODULE_EXTENSION}"
|
||||
CXX_VISIBILITY_PRESET "hidden"
|
||||
COMPILE_FLAGS "${TORCH_CXXFLAGS} -Wpedantic"
|
||||
COMPILE_FLAGS "${TORCH_CXXFLAGS} -Wno-pedantic"
|
||||
)
|
||||
|
||||
|
|
|
@ -1,159 +0,0 @@
|
|||
#include <torch/csrc/lazy/backend/backend_data.h>
|
||||
#include <torch/csrc/lazy/backend/backend_device.h>
|
||||
#include <torch/csrc/lazy/backend/lowering_context.h>
|
||||
#include <torch/csrc/lazy/core/shape.h>
|
||||
|
||||
#include "backend_impl.h"
|
||||
#include "mlir_lowering_context.h"
|
||||
#include "../utils/exception.h"
|
||||
|
||||
namespace torch {
|
||||
namespace lazy {
|
||||
|
||||
struct MlirBackendData::Info : public BackendData::Info {
|
||||
at::Tensor tensor;
|
||||
c10::optional<at::Scalar> scalar;
|
||||
|
||||
Info() {}
|
||||
Info(const Info& other) :
|
||||
tensor{other.tensor}, scalar{other.scalar} {}
|
||||
Info(const at::Tensor& tensor) : tensor{tensor} {}
|
||||
Info(const at::Scalar& scalar) : scalar{scalar} {}
|
||||
};
|
||||
|
||||
MlirBackendData::MlirBackendData(BackendDevice device, Shape shape) :
|
||||
BackendData(device, shape) {
|
||||
auto info = std::make_shared<MlirBackendData::Info>();
|
||||
SetInfo(info);
|
||||
}
|
||||
MlirBackendData::MlirBackendData(const at::Scalar& scalar, BackendDevice device) :
|
||||
BackendData(device, torch::lazy::Shape(scalar.type(), {})) {
|
||||
auto info = std::make_shared<MlirBackendData::Info>(scalar);
|
||||
SetInfo(info);
|
||||
}
|
||||
MlirBackendData::MlirBackendData(const at::Tensor& tensor, BackendDevice device, Shape shape) :
|
||||
BackendData(device, shape) {
|
||||
auto info = std::make_shared<MlirBackendData::Info>(tensor);
|
||||
SetInfo(info);
|
||||
}
|
||||
|
||||
BackendData::Handle MlirBackendData::GetHandle() { return reinterpret_cast<int64_t>(this); }
|
||||
|
||||
void MlirBackendData::Assign(const BackendData& data) {
|
||||
MlirBackendData::Info* info =
|
||||
dynamic_cast<MlirBackendData::Info*>(data.info());
|
||||
TORCH_CHECK(
|
||||
info, "Invalid Backend Data Pointer. Expected MlirBackendData::Info."
|
||||
);
|
||||
auto new_info = std::make_shared<MlirBackendData::Info>(*info);
|
||||
SetInfo(new_info);
|
||||
}
|
||||
|
||||
bool MlirBackendData::HasValue() const {
|
||||
return bool(info());
|
||||
}
|
||||
|
||||
/**
|
||||
* Initialization/Teardown
|
||||
* */
|
||||
void MlirBackendImpl::PrepareToExit() const {}
|
||||
|
||||
/**
|
||||
* Data Transfer
|
||||
* */
|
||||
|
||||
BackendDataPtr MlirBackendImpl::MakeComputationDataFromTensor(
|
||||
const at::Tensor& tensor,
|
||||
const Shape& shape,
|
||||
const BackendDevice& device
|
||||
) const {
|
||||
return std::make_shared<MlirBackendData>(tensor, device, shape);
|
||||
}
|
||||
|
||||
BackendDataPtr MlirBackendImpl::MakeComputationDataFromScalar(
|
||||
const at::Scalar& scalar,
|
||||
const torch::lazy::BackendDevice& device
|
||||
) const {
|
||||
return std::make_shared<MlirBackendData>(scalar, device);
|
||||
}
|
||||
|
||||
BackendDataPtr MlirBackendImpl::CreateDataPlaceholder(
|
||||
const BackendDevice& device, const Shape& shape
|
||||
) const {
|
||||
return std::make_shared<MlirBackendData>(device, shape);
|
||||
}
|
||||
|
||||
at::Tensor MlirBackendImpl::MakeTensorFromComputationData(
|
||||
const BackendDataPtr data,
|
||||
c10::optional<at::ScalarType> logical_scalar_type
|
||||
) const {
|
||||
MlirBackendData::Info* info =
|
||||
dynamic_cast<MlirBackendData::Info*>(data->info());
|
||||
TORCH_CHECK(
|
||||
info, "Invalid Backend Data Pointer. Expected MlirBackendData::Info."
|
||||
);
|
||||
return info->tensor;
|
||||
}
|
||||
|
||||
/**
|
||||
* Lowering, Compilation, Execution
|
||||
* */
|
||||
|
||||
std::unique_ptr<LoweringContext> MlirBackendImpl::CreateLoweringContext(
|
||||
const std::string& name,
|
||||
BackendDevice device,
|
||||
c10::ArrayRef<torch::lazy::Node*> post_order,
|
||||
Util::EmissionMap emit_status
|
||||
) const {
|
||||
return std::make_unique<MlirLoweringContext>(
|
||||
name,
|
||||
std::forward<BackendDevice>(device),
|
||||
std::forward<c10::ArrayRef<torch::lazy::Node*>>(post_order),
|
||||
std::forward<Util::EmissionMap>(emit_status)
|
||||
);
|
||||
}
|
||||
|
||||
std::unique_ptr<LoweringContext> MlirBackendImpl::CreateLoweringContext(
|
||||
const std::string& name, BackendDevice device
|
||||
) const {
|
||||
return std::make_unique<MlirLoweringContext>(
|
||||
name, std::forward<BackendDevice>(device)
|
||||
);
|
||||
}
|
||||
|
||||
/**
|
||||
* Device Configuration
|
||||
* */
|
||||
|
||||
// Set or get the default device type.
|
||||
// For backends used with virtual c10:: Devices, this configures what real
|
||||
// device type the backend should use, and matters if the backend supports
|
||||
// more than one type of real device.
|
||||
|
||||
// Specify which aten device should be used for eager fallback
|
||||
// may change depending on current 'Default' DeviceType
|
||||
at::DeviceType MlirBackendImpl::EagerFallbackDeviceType() const {
|
||||
return at::DeviceType::CPU;
|
||||
}
|
||||
|
||||
|
||||
// Query all available backend devices
|
||||
std::vector<BackendDevice> MlirBackendImpl::GetBackendDevices() const {
|
||||
return {
|
||||
GetBackendDevice(c10::Device(c10::kCPU, 0)),
|
||||
GetBackendDevice(c10::Device(c10::kLazy, 0))
|
||||
};
|
||||
}
|
||||
|
||||
// Map a particular c10:: device to a concrete backend device
|
||||
// Note:: c10:: devices may be virtual or concrete. xla:: and lazy:: are
|
||||
// virtual devices, meaning they may map to a gpu, tpu, etc. behind the
|
||||
// scenes. In the future, non-virtual c10:: devices may also use lazy tensors
|
||||
// through a mode, in which case these APIs should still work, but should be
|
||||
// identity mappings.
|
||||
BackendDevice MlirBackendImpl::GetBackendDevice(c10::Device device) const {
|
||||
return torch::lazy::BackendDevice(GetDefaultDeviceType(), device.index());
|
||||
}
|
||||
|
||||
} // lazy
|
||||
} // torch
|
|
@ -1,3 +1,18 @@
|
|||
//===- backend_impl.h -----------------------------------------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
// Also available under a BSD-style license. See LICENSE.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
// The Torch-MLIR backend class API that handles lowering LTC ATen ops to MLIR
|
||||
// using the Torch-MLIR ATen dialect
|
||||
//
|
||||
// This file is adapted from pytorch/pytorch
|
||||
// https://github.com/pytorch/pytorch/blob/lazy_tensor_staging/lazy_tensor_core/lazy_tensor_core/csrc/ts_backend/backend_impl.h
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <torch/csrc/lazy/backend/backend_data.h>
|
||||
|
|
|
@ -1,93 +0,0 @@
|
|||
#include <iostream>
|
||||
|
||||
#include "mlir_lowering_context.h"
|
||||
#include "../utils/exception.h"
|
||||
|
||||
|
||||
namespace torch {
|
||||
namespace lazy {
|
||||
|
||||
MlirLoweringContext::MlirLoweringContext(
|
||||
const std::string& name, BackendDevice device
|
||||
) : LoweringContext(name, std::forward<BackendDevice>(device)) {}
|
||||
|
||||
MlirLoweringContext::MlirLoweringContext(
|
||||
const std::string& name,
|
||||
BackendDevice device,
|
||||
c10::ArrayRef<torch::lazy::Node*> post_order,
|
||||
Util::EmissionMap emit_status
|
||||
) : LoweringContext(
|
||||
name,
|
||||
std::forward<BackendDevice>(device),
|
||||
std::forward<c10::ArrayRef<torch::lazy::Node*>>(post_order),
|
||||
std::forward<Util::EmissionMap>(emit_status)
|
||||
) {}
|
||||
|
||||
int MlirComputation::parameters_size() const {
|
||||
UNIMPLEMENTED_ERROR("MlirComputation::parameters_size");
|
||||
}
|
||||
|
||||
const std::vector<torch::lazy::Shape>& MlirComputation::parameter_shapes() const {
|
||||
UNIMPLEMENTED_ERROR("MlirComputation::parameter_shapes");
|
||||
}
|
||||
|
||||
const std::vector<std::string>& MlirComputation::parameter_names() const {
|
||||
UNIMPLEMENTED_ERROR("MlirComputation::parameter_names");
|
||||
}
|
||||
|
||||
const torch::lazy::Shape& MlirComputation::result_shape() const {
|
||||
UNIMPLEMENTED_ERROR("MlirComputation::result_shape");
|
||||
}
|
||||
|
||||
|
||||
// Get the shape of the result tuple component, given by index.
|
||||
torch::lazy::Shape MlirLoweringContext::GetResultShape(size_t index) const {
|
||||
UNIMPLEMENTED_ERROR("MlirLoweringContext::GetResultShape( " << index << " )");
|
||||
}
|
||||
|
||||
// Adds the given output as a component of the result tuple and returns its
|
||||
// assigned position within the tuple.
|
||||
size_t MlirLoweringContext::AddResult(const torch::lazy::Output& output) {
|
||||
const torch::lazy::Node* node;
|
||||
auto it = emitted_outputs_.find(output);
|
||||
if (it == emitted_outputs_.end()) {
|
||||
node = output.node;
|
||||
|
||||
auto post_order = Util::ComputePostOrder(node, &emit_status_);
|
||||
for (auto po_node : post_order) {
|
||||
// TODO: uncomment after lowering is implemented
|
||||
// bool ok = lowering_->Lower(node);
|
||||
// TORCH_CHECK(ok, "Failed to lower: ", node->ToString());
|
||||
}
|
||||
emitted_outputs_[output] = node;
|
||||
} else {
|
||||
node = it->second;
|
||||
}
|
||||
result_tuple_.emplace_back(node);
|
||||
return result_tuple_.size() - 1;
|
||||
}
|
||||
|
||||
// Associates the given output with the input parameter of the given index and
|
||||
// shape. Only used for the operator-by-operator execution, mostly for
|
||||
// debugging purposes.
|
||||
void MlirLoweringContext::AddParameter(
|
||||
const torch::lazy::Output& output,
|
||||
size_t index,
|
||||
const torch::lazy::Shape& shape,
|
||||
const std::string& name
|
||||
) {
|
||||
UNIMPLEMENTED_ERROR("MlirLoweringContext::AddParameter");
|
||||
}
|
||||
|
||||
// Build the computation capturing all the operations created with the
|
||||
// embedded builder (returned by the builder() API).
|
||||
ComputationPtr MlirLoweringContext::Build() {
|
||||
for (const torch::lazy::Node* output : result_tuple_) {
|
||||
|
||||
}
|
||||
return std::make_shared<MlirComputation>();
|
||||
}
|
||||
|
||||
|
||||
} // namespace lazy
|
||||
} // namespace torch
|
|
@ -1,9 +1,23 @@
|
|||
//===- mlir_lowering_context.h --------------------------------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
// Also available under a BSD-style license. See LICENSE.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
// This file is adapted from pytorch/pytorch
|
||||
// https://github.com/pytorch/pytorch/blob/lazy_tensor_staging/torch/csrc/lazy/ts_backend/ts_lowering_context.h
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include <torch/csrc/lazy/backend/lowering_context.h>
|
||||
|
||||
|
||||
namespace torch {
|
||||
namespace lazy {
|
||||
|
||||
|
|
|
@ -1,124 +0,0 @@
|
|||
#include <torch/csrc/lazy/core/cache.h>
|
||||
|
||||
#include "mlir_node.h"
|
||||
#include "../utils/exception.h"
|
||||
|
||||
|
||||
namespace torch {
|
||||
namespace lazy {
|
||||
|
||||
namespace {
|
||||
|
||||
hash_t OperandHashes(const OpList& operands, const hash_t& seed, const bool bakeInSizes) {
|
||||
hash_t hash = seed;
|
||||
for (auto& operand : operands) {
|
||||
if (!operand) {
|
||||
hash = HashCombine(hash, static_cast<uint64_t>(kNullOpt));
|
||||
continue;
|
||||
}
|
||||
auto operand_hash = bakeInSizes ? operand.hash_with_sizes() : operand.hash_without_sizes();
|
||||
hash = HashCombine(hash, operand_hash);
|
||||
}
|
||||
return hash;
|
||||
}
|
||||
|
||||
hash_t GetOpHash(OpKind op, const Shape& shape, hash_t hash_seed, const bool bakeInSizes) {
|
||||
hash_t h = HashCombine(op.hash(), shape.hash(bakeInSizes));
|
||||
return HashCombine(h, hash_seed);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
|
||||
MlirNode::MlirNode(
|
||||
OpKind op, OpList operands, std::vector<Shape>&& shapes,
|
||||
size_t num_outputs, hash_t hash_seed
|
||||
) : Node(
|
||||
op, num_outputs,
|
||||
/* node_hash */ HashCombine(op.hash(), hash_seed),
|
||||
/* dag_hash */
|
||||
[&](bool bakeInSizes) -> hash_t {
|
||||
return OperandHashes(operands, HashCombine(op.hash(), hash_seed), bakeInSizes);
|
||||
}
|
||||
),
|
||||
shapes_(std::move(shapes)) {
|
||||
|
||||
for (auto& operand : operands) {
|
||||
// Ideally, optional operands should be filtered by the leaf node classes,
|
||||
// but it's just much easier to do it here.
|
||||
if (!operand) {
|
||||
continue;
|
||||
}
|
||||
|
||||
AddOperand(operand.node, operand.index);
|
||||
}
|
||||
}
|
||||
|
||||
MlirNode::MlirNode(
|
||||
OpKind op, OpList operands,
|
||||
const std::function<Shape()>& shape_fn,
|
||||
size_t num_outputs, hash_t hash_seed
|
||||
) : MlirNode(
|
||||
op, operands, std::vector<Shape>{}, num_outputs, hash_seed
|
||||
) {
|
||||
shapes_.push_back(GetOpShape(shape_fn));
|
||||
}
|
||||
|
||||
MlirNode::MlirNode(
|
||||
OpKind op, OpList operands, size_t num_outputs, hash_t hash_seed
|
||||
) : MlirNode(op, operands, std::vector<Shape>{}, num_outputs, hash_seed) {}
|
||||
|
||||
void MlirNode::SetShapeDeferred(
|
||||
const std::function<Shape()>& shape_fn
|
||||
) {
|
||||
shapes_.push_back(GetOpShape(shape_fn));
|
||||
}
|
||||
|
||||
MlirNode::MlirNode(OpKind op, Shape shape, size_t num_outputs, hash_t hash_seed)
|
||||
: Node(
|
||||
op, num_outputs,
|
||||
[&](bool bakeInSizes) -> hash_t {
|
||||
return GetOpHash(op, shape, hash_seed, bakeInSizes);
|
||||
}
|
||||
) {
|
||||
shapes_.push_back(std::move(shape));
|
||||
}
|
||||
|
||||
|
||||
using ShapeCache = Cache<hash_t, Shape, HashReducer>;
|
||||
|
||||
constexpr const int torch_lazy_shape_cache_size = 4096;
|
||||
|
||||
ShapeCache* GetShapeCache() {
|
||||
static ShapeCache* cache = new ShapeCache(torch_lazy_shape_cache_size);
|
||||
return cache;
|
||||
}
|
||||
|
||||
Shape MlirNode::GetOpShape(const std::function<Shape()>& shape_fn) const {
|
||||
ShapeCache* shape_cache = GetShapeCache();
|
||||
auto shape = shape_cache->Get(hash());
|
||||
if (shape == nullptr) {
|
||||
shape = shape_cache->Add(
|
||||
hash(), std::make_shared<Shape>(shape_fn())
|
||||
);
|
||||
}
|
||||
return *shape;
|
||||
}
|
||||
|
||||
|
||||
const std::vector<Output>& MlirNode::operands() const {
|
||||
return operands_as_outputs_;
|
||||
}
|
||||
|
||||
const Output& MlirNode::operand(size_t i) const {
|
||||
return operands_as_outputs_.at(i);
|
||||
}
|
||||
|
||||
void MlirNode::AddOperand(NodePtr node, size_t index) {
|
||||
CHECK_LT(index, node->num_outputs());
|
||||
operands_.push_back(std::move(node));
|
||||
operands_as_outputs_.emplace_back(operands_.back().get(), index);
|
||||
}
|
||||
|
||||
} // namespace lazy
|
||||
} // namespace torch
|
|
@ -1,3 +1,15 @@
|
|||
//===- mlir_node.h --------------------------------------------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
// Also available under a BSD-style license. See LICENSE.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
// This file is adapted from pytorch/pytorch
|
||||
// https://github.com/pytorch/pytorch/blob/lazy_tensor_staging/torch/csrc/lazy/ts_backend/ts_node.h
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <ATen/core/interned_strings.h>
|
||||
|
@ -5,6 +17,7 @@
|
|||
#include <torch/csrc/lazy/core/shape.h>
|
||||
#include <torch/csrc/lazy/core/ir.h>
|
||||
|
||||
#include "aten_eager_fallback.h"
|
||||
#include "mlir_lowering_context.h"
|
||||
#include "../utils/exception.h"
|
||||
|
||||
|
|
|
@ -1,3 +1,12 @@
|
|||
//===- exception.h --------------------------------------------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
// Also available under a BSD-style license. See LICENSE.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <exception>
|
||||
|
|
Loading…
Reference in New Issue